2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
44 static struct workqueue_struct
*ata_sff_wq
;
46 const struct ata_port_operations ata_sff_port_ops
= {
47 .inherits
= &ata_base_port_ops
,
49 .qc_prep
= ata_noop_qc_prep
,
50 .qc_issue
= ata_sff_qc_issue
,
51 .qc_fill_rtf
= ata_sff_qc_fill_rtf
,
53 .freeze
= ata_sff_freeze
,
55 .prereset
= ata_sff_prereset
,
56 .softreset
= ata_sff_softreset
,
57 .hardreset
= sata_sff_hardreset
,
58 .postreset
= ata_sff_postreset
,
59 .error_handler
= ata_sff_error_handler
,
61 .sff_dev_select
= ata_sff_dev_select
,
62 .sff_check_status
= ata_sff_check_status
,
63 .sff_tf_load
= ata_sff_tf_load
,
64 .sff_tf_read
= ata_sff_tf_read
,
65 .sff_exec_command
= ata_sff_exec_command
,
66 .sff_data_xfer
= ata_sff_data_xfer
,
67 .sff_drain_fifo
= ata_sff_drain_fifo
,
69 .lost_interrupt
= ata_sff_lost_interrupt
,
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops
);
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
82 * Inherited from caller.
84 u8
ata_sff_check_status(struct ata_port
*ap
)
86 return ioread8(ap
->ioaddr
.status_addr
);
88 EXPORT_SYMBOL_GPL(ata_sff_check_status
);
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
101 * Inherited from caller.
103 static u8
ata_sff_altstatus(struct ata_port
*ap
)
105 if (ap
->ops
->sff_check_altstatus
)
106 return ap
->ops
->sff_check_altstatus(ap
);
108 return ioread8(ap
->ioaddr
.altstatus_addr
);
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
121 * Inherited from caller.
123 static u8
ata_sff_irq_status(struct ata_port
*ap
)
127 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
128 status
= ata_sff_altstatus(ap
);
129 /* Not us: We are busy */
130 if (status
& ATA_BUSY
)
133 /* Clear INTRQ latch */
134 status
= ap
->ops
->sff_check_status(ap
);
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
147 * Inherited from caller.
150 static void ata_sff_sync(struct ata_port
*ap
)
152 if (ap
->ops
->sff_check_altstatus
)
153 ap
->ops
->sff_check_altstatus(ap
);
154 else if (ap
->ioaddr
.altstatus_addr
)
155 ioread8(ap
->ioaddr
.altstatus_addr
);
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
167 * Inherited from caller.
170 void ata_sff_pause(struct ata_port
*ap
)
175 EXPORT_SYMBOL_GPL(ata_sff_pause
);
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
185 void ata_sff_dma_pause(struct ata_port
*ap
)
187 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap
);
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause
);
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
210 * Kernel thread context (may sleep).
213 * 0 on success, -errno otherwise.
215 int ata_sff_busy_sleep(struct ata_port
*ap
,
216 unsigned long tmout_pat
, unsigned long tmout
)
218 unsigned long timer_start
, timeout
;
221 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 300);
222 timer_start
= jiffies
;
223 timeout
= ata_deadline(timer_start
, tmout_pat
);
224 while (status
!= 0xff && (status
& ATA_BUSY
) &&
225 time_before(jiffies
, timeout
)) {
227 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 3);
230 if (status
!= 0xff && (status
& ATA_BUSY
))
232 "port is slow to respond, please be patient (Status 0x%x)\n",
235 timeout
= ata_deadline(timer_start
, tmout
);
236 while (status
!= 0xff && (status
& ATA_BUSY
) &&
237 time_before(jiffies
, timeout
)) {
239 status
= ap
->ops
->sff_check_status(ap
);
245 if (status
& ATA_BUSY
) {
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout
, 1000), status
);
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep
);
256 static int ata_sff_check_ready(struct ata_link
*link
)
258 u8 status
= link
->ap
->ops
->sff_check_status(link
->ap
);
260 return ata_check_ready(status
);
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
268 * Sleep until ATA Status register bit BSY clears, or timeout
272 * Kernel thread context (may sleep).
275 * 0 on success, -errno otherwise.
277 int ata_sff_wait_ready(struct ata_link
*link
, unsigned long deadline
)
279 return ata_wait_ready(link
, deadline
, ata_sff_check_ready
);
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready
);
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
288 * Writes ATA taskfile device control register.
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
294 * Inherited from caller.
296 static void ata_sff_set_devctl(struct ata_port
*ap
, u8 ctl
)
298 if (ap
->ops
->sff_set_devctl
)
299 ap
->ops
->sff_set_devctl(ap
, ctl
);
301 iowrite8(ctl
, ap
->ioaddr
.ctl_addr
);
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
313 * May be used as the dev_select() entry in ata_port_operations.
318 void ata_sff_dev_select(struct ata_port
*ap
, unsigned int device
)
323 tmp
= ATA_DEVICE_OBS
;
325 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
327 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
328 ata_sff_pause(ap
); /* needed; also flushes, for mmio */
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select
);
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
350 static void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
351 unsigned int wait
, unsigned int can_sleep
)
353 if (ata_msg_probe(ap
))
354 ata_port_info(ap
, "ata_dev_select: ENTER, device %u, wait %u\n",
360 ap
->ops
->sff_dev_select(ap
, device
);
363 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
380 * Inherited from caller.
382 void ata_sff_irq_on(struct ata_port
*ap
)
384 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
386 if (ap
->ops
->sff_irq_on
) {
387 ap
->ops
->sff_irq_on(ap
);
391 ap
->ctl
&= ~ATA_NIEN
;
392 ap
->last_ctl
= ap
->ctl
;
394 if (ap
->ops
->sff_set_devctl
|| ioaddr
->ctl_addr
)
395 ata_sff_set_devctl(ap
, ap
->ctl
);
398 if (ap
->ops
->sff_irq_clear
)
399 ap
->ops
->sff_irq_clear(ap
);
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on
);
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
408 * Outputs ATA taskfile to standard ATA host controller.
411 * Inherited from caller.
413 void ata_sff_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
415 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
416 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
418 if (tf
->ctl
!= ap
->last_ctl
) {
419 if (ioaddr
->ctl_addr
)
420 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
421 ap
->last_ctl
= tf
->ctl
;
425 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
426 WARN_ON_ONCE(!ioaddr
->ctl_addr
);
427 iowrite8(tf
->hob_feature
, ioaddr
->feature_addr
);
428 iowrite8(tf
->hob_nsect
, ioaddr
->nsect_addr
);
429 iowrite8(tf
->hob_lbal
, ioaddr
->lbal_addr
);
430 iowrite8(tf
->hob_lbam
, ioaddr
->lbam_addr
);
431 iowrite8(tf
->hob_lbah
, ioaddr
->lbah_addr
);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
441 iowrite8(tf
->feature
, ioaddr
->feature_addr
);
442 iowrite8(tf
->nsect
, ioaddr
->nsect_addr
);
443 iowrite8(tf
->lbal
, ioaddr
->lbal_addr
);
444 iowrite8(tf
->lbam
, ioaddr
->lbam_addr
);
445 iowrite8(tf
->lbah
, ioaddr
->lbah_addr
);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
454 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
455 iowrite8(tf
->device
, ioaddr
->device_addr
);
456 VPRINTK("device 0x%X\n", tf
->device
);
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load
);
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
474 * Inherited from caller.
476 void ata_sff_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
478 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
480 tf
->command
= ata_sff_check_status(ap
);
481 tf
->feature
= ioread8(ioaddr
->error_addr
);
482 tf
->nsect
= ioread8(ioaddr
->nsect_addr
);
483 tf
->lbal
= ioread8(ioaddr
->lbal_addr
);
484 tf
->lbam
= ioread8(ioaddr
->lbam_addr
);
485 tf
->lbah
= ioread8(ioaddr
->lbah_addr
);
486 tf
->device
= ioread8(ioaddr
->device_addr
);
488 if (tf
->flags
& ATA_TFLAG_LBA48
) {
489 if (likely(ioaddr
->ctl_addr
)) {
490 iowrite8(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
491 tf
->hob_feature
= ioread8(ioaddr
->error_addr
);
492 tf
->hob_nsect
= ioread8(ioaddr
->nsect_addr
);
493 tf
->hob_lbal
= ioread8(ioaddr
->lbal_addr
);
494 tf
->hob_lbam
= ioread8(ioaddr
->lbam_addr
);
495 tf
->hob_lbah
= ioread8(ioaddr
->lbah_addr
);
496 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
497 ap
->last_ctl
= tf
->ctl
;
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read
);
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
513 * spin_lock_irqsave(host lock)
515 void ata_sff_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
517 DPRINTK("ata%u: cmd 0x%X\n", ap
->print_id
, tf
->command
);
519 iowrite8(tf
->command
, ap
->ioaddr
.command_addr
);
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command
);
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
534 * spin_lock_irqsave(host lock)
536 static inline void ata_tf_to_host(struct ata_port
*ap
,
537 const struct ata_taskfile
*tf
)
539 ap
->ops
->sff_tf_load(ap
, tf
);
540 ap
->ops
->sff_exec_command(ap
, tf
);
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @qc: queued command
547 * @buflen: buffer length
550 * Transfer data from/to the device data register by PIO.
553 * Inherited from caller.
558 unsigned int ata_sff_data_xfer(struct ata_queued_cmd
*qc
, unsigned char *buf
,
559 unsigned int buflen
, int rw
)
561 struct ata_port
*ap
= qc
->dev
->link
->ap
;
562 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
563 unsigned int words
= buflen
>> 1;
565 /* Transfer multiple of 2 bytes */
567 ioread16_rep(data_addr
, buf
, words
);
569 iowrite16_rep(data_addr
, buf
, words
);
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen
& 0x01)) {
573 unsigned char pad
[2] = { };
575 /* Point buf to the tail of buffer */
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
583 ioread16_rep(data_addr
, pad
, 1);
587 iowrite16_rep(data_addr
, pad
, 1);
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer
);
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @qc: queued command
600 * @buflen: buffer length
603 * Transfer data from/to the device data register by PIO using 32bit
607 * Inherited from caller.
613 unsigned int ata_sff_data_xfer32(struct ata_queued_cmd
*qc
, unsigned char *buf
,
614 unsigned int buflen
, int rw
)
616 struct ata_device
*dev
= qc
->dev
;
617 struct ata_port
*ap
= dev
->link
->ap
;
618 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
619 unsigned int words
= buflen
>> 2;
620 int slop
= buflen
& 3;
622 if (!(ap
->pflags
& ATA_PFLAG_PIO32
))
623 return ata_sff_data_xfer(qc
, buf
, buflen
, rw
);
625 /* Transfer multiple of 4 bytes */
627 ioread32_rep(data_addr
, buf
, words
);
629 iowrite32_rep(data_addr
, buf
, words
);
631 /* Transfer trailing bytes, if any */
632 if (unlikely(slop
)) {
633 unsigned char pad
[4] = { };
635 /* Point buf to the tail of buffer */
636 buf
+= buflen
- slop
;
639 * Use io*_rep() accessors here as well to avoid pointlessly
640 * swapping bytes to and from on the big endian machines...
644 ioread16_rep(data_addr
, pad
, 1);
646 ioread32_rep(data_addr
, pad
, 1);
647 memcpy(buf
, pad
, slop
);
649 memcpy(pad
, buf
, slop
);
651 iowrite16_rep(data_addr
, pad
, 1);
653 iowrite32_rep(data_addr
, pad
, 1);
656 return (buflen
+ 1) & ~1;
658 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32
);
661 * ata_pio_sector - Transfer a sector of data.
662 * @qc: Command on going
664 * Transfer qc->sect_size bytes of data from/to the ATA device.
667 * Inherited from caller.
669 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
671 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
672 struct ata_port
*ap
= qc
->ap
;
678 qc
->curbytes
= qc
->nbytes
;
681 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
682 ap
->hsm_task_state
= HSM_ST_LAST
;
684 page
= sg_page(qc
->cursg
);
685 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
687 /* get the current page and offset */
688 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
691 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
693 /* do the actual data transfer */
694 buf
= kmap_atomic(page
);
695 ap
->ops
->sff_data_xfer(qc
, buf
+ offset
, qc
->sect_size
, do_write
);
698 if (!do_write
&& !PageSlab(page
))
699 flush_dcache_page(page
);
701 qc
->curbytes
+= qc
->sect_size
;
702 qc
->cursg_ofs
+= qc
->sect_size
;
704 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
705 qc
->cursg
= sg_next(qc
->cursg
);
707 ap
->hsm_task_state
= HSM_ST_LAST
;
713 * ata_pio_sectors - Transfer one or many sectors.
714 * @qc: Command on going
716 * Transfer one or many sectors of data from/to the
717 * ATA device for the DRQ request.
720 * Inherited from caller.
722 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
724 if (is_multi_taskfile(&qc
->tf
)) {
725 /* READ/WRITE MULTIPLE */
728 WARN_ON_ONCE(qc
->dev
->multi_count
== 0);
730 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
731 qc
->dev
->multi_count
);
737 ata_sff_sync(qc
->ap
); /* flush */
741 * atapi_send_cdb - Write CDB bytes to hardware
742 * @ap: Port to which ATAPI device is attached.
743 * @qc: Taskfile currently active
745 * When device has indicated its readiness to accept
746 * a CDB, this function is called. Send the CDB.
751 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
754 DPRINTK("send cdb\n");
755 WARN_ON_ONCE(qc
->dev
->cdb_len
< 12);
757 ap
->ops
->sff_data_xfer(qc
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
759 /* FIXME: If the CDB is for DMA do we need to do the transition delay
760 or is bmdma_start guaranteed to do it ? */
761 switch (qc
->tf
.protocol
) {
763 ap
->hsm_task_state
= HSM_ST
;
765 case ATAPI_PROT_NODATA
:
766 ap
->hsm_task_state
= HSM_ST_LAST
;
768 #ifdef CONFIG_ATA_BMDMA
770 ap
->hsm_task_state
= HSM_ST_LAST
;
772 ap
->ops
->bmdma_start(qc
);
774 #endif /* CONFIG_ATA_BMDMA */
781 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
782 * @qc: Command on going
783 * @bytes: number of bytes
785 * Transfer Transfer data from/to the ATAPI device.
788 * Inherited from caller.
791 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
793 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
794 struct ata_port
*ap
= qc
->ap
;
795 struct ata_device
*dev
= qc
->dev
;
796 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
797 struct scatterlist
*sg
;
800 unsigned int offset
, count
, consumed
;
805 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
806 "buf=%u cur=%u bytes=%u",
807 qc
->nbytes
, qc
->curbytes
, bytes
);
812 offset
= sg
->offset
+ qc
->cursg_ofs
;
814 /* get the current page and offset */
815 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
818 /* don't overrun current sg */
819 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
821 /* don't cross page boundaries */
822 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
824 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
826 /* do the actual data transfer */
827 buf
= kmap_atomic(page
);
828 consumed
= ap
->ops
->sff_data_xfer(qc
, buf
+ offset
, count
, rw
);
831 bytes
-= min(bytes
, consumed
);
832 qc
->curbytes
+= count
;
833 qc
->cursg_ofs
+= count
;
835 if (qc
->cursg_ofs
== sg
->length
) {
836 qc
->cursg
= sg_next(qc
->cursg
);
841 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
842 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
843 * check correctly as it doesn't know if it is the last request being
844 * made. Somebody should implement a proper sanity check.
852 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
853 * @qc: Command on going
855 * Transfer Transfer data from/to the ATAPI device.
858 * Inherited from caller.
860 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
862 struct ata_port
*ap
= qc
->ap
;
863 struct ata_device
*dev
= qc
->dev
;
864 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
865 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
866 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
868 /* Abuse qc->result_tf for temp storage of intermediate TF
869 * here to save some kernel stack usage.
870 * For normal completion, qc->result_tf is not relevant. For
871 * error, qc->result_tf is later overwritten by ata_qc_complete().
872 * So, the correctness of qc->result_tf is not affected.
874 ap
->ops
->sff_tf_read(ap
, &qc
->result_tf
);
875 ireason
= qc
->result_tf
.nsect
;
876 bc_lo
= qc
->result_tf
.lbam
;
877 bc_hi
= qc
->result_tf
.lbah
;
878 bytes
= (bc_hi
<< 8) | bc_lo
;
880 /* shall be cleared to zero, indicating xfer of data */
881 if (unlikely(ireason
& ATAPI_COD
))
884 /* make sure transfer direction matches expected */
885 i_write
= ((ireason
& ATAPI_IO
) == 0) ? 1 : 0;
886 if (unlikely(do_write
!= i_write
))
889 if (unlikely(!bytes
))
892 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
894 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
896 ata_sff_sync(ap
); /* flush */
901 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
904 qc
->err_mask
|= AC_ERR_HSM
;
905 ap
->hsm_task_state
= HSM_ST_ERR
;
909 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
910 * @ap: the target ata_port
914 * 1 if ok in workqueue, 0 otherwise.
916 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
,
917 struct ata_queued_cmd
*qc
)
919 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
922 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
923 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
924 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
927 if (ata_is_atapi(qc
->tf
.protocol
) &&
928 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
936 * ata_hsm_qc_complete - finish a qc running on standard HSM
937 * @qc: Command to complete
938 * @in_wq: 1 if called from workqueue, 0 otherwise
940 * Finish @qc which is running on standard HSM.
943 * If @in_wq is zero, spin_lock_irqsave(host lock).
944 * Otherwise, none on entry and grabs host lock.
946 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
948 struct ata_port
*ap
= qc
->ap
;
950 if (ap
->ops
->error_handler
) {
952 /* EH might have kicked in while host lock is
955 qc
= ata_qc_from_tag(ap
, qc
->tag
);
957 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
964 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
979 * ata_sff_hsm_move - move the HSM to the next state.
980 * @ap: the target ata_port
982 * @status: current device status
983 * @in_wq: 1 if called from workqueue, 0 otherwise
986 * 1 when poll next status needed, 0 otherwise.
988 int ata_sff_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
989 u8 status
, int in_wq
)
991 struct ata_link
*link
= qc
->dev
->link
;
992 struct ata_eh_info
*ehi
= &link
->eh_info
;
995 lockdep_assert_held(ap
->lock
);
997 WARN_ON_ONCE((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
999 /* Make sure ata_sff_qc_issue() does not throw things
1000 * like DMA polling into the workqueue. Notice that
1001 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1003 WARN_ON_ONCE(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
1006 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1007 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
1009 switch (ap
->hsm_task_state
) {
1011 /* Send first data block or PACKET CDB */
1013 /* If polling, we will stay in the work queue after
1014 * sending the data. Otherwise, interrupt handler
1015 * takes over after sending the data.
1017 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
1019 /* check device status */
1020 if (unlikely((status
& ATA_DRQ
) == 0)) {
1021 /* handle BSY=0, DRQ=0 as error */
1022 if (likely(status
& (ATA_ERR
| ATA_DF
)))
1023 /* device stops HSM for abort/error */
1024 qc
->err_mask
|= AC_ERR_DEV
;
1026 /* HSM violation. Let EH handle this */
1027 ata_ehi_push_desc(ehi
,
1028 "ST_FIRST: !(DRQ|ERR|DF)");
1029 qc
->err_mask
|= AC_ERR_HSM
;
1032 ap
->hsm_task_state
= HSM_ST_ERR
;
1036 /* Device should not ask for data transfer (DRQ=1)
1037 * when it finds something wrong.
1038 * We ignore DRQ here and stop the HSM by
1039 * changing hsm_task_state to HSM_ST_ERR and
1040 * let the EH abort the command or reset the device.
1042 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1043 /* Some ATAPI tape drives forget to clear the ERR bit
1044 * when doing the next command (mostly request sense).
1045 * We ignore ERR here to workaround and proceed sending
1048 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
1049 ata_ehi_push_desc(ehi
, "ST_FIRST: "
1050 "DRQ=1 with device error, "
1051 "dev_stat 0x%X", status
);
1052 qc
->err_mask
|= AC_ERR_HSM
;
1053 ap
->hsm_task_state
= HSM_ST_ERR
;
1058 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
1059 /* PIO data out protocol.
1060 * send first data block.
1063 /* ata_pio_sectors() might change the state
1064 * to HSM_ST_LAST. so, the state is changed here
1065 * before ata_pio_sectors().
1067 ap
->hsm_task_state
= HSM_ST
;
1068 ata_pio_sectors(qc
);
1071 atapi_send_cdb(ap
, qc
);
1073 /* if polling, ata_sff_pio_task() handles the rest.
1074 * otherwise, interrupt handler takes over from here.
1079 /* complete command or read/write the data register */
1080 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
1081 /* ATAPI PIO protocol */
1082 if ((status
& ATA_DRQ
) == 0) {
1083 /* No more data to transfer or device error.
1084 * Device error will be tagged in HSM_ST_LAST.
1086 ap
->hsm_task_state
= HSM_ST_LAST
;
1090 /* Device should not ask for data transfer (DRQ=1)
1091 * when it finds something wrong.
1092 * We ignore DRQ here and stop the HSM by
1093 * changing hsm_task_state to HSM_ST_ERR and
1094 * let the EH abort the command or reset the device.
1096 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1097 ata_ehi_push_desc(ehi
, "ST-ATAPI: "
1098 "DRQ=1 with device error, "
1099 "dev_stat 0x%X", status
);
1100 qc
->err_mask
|= AC_ERR_HSM
;
1101 ap
->hsm_task_state
= HSM_ST_ERR
;
1105 atapi_pio_bytes(qc
);
1107 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
1108 /* bad ireason reported by device */
1112 /* ATA PIO protocol */
1113 if (unlikely((status
& ATA_DRQ
) == 0)) {
1114 /* handle BSY=0, DRQ=0 as error */
1115 if (likely(status
& (ATA_ERR
| ATA_DF
))) {
1116 /* device stops HSM for abort/error */
1117 qc
->err_mask
|= AC_ERR_DEV
;
1119 /* If diagnostic failed and this is
1120 * IDENTIFY, it's likely a phantom
1121 * device. Mark hint.
1123 if (qc
->dev
->horkage
&
1124 ATA_HORKAGE_DIAGNOSTIC
)
1128 /* HSM violation. Let EH handle this.
1129 * Phantom devices also trigger this
1130 * condition. Mark hint.
1132 ata_ehi_push_desc(ehi
, "ST-ATA: "
1133 "DRQ=0 without device error, "
1134 "dev_stat 0x%X", status
);
1135 qc
->err_mask
|= AC_ERR_HSM
|
1139 ap
->hsm_task_state
= HSM_ST_ERR
;
1143 /* For PIO reads, some devices may ask for
1144 * data transfer (DRQ=1) alone with ERR=1.
1145 * We respect DRQ here and transfer one
1146 * block of junk data before changing the
1147 * hsm_task_state to HSM_ST_ERR.
1149 * For PIO writes, ERR=1 DRQ=1 doesn't make
1150 * sense since the data block has been
1151 * transferred to the device.
1153 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1154 /* data might be corrputed */
1155 qc
->err_mask
|= AC_ERR_DEV
;
1157 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
1158 ata_pio_sectors(qc
);
1159 status
= ata_wait_idle(ap
);
1162 if (status
& (ATA_BUSY
| ATA_DRQ
)) {
1163 ata_ehi_push_desc(ehi
, "ST-ATA: "
1164 "BUSY|DRQ persists on ERR|DF, "
1165 "dev_stat 0x%X", status
);
1166 qc
->err_mask
|= AC_ERR_HSM
;
1169 /* There are oddball controllers with
1170 * status register stuck at 0x7f and
1171 * lbal/m/h at zero which makes it
1172 * pass all other presence detection
1173 * mechanisms we have. Set NODEV_HINT
1174 * for it. Kernel bz#7241.
1177 qc
->err_mask
|= AC_ERR_NODEV_HINT
;
1179 /* ata_pio_sectors() might change the
1180 * state to HSM_ST_LAST. so, the state
1181 * is changed after ata_pio_sectors().
1183 ap
->hsm_task_state
= HSM_ST_ERR
;
1187 ata_pio_sectors(qc
);
1189 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
1190 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
1192 status
= ata_wait_idle(ap
);
1201 if (unlikely(!ata_ok(status
))) {
1202 qc
->err_mask
|= __ac_err_mask(status
);
1203 ap
->hsm_task_state
= HSM_ST_ERR
;
1207 /* no more data to transfer */
1208 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1209 ap
->print_id
, qc
->dev
->devno
, status
);
1211 WARN_ON_ONCE(qc
->err_mask
& (AC_ERR_DEV
| AC_ERR_HSM
));
1213 ap
->hsm_task_state
= HSM_ST_IDLE
;
1215 /* complete taskfile transaction */
1216 ata_hsm_qc_complete(qc
, in_wq
);
1222 ap
->hsm_task_state
= HSM_ST_IDLE
;
1224 /* complete taskfile transaction */
1225 ata_hsm_qc_complete(qc
, in_wq
);
1231 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1232 ap
->print_id
, ap
->hsm_task_state
);
1237 EXPORT_SYMBOL_GPL(ata_sff_hsm_move
);
1239 void ata_sff_queue_work(struct work_struct
*work
)
1241 queue_work(ata_sff_wq
, work
);
1243 EXPORT_SYMBOL_GPL(ata_sff_queue_work
);
1245 void ata_sff_queue_delayed_work(struct delayed_work
*dwork
, unsigned long delay
)
1247 queue_delayed_work(ata_sff_wq
, dwork
, delay
);
1249 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work
);
1251 void ata_sff_queue_pio_task(struct ata_link
*link
, unsigned long delay
)
1253 struct ata_port
*ap
= link
->ap
;
1255 WARN_ON((ap
->sff_pio_task_link
!= NULL
) &&
1256 (ap
->sff_pio_task_link
!= link
));
1257 ap
->sff_pio_task_link
= link
;
1259 /* may fail if ata_sff_flush_pio_task() in progress */
1260 ata_sff_queue_delayed_work(&ap
->sff_pio_task
, msecs_to_jiffies(delay
));
1262 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task
);
1264 void ata_sff_flush_pio_task(struct ata_port
*ap
)
1268 cancel_delayed_work_sync(&ap
->sff_pio_task
);
1271 * We wanna reset the HSM state to IDLE. If we do so without
1272 * grabbing the port lock, critical sections protected by it which
1273 * expect the HSM state to stay stable may get surprised. For
1274 * example, we may set IDLE in between the time
1275 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1276 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1278 spin_lock_irq(ap
->lock
);
1279 ap
->hsm_task_state
= HSM_ST_IDLE
;
1280 spin_unlock_irq(ap
->lock
);
1282 ap
->sff_pio_task_link
= NULL
;
1284 if (ata_msg_ctl(ap
))
1285 ata_port_dbg(ap
, "%s: EXIT\n", __func__
);
1288 static void ata_sff_pio_task(struct work_struct
*work
)
1290 struct ata_port
*ap
=
1291 container_of(work
, struct ata_port
, sff_pio_task
.work
);
1292 struct ata_link
*link
= ap
->sff_pio_task_link
;
1293 struct ata_queued_cmd
*qc
;
1297 spin_lock_irq(ap
->lock
);
1299 BUG_ON(ap
->sff_pio_task_link
== NULL
);
1300 /* qc can be NULL if timeout occurred */
1301 qc
= ata_qc_from_tag(ap
, link
->active_tag
);
1303 ap
->sff_pio_task_link
= NULL
;
1308 WARN_ON_ONCE(ap
->hsm_task_state
== HSM_ST_IDLE
);
1311 * This is purely heuristic. This is a fast path.
1312 * Sometimes when we enter, BSY will be cleared in
1313 * a chk-status or two. If not, the drive is probably seeking
1314 * or something. Snooze for a couple msecs, then
1315 * chk-status again. If still busy, queue delayed work.
1317 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 5);
1318 if (status
& ATA_BUSY
) {
1319 spin_unlock_irq(ap
->lock
);
1321 spin_lock_irq(ap
->lock
);
1323 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 10);
1324 if (status
& ATA_BUSY
) {
1325 ata_sff_queue_pio_task(link
, ATA_SHORT_PAUSE
);
1331 * hsm_move() may trigger another command to be processed.
1332 * clean the link beforehand.
1334 ap
->sff_pio_task_link
= NULL
;
1336 poll_next
= ata_sff_hsm_move(ap
, qc
, status
, 1);
1338 /* another command or interrupt handler
1339 * may be running at this point.
1344 spin_unlock_irq(ap
->lock
);
1348 * ata_sff_qc_issue - issue taskfile to a SFF controller
1349 * @qc: command to issue to device
1351 * This function issues a PIO or NODATA command to a SFF
1355 * spin_lock_irqsave(host lock)
1358 * Zero on success, AC_ERR_* mask on failure
1360 unsigned int ata_sff_qc_issue(struct ata_queued_cmd
*qc
)
1362 struct ata_port
*ap
= qc
->ap
;
1363 struct ata_link
*link
= qc
->dev
->link
;
1365 /* Use polling pio if the LLD doesn't handle
1366 * interrupt driven pio and atapi CDB interrupt.
1368 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
1369 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
1371 /* select the device */
1372 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
1374 /* start the command */
1375 switch (qc
->tf
.protocol
) {
1376 case ATA_PROT_NODATA
:
1377 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1378 ata_qc_set_polling(qc
);
1380 ata_tf_to_host(ap
, &qc
->tf
);
1381 ap
->hsm_task_state
= HSM_ST_LAST
;
1383 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1384 ata_sff_queue_pio_task(link
, 0);
1389 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1390 ata_qc_set_polling(qc
);
1392 ata_tf_to_host(ap
, &qc
->tf
);
1394 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
1395 /* PIO data out protocol */
1396 ap
->hsm_task_state
= HSM_ST_FIRST
;
1397 ata_sff_queue_pio_task(link
, 0);
1399 /* always send first data block using the
1400 * ata_sff_pio_task() codepath.
1403 /* PIO data in protocol */
1404 ap
->hsm_task_state
= HSM_ST
;
1406 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1407 ata_sff_queue_pio_task(link
, 0);
1409 /* if polling, ata_sff_pio_task() handles the
1410 * rest. otherwise, interrupt handler takes
1417 case ATAPI_PROT_PIO
:
1418 case ATAPI_PROT_NODATA
:
1419 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1420 ata_qc_set_polling(qc
);
1422 ata_tf_to_host(ap
, &qc
->tf
);
1424 ap
->hsm_task_state
= HSM_ST_FIRST
;
1426 /* send cdb by polling if no cdb interrupt */
1427 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
1428 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1429 ata_sff_queue_pio_task(link
, 0);
1433 return AC_ERR_SYSTEM
;
1438 EXPORT_SYMBOL_GPL(ata_sff_qc_issue
);
1441 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1442 * @qc: qc to fill result TF for
1444 * @qc is finished and result TF needs to be filled. Fill it
1445 * using ->sff_tf_read.
1448 * spin_lock_irqsave(host lock)
1451 * true indicating that result TF is successfully filled.
1453 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd
*qc
)
1455 qc
->ap
->ops
->sff_tf_read(qc
->ap
, &qc
->result_tf
);
1458 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf
);
1460 static unsigned int ata_sff_idle_irq(struct ata_port
*ap
)
1462 ap
->stats
.idle_irq
++;
1465 if ((ap
->stats
.idle_irq
% 1000) == 0) {
1466 ap
->ops
->sff_check_status(ap
);
1467 if (ap
->ops
->sff_irq_clear
)
1468 ap
->ops
->sff_irq_clear(ap
);
1469 ata_port_warn(ap
, "irq trap\n");
1473 return 0; /* irq not handled */
1476 static unsigned int __ata_sff_port_intr(struct ata_port
*ap
,
1477 struct ata_queued_cmd
*qc
,
1482 VPRINTK("ata%u: protocol %d task_state %d\n",
1483 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
1485 /* Check whether we are expecting interrupt in this state */
1486 switch (ap
->hsm_task_state
) {
1488 /* Some pre-ATAPI-4 devices assert INTRQ
1489 * at this state when ready to receive CDB.
1492 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1493 * The flag was turned on only for atapi devices. No
1494 * need to check ata_is_atapi(qc->tf.protocol) again.
1496 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
1497 return ata_sff_idle_irq(ap
);
1500 return ata_sff_idle_irq(ap
);
1505 /* check main status, clearing INTRQ if needed */
1506 status
= ata_sff_irq_status(ap
);
1507 if (status
& ATA_BUSY
) {
1509 /* BMDMA engine is already stopped, we're screwed */
1510 qc
->err_mask
|= AC_ERR_HSM
;
1511 ap
->hsm_task_state
= HSM_ST_ERR
;
1513 return ata_sff_idle_irq(ap
);
1516 /* clear irq events */
1517 if (ap
->ops
->sff_irq_clear
)
1518 ap
->ops
->sff_irq_clear(ap
);
1520 ata_sff_hsm_move(ap
, qc
, status
, 0);
1522 return 1; /* irq handled */
1526 * ata_sff_port_intr - Handle SFF port interrupt
1527 * @ap: Port on which interrupt arrived (possibly...)
1528 * @qc: Taskfile currently active in engine
1530 * Handle port interrupt for given queued command.
1533 * spin_lock_irqsave(host lock)
1536 * One if interrupt was handled, zero if not (shared irq).
1538 unsigned int ata_sff_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1540 return __ata_sff_port_intr(ap
, qc
, false);
1542 EXPORT_SYMBOL_GPL(ata_sff_port_intr
);
1544 static inline irqreturn_t
__ata_sff_interrupt(int irq
, void *dev_instance
,
1545 unsigned int (*port_intr
)(struct ata_port
*, struct ata_queued_cmd
*))
1547 struct ata_host
*host
= dev_instance
;
1548 bool retried
= false;
1550 unsigned int handled
, idle
, polling
;
1551 unsigned long flags
;
1553 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1554 spin_lock_irqsave(&host
->lock
, flags
);
1557 handled
= idle
= polling
= 0;
1558 for (i
= 0; i
< host
->n_ports
; i
++) {
1559 struct ata_port
*ap
= host
->ports
[i
];
1560 struct ata_queued_cmd
*qc
;
1562 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1564 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1565 handled
|= port_intr(ap
, qc
);
1573 * If no port was expecting IRQ but the controller is actually
1574 * asserting IRQ line, nobody cared will ensue. Check IRQ
1575 * pending status if available and clear spurious IRQ.
1577 if (!handled
&& !retried
) {
1580 for (i
= 0; i
< host
->n_ports
; i
++) {
1581 struct ata_port
*ap
= host
->ports
[i
];
1583 if (polling
& (1 << i
))
1586 if (!ap
->ops
->sff_irq_check
||
1587 !ap
->ops
->sff_irq_check(ap
))
1590 if (idle
& (1 << i
)) {
1591 ap
->ops
->sff_check_status(ap
);
1592 if (ap
->ops
->sff_irq_clear
)
1593 ap
->ops
->sff_irq_clear(ap
);
1595 /* clear INTRQ and check if BUSY cleared */
1596 if (!(ap
->ops
->sff_check_status(ap
) & ATA_BUSY
))
1599 * With command in flight, we can't do
1600 * sff_irq_clear() w/o racing with completion.
1611 spin_unlock_irqrestore(&host
->lock
, flags
);
1613 return IRQ_RETVAL(handled
);
1617 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1618 * @irq: irq line (unused)
1619 * @dev_instance: pointer to our ata_host information structure
1621 * Default interrupt handler for PCI IDE devices. Calls
1622 * ata_sff_port_intr() for each port that is not disabled.
1625 * Obtains host lock during operation.
1628 * IRQ_NONE or IRQ_HANDLED.
1630 irqreturn_t
ata_sff_interrupt(int irq
, void *dev_instance
)
1632 return __ata_sff_interrupt(irq
, dev_instance
, ata_sff_port_intr
);
1634 EXPORT_SYMBOL_GPL(ata_sff_interrupt
);
1637 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1638 * @ap: port that appears to have timed out
1640 * Called from the libata error handlers when the core code suspects
1641 * an interrupt has been lost. If it has complete anything we can and
1642 * then return. Interface must support altstatus for this faster
1643 * recovery to occur.
1646 * Caller holds host lock
1649 void ata_sff_lost_interrupt(struct ata_port
*ap
)
1652 struct ata_queued_cmd
*qc
;
1654 /* Only one outstanding command per SFF channel */
1655 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1656 /* We cannot lose an interrupt on a non-existent or polled command */
1657 if (!qc
|| qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1659 /* See if the controller thinks it is still busy - if so the command
1660 isn't a lost IRQ but is still in progress */
1661 status
= ata_sff_altstatus(ap
);
1662 if (status
& ATA_BUSY
)
1665 /* There was a command running, we are no longer busy and we have
1667 ata_port_warn(ap
, "lost interrupt (Status 0x%x)\n",
1669 /* Run the host interrupt logic as if the interrupt had not been
1671 ata_sff_port_intr(ap
, qc
);
1673 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt
);
1676 * ata_sff_freeze - Freeze SFF controller port
1677 * @ap: port to freeze
1679 * Freeze SFF controller port.
1682 * Inherited from caller.
1684 void ata_sff_freeze(struct ata_port
*ap
)
1686 ap
->ctl
|= ATA_NIEN
;
1687 ap
->last_ctl
= ap
->ctl
;
1689 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
)
1690 ata_sff_set_devctl(ap
, ap
->ctl
);
1692 /* Under certain circumstances, some controllers raise IRQ on
1693 * ATA_NIEN manipulation. Also, many controllers fail to mask
1694 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1696 ap
->ops
->sff_check_status(ap
);
1698 if (ap
->ops
->sff_irq_clear
)
1699 ap
->ops
->sff_irq_clear(ap
);
1701 EXPORT_SYMBOL_GPL(ata_sff_freeze
);
1704 * ata_sff_thaw - Thaw SFF controller port
1707 * Thaw SFF controller port.
1710 * Inherited from caller.
1712 void ata_sff_thaw(struct ata_port
*ap
)
1714 /* clear & re-enable interrupts */
1715 ap
->ops
->sff_check_status(ap
);
1716 if (ap
->ops
->sff_irq_clear
)
1717 ap
->ops
->sff_irq_clear(ap
);
1720 EXPORT_SYMBOL_GPL(ata_sff_thaw
);
1723 * ata_sff_prereset - prepare SFF link for reset
1724 * @link: SFF link to be reset
1725 * @deadline: deadline jiffies for the operation
1727 * SFF link @link is about to be reset. Initialize it. It first
1728 * calls ata_std_prereset() and wait for !BSY if the port is
1732 * Kernel thread context (may sleep)
1735 * 0 on success, -errno otherwise.
1737 int ata_sff_prereset(struct ata_link
*link
, unsigned long deadline
)
1739 struct ata_eh_context
*ehc
= &link
->eh_context
;
1742 rc
= ata_std_prereset(link
, deadline
);
1746 /* if we're about to do hardreset, nothing more to do */
1747 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
1750 /* wait for !BSY if we don't know that no device is attached */
1751 if (!ata_link_offline(link
)) {
1752 rc
= ata_sff_wait_ready(link
, deadline
);
1753 if (rc
&& rc
!= -ENODEV
) {
1755 "device not ready (errno=%d), forcing hardreset\n",
1757 ehc
->i
.action
|= ATA_EH_HARDRESET
;
1763 EXPORT_SYMBOL_GPL(ata_sff_prereset
);
1766 * ata_devchk - PATA device presence detection
1767 * @ap: ATA channel to examine
1768 * @device: Device to examine (starting at zero)
1770 * This technique was originally described in
1771 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1772 * later found its way into the ATA/ATAPI spec.
1774 * Write a pattern to the ATA shadow registers,
1775 * and if a device is present, it will respond by
1776 * correctly storing and echoing back the
1777 * ATA shadow register contents.
1782 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1784 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1787 ap
->ops
->sff_dev_select(ap
, device
);
1789 iowrite8(0x55, ioaddr
->nsect_addr
);
1790 iowrite8(0xaa, ioaddr
->lbal_addr
);
1792 iowrite8(0xaa, ioaddr
->nsect_addr
);
1793 iowrite8(0x55, ioaddr
->lbal_addr
);
1795 iowrite8(0x55, ioaddr
->nsect_addr
);
1796 iowrite8(0xaa, ioaddr
->lbal_addr
);
1798 nsect
= ioread8(ioaddr
->nsect_addr
);
1799 lbal
= ioread8(ioaddr
->lbal_addr
);
1801 if ((nsect
== 0x55) && (lbal
== 0xaa))
1802 return 1; /* we found a device */
1804 return 0; /* nothing found */
1808 * ata_sff_dev_classify - Parse returned ATA device signature
1809 * @dev: ATA device to classify (starting at zero)
1810 * @present: device seems present
1811 * @r_err: Value of error register on completion
1813 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1814 * an ATA/ATAPI-defined set of values is placed in the ATA
1815 * shadow registers, indicating the results of device detection
1818 * Select the ATA device, and read the values from the ATA shadow
1819 * registers. Then parse according to the Error register value,
1820 * and the spec-defined values examined by ata_dev_classify().
1826 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1828 unsigned int ata_sff_dev_classify(struct ata_device
*dev
, int present
,
1831 struct ata_port
*ap
= dev
->link
->ap
;
1832 struct ata_taskfile tf
;
1836 ap
->ops
->sff_dev_select(ap
, dev
->devno
);
1838 memset(&tf
, 0, sizeof(tf
));
1840 ap
->ops
->sff_tf_read(ap
, &tf
);
1845 /* see if device passed diags: continue and warn later */
1847 /* diagnostic fail : do nothing _YET_ */
1848 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1851 else if ((dev
->devno
== 0) && (err
== 0x81))
1854 return ATA_DEV_NONE
;
1856 /* determine if device is ATA or ATAPI */
1857 class = ata_dev_classify(&tf
);
1859 if (class == ATA_DEV_UNKNOWN
) {
1860 /* If the device failed diagnostic, it's likely to
1861 * have reported incorrect device signature too.
1862 * Assume ATA device if the device seems present but
1863 * device signature is invalid with diagnostic
1866 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1867 class = ATA_DEV_ATA
;
1869 class = ATA_DEV_NONE
;
1870 } else if ((class == ATA_DEV_ATA
) &&
1871 (ap
->ops
->sff_check_status(ap
) == 0))
1872 class = ATA_DEV_NONE
;
1876 EXPORT_SYMBOL_GPL(ata_sff_dev_classify
);
1879 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1880 * @link: SFF link which is just reset
1881 * @devmask: mask of present devices
1882 * @deadline: deadline jiffies for the operation
1884 * Wait devices attached to SFF @link to become ready after
1885 * reset. It contains preceding 150ms wait to avoid accessing TF
1886 * status register too early.
1889 * Kernel thread context (may sleep).
1892 * 0 on success, -ENODEV if some or all of devices in @devmask
1893 * don't seem to exist. -errno on other errors.
1895 int ata_sff_wait_after_reset(struct ata_link
*link
, unsigned int devmask
,
1896 unsigned long deadline
)
1898 struct ata_port
*ap
= link
->ap
;
1899 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1900 unsigned int dev0
= devmask
& (1 << 0);
1901 unsigned int dev1
= devmask
& (1 << 1);
1904 ata_msleep(ap
, ATA_WAIT_AFTER_RESET
);
1906 /* always check readiness of the master device */
1907 rc
= ata_sff_wait_ready(link
, deadline
);
1908 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1909 * and TF status is 0xff, bail out on it too.
1914 /* if device 1 was found in ata_devchk, wait for register
1915 * access briefly, then wait for BSY to clear.
1920 ap
->ops
->sff_dev_select(ap
, 1);
1922 /* Wait for register access. Some ATAPI devices fail
1923 * to set nsect/lbal after reset, so don't waste too
1924 * much time on it. We're gonna wait for !BSY anyway.
1926 for (i
= 0; i
< 2; i
++) {
1929 nsect
= ioread8(ioaddr
->nsect_addr
);
1930 lbal
= ioread8(ioaddr
->lbal_addr
);
1931 if ((nsect
== 1) && (lbal
== 1))
1933 ata_msleep(ap
, 50); /* give drive a breather */
1936 rc
= ata_sff_wait_ready(link
, deadline
);
1944 /* is all this really necessary? */
1945 ap
->ops
->sff_dev_select(ap
, 0);
1947 ap
->ops
->sff_dev_select(ap
, 1);
1949 ap
->ops
->sff_dev_select(ap
, 0);
1953 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset
);
1955 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
1956 unsigned long deadline
)
1958 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1960 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
1962 if (ap
->ioaddr
.ctl_addr
) {
1963 /* software reset. causes dev0 to be selected */
1964 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1965 udelay(20); /* FIXME: flush */
1966 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
1967 udelay(20); /* FIXME: flush */
1968 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
1969 ap
->last_ctl
= ap
->ctl
;
1972 /* wait the port to become ready */
1973 return ata_sff_wait_after_reset(&ap
->link
, devmask
, deadline
);
1977 * ata_sff_softreset - reset host port via ATA SRST
1978 * @link: ATA link to reset
1979 * @classes: resulting classes of attached devices
1980 * @deadline: deadline jiffies for the operation
1982 * Reset host port using ATA SRST.
1985 * Kernel thread context (may sleep)
1988 * 0 on success, -errno otherwise.
1990 int ata_sff_softreset(struct ata_link
*link
, unsigned int *classes
,
1991 unsigned long deadline
)
1993 struct ata_port
*ap
= link
->ap
;
1994 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
1995 unsigned int devmask
= 0;
2001 /* determine if device 0/1 are present */
2002 if (ata_devchk(ap
, 0))
2003 devmask
|= (1 << 0);
2004 if (slave_possible
&& ata_devchk(ap
, 1))
2005 devmask
|= (1 << 1);
2007 /* select device 0 again */
2008 ap
->ops
->sff_dev_select(ap
, 0);
2010 /* issue bus reset */
2011 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2012 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
2013 /* if link is occupied, -ENODEV too is an error */
2014 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
2015 ata_link_err(link
, "SRST failed (errno=%d)\n", rc
);
2019 /* determine by signature whether we have ATA or ATAPI devices */
2020 classes
[0] = ata_sff_dev_classify(&link
->device
[0],
2021 devmask
& (1 << 0), &err
);
2022 if (slave_possible
&& err
!= 0x81)
2023 classes
[1] = ata_sff_dev_classify(&link
->device
[1],
2024 devmask
& (1 << 1), &err
);
2026 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2029 EXPORT_SYMBOL_GPL(ata_sff_softreset
);
2032 * sata_sff_hardreset - reset host port via SATA phy reset
2033 * @link: link to reset
2034 * @class: resulting class of attached device
2035 * @deadline: deadline jiffies for the operation
2037 * SATA phy-reset host port using DET bits of SControl register,
2038 * wait for !BSY and classify the attached device.
2041 * Kernel thread context (may sleep)
2044 * 0 on success, -errno otherwise.
2046 int sata_sff_hardreset(struct ata_link
*link
, unsigned int *class,
2047 unsigned long deadline
)
2049 struct ata_eh_context
*ehc
= &link
->eh_context
;
2050 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2054 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
,
2055 ata_sff_check_ready
);
2057 *class = ata_sff_dev_classify(link
->device
, 1, NULL
);
2059 DPRINTK("EXIT, class=%u\n", *class);
2062 EXPORT_SYMBOL_GPL(sata_sff_hardreset
);
2065 * ata_sff_postreset - SFF postreset callback
2066 * @link: the target SFF ata_link
2067 * @classes: classes of attached devices
2069 * This function is invoked after a successful reset. It first
2070 * calls ata_std_postreset() and performs SFF specific postreset
2074 * Kernel thread context (may sleep)
2076 void ata_sff_postreset(struct ata_link
*link
, unsigned int *classes
)
2078 struct ata_port
*ap
= link
->ap
;
2080 ata_std_postreset(link
, classes
);
2082 /* is double-select really necessary? */
2083 if (classes
[0] != ATA_DEV_NONE
)
2084 ap
->ops
->sff_dev_select(ap
, 1);
2085 if (classes
[1] != ATA_DEV_NONE
)
2086 ap
->ops
->sff_dev_select(ap
, 0);
2088 /* bail out if no device is present */
2089 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2090 DPRINTK("EXIT, no device\n");
2094 /* set up device control */
2095 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
) {
2096 ata_sff_set_devctl(ap
, ap
->ctl
);
2097 ap
->last_ctl
= ap
->ctl
;
2100 EXPORT_SYMBOL_GPL(ata_sff_postreset
);
2103 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2106 * Drain the FIFO and device of any stuck data following a command
2107 * failing to complete. In some cases this is necessary before a
2108 * reset will recover the device.
2112 void ata_sff_drain_fifo(struct ata_queued_cmd
*qc
)
2115 struct ata_port
*ap
;
2117 /* We only need to flush incoming data when a command was running */
2118 if (qc
== NULL
|| qc
->dma_dir
== DMA_TO_DEVICE
)
2122 /* Drain up to 64K of data before we give up this recovery method */
2123 for (count
= 0; (ap
->ops
->sff_check_status(ap
) & ATA_DRQ
)
2124 && count
< 65536; count
+= 2)
2125 ioread16(ap
->ioaddr
.data_addr
);
2127 /* Can become DEBUG later */
2129 ata_port_dbg(ap
, "drained %d bytes to clear DRQ\n", count
);
2132 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo
);
2135 * ata_sff_error_handler - Stock error handler for SFF controller
2136 * @ap: port to handle error for
2138 * Stock error handler for SFF controller. It can handle both
2139 * PATA and SATA controllers. Many controllers should be able to
2140 * use this EH as-is or with some added handling before and
2144 * Kernel thread context (may sleep)
2146 void ata_sff_error_handler(struct ata_port
*ap
)
2148 ata_reset_fn_t softreset
= ap
->ops
->softreset
;
2149 ata_reset_fn_t hardreset
= ap
->ops
->hardreset
;
2150 struct ata_queued_cmd
*qc
;
2151 unsigned long flags
;
2153 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2154 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2157 spin_lock_irqsave(ap
->lock
, flags
);
2160 * We *MUST* do FIFO draining before we issue a reset as
2161 * several devices helpfully clear their internal state and
2162 * will lock solid if we touch the data port post reset. Pass
2163 * qc in case anyone wants to do different PIO/DMA recovery or
2164 * has per command fixups
2166 if (ap
->ops
->sff_drain_fifo
)
2167 ap
->ops
->sff_drain_fifo(qc
);
2169 spin_unlock_irqrestore(ap
->lock
, flags
);
2171 /* ignore built-in hardresets if SCR access is not available */
2172 if ((hardreset
== sata_std_hardreset
||
2173 hardreset
== sata_sff_hardreset
) && !sata_scr_valid(&ap
->link
))
2176 ata_do_eh(ap
, ap
->ops
->prereset
, softreset
, hardreset
,
2177 ap
->ops
->postreset
);
2179 EXPORT_SYMBOL_GPL(ata_sff_error_handler
);
2182 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2183 * @ioaddr: IO address structure to be initialized
2185 * Utility function which initializes data_addr, error_addr,
2186 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2187 * device_addr, status_addr, and command_addr to standard offsets
2188 * relative to cmd_addr.
2190 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2192 void ata_sff_std_ports(struct ata_ioports
*ioaddr
)
2194 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
2195 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
2196 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
2197 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
2198 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
2199 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
2200 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
2201 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
2202 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
2203 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
2205 EXPORT_SYMBOL_GPL(ata_sff_std_ports
);
2209 static int ata_resources_present(struct pci_dev
*pdev
, int port
)
2213 /* Check the PCI resources for this channel are enabled */
2215 for (i
= 0; i
< 2; i
++) {
2216 if (pci_resource_start(pdev
, port
+ i
) == 0 ||
2217 pci_resource_len(pdev
, port
+ i
) == 0)
2224 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2225 * @host: target ATA host
2227 * Acquire native PCI ATA resources for @host and initialize the
2228 * first two ports of @host accordingly. Ports marked dummy are
2229 * skipped and allocation failure makes the port dummy.
2231 * Note that native PCI resources are valid even for legacy hosts
2232 * as we fix up pdev resources array early in boot, so this
2233 * function can be used for both native and legacy SFF hosts.
2236 * Inherited from calling layer (may sleep).
2239 * 0 if at least one port is initialized, -ENODEV if no port is
2242 int ata_pci_sff_init_host(struct ata_host
*host
)
2244 struct device
*gdev
= host
->dev
;
2245 struct pci_dev
*pdev
= to_pci_dev(gdev
);
2246 unsigned int mask
= 0;
2249 /* request, iomap BARs and init port addresses accordingly */
2250 for (i
= 0; i
< 2; i
++) {
2251 struct ata_port
*ap
= host
->ports
[i
];
2253 void __iomem
* const *iomap
;
2255 if (ata_port_is_dummy(ap
))
2258 /* Discard disabled ports. Some controllers show
2259 * their unused channels this way. Disabled ports are
2262 if (!ata_resources_present(pdev
, i
)) {
2263 ap
->ops
= &ata_dummy_port_ops
;
2267 rc
= pcim_iomap_regions(pdev
, 0x3 << base
,
2268 dev_driver_string(gdev
));
2271 "failed to request/iomap BARs for port %d (errno=%d)\n",
2274 pcim_pin_device(pdev
);
2275 ap
->ops
= &ata_dummy_port_ops
;
2278 host
->iomap
= iomap
= pcim_iomap_table(pdev
);
2280 ap
->ioaddr
.cmd_addr
= iomap
[base
];
2281 ap
->ioaddr
.altstatus_addr
=
2282 ap
->ioaddr
.ctl_addr
= (void __iomem
*)
2283 ((unsigned long)iomap
[base
+ 1] | ATA_PCI_CTL_OFS
);
2284 ata_sff_std_ports(&ap
->ioaddr
);
2286 ata_port_desc(ap
, "cmd 0x%llx ctl 0x%llx",
2287 (unsigned long long)pci_resource_start(pdev
, base
),
2288 (unsigned long long)pci_resource_start(pdev
, base
+ 1));
2294 dev_err(gdev
, "no available native port\n");
2300 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host
);
2303 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2304 * @pdev: target PCI device
2305 * @ppi: array of port_info, must be enough for two ports
2306 * @r_host: out argument for the initialized ATA host
2308 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2309 * all PCI resources and initialize it accordingly in one go.
2312 * Inherited from calling layer (may sleep).
2315 * 0 on success, -errno otherwise.
2317 int ata_pci_sff_prepare_host(struct pci_dev
*pdev
,
2318 const struct ata_port_info
* const *ppi
,
2319 struct ata_host
**r_host
)
2321 struct ata_host
*host
;
2324 if (!devres_open_group(&pdev
->dev
, NULL
, GFP_KERNEL
))
2327 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, 2);
2329 dev_err(&pdev
->dev
, "failed to allocate ATA host\n");
2334 rc
= ata_pci_sff_init_host(host
);
2338 devres_remove_group(&pdev
->dev
, NULL
);
2343 devres_release_group(&pdev
->dev
, NULL
);
2346 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host
);
2349 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2350 * @host: target SFF ATA host
2351 * @irq_handler: irq_handler used when requesting IRQ(s)
2352 * @sht: scsi_host_template to use when registering the host
2354 * This is the counterpart of ata_host_activate() for SFF ATA
2355 * hosts. This separate helper is necessary because SFF hosts
2356 * use two separate interrupts in legacy mode.
2359 * Inherited from calling layer (may sleep).
2362 * 0 on success, -errno otherwise.
2364 int ata_pci_sff_activate_host(struct ata_host
*host
,
2365 irq_handler_t irq_handler
,
2366 struct scsi_host_template
*sht
)
2368 struct device
*dev
= host
->dev
;
2369 struct pci_dev
*pdev
= to_pci_dev(dev
);
2370 const char *drv_name
= dev_driver_string(host
->dev
);
2371 int legacy_mode
= 0, rc
;
2373 rc
= ata_host_start(host
);
2377 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
2381 * ATA spec says we should use legacy mode when one
2382 * port is in legacy mode, but disabled ports on some
2383 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2384 * on which the secondary port is not wired, so
2385 * ignore ports that are marked as 'dummy' during
2388 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
2389 if (!ata_port_is_dummy(host
->ports
[0]))
2391 if (!ata_port_is_dummy(host
->ports
[1]))
2393 if ((tmp8
& mask
) != mask
)
2397 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2400 if (!legacy_mode
&& pdev
->irq
) {
2403 rc
= devm_request_irq(dev
, pdev
->irq
, irq_handler
,
2404 IRQF_SHARED
, drv_name
, host
);
2408 for (i
= 0; i
< 2; i
++) {
2409 if (ata_port_is_dummy(host
->ports
[i
]))
2411 ata_port_desc(host
->ports
[i
], "irq %d", pdev
->irq
);
2413 } else if (legacy_mode
) {
2414 if (!ata_port_is_dummy(host
->ports
[0])) {
2415 rc
= devm_request_irq(dev
, ATA_PRIMARY_IRQ(pdev
),
2416 irq_handler
, IRQF_SHARED
,
2421 ata_port_desc(host
->ports
[0], "irq %d",
2422 ATA_PRIMARY_IRQ(pdev
));
2425 if (!ata_port_is_dummy(host
->ports
[1])) {
2426 rc
= devm_request_irq(dev
, ATA_SECONDARY_IRQ(pdev
),
2427 irq_handler
, IRQF_SHARED
,
2432 ata_port_desc(host
->ports
[1], "irq %d",
2433 ATA_SECONDARY_IRQ(pdev
));
2437 rc
= ata_host_register(host
, sht
);
2440 devres_remove_group(dev
, NULL
);
2442 devres_release_group(dev
, NULL
);
2446 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host
);
2448 static const struct ata_port_info
*ata_sff_find_valid_pi(
2449 const struct ata_port_info
* const *ppi
)
2453 /* look up the first valid port_info */
2454 for (i
= 0; i
< 2 && ppi
[i
]; i
++)
2455 if (ppi
[i
]->port_ops
!= &ata_dummy_port_ops
)
2461 static int ata_pci_init_one(struct pci_dev
*pdev
,
2462 const struct ata_port_info
* const *ppi
,
2463 struct scsi_host_template
*sht
, void *host_priv
,
2464 int hflags
, bool bmdma
)
2466 struct device
*dev
= &pdev
->dev
;
2467 const struct ata_port_info
*pi
;
2468 struct ata_host
*host
= NULL
;
2473 pi
= ata_sff_find_valid_pi(ppi
);
2475 dev_err(&pdev
->dev
, "no valid port_info specified\n");
2479 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2482 rc
= pcim_enable_device(pdev
);
2486 #ifdef CONFIG_ATA_BMDMA
2488 /* prepare and activate BMDMA host */
2489 rc
= ata_pci_bmdma_prepare_host(pdev
, ppi
, &host
);
2492 /* prepare and activate SFF host */
2493 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, &host
);
2496 host
->private_data
= host_priv
;
2497 host
->flags
|= hflags
;
2499 #ifdef CONFIG_ATA_BMDMA
2501 pci_set_master(pdev
);
2502 rc
= ata_pci_sff_activate_host(host
, ata_bmdma_interrupt
, sht
);
2505 rc
= ata_pci_sff_activate_host(host
, ata_sff_interrupt
, sht
);
2508 devres_remove_group(&pdev
->dev
, NULL
);
2510 devres_release_group(&pdev
->dev
, NULL
);
2516 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2517 * @pdev: Controller to be initialized
2518 * @ppi: array of port_info, must be enough for two ports
2519 * @sht: scsi_host_template to use when registering the host
2520 * @host_priv: host private_data
2521 * @hflag: host flags
2523 * This is a helper function which can be called from a driver's
2524 * xxx_init_one() probe function if the hardware uses traditional
2525 * IDE taskfile registers and is PIO only.
2528 * Nobody makes a single channel controller that appears solely as
2529 * the secondary legacy port on PCI.
2532 * Inherited from PCI layer (may sleep).
2535 * Zero on success, negative on errno-based value on error.
2537 int ata_pci_sff_init_one(struct pci_dev
*pdev
,
2538 const struct ata_port_info
* const *ppi
,
2539 struct scsi_host_template
*sht
, void *host_priv
, int hflag
)
2541 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflag
, 0);
2543 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one
);
2545 #endif /* CONFIG_PCI */
2551 #ifdef CONFIG_ATA_BMDMA
2553 const struct ata_port_operations ata_bmdma_port_ops
= {
2554 .inherits
= &ata_sff_port_ops
,
2556 .error_handler
= ata_bmdma_error_handler
,
2557 .post_internal_cmd
= ata_bmdma_post_internal_cmd
,
2559 .qc_prep
= ata_bmdma_qc_prep
,
2560 .qc_issue
= ata_bmdma_qc_issue
,
2562 .sff_irq_clear
= ata_bmdma_irq_clear
,
2563 .bmdma_setup
= ata_bmdma_setup
,
2564 .bmdma_start
= ata_bmdma_start
,
2565 .bmdma_stop
= ata_bmdma_stop
,
2566 .bmdma_status
= ata_bmdma_status
,
2568 .port_start
= ata_bmdma_port_start
,
2570 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops
);
2572 const struct ata_port_operations ata_bmdma32_port_ops
= {
2573 .inherits
= &ata_bmdma_port_ops
,
2575 .sff_data_xfer
= ata_sff_data_xfer32
,
2576 .port_start
= ata_bmdma_port_start32
,
2578 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops
);
2581 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2582 * @qc: Metadata associated with taskfile to be transferred
2584 * Fill PCI IDE PRD (scatter-gather) table with segments
2585 * associated with the current disk command.
2588 * spin_lock_irqsave(host lock)
2591 static void ata_bmdma_fill_sg(struct ata_queued_cmd
*qc
)
2593 struct ata_port
*ap
= qc
->ap
;
2594 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2595 struct scatterlist
*sg
;
2596 unsigned int si
, pi
;
2599 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2603 /* determine if physical DMA addr spans 64K boundary.
2604 * Note h/w doesn't support 64-bit, so we unconditionally
2605 * truncate dma_addr_t to u32.
2607 addr
= (u32
) sg_dma_address(sg
);
2608 sg_len
= sg_dma_len(sg
);
2611 offset
= addr
& 0xffff;
2613 if ((offset
+ sg_len
) > 0x10000)
2614 len
= 0x10000 - offset
;
2616 prd
[pi
].addr
= cpu_to_le32(addr
);
2617 prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
2618 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2626 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2630 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2631 * @qc: Metadata associated with taskfile to be transferred
2633 * Fill PCI IDE PRD (scatter-gather) table with segments
2634 * associated with the current disk command. Perform the fill
2635 * so that we avoid writing any length 64K records for
2636 * controllers that don't follow the spec.
2639 * spin_lock_irqsave(host lock)
2642 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd
*qc
)
2644 struct ata_port
*ap
= qc
->ap
;
2645 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2646 struct scatterlist
*sg
;
2647 unsigned int si
, pi
;
2650 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2652 u32 sg_len
, len
, blen
;
2654 /* determine if physical DMA addr spans 64K boundary.
2655 * Note h/w doesn't support 64-bit, so we unconditionally
2656 * truncate dma_addr_t to u32.
2658 addr
= (u32
) sg_dma_address(sg
);
2659 sg_len
= sg_dma_len(sg
);
2662 offset
= addr
& 0xffff;
2664 if ((offset
+ sg_len
) > 0x10000)
2665 len
= 0x10000 - offset
;
2667 blen
= len
& 0xffff;
2668 prd
[pi
].addr
= cpu_to_le32(addr
);
2670 /* Some PATA chipsets like the CS5530 can't
2671 cope with 0x0000 meaning 64K as the spec
2673 prd
[pi
].flags_len
= cpu_to_le32(0x8000);
2675 prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
2677 prd
[pi
].flags_len
= cpu_to_le32(blen
);
2678 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2686 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2690 * ata_bmdma_qc_prep - Prepare taskfile for submission
2691 * @qc: Metadata associated with taskfile to be prepared
2693 * Prepare ATA taskfile for submission.
2696 * spin_lock_irqsave(host lock)
2698 void ata_bmdma_qc_prep(struct ata_queued_cmd
*qc
)
2700 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2703 ata_bmdma_fill_sg(qc
);
2705 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep
);
2708 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2709 * @qc: Metadata associated with taskfile to be prepared
2711 * Prepare ATA taskfile for submission.
2714 * spin_lock_irqsave(host lock)
2716 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd
*qc
)
2718 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2721 ata_bmdma_fill_sg_dumb(qc
);
2723 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep
);
2726 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2727 * @qc: command to issue to device
2729 * This function issues a PIO, NODATA or DMA command to a
2730 * SFF/BMDMA controller. PIO and NODATA are handled by
2731 * ata_sff_qc_issue().
2734 * spin_lock_irqsave(host lock)
2737 * Zero on success, AC_ERR_* mask on failure
2739 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd
*qc
)
2741 struct ata_port
*ap
= qc
->ap
;
2742 struct ata_link
*link
= qc
->dev
->link
;
2744 /* defer PIO handling to sff_qc_issue */
2745 if (!ata_is_dma(qc
->tf
.protocol
))
2746 return ata_sff_qc_issue(qc
);
2748 /* select the device */
2749 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
2751 /* start the command */
2752 switch (qc
->tf
.protocol
) {
2754 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2756 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2757 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2758 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
2759 ap
->hsm_task_state
= HSM_ST_LAST
;
2762 case ATAPI_PROT_DMA
:
2763 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2765 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2766 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2767 ap
->hsm_task_state
= HSM_ST_FIRST
;
2769 /* send cdb by polling if no cdb interrupt */
2770 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
2771 ata_sff_queue_pio_task(link
, 0);
2776 return AC_ERR_SYSTEM
;
2781 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue
);
2784 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2785 * @ap: Port on which interrupt arrived (possibly...)
2786 * @qc: Taskfile currently active in engine
2788 * Handle port interrupt for given queued command.
2791 * spin_lock_irqsave(host lock)
2794 * One if interrupt was handled, zero if not (shared irq).
2796 unsigned int ata_bmdma_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
2798 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2800 bool bmdma_stopped
= false;
2801 unsigned int handled
;
2803 if (ap
->hsm_task_state
== HSM_ST_LAST
&& ata_is_dma(qc
->tf
.protocol
)) {
2804 /* check status of DMA engine */
2805 host_stat
= ap
->ops
->bmdma_status(ap
);
2806 VPRINTK("ata%u: host_stat 0x%X\n", ap
->print_id
, host_stat
);
2808 /* if it's not our irq... */
2809 if (!(host_stat
& ATA_DMA_INTR
))
2810 return ata_sff_idle_irq(ap
);
2812 /* before we do anything else, clear DMA-Start bit */
2813 ap
->ops
->bmdma_stop(qc
);
2814 bmdma_stopped
= true;
2816 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
2817 /* error when transferring data to/from memory */
2818 qc
->err_mask
|= AC_ERR_HOST_BUS
;
2819 ap
->hsm_task_state
= HSM_ST_ERR
;
2823 handled
= __ata_sff_port_intr(ap
, qc
, bmdma_stopped
);
2825 if (unlikely(qc
->err_mask
) && ata_is_dma(qc
->tf
.protocol
))
2826 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
2830 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr
);
2833 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2834 * @irq: irq line (unused)
2835 * @dev_instance: pointer to our ata_host information structure
2837 * Default interrupt handler for PCI IDE devices. Calls
2838 * ata_bmdma_port_intr() for each port that is not disabled.
2841 * Obtains host lock during operation.
2844 * IRQ_NONE or IRQ_HANDLED.
2846 irqreturn_t
ata_bmdma_interrupt(int irq
, void *dev_instance
)
2848 return __ata_sff_interrupt(irq
, dev_instance
, ata_bmdma_port_intr
);
2850 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt
);
2853 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2854 * @ap: port to handle error for
2856 * Stock error handler for BMDMA controller. It can handle both
2857 * PATA and SATA controllers. Most BMDMA controllers should be
2858 * able to use this EH as-is or with some added handling before
2862 * Kernel thread context (may sleep)
2864 void ata_bmdma_error_handler(struct ata_port
*ap
)
2866 struct ata_queued_cmd
*qc
;
2867 unsigned long flags
;
2870 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2871 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2874 /* reset PIO HSM and stop DMA engine */
2875 spin_lock_irqsave(ap
->lock
, flags
);
2877 if (qc
&& ata_is_dma(qc
->tf
.protocol
)) {
2880 host_stat
= ap
->ops
->bmdma_status(ap
);
2882 /* BMDMA controllers indicate host bus error by
2883 * setting DMA_ERR bit and timing out. As it wasn't
2884 * really a timeout event, adjust error mask and
2885 * cancel frozen state.
2887 if (qc
->err_mask
== AC_ERR_TIMEOUT
&& (host_stat
& ATA_DMA_ERR
)) {
2888 qc
->err_mask
= AC_ERR_HOST_BUS
;
2892 ap
->ops
->bmdma_stop(qc
);
2894 /* if we're gonna thaw, make sure IRQ is clear */
2896 ap
->ops
->sff_check_status(ap
);
2897 if (ap
->ops
->sff_irq_clear
)
2898 ap
->ops
->sff_irq_clear(ap
);
2902 spin_unlock_irqrestore(ap
->lock
, flags
);
2905 ata_eh_thaw_port(ap
);
2907 ata_sff_error_handler(ap
);
2909 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
2912 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2913 * @qc: internal command to clean up
2916 * Kernel thread context (may sleep)
2918 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd
*qc
)
2920 struct ata_port
*ap
= qc
->ap
;
2921 unsigned long flags
;
2923 if (ata_is_dma(qc
->tf
.protocol
)) {
2924 spin_lock_irqsave(ap
->lock
, flags
);
2925 ap
->ops
->bmdma_stop(qc
);
2926 spin_unlock_irqrestore(ap
->lock
, flags
);
2929 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
2932 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2933 * @ap: Port associated with this ATA transaction.
2935 * Clear interrupt and error flags in DMA status register.
2937 * May be used as the irq_clear() entry in ata_port_operations.
2940 * spin_lock_irqsave(host lock)
2942 void ata_bmdma_irq_clear(struct ata_port
*ap
)
2944 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
2949 iowrite8(ioread8(mmio
+ ATA_DMA_STATUS
), mmio
+ ATA_DMA_STATUS
);
2951 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
2954 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2955 * @qc: Info associated with this ATA transaction.
2958 * spin_lock_irqsave(host lock)
2960 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
2962 struct ata_port
*ap
= qc
->ap
;
2963 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
2966 /* load PRD table addr. */
2967 mb(); /* make sure PRD table writes are visible to controller */
2968 iowrite32(ap
->bmdma_prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
2970 /* specify data direction, triple-check start bit is clear */
2971 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2972 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
2974 dmactl
|= ATA_DMA_WR
;
2975 iowrite8(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2977 /* issue r/w command */
2978 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
2980 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
2983 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2984 * @qc: Info associated with this ATA transaction.
2987 * spin_lock_irqsave(host lock)
2989 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
2991 struct ata_port
*ap
= qc
->ap
;
2994 /* start host DMA transaction */
2995 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2996 iowrite8(dmactl
| ATA_DMA_START
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
2998 /* Strictly, one may wish to issue an ioread8() here, to
2999 * flush the mmio write. However, control also passes
3000 * to the hardware at this point, and it will interrupt
3001 * us when we are to resume control. So, in effect,
3002 * we don't care when the mmio write flushes.
3003 * Further, a read of the DMA status register _immediately_
3004 * following the write may not be what certain flaky hardware
3005 * is expected, so I think it is best to not add a readb()
3006 * without first all the MMIO ATA cards/mobos.
3007 * Or maybe I'm just being paranoid.
3009 * FIXME: The posting of this write means I/O starts are
3010 * unnecessarily delayed for MMIO
3013 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
3016 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3017 * @qc: Command we are ending DMA for
3019 * Clears the ATA_DMA_START flag in the dma control register
3021 * May be used as the bmdma_stop() entry in ata_port_operations.
3024 * spin_lock_irqsave(host lock)
3026 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3028 struct ata_port
*ap
= qc
->ap
;
3029 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
3031 /* clear start/stop bit */
3032 iowrite8(ioread8(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3033 mmio
+ ATA_DMA_CMD
);
3035 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3036 ata_sff_dma_pause(ap
);
3038 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
3041 * ata_bmdma_status - Read PCI IDE BMDMA status
3042 * @ap: Port associated with this ATA transaction.
3044 * Read and return BMDMA status register.
3046 * May be used as the bmdma_status() entry in ata_port_operations.
3049 * spin_lock_irqsave(host lock)
3051 u8
ata_bmdma_status(struct ata_port
*ap
)
3053 return ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3055 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
3059 * ata_bmdma_port_start - Set port up for bmdma.
3060 * @ap: Port to initialize
3062 * Called just after data structures for each port are
3063 * initialized. Allocates space for PRD table.
3065 * May be used as the port_start() entry in ata_port_operations.
3068 * Inherited from caller.
3070 int ata_bmdma_port_start(struct ata_port
*ap
)
3072 if (ap
->mwdma_mask
|| ap
->udma_mask
) {
3074 dmam_alloc_coherent(ap
->host
->dev
, ATA_PRD_TBL_SZ
,
3075 &ap
->bmdma_prd_dma
, GFP_KERNEL
);
3082 EXPORT_SYMBOL_GPL(ata_bmdma_port_start
);
3085 * ata_bmdma_port_start32 - Set port up for dma.
3086 * @ap: Port to initialize
3088 * Called just after data structures for each port are
3089 * initialized. Enables 32bit PIO and allocates space for PRD
3092 * May be used as the port_start() entry in ata_port_operations for
3093 * devices that are capable of 32bit PIO.
3096 * Inherited from caller.
3098 int ata_bmdma_port_start32(struct ata_port
*ap
)
3100 ap
->pflags
|= ATA_PFLAG_PIO32
| ATA_PFLAG_PIO32CHANGE
;
3101 return ata_bmdma_port_start(ap
);
3103 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32
);
3108 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3111 * Some PCI ATA devices report simplex mode but in fact can be told to
3112 * enter non simplex mode. This implements the necessary logic to
3113 * perform the task on such devices. Calling it on other devices will
3114 * have -undefined- behaviour.
3116 int ata_pci_bmdma_clear_simplex(struct pci_dev
*pdev
)
3118 unsigned long bmdma
= pci_resource_start(pdev
, 4);
3124 simplex
= inb(bmdma
+ 0x02);
3125 outb(simplex
& 0x60, bmdma
+ 0x02);
3126 simplex
= inb(bmdma
+ 0x02);
3131 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex
);
3133 static void ata_bmdma_nodma(struct ata_host
*host
, const char *reason
)
3137 dev_err(host
->dev
, "BMDMA: %s, falling back to PIO\n", reason
);
3139 for (i
= 0; i
< 2; i
++) {
3140 host
->ports
[i
]->mwdma_mask
= 0;
3141 host
->ports
[i
]->udma_mask
= 0;
3146 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3147 * @host: target ATA host
3149 * Acquire PCI BMDMA resources and initialize @host accordingly.
3152 * Inherited from calling layer (may sleep).
3154 void ata_pci_bmdma_init(struct ata_host
*host
)
3156 struct device
*gdev
= host
->dev
;
3157 struct pci_dev
*pdev
= to_pci_dev(gdev
);
3160 /* No BAR4 allocation: No DMA */
3161 if (pci_resource_start(pdev
, 4) == 0) {
3162 ata_bmdma_nodma(host
, "BAR4 is zero");
3167 * Some controllers require BMDMA region to be initialized
3168 * even if DMA is not in use to clear IRQ status via
3169 * ->sff_irq_clear method. Try to initialize bmdma_addr
3170 * regardless of dma masks.
3172 rc
= dma_set_mask(&pdev
->dev
, ATA_DMA_MASK
);
3174 ata_bmdma_nodma(host
, "failed to set dma mask");
3176 rc
= dma_set_coherent_mask(&pdev
->dev
, ATA_DMA_MASK
);
3178 ata_bmdma_nodma(host
,
3179 "failed to set consistent dma mask");
3182 /* request and iomap DMA region */
3183 rc
= pcim_iomap_regions(pdev
, 1 << 4, dev_driver_string(gdev
));
3185 ata_bmdma_nodma(host
, "failed to request/iomap BAR4");
3188 host
->iomap
= pcim_iomap_table(pdev
);
3190 for (i
= 0; i
< 2; i
++) {
3191 struct ata_port
*ap
= host
->ports
[i
];
3192 void __iomem
*bmdma
= host
->iomap
[4] + 8 * i
;
3194 if (ata_port_is_dummy(ap
))
3197 ap
->ioaddr
.bmdma_addr
= bmdma
;
3198 if ((!(ap
->flags
& ATA_FLAG_IGN_SIMPLEX
)) &&
3199 (ioread8(bmdma
+ 2) & 0x80))
3200 host
->flags
|= ATA_HOST_SIMPLEX
;
3202 ata_port_desc(ap
, "bmdma 0x%llx",
3203 (unsigned long long)pci_resource_start(pdev
, 4) + 8 * i
);
3206 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init
);
3209 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3210 * @pdev: target PCI device
3211 * @ppi: array of port_info, must be enough for two ports
3212 * @r_host: out argument for the initialized ATA host
3214 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3215 * resources and initialize it accordingly in one go.
3218 * Inherited from calling layer (may sleep).
3221 * 0 on success, -errno otherwise.
3223 int ata_pci_bmdma_prepare_host(struct pci_dev
*pdev
,
3224 const struct ata_port_info
* const * ppi
,
3225 struct ata_host
**r_host
)
3229 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, r_host
);
3233 ata_pci_bmdma_init(*r_host
);
3236 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host
);
3239 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3240 * @pdev: Controller to be initialized
3241 * @ppi: array of port_info, must be enough for two ports
3242 * @sht: scsi_host_template to use when registering the host
3243 * @host_priv: host private_data
3244 * @hflags: host flags
3246 * This function is similar to ata_pci_sff_init_one() but also
3247 * takes care of BMDMA initialization.
3250 * Inherited from PCI layer (may sleep).
3253 * Zero on success, negative on errno-based value on error.
3255 int ata_pci_bmdma_init_one(struct pci_dev
*pdev
,
3256 const struct ata_port_info
* const * ppi
,
3257 struct scsi_host_template
*sht
, void *host_priv
,
3260 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflags
, 1);
3262 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one
);
3264 #endif /* CONFIG_PCI */
3265 #endif /* CONFIG_ATA_BMDMA */
3268 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3269 * @ap: Port to initialize
3271 * Called on port allocation to initialize SFF/BMDMA specific
3277 void ata_sff_port_init(struct ata_port
*ap
)
3279 INIT_DELAYED_WORK(&ap
->sff_pio_task
, ata_sff_pio_task
);
3280 ap
->ctl
= ATA_DEVCTL_OBS
;
3281 ap
->last_ctl
= 0xFF;
3284 int __init
ata_sff_init(void)
3286 ata_sff_wq
= alloc_workqueue("ata_sff", WQ_MEM_RECLAIM
, WQ_MAX_ACTIVE
);
3293 void ata_sff_exit(void)
3295 destroy_workqueue(ata_sff_wq
);