Linux 4.19.133
[linux/fpc-iii.git] / drivers / atm / firestream.c
blob112b1001c26943e33698a157404c169d1fcdc1f4
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3 * FireStream 50 (MB86695) device driver
4 */
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
9 */
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27 system and in the file COPYING in the Linux kernel source.
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/errno.h>
38 #include <linux/atm.h>
39 #include <linux/atmdev.h>
40 #include <linux/sonet.h>
41 #include <linux/skbuff.h>
42 #include <linux/netdevice.h>
43 #include <linux/delay.h>
44 #include <linux/ioport.h> /* for request_region */
45 #include <linux/uio.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/capability.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <asm/byteorder.h>
52 #include <asm/string.h>
53 #include <asm/io.h>
54 #include <linux/atomic.h>
55 #include <linux/uaccess.h>
56 #include <linux/wait.h>
58 #include "firestream.h"
60 static int loopback = 0;
61 static int num=0x5a;
63 /* According to measurements (but they look suspicious to me!) done in
64 * '97, 37% of the packets are one cell in size. So it pays to have
65 * buffers allocated at that size. A large jump in percentage of
66 * packets occurs at packets around 536 bytes in length. So it also
67 * pays to have those pre-allocated. Unfortunately, we can't fully
68 * take advantage of this as the majority of the packets is likely to
69 * be TCP/IP (As where obviously the measurement comes from) There the
70 * link would be opened with say a 1500 byte MTU, and we can't handle
71 * smaller buffers more efficiently than the larger ones. -- REW
74 /* Due to the way Linux memory management works, specifying "576" as
75 * an allocation size here isn't going to help. They are allocated
76 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
77 * large), it doesn't pay to allocate the smallest size (64) -- REW */
79 /* This is all guesswork. Hard numbers to back this up or disprove this,
80 * are appreciated. -- REW */
82 /* The last entry should be about 64k. However, the "buffer size" is
83 * passed to the chip in a 16 bit field. I don't know how "65536"
84 * would be interpreted. -- REW */
86 #define NP FS_NR_FREE_POOLS
87 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
88 /* log2: 7 8 9 10 11 12 14 16 */
90 #if 0
91 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
92 #else
93 /* debug */
94 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
95 #endif
96 /* log2: 10 10 9 8 7 6 5 5 */
97 /* sumlog2: 17 18 18 18 18 18 19 21 */
98 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
99 /* tot mem: almost 4M */
101 /* NP is shorter, so that it fits on a single line. */
102 #undef NP
105 /* Small hardware gotcha:
107 The FS50 CAM (VP/VC match registers) always take the lowest channel
108 number that matches. This is not a problem.
110 However, they also ignore whether the channel is enabled or
111 not. This means that if you allocate channel 0 to 1.2 and then
112 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113 match channel for channel 0 will "steal" the traffic from channel
114 1, even if you correctly disable channel 0.
116 Workaround:
118 - When disabling channels, write an invalid VP/VC value to the
119 match register. (We use 0xffffffff, which in the worst case
120 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121 anything as some "when not in use, program to 0" bits are now
122 programmed to 1...)
124 - Don't initialize the match registers to 0, as 0.0 is a valid
125 channel.
129 /* Optimization hints and tips.
131 The FireStream chips are very capable of reducing the amount of
132 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133 action. You could try to minimize this a bit.
135 Besides that, the userspace->kernel copy and the PCI bus are the
136 performance limiting issues for this driver.
138 You could queue up a bunch of outgoing packets without telling the
139 FireStream. I'm not sure that's going to win you much though. The
140 Linux layer won't tell us in advance when it's not going to give us
141 any more packets in a while. So this is tricky to implement right without
142 introducing extra delays.
144 -- REW
150 /* The strings that define what the RX queue entry is all about. */
151 /* Fujitsu: Please tell me which ones can have a pointer to a
152 freepool descriptor! */
153 static char *res_strings[] = {
154 "RX OK: streaming not EOP",
155 "RX OK: streaming EOP",
156 "RX OK: Single buffer packet",
157 "RX OK: packet mode",
158 "RX OK: F4 OAM (end to end)",
159 "RX OK: F4 OAM (Segment)",
160 "RX OK: F5 OAM (end to end)",
161 "RX OK: F5 OAM (Segment)",
162 "RX OK: RM cell",
163 "RX OK: TRANSP cell",
164 "RX OK: TRANSPC cell",
165 "Unmatched cell",
166 "reserved 12",
167 "reserved 13",
168 "reserved 14",
169 "Unrecognized cell",
170 "reserved 16",
171 "reassembly abort: AAL5 abort",
172 "packet purged",
173 "packet ageing timeout",
174 "channel ageing timeout",
175 "calculated length error",
176 "programmed length limit error",
177 "aal5 crc32 error",
178 "oam transp or transpc crc10 error",
179 "reserved 25",
180 "reserved 26",
181 "reserved 27",
182 "reserved 28",
183 "reserved 29",
184 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
185 "reassembly abort: no buffers",
186 "receive buffer overflow",
187 "change in GFC",
188 "receive buffer full",
189 "low priority discard - no receive descriptor",
190 "low priority discard - missing end of packet",
191 "reserved 37",
192 "reserved 38",
193 "reserved 39",
194 "reserved 40",
195 "reserved 41",
196 "reserved 42",
197 "reserved 43",
198 "reserved 44",
199 "reserved 45",
200 "reserved 46",
201 "reserved 47",
202 "reserved 48",
203 "reserved 49",
204 "reserved 50",
205 "reserved 51",
206 "reserved 52",
207 "reserved 53",
208 "reserved 54",
209 "reserved 55",
210 "reserved 56",
211 "reserved 57",
212 "reserved 58",
213 "reserved 59",
214 "reserved 60",
215 "reserved 61",
216 "reserved 62",
217 "reserved 63",
220 static char *irq_bitname[] = {
221 "LPCO",
222 "DPCO",
223 "RBRQ0_W",
224 "RBRQ1_W",
225 "RBRQ2_W",
226 "RBRQ3_W",
227 "RBRQ0_NF",
228 "RBRQ1_NF",
229 "RBRQ2_NF",
230 "RBRQ3_NF",
231 "BFP_SC",
232 "INIT",
233 "INIT_ERR",
234 "USCEO",
235 "UPEC0",
236 "VPFCO",
237 "CRCCO",
238 "HECO",
239 "TBRQ_W",
240 "TBRQ_NF",
241 "CTPQ_E",
242 "GFC_C0",
243 "PCI_FTL",
244 "CSQ_W",
245 "CSQ_NF",
246 "EXT_INT",
247 "RXDMA_S"
251 #define PHY_EOF -1
252 #define PHY_CLEARALL -2
254 struct reginit_item {
255 int reg, val;
259 static struct reginit_item PHY_NTC_INIT[] = {
260 { PHY_CLEARALL, 0x40 },
261 { 0x12, 0x0001 },
262 { 0x13, 0x7605 },
263 { 0x1A, 0x0001 },
264 { 0x1B, 0x0005 },
265 { 0x38, 0x0003 },
266 { 0x39, 0x0006 }, /* changed here to make loopback */
267 { 0x01, 0x5262 },
268 { 0x15, 0x0213 },
269 { 0x00, 0x0003 },
270 { PHY_EOF, 0}, /* -1 signals end of list */
274 /* Safetyfeature: If the card interrupts more than this number of times
275 in a jiffy (1/100th of a second) then we just disable the interrupt and
276 print a message. This prevents the system from hanging.
278 150000 packets per second is close to the limit a PC is going to have
279 anyway. We therefore have to disable this for production. -- REW */
280 #undef IRQ_RATE_LIMIT // 100
282 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
283 that great without interrupts. -- REW */
284 #undef FS_POLL_FREQ // 100
287 This driver can spew a whole lot of debugging output at you. If you
288 need maximum performance, you should disable the DEBUG define. To
289 aid in debugging in the field, I'm leaving the compile-time debug
290 features enabled, and disable them "runtime". That allows me to
291 instruct people with problems to enable debugging without requiring
292 them to recompile... -- REW
294 #define DEBUG
296 #ifdef DEBUG
297 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
298 #else
299 #define fs_dprintk(f, str...) /* nothing */
300 #endif
303 static int fs_keystream = 0;
305 #ifdef DEBUG
306 /* I didn't forget to set this to zero before shipping. Hit me with a stick
307 if you get this with the debug default not set to zero again. -- REW */
308 static int fs_debug = 0;
309 #else
310 #define fs_debug 0
311 #endif
313 #ifdef MODULE
314 #ifdef DEBUG
315 module_param(fs_debug, int, 0644);
316 #endif
317 module_param(loopback, int, 0);
318 module_param(num, int, 0);
319 module_param(fs_keystream, int, 0);
320 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
321 #endif
324 #define FS_DEBUG_FLOW 0x00000001
325 #define FS_DEBUG_OPEN 0x00000002
326 #define FS_DEBUG_QUEUE 0x00000004
327 #define FS_DEBUG_IRQ 0x00000008
328 #define FS_DEBUG_INIT 0x00000010
329 #define FS_DEBUG_SEND 0x00000020
330 #define FS_DEBUG_PHY 0x00000040
331 #define FS_DEBUG_CLEANUP 0x00000080
332 #define FS_DEBUG_QOS 0x00000100
333 #define FS_DEBUG_TXQ 0x00000200
334 #define FS_DEBUG_ALLOC 0x00000400
335 #define FS_DEBUG_TXMEM 0x00000800
336 #define FS_DEBUG_QSIZE 0x00001000
339 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
340 #define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
343 static struct fs_dev *fs_boards = NULL;
345 #ifdef DEBUG
347 static void my_hd (void *addr, int len)
349 int j, ch;
350 unsigned char *ptr = addr;
352 while (len > 0) {
353 printk ("%p ", ptr);
354 for (j=0;j < ((len < 16)?len:16);j++) {
355 printk ("%02x %s", ptr[j], (j==7)?" ":"");
357 for ( ;j < 16;j++) {
358 printk (" %s", (j==7)?" ":"");
360 for (j=0;j < ((len < 16)?len:16);j++) {
361 ch = ptr[j];
362 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
364 printk ("\n");
365 ptr += 16;
366 len -= 16;
369 #else /* DEBUG */
370 static void my_hd (void *addr, int len){}
371 #endif /* DEBUG */
373 /********** free an skb (as per ATM device driver documentation) **********/
375 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
376 * I copied it over from the ambassador driver. -- REW */
378 static inline void fs_kfree_skb (struct sk_buff * skb)
380 if (ATM_SKB(skb)->vcc->pop)
381 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
382 else
383 dev_kfree_skb_any (skb);
389 /* It seems the ATM forum recommends this horribly complicated 16bit
390 * floating point format. Turns out the Ambassador uses the exact same
391 * encoding. I just copied it over. If Mitch agrees, I'll move it over
392 * to the atm_misc file or something like that. (and remove it from
393 * here and the ambassador driver) -- REW
396 /* The good thing about this format is that it is monotonic. So,
397 a conversion routine need not be very complicated. To be able to
398 round "nearest" we need to take along a few extra bits. Lets
399 put these after 16 bits, so that we can just return the top 16
400 bits of the 32bit number as the result:
402 int mr (unsigned int rate, int r)
404 int e = 16+9;
405 static int round[4]={0, 0, 0xffff, 0x8000};
406 if (!rate) return 0;
407 while (rate & 0xfc000000) {
408 rate >>= 1;
409 e++;
411 while (! (rate & 0xfe000000)) {
412 rate <<= 1;
413 e--;
416 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
417 rate &= ~0x02000000;
418 // Next add in the exponent
419 rate |= e << (16+9);
420 // And perform the rounding:
421 return (rate + round[r]) >> 16;
424 14 lines-of-code. Compare that with the 120 that the Ambassador
425 guys needed. (would be 8 lines shorter if I'd try to really reduce
426 the number of lines:
428 int mr (unsigned int rate, int r)
430 int e = 16+9;
431 static int round[4]={0, 0, 0xffff, 0x8000};
432 if (!rate) return 0;
433 for (; rate & 0xfc000000 ;rate >>= 1, e++);
434 for (;!(rate & 0xfe000000);rate <<= 1, e--);
435 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
438 Exercise for the reader: Remove one more line-of-code, without
439 cheating. (Just joining two lines is cheating). (I know it's
440 possible, don't think you've beat me if you found it... If you
441 manage to lose two lines or more, keep me updated! ;-)
443 -- REW */
446 #define ROUND_UP 1
447 #define ROUND_DOWN 2
448 #define ROUND_NEAREST 3
449 /********** make rate (not quite as much fun as Horizon) **********/
451 static int make_rate(unsigned int rate, int r,
452 u16 *bits, unsigned int *actual)
454 unsigned char exp = -1; /* hush gcc */
455 unsigned int man = -1; /* hush gcc */
457 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
459 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
460 given 5-bit e and 9-bit m:
461 rate = EITHER (1+m/2^9)*2^e OR 0
462 bits = EITHER 1<<14 | e<<9 | m OR 0
463 (bit 15 is "reserved", bit 14 "non-zero")
464 smallest rate is 0 (special representation)
465 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
466 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
467 simple algorithm:
468 find position of top bit, this gives e
469 remove top bit and shift (rounding if feeling clever) by 9-e
471 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
472 representable. // This should move into the ambassador driver
473 when properly merged. -- REW */
475 if (rate > 0xffc00000U) {
476 /* larger than largest representable rate */
478 if (r == ROUND_UP) {
479 return -EINVAL;
480 } else {
481 exp = 31;
482 man = 511;
485 } else if (rate) {
486 /* representable rate */
488 exp = 31;
489 man = rate;
491 /* invariant: rate = man*2^(exp-31) */
492 while (!(man & (1<<31))) {
493 exp = exp - 1;
494 man = man<<1;
497 /* man has top bit set
498 rate = (2^31+(man-2^31))*2^(exp-31)
499 rate = (1+(man-2^31)/2^31)*2^exp
501 man = man<<1;
502 man &= 0xffffffffU; /* a nop on 32-bit systems */
503 /* rate = (1+man/2^32)*2^exp
505 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
506 time to lose significance... we want m in the range 0 to 2^9-1
507 rounding presents a minor problem... we first decide which way
508 we are rounding (based on given rounding direction and possibly
509 the bits of the mantissa that are to be discarded).
512 switch (r) {
513 case ROUND_DOWN: {
514 /* just truncate */
515 man = man>>(32-9);
516 break;
518 case ROUND_UP: {
519 /* check all bits that we are discarding */
520 if (man & (~0U>>9)) {
521 man = (man>>(32-9)) + 1;
522 if (man == (1<<9)) {
523 /* no need to check for round up outside of range */
524 man = 0;
525 exp += 1;
527 } else {
528 man = (man>>(32-9));
530 break;
532 case ROUND_NEAREST: {
533 /* check msb that we are discarding */
534 if (man & (1<<(32-9-1))) {
535 man = (man>>(32-9)) + 1;
536 if (man == (1<<9)) {
537 /* no need to check for round up outside of range */
538 man = 0;
539 exp += 1;
541 } else {
542 man = (man>>(32-9));
544 break;
548 } else {
549 /* zero rate - not representable */
551 if (r == ROUND_DOWN) {
552 return -EINVAL;
553 } else {
554 exp = 0;
555 man = 0;
559 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
561 if (bits)
562 *bits = /* (1<<14) | */ (exp<<9) | man;
564 if (actual)
565 *actual = (exp >= 9)
566 ? (1 << exp) + (man << (exp-9))
567 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
569 return 0;
575 /* FireStream access routines */
576 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
577 certain registers or to just log all accesses. */
579 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
581 writel (val, dev->base + offset);
585 static inline u32 read_fs (struct fs_dev *dev, int offset)
587 return readl (dev->base + offset);
592 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
594 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
598 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
600 u32 wp;
601 struct FS_QENTRY *cqe;
603 /* XXX Sanity check: the write pointer can be checked to be
604 still the same as the value passed as qe... -- REW */
605 /* udelay (5); */
606 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
607 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
608 q->offset);
609 schedule ();
612 wp &= ~0xf;
613 cqe = bus_to_virt (wp);
614 if (qe != cqe) {
615 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
618 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
621 static int c;
622 if (!(c++ % 100))
624 int rp, wp;
625 rp = read_fs (dev, Q_RP(q->offset));
626 wp = read_fs (dev, Q_WP(q->offset));
627 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
628 q->offset, rp, wp, wp-rp);
633 #ifdef DEBUG_EXTRA
634 static struct FS_QENTRY pq[60];
635 static int qp;
637 static struct FS_BPENTRY dq[60];
638 static int qd;
639 static void *da[60];
640 #endif
642 static void submit_queue (struct fs_dev *dev, struct queue *q,
643 u32 cmd, u32 p1, u32 p2, u32 p3)
645 struct FS_QENTRY *qe;
647 qe = get_qentry (dev, q);
648 qe->cmd = cmd;
649 qe->p0 = p1;
650 qe->p1 = p2;
651 qe->p2 = p3;
652 submit_qentry (dev, q, qe);
654 #ifdef DEBUG_EXTRA
655 pq[qp].cmd = cmd;
656 pq[qp].p0 = p1;
657 pq[qp].p1 = p2;
658 pq[qp].p2 = p3;
659 qp++;
660 if (qp >= 60) qp = 0;
661 #endif
664 /* Test the "other" way one day... -- REW */
665 #if 1
666 #define submit_command submit_queue
667 #else
669 static void submit_command (struct fs_dev *dev, struct queue *q,
670 u32 cmd, u32 p1, u32 p2, u32 p3)
672 write_fs (dev, CMDR0, cmd);
673 write_fs (dev, CMDR1, p1);
674 write_fs (dev, CMDR2, p2);
675 write_fs (dev, CMDR3, p3);
677 #endif
681 static void process_return_queue (struct fs_dev *dev, struct queue *q)
683 long rq;
684 struct FS_QENTRY *qe;
685 void *tc;
687 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
688 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
689 qe = bus_to_virt (rq);
691 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
692 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
694 switch (STATUS_CODE (qe)) {
695 case 5:
696 tc = bus_to_virt (qe->p0);
697 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
698 kfree (tc);
699 break;
702 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
707 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
709 long rq;
710 long tmp;
711 struct FS_QENTRY *qe;
712 struct sk_buff *skb;
713 struct FS_BPENTRY *td;
715 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
716 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
717 qe = bus_to_virt (rq);
719 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
720 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
722 if (STATUS_CODE (qe) != 2)
723 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
724 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
727 switch (STATUS_CODE (qe)) {
728 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
729 /* Fall through */
730 case 0x02:
731 /* Process a real txdone entry. */
732 tmp = qe->p0;
733 if (tmp & 0x0f)
734 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
735 tmp &= ~0x0f;
736 td = bus_to_virt (tmp);
738 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
739 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
741 skb = td->skb;
742 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
743 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
744 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
746 td->dev->ntxpckts--;
749 static int c=0;
751 if (!(c++ % 100)) {
752 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
756 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
758 fs_dprintk (FS_DEBUG_TXMEM, "i");
759 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
760 fs_kfree_skb (skb);
762 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
763 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
764 kfree (td);
765 break;
766 default:
767 /* Here we get the tx purge inhibit command ... */
768 /* Action, I believe, is "don't do anything". -- REW */
772 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
777 static void process_incoming (struct fs_dev *dev, struct queue *q)
779 long rq;
780 struct FS_QENTRY *qe;
781 struct FS_BPENTRY *pe;
782 struct sk_buff *skb;
783 unsigned int channo;
784 struct atm_vcc *atm_vcc;
786 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
787 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
788 qe = bus_to_virt (rq);
790 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
791 qe->cmd, qe->p0, qe->p1, qe->p2);
793 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
794 STATUS_CODE (qe),
795 res_strings[STATUS_CODE(qe)]);
797 pe = bus_to_virt (qe->p0);
798 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
799 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
800 pe->skb, pe->fp);
802 channo = qe->cmd & 0xffff;
804 if (channo < dev->nchannels)
805 atm_vcc = dev->atm_vccs[channo];
806 else
807 atm_vcc = NULL;
809 /* Single buffer packet */
810 switch (STATUS_CODE (qe)) {
811 case 0x1:
812 /* Fall through for streaming mode */
813 case 0x2:/* Packet received OK.... */
814 if (atm_vcc) {
815 skb = pe->skb;
816 pe->fp->n--;
817 #if 0
818 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
819 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
820 #endif
821 skb_put (skb, qe->p1 & 0xffff);
822 ATM_SKB(skb)->vcc = atm_vcc;
823 atomic_inc(&atm_vcc->stats->rx);
824 __net_timestamp(skb);
825 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
826 atm_vcc->push (atm_vcc, skb);
827 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
828 kfree (pe);
829 } else {
830 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
832 break;
833 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
834 has been consumed and needs to be processed. -- REW */
835 if (qe->p1 & 0xffff) {
836 pe = bus_to_virt (qe->p0);
837 pe->fp->n--;
838 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
839 dev_kfree_skb_any (pe->skb);
840 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
841 kfree (pe);
843 if (atm_vcc)
844 atomic_inc(&atm_vcc->stats->rx_drop);
845 break;
846 case 0x1f: /* Reassembly abort: no buffers. */
847 /* Silently increment error counter. */
848 if (atm_vcc)
849 atomic_inc(&atm_vcc->stats->rx_drop);
850 break;
851 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
852 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
853 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
855 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
861 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
863 static int fs_open(struct atm_vcc *atm_vcc)
865 struct fs_dev *dev;
866 struct fs_vcc *vcc;
867 struct fs_transmit_config *tc;
868 struct atm_trafprm * txtp;
869 struct atm_trafprm * rxtp;
870 /* struct fs_receive_config *rc;*/
871 /* struct FS_QENTRY *qe; */
872 int error;
873 int bfp;
874 int to;
875 unsigned short tmc0;
876 short vpi = atm_vcc->vpi;
877 int vci = atm_vcc->vci;
879 func_enter ();
881 dev = FS_DEV(atm_vcc->dev);
882 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
883 dev, atm_vcc);
885 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
886 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
888 if ((atm_vcc->qos.aal != ATM_AAL5) &&
889 (atm_vcc->qos.aal != ATM_AAL2))
890 return -EINVAL; /* XXX AAL0 */
892 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
893 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
895 /* XXX handle qos parameters (rate limiting) ? */
897 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
898 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
899 if (!vcc) {
900 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
901 return -ENOMEM;
904 atm_vcc->dev_data = vcc;
905 vcc->last_skb = NULL;
907 init_waitqueue_head (&vcc->close_wait);
909 txtp = &atm_vcc->qos.txtp;
910 rxtp = &atm_vcc->qos.rxtp;
912 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
913 if (IS_FS50(dev)) {
914 /* Increment the channel numer: take a free one next time. */
915 for (to=33;to;to--, dev->channo++) {
916 /* We only have 32 channels */
917 if (dev->channo >= 32)
918 dev->channo = 0;
919 /* If we need to do RX, AND the RX is inuse, try the next */
920 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
921 continue;
922 /* If we need to do TX, AND the TX is inuse, try the next */
923 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
924 continue;
925 /* Ok, both are free! (or not needed) */
926 break;
928 if (!to) {
929 printk ("No more free channels for FS50..\n");
930 kfree(vcc);
931 return -EBUSY;
933 vcc->channo = dev->channo;
934 dev->channo &= dev->channel_mask;
936 } else {
937 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
938 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
939 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
940 printk ("Channel is in use for FS155.\n");
941 kfree(vcc);
942 return -EBUSY;
945 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
946 vcc->channo, vcc->channo);
949 if (DO_DIRECTION (txtp)) {
950 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
951 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
952 tc, sizeof (struct fs_transmit_config));
953 if (!tc) {
954 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
955 kfree(vcc);
956 return -ENOMEM;
959 /* Allocate the "open" entry from the high priority txq. This makes
960 it most likely that the chip will notice it. It also prevents us
961 from having to wait for completion. On the other hand, we may
962 need to wait for completion anyway, to see if it completed
963 successfully. */
965 switch (atm_vcc->qos.aal) {
966 case ATM_AAL2:
967 case ATM_AAL0:
968 tc->flags = 0
969 | TC_FLAGS_TRANSPARENT_PAYLOAD
970 | TC_FLAGS_PACKET
971 | (1 << 28)
972 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
973 | TC_FLAGS_CAL0;
974 break;
975 case ATM_AAL5:
976 tc->flags = 0
977 | TC_FLAGS_AAL5
978 | TC_FLAGS_PACKET /* ??? */
979 | TC_FLAGS_TYPE_CBR
980 | TC_FLAGS_CAL0;
981 break;
982 default:
983 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
984 tc->flags = 0;
986 /* Docs are vague about this atm_hdr field. By the way, the FS
987 * chip makes odd errors if lower bits are set.... -- REW */
988 tc->atm_hdr = (vpi << 20) | (vci << 4);
989 tmc0 = 0;
991 int pcr = atm_pcr_goal (txtp);
993 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
995 /* XXX Hmm. officially we're only allowed to do this if rounding
996 is round_down -- REW */
997 if (IS_FS50(dev)) {
998 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
999 } else {
1000 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
1002 if (!pcr) {
1003 /* no rate cap */
1004 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
1005 } else {
1006 int r;
1007 if (pcr < 0) {
1008 r = ROUND_DOWN;
1009 pcr = -pcr;
1010 } else {
1011 r = ROUND_UP;
1013 error = make_rate (pcr, r, &tmc0, NULL);
1014 if (error) {
1015 kfree(tc);
1016 return error;
1019 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1022 tc->TMC[0] = tmc0 | 0x4000;
1023 tc->TMC[1] = 0; /* Unused */
1024 tc->TMC[2] = 0; /* Unused */
1025 tc->TMC[3] = 0; /* Unused */
1027 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1028 tc->rtag[0] = 0; /* What should I do with routing tags???
1029 -- Not used -- AS -- Thanks -- REW*/
1030 tc->rtag[1] = 0;
1031 tc->rtag[2] = 0;
1033 if (fs_debug & FS_DEBUG_OPEN) {
1034 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1035 my_hd (tc, sizeof (*tc));
1038 /* We now use the "submit_command" function to submit commands to
1039 the firestream. There is a define up near the definition of
1040 that routine that switches this routine between immediate write
1041 to the immediate command registers and queuing the commands in
1042 the HPTXQ for execution. This last technique might be more
1043 efficient if we know we're going to submit a whole lot of
1044 commands in one go, but this driver is not setup to be able to
1045 use such a construct. So it probably doen't matter much right
1046 now. -- REW */
1048 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1049 submit_command (dev, &dev->hp_txq,
1050 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1051 virt_to_bus (tc), 0, 0);
1053 submit_command (dev, &dev->hp_txq,
1054 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1055 0, 0, 0);
1056 set_bit (vcc->channo, dev->tx_inuse);
1059 if (DO_DIRECTION (rxtp)) {
1060 dev->atm_vccs[vcc->channo] = atm_vcc;
1062 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1063 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1064 if (bfp >= FS_NR_FREE_POOLS) {
1065 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1066 atm_vcc->qos.rxtp.max_sdu);
1067 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1069 /* XXX clear tx inuse. Close TX part? */
1070 dev->atm_vccs[vcc->channo] = NULL;
1071 kfree (vcc);
1072 return -EINVAL;
1075 switch (atm_vcc->qos.aal) {
1076 case ATM_AAL0:
1077 case ATM_AAL2:
1078 submit_command (dev, &dev->hp_txq,
1079 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1080 RC_FLAGS_TRANSP |
1081 RC_FLAGS_BFPS_BFP * bfp |
1082 RC_FLAGS_RXBM_PSB, 0, 0);
1083 break;
1084 case ATM_AAL5:
1085 submit_command (dev, &dev->hp_txq,
1086 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1087 RC_FLAGS_AAL5 |
1088 RC_FLAGS_BFPS_BFP * bfp |
1089 RC_FLAGS_RXBM_PSB, 0, 0);
1090 break;
1092 if (IS_FS50 (dev)) {
1093 submit_command (dev, &dev->hp_txq,
1094 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1095 0x80 + vcc->channo,
1096 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1098 submit_command (dev, &dev->hp_txq,
1099 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1100 0, 0, 0);
1103 /* Indicate we're done! */
1104 set_bit(ATM_VF_READY, &atm_vcc->flags);
1106 func_exit ();
1107 return 0;
1111 static void fs_close(struct atm_vcc *atm_vcc)
1113 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1114 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1115 struct atm_trafprm * txtp;
1116 struct atm_trafprm * rxtp;
1118 func_enter ();
1120 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1122 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1123 if (vcc->last_skb) {
1124 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1125 vcc->last_skb);
1126 /* We're going to wait for the last packet to get sent on this VC. It would
1127 be impolite not to send them don't you think?
1129 We don't know which packets didn't get sent. So if we get interrupted in
1130 this sleep_on, we'll lose any reference to these packets. Memory leak!
1131 On the other hand, it's awfully convenient that we can abort a "close" that
1132 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1133 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1136 txtp = &atm_vcc->qos.txtp;
1137 rxtp = &atm_vcc->qos.rxtp;
1140 /* See App note XXX (Unpublished as of now) for the reason for the
1141 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1143 if (DO_DIRECTION (txtp)) {
1144 submit_command (dev, &dev->hp_txq,
1145 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1146 clear_bit (vcc->channo, dev->tx_inuse);
1149 if (DO_DIRECTION (rxtp)) {
1150 submit_command (dev, &dev->hp_txq,
1151 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1152 dev->atm_vccs [vcc->channo] = NULL;
1154 /* This means that this is configured as a receive channel */
1155 if (IS_FS50 (dev)) {
1156 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1157 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1158 (0xfff...) -- REW */
1159 submit_command (dev, &dev->hp_txq,
1160 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1161 0x80 + vcc->channo, -1, 0 );
1165 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1166 kfree (vcc);
1168 func_exit ();
1172 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1174 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1175 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1176 struct FS_BPENTRY *td;
1178 func_enter ();
1180 fs_dprintk (FS_DEBUG_TXMEM, "I");
1181 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1182 atm_vcc, skb, vcc, dev);
1184 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1186 ATM_SKB(skb)->vcc = atm_vcc;
1188 vcc->last_skb = skb;
1190 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1191 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1192 if (!td) {
1193 /* Oops out of mem */
1194 return -ENOMEM;
1197 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1198 *(int *) skb->data);
1200 td->flags = TD_EPI | TD_DATA | skb->len;
1201 td->next = 0;
1202 td->bsa = virt_to_bus (skb->data);
1203 td->skb = skb;
1204 td->dev = dev;
1205 dev->ntxpckts++;
1207 #ifdef DEBUG_EXTRA
1208 da[qd] = td;
1209 dq[qd].flags = td->flags;
1210 dq[qd].next = td->next;
1211 dq[qd].bsa = td->bsa;
1212 dq[qd].skb = td->skb;
1213 dq[qd].dev = td->dev;
1214 qd++;
1215 if (qd >= 60) qd = 0;
1216 #endif
1218 submit_queue (dev, &dev->hp_txq,
1219 QE_TRANSMIT_DE | vcc->channo,
1220 virt_to_bus (td), 0,
1221 virt_to_bus (td));
1223 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1224 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1225 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1226 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1227 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1229 func_exit ();
1230 return 0;
1234 /* Some function placeholders for functions we don't yet support. */
1236 #if 0
1237 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1239 func_enter ();
1240 func_exit ();
1241 return -ENOIOCTLCMD;
1245 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1246 void __user *optval,int optlen)
1248 func_enter ();
1249 func_exit ();
1250 return 0;
1254 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1255 void __user *optval,unsigned int optlen)
1257 func_enter ();
1258 func_exit ();
1259 return 0;
1263 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1264 unsigned long addr)
1266 func_enter ();
1267 func_exit ();
1271 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1273 func_enter ();
1274 func_exit ();
1275 return 0;
1279 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1281 func_enter ();
1282 func_exit ();
1283 return 0;
1286 #endif
1289 static const struct atmdev_ops ops = {
1290 .open = fs_open,
1291 .close = fs_close,
1292 .send = fs_send,
1293 .owner = THIS_MODULE,
1294 /* ioctl: fs_ioctl, */
1295 /* getsockopt: fs_getsockopt, */
1296 /* setsockopt: fs_setsockopt, */
1297 /* change_qos: fs_change_qos, */
1299 /* For now implement these internally here... */
1300 /* phy_put: fs_phy_put, */
1301 /* phy_get: fs_phy_get, */
1305 static void undocumented_pci_fix(struct pci_dev *pdev)
1307 u32 tint;
1309 /* The Windows driver says: */
1310 /* Switch off FireStream Retry Limit Threshold
1313 /* The register at 0x28 is documented as "reserved", no further
1314 comments. */
1316 pci_read_config_dword (pdev, 0x28, &tint);
1317 if (tint != 0x80) {
1318 tint = 0x80;
1319 pci_write_config_dword (pdev, 0x28, tint);
1325 /**************************************************************************
1326 * PHY routines *
1327 **************************************************************************/
1329 static void write_phy(struct fs_dev *dev, int regnum, int val)
1331 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1332 regnum, val, 0);
1335 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1337 int i;
1339 func_enter ();
1340 while (reginit->reg != PHY_EOF) {
1341 if (reginit->reg == PHY_CLEARALL) {
1342 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1343 for (i=0;i<reginit->val;i++) {
1344 write_phy (dev, i, 0);
1346 } else {
1347 write_phy (dev, reginit->reg, reginit->val);
1349 reginit++;
1351 func_exit ();
1352 return 0;
1355 static void reset_chip (struct fs_dev *dev)
1357 int i;
1359 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1361 /* Undocumented delay */
1362 udelay (128);
1364 /* The "internal registers are documented to all reset to zero, but
1365 comments & code in the Windows driver indicates that the pools are
1366 NOT reset. */
1367 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1368 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1369 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1370 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1371 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1372 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1375 /* The same goes for the match channel registers, although those are
1376 NOT documented that way in the Windows driver. -- REW */
1377 /* The Windows driver DOES write 0 to these registers somewhere in
1378 the init sequence. However, a small hardware-feature, will
1379 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1380 allocated happens to have no disabled channels that have a lower
1381 number. -- REW */
1383 /* Clear the match channel registers. */
1384 if (IS_FS50 (dev)) {
1385 for (i=0;i<FS50_NR_CHANNELS;i++) {
1386 write_fs (dev, 0x200 + i * 4, -1);
1391 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1393 void *t;
1395 if (alignment <= 0x10) {
1396 t = kmalloc (size, flags);
1397 if ((unsigned long)t & (alignment-1)) {
1398 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1399 kfree (t);
1400 return aligned_kmalloc (size, flags, alignment * 4);
1402 return t;
1404 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1405 return NULL;
1408 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1409 int nentries, int is_rq)
1411 int sz = nentries * sizeof (struct FS_QENTRY);
1412 struct FS_QENTRY *p;
1414 func_enter ();
1416 fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1417 queue, nentries);
1419 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1420 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1422 if (!p) return 0;
1424 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1425 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1426 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1427 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1428 if (is_rq) {
1429 /* Configuration for the receive queue: 0: interrupt immediately,
1430 no pre-warning to empty queues: We do our best to keep the
1431 queue filled anyway. */
1432 write_fs (dev, Q_CNF(queue), 0 );
1435 txq->sa = p;
1436 txq->ea = p;
1437 txq->offset = queue;
1439 func_exit ();
1440 return 1;
1444 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1445 int bufsize, int nr_buffers)
1447 func_enter ();
1449 fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1451 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1452 write_fs (dev, FP_SA(queue), 0);
1453 write_fs (dev, FP_EA(queue), 0);
1454 write_fs (dev, FP_CTU(queue), 0);
1455 write_fs (dev, FP_CNT(queue), 0);
1457 fp->offset = queue;
1458 fp->bufsize = bufsize;
1459 fp->nr_buffers = nr_buffers;
1461 func_exit ();
1462 return 1;
1466 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1468 #if 0
1469 /* This seems to be unreliable.... */
1470 return read_fs (dev, FP_CNT (fp->offset));
1471 #else
1472 return fp->n;
1473 #endif
1477 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1478 does. I've seen "receive abort: no buffers" and things started
1479 working again after that... -- REW */
1481 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1482 gfp_t gfp_flags)
1484 struct FS_BPENTRY *qe, *ne;
1485 struct sk_buff *skb;
1486 int n = 0;
1487 u32 qe_tmp;
1489 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1490 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1491 fp->nr_buffers);
1492 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1494 skb = alloc_skb (fp->bufsize, gfp_flags);
1495 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1496 if (!skb) break;
1497 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1498 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1499 if (!ne) {
1500 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1501 dev_kfree_skb_any (skb);
1502 break;
1505 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1506 skb, ne, skb->data, skb->head);
1507 n++;
1508 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1509 ne->next = virt_to_bus (NULL);
1510 ne->bsa = virt_to_bus (skb->data);
1511 ne->aal_bufsize = fp->bufsize;
1512 ne->skb = skb;
1513 ne->fp = fp;
1516 * FIXME: following code encodes and decodes
1517 * machine pointers (could be 64-bit) into a
1518 * 32-bit register.
1521 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1522 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1523 if (qe_tmp) {
1524 qe = bus_to_virt ((long) qe_tmp);
1525 qe->next = virt_to_bus(ne);
1526 qe->flags &= ~FP_FLAGS_EPI;
1527 } else
1528 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1530 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1531 fp->n++; /* XXX Atomic_inc? */
1532 write_fs (dev, FP_CTU(fp->offset), 1);
1535 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1538 static void free_queue(struct fs_dev *dev, struct queue *txq)
1540 func_enter ();
1542 write_fs (dev, Q_SA(txq->offset), 0);
1543 write_fs (dev, Q_EA(txq->offset), 0);
1544 write_fs (dev, Q_RP(txq->offset), 0);
1545 write_fs (dev, Q_WP(txq->offset), 0);
1546 /* Configuration ? */
1548 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1549 kfree (txq->sa);
1551 func_exit ();
1554 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1556 func_enter ();
1558 write_fs (dev, FP_CNF(fp->offset), 0);
1559 write_fs (dev, FP_SA (fp->offset), 0);
1560 write_fs (dev, FP_EA (fp->offset), 0);
1561 write_fs (dev, FP_CNT(fp->offset), 0);
1562 write_fs (dev, FP_CTU(fp->offset), 0);
1564 func_exit ();
1569 static irqreturn_t fs_irq (int irq, void *dev_id)
1571 int i;
1572 u32 status;
1573 struct fs_dev *dev = dev_id;
1575 status = read_fs (dev, ISR);
1576 if (!status)
1577 return IRQ_NONE;
1579 func_enter ();
1581 #ifdef IRQ_RATE_LIMIT
1582 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1583 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1585 static int lastjif;
1586 static int nintr=0;
1588 if (lastjif == jiffies) {
1589 if (++nintr > IRQ_RATE_LIMIT) {
1590 free_irq (dev->irq, dev_id);
1591 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1592 dev->irq);
1594 } else {
1595 lastjif = jiffies;
1596 nintr = 0;
1599 #endif
1600 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1601 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1602 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1603 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1604 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1606 /* print the bits in the ISR register. */
1607 if (fs_debug & FS_DEBUG_IRQ) {
1608 /* The FS_DEBUG things are unnecessary here. But this way it is
1609 clear for grep that these are debug prints. */
1610 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1611 for (i=0;i<27;i++)
1612 if (status & (1 << i))
1613 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1614 fs_dprintk (FS_DEBUG_IRQ, "\n");
1617 if (status & ISR_RBRQ0_W) {
1618 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1619 process_incoming (dev, &dev->rx_rq[0]);
1620 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1621 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1622 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1625 if (status & ISR_RBRQ1_W) {
1626 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1627 process_incoming (dev, &dev->rx_rq[1]);
1628 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1629 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1632 if (status & ISR_RBRQ2_W) {
1633 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1634 process_incoming (dev, &dev->rx_rq[2]);
1635 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1636 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1639 if (status & ISR_RBRQ3_W) {
1640 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1641 process_incoming (dev, &dev->rx_rq[3]);
1642 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1643 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1646 if (status & ISR_CSQ_W) {
1647 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1648 process_return_queue (dev, &dev->st_q);
1651 if (status & ISR_TBRQ_W) {
1652 fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1653 process_txdone_queue (dev, &dev->tx_relq);
1656 func_exit ();
1657 return IRQ_HANDLED;
1661 #ifdef FS_POLL_FREQ
1662 static void fs_poll (struct timer_list *t)
1664 struct fs_dev *dev = from_timer(dev, t, timer);
1666 fs_irq (0, dev);
1667 dev->timer.expires = jiffies + FS_POLL_FREQ;
1668 add_timer (&dev->timer);
1670 #endif
1672 static int fs_init(struct fs_dev *dev)
1674 struct pci_dev *pci_dev;
1675 int isr, to;
1676 int i;
1678 func_enter ();
1679 pci_dev = dev->pci_dev;
1681 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1682 IS_FS50(dev)?50:155,
1683 (unsigned long long)pci_resource_start(pci_dev, 0),
1684 dev->pci_dev->irq);
1686 if (fs_debug & FS_DEBUG_INIT)
1687 my_hd ((unsigned char *) dev, sizeof (*dev));
1689 undocumented_pci_fix (pci_dev);
1691 dev->hw_base = pci_resource_start(pci_dev, 0);
1693 dev->base = ioremap(dev->hw_base, 0x1000);
1695 reset_chip (dev);
1697 write_fs (dev, SARMODE0, 0
1698 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1699 | (1 * SARMODE0_INTMODE_READCLEAR)
1700 | (1 * SARMODE0_CWRE)
1701 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1702 SARMODE0_PRPWT_FS155_3)
1703 | (1 * SARMODE0_CALSUP_1)
1704 | (IS_FS50(dev) ? (0
1705 | SARMODE0_RXVCS_32
1706 | SARMODE0_ABRVCS_32
1707 | SARMODE0_TXVCS_32):
1709 | SARMODE0_RXVCS_1k
1710 | SARMODE0_ABRVCS_1k
1711 | SARMODE0_TXVCS_1k)));
1713 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1714 1ms. */
1715 to = 100;
1716 while (--to) {
1717 isr = read_fs (dev, ISR);
1719 /* This bit is documented as "RESERVED" */
1720 if (isr & ISR_INIT_ERR) {
1721 printk (KERN_ERR "Error initializing the FS... \n");
1722 goto unmap;
1724 if (isr & ISR_INIT) {
1725 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1726 break;
1729 /* Try again after 10ms. */
1730 msleep(10);
1733 if (!to) {
1734 printk (KERN_ERR "timeout initializing the FS... \n");
1735 goto unmap;
1738 /* XXX fix for fs155 */
1739 dev->channel_mask = 0x1f;
1740 dev->channo = 0;
1742 /* AN3: 10 */
1743 write_fs (dev, SARMODE1, 0
1744 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1745 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1746 | (1 * SARMODE1_DCRM)
1747 | (1 * SARMODE1_DCOAM)
1748 | (0 * SARMODE1_OAMCRC)
1749 | (0 * SARMODE1_DUMPE)
1750 | (0 * SARMODE1_GPLEN)
1751 | (0 * SARMODE1_GNAM)
1752 | (0 * SARMODE1_GVAS)
1753 | (0 * SARMODE1_GPAS)
1754 | (1 * SARMODE1_GPRI)
1755 | (0 * SARMODE1_PMS)
1756 | (0 * SARMODE1_GFCR)
1757 | (1 * SARMODE1_HECM2)
1758 | (1 * SARMODE1_HECM1)
1759 | (1 * SARMODE1_HECM0)
1760 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1761 | (0 * 0xff) /* XXX FS155 */);
1764 /* Cal prescale etc */
1766 /* AN3: 11 */
1767 write_fs (dev, TMCONF, 0x0000000f);
1768 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1769 write_fs (dev, 0x80, 0x000F00E4);
1771 /* AN3: 12 */
1772 write_fs (dev, CELLOSCONF, 0
1773 | ( 0 * CELLOSCONF_CEN)
1774 | ( CELLOSCONF_SC1)
1775 | (0x80 * CELLOSCONF_COBS)
1776 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1777 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1778 * performance jumped 50->70... */
1780 /* Magic value by Hang */
1781 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1783 if (IS_FS50 (dev)) {
1784 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1785 dev->atm_dev->ci_range.vpi_bits = 12;
1786 dev->atm_dev->ci_range.vci_bits = 16;
1787 dev->nchannels = FS50_NR_CHANNELS;
1788 } else {
1789 write_fs (dev, RAS0, RAS0_DCD_XHLT
1790 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1791 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1792 /* We can chose the split arbitrarily. We might be able to
1793 support more. Whatever. This should do for now. */
1794 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1795 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1797 /* Address bits we can't use should be compared to 0. */
1798 write_fs (dev, RAC, 0);
1800 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1801 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1802 * other bits, then compare with 0, which is exactly what we
1803 * want. */
1804 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1805 dev->nchannels = FS155_NR_CHANNELS;
1807 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1808 GFP_KERNEL);
1809 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1810 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1812 if (!dev->atm_vccs) {
1813 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1814 /* XXX Clean up..... */
1815 goto unmap;
1818 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1819 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1820 dev->atm_vccs, dev->nchannels / 8);
1822 if (!dev->tx_inuse) {
1823 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1824 /* XXX Clean up..... */
1825 goto unmap;
1827 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1828 /* -- RAS2 : FS50 only: Default is OK. */
1830 /* DMAMODE, default should be OK. -- REW */
1831 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1833 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1834 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1835 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1836 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1838 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1839 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1840 rx_buf_sizes[i], rx_pool_sizes[i]);
1841 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1845 for (i=0;i < FS_NR_RX_QUEUES;i++)
1846 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1848 dev->irq = pci_dev->irq;
1849 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1850 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1851 /* XXX undo all previous stuff... */
1852 goto unmap;
1854 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1856 /* We want to be notified of most things. Just the statistics count
1857 overflows are not interesting */
1858 write_fs (dev, IMR, 0
1859 | ISR_RBRQ0_W
1860 | ISR_RBRQ1_W
1861 | ISR_RBRQ2_W
1862 | ISR_RBRQ3_W
1863 | ISR_TBRQ_W
1864 | ISR_CSQ_W);
1866 write_fs (dev, SARMODE0, 0
1867 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1868 | (1 * SARMODE0_GINT)
1869 | (1 * SARMODE0_INTMODE_READCLEAR)
1870 | (0 * SARMODE0_CWRE)
1871 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1872 SARMODE0_PRPWT_FS155_3)
1873 | (1 * SARMODE0_CALSUP_1)
1874 | (IS_FS50 (dev)?(0
1875 | SARMODE0_RXVCS_32
1876 | SARMODE0_ABRVCS_32
1877 | SARMODE0_TXVCS_32):
1879 | SARMODE0_RXVCS_1k
1880 | SARMODE0_ABRVCS_1k
1881 | SARMODE0_TXVCS_1k))
1882 | (1 * SARMODE0_RUN));
1884 init_phy (dev, PHY_NTC_INIT);
1886 if (loopback == 2) {
1887 write_phy (dev, 0x39, 0x000e);
1890 #ifdef FS_POLL_FREQ
1891 timer_setup(&dev->timer, fs_poll, 0);
1892 dev->timer.expires = jiffies + FS_POLL_FREQ;
1893 add_timer (&dev->timer);
1894 #endif
1896 dev->atm_dev->dev_data = dev;
1898 func_exit ();
1899 return 0;
1900 unmap:
1901 iounmap(dev->base);
1902 return 1;
1905 static int firestream_init_one(struct pci_dev *pci_dev,
1906 const struct pci_device_id *ent)
1908 struct atm_dev *atm_dev;
1909 struct fs_dev *fs_dev;
1911 if (pci_enable_device(pci_dev))
1912 goto err_out;
1914 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1915 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1916 fs_dev, sizeof (struct fs_dev));
1917 if (!fs_dev)
1918 goto err_out;
1919 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1920 if (!atm_dev)
1921 goto err_out_free_fs_dev;
1923 fs_dev->pci_dev = pci_dev;
1924 fs_dev->atm_dev = atm_dev;
1925 fs_dev->flags = ent->driver_data;
1927 if (fs_init(fs_dev))
1928 goto err_out_free_atm_dev;
1930 fs_dev->next = fs_boards;
1931 fs_boards = fs_dev;
1932 return 0;
1934 err_out_free_atm_dev:
1935 atm_dev_deregister(atm_dev);
1936 err_out_free_fs_dev:
1937 kfree(fs_dev);
1938 err_out:
1939 return -ENODEV;
1942 static void firestream_remove_one(struct pci_dev *pdev)
1944 int i;
1945 struct fs_dev *dev, *nxtdev;
1946 struct fs_vcc *vcc;
1947 struct FS_BPENTRY *fp, *nxt;
1949 func_enter ();
1951 #if 0
1952 printk ("hptxq:\n");
1953 for (i=0;i<60;i++) {
1954 printk ("%d: %08x %08x %08x %08x \n",
1955 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1956 qp++;
1957 if (qp >= 60) qp = 0;
1960 printk ("descriptors:\n");
1961 for (i=0;i<60;i++) {
1962 printk ("%d: %p: %08x %08x %p %p\n",
1963 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1964 qd++;
1965 if (qd >= 60) qd = 0;
1967 #endif
1969 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1970 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1972 /* XXX Hit all the tx channels too! */
1974 for (i=0;i < dev->nchannels;i++) {
1975 if (dev->atm_vccs[i]) {
1976 vcc = FS_VCC (dev->atm_vccs[i]);
1977 submit_command (dev, &dev->hp_txq,
1978 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1979 submit_command (dev, &dev->hp_txq,
1980 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1985 /* XXX Wait a while for the chip to release all buffers. */
1987 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1988 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1989 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1990 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1991 dev_kfree_skb_any (fp->skb);
1992 nxt = bus_to_virt (fp->next);
1993 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1994 kfree (fp);
1996 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1997 dev_kfree_skb_any (fp->skb);
1998 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1999 kfree (fp);
2002 /* Hang the chip in "reset", prevent it clobbering memory that is
2003 no longer ours. */
2004 reset_chip (dev);
2006 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2007 free_irq (dev->irq, dev);
2008 del_timer_sync (&dev->timer);
2010 atm_dev_deregister(dev->atm_dev);
2011 free_queue (dev, &dev->hp_txq);
2012 free_queue (dev, &dev->lp_txq);
2013 free_queue (dev, &dev->tx_relq);
2014 free_queue (dev, &dev->st_q);
2016 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2017 kfree (dev->atm_vccs);
2019 for (i=0;i< FS_NR_FREE_POOLS;i++)
2020 free_freepool (dev, &dev->rx_fp[i]);
2022 for (i=0;i < FS_NR_RX_QUEUES;i++)
2023 free_queue (dev, &dev->rx_rq[i]);
2025 iounmap(dev->base);
2026 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2027 nxtdev = dev->next;
2028 kfree (dev);
2031 func_exit ();
2034 static const struct pci_device_id firestream_pci_tbl[] = {
2035 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2036 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2037 { 0, }
2040 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2042 static struct pci_driver firestream_driver = {
2043 .name = "firestream",
2044 .id_table = firestream_pci_tbl,
2045 .probe = firestream_init_one,
2046 .remove = firestream_remove_one,
2049 static int __init firestream_init_module (void)
2051 int error;
2053 func_enter ();
2054 error = pci_register_driver(&firestream_driver);
2055 func_exit ();
2056 return error;
2059 static void __exit firestream_cleanup_module(void)
2061 pci_unregister_driver(&firestream_driver);
2064 module_init(firestream_init_module);
2065 module_exit(firestream_cleanup_module);
2067 MODULE_LICENSE("GPL");