Linux 4.19.133
[linux/fpc-iii.git] / drivers / atm / he.c
blob329ce9072ee9f9e9d72caf5fae22c9279974ac19
1 /*
3 he.c
5 ForeRunnerHE ATM Adapter driver for ATM on Linux
6 Copyright (C) 1999-2001 Naval Research Laboratory
8 This library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
13 This library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
18 You should have received a copy of the GNU Lesser General Public
19 License along with this library; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 he.c
28 ForeRunnerHE ATM Adapter driver for ATM on Linux
29 Copyright (C) 1999-2001 Naval Research Laboratory
31 Permission to use, copy, modify and distribute this software and its
32 documentation is hereby granted, provided that both the copyright
33 notice and this permission notice appear in all copies of the software,
34 derivative works or modified versions, and any portions thereof, and
35 that both notices appear in supporting documentation.
37 NRL ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND
38 DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
39 RESULTING FROM THE USE OF THIS SOFTWARE.
41 This driver was written using the "Programmer's Reference Manual for
42 ForeRunnerHE(tm)", MANU0361-01 - Rev. A, 08/21/98.
44 AUTHORS:
45 chas williams <chas@cmf.nrl.navy.mil>
46 eric kinzie <ekinzie@cmf.nrl.navy.mil>
48 NOTES:
49 4096 supported 'connections'
50 group 0 is used for all traffic
51 interrupt queue 0 is used for all interrupts
52 aal0 support (based on work from ulrich.u.muller@nokia.com)
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/skbuff.h>
59 #include <linux/pci.h>
60 #include <linux/errno.h>
61 #include <linux/types.h>
62 #include <linux/string.h>
63 #include <linux/delay.h>
64 #include <linux/init.h>
65 #include <linux/mm.h>
66 #include <linux/sched.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/dma-mapping.h>
70 #include <linux/bitmap.h>
71 #include <linux/slab.h>
72 #include <asm/io.h>
73 #include <asm/byteorder.h>
74 #include <linux/uaccess.h>
76 #include <linux/atmdev.h>
77 #include <linux/atm.h>
78 #include <linux/sonet.h>
80 #undef USE_SCATTERGATHER
81 #undef USE_CHECKSUM_HW /* still confused about this */
82 /* #undef HE_DEBUG */
84 #include "he.h"
85 #include "suni.h"
86 #include <linux/atm_he.h>
88 #define hprintk(fmt,args...) printk(KERN_ERR DEV_LABEL "%d: " fmt, he_dev->number , ##args)
90 #ifdef HE_DEBUG
91 #define HPRINTK(fmt,args...) printk(KERN_DEBUG DEV_LABEL "%d: " fmt, he_dev->number , ##args)
92 #else /* !HE_DEBUG */
93 #define HPRINTK(fmt,args...) do { } while (0)
94 #endif /* HE_DEBUG */
96 /* declarations */
98 static int he_open(struct atm_vcc *vcc);
99 static void he_close(struct atm_vcc *vcc);
100 static int he_send(struct atm_vcc *vcc, struct sk_buff *skb);
101 static int he_ioctl(struct atm_dev *dev, unsigned int cmd, void __user *arg);
102 static irqreturn_t he_irq_handler(int irq, void *dev_id);
103 static void he_tasklet(unsigned long data);
104 static int he_proc_read(struct atm_dev *dev,loff_t *pos,char *page);
105 static int he_start(struct atm_dev *dev);
106 static void he_stop(struct he_dev *dev);
107 static void he_phy_put(struct atm_dev *, unsigned char, unsigned long);
108 static unsigned char he_phy_get(struct atm_dev *, unsigned long);
110 static u8 read_prom_byte(struct he_dev *he_dev, int addr);
112 /* globals */
114 static struct he_dev *he_devs;
115 static bool disable64;
116 static short nvpibits = -1;
117 static short nvcibits = -1;
118 static short rx_skb_reserve = 16;
119 static bool irq_coalesce = true;
120 static bool sdh;
122 /* Read from EEPROM = 0000 0011b */
123 static unsigned int readtab[] = {
124 CS_HIGH | CLK_HIGH,
125 CS_LOW | CLK_LOW,
126 CLK_HIGH, /* 0 */
127 CLK_LOW,
128 CLK_HIGH, /* 0 */
129 CLK_LOW,
130 CLK_HIGH, /* 0 */
131 CLK_LOW,
132 CLK_HIGH, /* 0 */
133 CLK_LOW,
134 CLK_HIGH, /* 0 */
135 CLK_LOW,
136 CLK_HIGH, /* 0 */
137 CLK_LOW | SI_HIGH,
138 CLK_HIGH | SI_HIGH, /* 1 */
139 CLK_LOW | SI_HIGH,
140 CLK_HIGH | SI_HIGH /* 1 */
143 /* Clock to read from/write to the EEPROM */
144 static unsigned int clocktab[] = {
145 CLK_LOW,
146 CLK_HIGH,
147 CLK_LOW,
148 CLK_HIGH,
149 CLK_LOW,
150 CLK_HIGH,
151 CLK_LOW,
152 CLK_HIGH,
153 CLK_LOW,
154 CLK_HIGH,
155 CLK_LOW,
156 CLK_HIGH,
157 CLK_LOW,
158 CLK_HIGH,
159 CLK_LOW,
160 CLK_HIGH,
161 CLK_LOW
164 static const struct atmdev_ops he_ops =
166 .open = he_open,
167 .close = he_close,
168 .ioctl = he_ioctl,
169 .send = he_send,
170 .phy_put = he_phy_put,
171 .phy_get = he_phy_get,
172 .proc_read = he_proc_read,
173 .owner = THIS_MODULE
176 #define he_writel(dev, val, reg) do { writel(val, (dev)->membase + (reg)); wmb(); } while (0)
177 #define he_readl(dev, reg) readl((dev)->membase + (reg))
179 /* section 2.12 connection memory access */
181 static __inline__ void
182 he_writel_internal(struct he_dev *he_dev, unsigned val, unsigned addr,
183 unsigned flags)
185 he_writel(he_dev, val, CON_DAT);
186 (void) he_readl(he_dev, CON_DAT); /* flush posted writes */
187 he_writel(he_dev, flags | CON_CTL_WRITE | CON_CTL_ADDR(addr), CON_CTL);
188 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
191 #define he_writel_rcm(dev, val, reg) \
192 he_writel_internal(dev, val, reg, CON_CTL_RCM)
194 #define he_writel_tcm(dev, val, reg) \
195 he_writel_internal(dev, val, reg, CON_CTL_TCM)
197 #define he_writel_mbox(dev, val, reg) \
198 he_writel_internal(dev, val, reg, CON_CTL_MBOX)
200 static unsigned
201 he_readl_internal(struct he_dev *he_dev, unsigned addr, unsigned flags)
203 he_writel(he_dev, flags | CON_CTL_READ | CON_CTL_ADDR(addr), CON_CTL);
204 while (he_readl(he_dev, CON_CTL) & CON_CTL_BUSY);
205 return he_readl(he_dev, CON_DAT);
208 #define he_readl_rcm(dev, reg) \
209 he_readl_internal(dev, reg, CON_CTL_RCM)
211 #define he_readl_tcm(dev, reg) \
212 he_readl_internal(dev, reg, CON_CTL_TCM)
214 #define he_readl_mbox(dev, reg) \
215 he_readl_internal(dev, reg, CON_CTL_MBOX)
218 /* figure 2.2 connection id */
220 #define he_mkcid(dev, vpi, vci) (((vpi << (dev)->vcibits) | vci) & 0x1fff)
222 /* 2.5.1 per connection transmit state registers */
224 #define he_writel_tsr0(dev, val, cid) \
225 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 0)
226 #define he_readl_tsr0(dev, cid) \
227 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 0)
229 #define he_writel_tsr1(dev, val, cid) \
230 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 1)
232 #define he_writel_tsr2(dev, val, cid) \
233 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 2)
235 #define he_writel_tsr3(dev, val, cid) \
236 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 3)
238 #define he_writel_tsr4(dev, val, cid) \
239 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 4)
241 /* from page 2-20
243 * NOTE While the transmit connection is active, bits 23 through 0
244 * of this register must not be written by the host. Byte
245 * enables should be used during normal operation when writing
246 * the most significant byte.
249 #define he_writel_tsr4_upper(dev, val, cid) \
250 he_writel_internal(dev, val, CONFIG_TSRA | (cid << 3) | 4, \
251 CON_CTL_TCM \
252 | CON_BYTE_DISABLE_2 \
253 | CON_BYTE_DISABLE_1 \
254 | CON_BYTE_DISABLE_0)
256 #define he_readl_tsr4(dev, cid) \
257 he_readl_tcm(dev, CONFIG_TSRA | (cid << 3) | 4)
259 #define he_writel_tsr5(dev, val, cid) \
260 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 5)
262 #define he_writel_tsr6(dev, val, cid) \
263 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 6)
265 #define he_writel_tsr7(dev, val, cid) \
266 he_writel_tcm(dev, val, CONFIG_TSRA | (cid << 3) | 7)
269 #define he_writel_tsr8(dev, val, cid) \
270 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 0)
272 #define he_writel_tsr9(dev, val, cid) \
273 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 1)
275 #define he_writel_tsr10(dev, val, cid) \
276 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 2)
278 #define he_writel_tsr11(dev, val, cid) \
279 he_writel_tcm(dev, val, CONFIG_TSRB | (cid << 2) | 3)
282 #define he_writel_tsr12(dev, val, cid) \
283 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 0)
285 #define he_writel_tsr13(dev, val, cid) \
286 he_writel_tcm(dev, val, CONFIG_TSRC | (cid << 1) | 1)
289 #define he_writel_tsr14(dev, val, cid) \
290 he_writel_tcm(dev, val, CONFIG_TSRD | cid)
292 #define he_writel_tsr14_upper(dev, val, cid) \
293 he_writel_internal(dev, val, CONFIG_TSRD | cid, \
294 CON_CTL_TCM \
295 | CON_BYTE_DISABLE_2 \
296 | CON_BYTE_DISABLE_1 \
297 | CON_BYTE_DISABLE_0)
299 /* 2.7.1 per connection receive state registers */
301 #define he_writel_rsr0(dev, val, cid) \
302 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 0)
303 #define he_readl_rsr0(dev, cid) \
304 he_readl_rcm(dev, 0x00000 | (cid << 3) | 0)
306 #define he_writel_rsr1(dev, val, cid) \
307 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 1)
309 #define he_writel_rsr2(dev, val, cid) \
310 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 2)
312 #define he_writel_rsr3(dev, val, cid) \
313 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 3)
315 #define he_writel_rsr4(dev, val, cid) \
316 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 4)
318 #define he_writel_rsr5(dev, val, cid) \
319 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 5)
321 #define he_writel_rsr6(dev, val, cid) \
322 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 6)
324 #define he_writel_rsr7(dev, val, cid) \
325 he_writel_rcm(dev, val, 0x00000 | (cid << 3) | 7)
327 static __inline__ struct atm_vcc*
328 __find_vcc(struct he_dev *he_dev, unsigned cid)
330 struct hlist_head *head;
331 struct atm_vcc *vcc;
332 struct sock *s;
333 short vpi;
334 int vci;
336 vpi = cid >> he_dev->vcibits;
337 vci = cid & ((1 << he_dev->vcibits) - 1);
338 head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
340 sk_for_each(s, head) {
341 vcc = atm_sk(s);
342 if (vcc->dev == he_dev->atm_dev &&
343 vcc->vci == vci && vcc->vpi == vpi &&
344 vcc->qos.rxtp.traffic_class != ATM_NONE) {
345 return vcc;
348 return NULL;
351 static int he_init_one(struct pci_dev *pci_dev,
352 const struct pci_device_id *pci_ent)
354 struct atm_dev *atm_dev = NULL;
355 struct he_dev *he_dev = NULL;
356 int err = 0;
358 printk(KERN_INFO "ATM he driver\n");
360 if (pci_enable_device(pci_dev))
361 return -EIO;
362 if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32)) != 0) {
363 printk(KERN_WARNING "he: no suitable dma available\n");
364 err = -EIO;
365 goto init_one_failure;
368 atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &he_ops, -1, NULL);
369 if (!atm_dev) {
370 err = -ENODEV;
371 goto init_one_failure;
373 pci_set_drvdata(pci_dev, atm_dev);
375 he_dev = kzalloc(sizeof(struct he_dev),
376 GFP_KERNEL);
377 if (!he_dev) {
378 err = -ENOMEM;
379 goto init_one_failure;
381 he_dev->pci_dev = pci_dev;
382 he_dev->atm_dev = atm_dev;
383 he_dev->atm_dev->dev_data = he_dev;
384 atm_dev->dev_data = he_dev;
385 he_dev->number = atm_dev->number;
386 tasklet_init(&he_dev->tasklet, he_tasklet, (unsigned long) he_dev);
387 spin_lock_init(&he_dev->global_lock);
389 if (he_start(atm_dev)) {
390 he_stop(he_dev);
391 err = -ENODEV;
392 goto init_one_failure;
394 he_dev->next = NULL;
395 if (he_devs)
396 he_dev->next = he_devs;
397 he_devs = he_dev;
398 return 0;
400 init_one_failure:
401 if (atm_dev)
402 atm_dev_deregister(atm_dev);
403 kfree(he_dev);
404 pci_disable_device(pci_dev);
405 return err;
408 static void he_remove_one(struct pci_dev *pci_dev)
410 struct atm_dev *atm_dev;
411 struct he_dev *he_dev;
413 atm_dev = pci_get_drvdata(pci_dev);
414 he_dev = HE_DEV(atm_dev);
416 /* need to remove from he_devs */
418 he_stop(he_dev);
419 atm_dev_deregister(atm_dev);
420 kfree(he_dev);
422 pci_disable_device(pci_dev);
426 static unsigned
427 rate_to_atmf(unsigned rate) /* cps to atm forum format */
429 #define NONZERO (1 << 14)
431 unsigned exp = 0;
433 if (rate == 0)
434 return 0;
436 rate <<= 9;
437 while (rate > 0x3ff) {
438 ++exp;
439 rate >>= 1;
442 return (NONZERO | (exp << 9) | (rate & 0x1ff));
445 static void he_init_rx_lbfp0(struct he_dev *he_dev)
447 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
448 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
449 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
450 unsigned row_offset = he_dev->r0_startrow * he_dev->bytes_per_row;
452 lbufd_index = 0;
453 lbm_offset = he_readl(he_dev, RCMLBM_BA);
455 he_writel(he_dev, lbufd_index, RLBF0_H);
457 for (i = 0, lbuf_count = 0; i < he_dev->r0_numbuffs; ++i) {
458 lbufd_index += 2;
459 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
461 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
462 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
464 if (++lbuf_count == lbufs_per_row) {
465 lbuf_count = 0;
466 row_offset += he_dev->bytes_per_row;
468 lbm_offset += 4;
471 he_writel(he_dev, lbufd_index - 2, RLBF0_T);
472 he_writel(he_dev, he_dev->r0_numbuffs, RLBF0_C);
475 static void he_init_rx_lbfp1(struct he_dev *he_dev)
477 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
478 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
479 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
480 unsigned row_offset = he_dev->r1_startrow * he_dev->bytes_per_row;
482 lbufd_index = 1;
483 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
485 he_writel(he_dev, lbufd_index, RLBF1_H);
487 for (i = 0, lbuf_count = 0; i < he_dev->r1_numbuffs; ++i) {
488 lbufd_index += 2;
489 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
491 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
492 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
494 if (++lbuf_count == lbufs_per_row) {
495 lbuf_count = 0;
496 row_offset += he_dev->bytes_per_row;
498 lbm_offset += 4;
501 he_writel(he_dev, lbufd_index - 2, RLBF1_T);
502 he_writel(he_dev, he_dev->r1_numbuffs, RLBF1_C);
505 static void he_init_tx_lbfp(struct he_dev *he_dev)
507 unsigned i, lbm_offset, lbufd_index, lbuf_addr, lbuf_count;
508 unsigned lbufs_per_row = he_dev->cells_per_row / he_dev->cells_per_lbuf;
509 unsigned lbuf_bufsize = he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD;
510 unsigned row_offset = he_dev->tx_startrow * he_dev->bytes_per_row;
512 lbufd_index = he_dev->r0_numbuffs + he_dev->r1_numbuffs;
513 lbm_offset = he_readl(he_dev, RCMLBM_BA) + (2 * lbufd_index);
515 he_writel(he_dev, lbufd_index, TLBF_H);
517 for (i = 0, lbuf_count = 0; i < he_dev->tx_numbuffs; ++i) {
518 lbufd_index += 1;
519 lbuf_addr = (row_offset + (lbuf_count * lbuf_bufsize)) / 32;
521 he_writel_rcm(he_dev, lbuf_addr, lbm_offset);
522 he_writel_rcm(he_dev, lbufd_index, lbm_offset + 1);
524 if (++lbuf_count == lbufs_per_row) {
525 lbuf_count = 0;
526 row_offset += he_dev->bytes_per_row;
528 lbm_offset += 2;
531 he_writel(he_dev, lbufd_index - 1, TLBF_T);
534 static int he_init_tpdrq(struct he_dev *he_dev)
536 he_dev->tpdrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
537 CONFIG_TPDRQ_SIZE * sizeof(struct he_tpdrq),
538 &he_dev->tpdrq_phys, GFP_KERNEL);
539 if (he_dev->tpdrq_base == NULL) {
540 hprintk("failed to alloc tpdrq\n");
541 return -ENOMEM;
544 he_dev->tpdrq_tail = he_dev->tpdrq_base;
545 he_dev->tpdrq_head = he_dev->tpdrq_base;
547 he_writel(he_dev, he_dev->tpdrq_phys, TPDRQ_B_H);
548 he_writel(he_dev, 0, TPDRQ_T);
549 he_writel(he_dev, CONFIG_TPDRQ_SIZE - 1, TPDRQ_S);
551 return 0;
554 static void he_init_cs_block(struct he_dev *he_dev)
556 unsigned clock, rate, delta;
557 int reg;
559 /* 5.1.7 cs block initialization */
561 for (reg = 0; reg < 0x20; ++reg)
562 he_writel_mbox(he_dev, 0x0, CS_STTIM0 + reg);
564 /* rate grid timer reload values */
566 clock = he_is622(he_dev) ? 66667000 : 50000000;
567 rate = he_dev->atm_dev->link_rate;
568 delta = rate / 16 / 2;
570 for (reg = 0; reg < 0x10; ++reg) {
571 /* 2.4 internal transmit function
573 * we initialize the first row in the rate grid.
574 * values are period (in clock cycles) of timer
576 unsigned period = clock / rate;
578 he_writel_mbox(he_dev, period, CS_TGRLD0 + reg);
579 rate -= delta;
582 if (he_is622(he_dev)) {
583 /* table 5.2 (4 cells per lbuf) */
584 he_writel_mbox(he_dev, 0x000800fa, CS_ERTHR0);
585 he_writel_mbox(he_dev, 0x000c33cb, CS_ERTHR1);
586 he_writel_mbox(he_dev, 0x0010101b, CS_ERTHR2);
587 he_writel_mbox(he_dev, 0x00181dac, CS_ERTHR3);
588 he_writel_mbox(he_dev, 0x00280600, CS_ERTHR4);
590 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
591 he_writel_mbox(he_dev, 0x023de8b3, CS_ERCTL0);
592 he_writel_mbox(he_dev, 0x1801, CS_ERCTL1);
593 he_writel_mbox(he_dev, 0x68b3, CS_ERCTL2);
594 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
595 he_writel_mbox(he_dev, 0x68b3, CS_ERSTAT1);
596 he_writel_mbox(he_dev, 0x14585, CS_RTFWR);
598 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
600 /* table 5.8 */
601 he_writel_mbox(he_dev, 0x00159ece, CS_TFBSET);
602 he_writel_mbox(he_dev, 0x68b3, CS_WCRMAX);
603 he_writel_mbox(he_dev, 0x5eb3, CS_WCRMIN);
604 he_writel_mbox(he_dev, 0xe8b3, CS_WCRINC);
605 he_writel_mbox(he_dev, 0xdeb3, CS_WCRDEC);
606 he_writel_mbox(he_dev, 0x68b3, CS_WCRCEIL);
608 /* table 5.9 */
609 he_writel_mbox(he_dev, 0x5, CS_OTPPER);
610 he_writel_mbox(he_dev, 0x14, CS_OTWPER);
611 } else {
612 /* table 5.1 (4 cells per lbuf) */
613 he_writel_mbox(he_dev, 0x000400ea, CS_ERTHR0);
614 he_writel_mbox(he_dev, 0x00063388, CS_ERTHR1);
615 he_writel_mbox(he_dev, 0x00081018, CS_ERTHR2);
616 he_writel_mbox(he_dev, 0x000c1dac, CS_ERTHR3);
617 he_writel_mbox(he_dev, 0x0014051a, CS_ERTHR4);
619 /* table 5.3, 5.4, 5.5, 5.6, 5.7 */
620 he_writel_mbox(he_dev, 0x0235e4b1, CS_ERCTL0);
621 he_writel_mbox(he_dev, 0x4701, CS_ERCTL1);
622 he_writel_mbox(he_dev, 0x64b1, CS_ERCTL2);
623 he_writel_mbox(he_dev, 0x1280, CS_ERSTAT0);
624 he_writel_mbox(he_dev, 0x64b1, CS_ERSTAT1);
625 he_writel_mbox(he_dev, 0xf424, CS_RTFWR);
627 he_writel_mbox(he_dev, 0x4680, CS_RTATR);
629 /* table 5.8 */
630 he_writel_mbox(he_dev, 0x000563b7, CS_TFBSET);
631 he_writel_mbox(he_dev, 0x64b1, CS_WCRMAX);
632 he_writel_mbox(he_dev, 0x5ab1, CS_WCRMIN);
633 he_writel_mbox(he_dev, 0xe4b1, CS_WCRINC);
634 he_writel_mbox(he_dev, 0xdab1, CS_WCRDEC);
635 he_writel_mbox(he_dev, 0x64b1, CS_WCRCEIL);
637 /* table 5.9 */
638 he_writel_mbox(he_dev, 0x6, CS_OTPPER);
639 he_writel_mbox(he_dev, 0x1e, CS_OTWPER);
642 he_writel_mbox(he_dev, 0x8, CS_OTTLIM);
644 for (reg = 0; reg < 0x8; ++reg)
645 he_writel_mbox(he_dev, 0x0, CS_HGRRT0 + reg);
649 static int he_init_cs_block_rcm(struct he_dev *he_dev)
651 unsigned (*rategrid)[16][16];
652 unsigned rate, delta;
653 int i, j, reg;
655 unsigned rate_atmf, exp, man;
656 unsigned long long rate_cps;
657 int mult, buf, buf_limit = 4;
659 rategrid = kmalloc( sizeof(unsigned) * 16 * 16, GFP_KERNEL);
660 if (!rategrid)
661 return -ENOMEM;
663 /* initialize rate grid group table */
665 for (reg = 0x0; reg < 0xff; ++reg)
666 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
668 /* initialize rate controller groups */
670 for (reg = 0x100; reg < 0x1ff; ++reg)
671 he_writel_rcm(he_dev, 0x0, CONFIG_RCMABR + reg);
673 /* initialize tNrm lookup table */
675 /* the manual makes reference to a routine in a sample driver
676 for proper configuration; fortunately, we only need this
677 in order to support abr connection */
679 /* initialize rate to group table */
681 rate = he_dev->atm_dev->link_rate;
682 delta = rate / 32;
685 * 2.4 transmit internal functions
687 * we construct a copy of the rate grid used by the scheduler
688 * in order to construct the rate to group table below
691 for (j = 0; j < 16; j++) {
692 (*rategrid)[0][j] = rate;
693 rate -= delta;
696 for (i = 1; i < 16; i++)
697 for (j = 0; j < 16; j++)
698 if (i > 14)
699 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 4;
700 else
701 (*rategrid)[i][j] = (*rategrid)[i - 1][j] / 2;
704 * 2.4 transmit internal function
706 * this table maps the upper 5 bits of exponent and mantissa
707 * of the atm forum representation of the rate into an index
708 * on rate grid
711 rate_atmf = 0;
712 while (rate_atmf < 0x400) {
713 man = (rate_atmf & 0x1f) << 4;
714 exp = rate_atmf >> 5;
717 instead of '/ 512', use '>> 9' to prevent a call
718 to divdu3 on x86 platforms
720 rate_cps = (unsigned long long) (1UL << exp) * (man + 512) >> 9;
722 if (rate_cps < 10)
723 rate_cps = 10; /* 2.2.1 minimum payload rate is 10 cps */
725 for (i = 255; i > 0; i--)
726 if ((*rategrid)[i/16][i%16] >= rate_cps)
727 break; /* pick nearest rate instead? */
730 * each table entry is 16 bits: (rate grid index (8 bits)
731 * and a buffer limit (8 bits)
732 * there are two table entries in each 32-bit register
735 #ifdef notdef
736 buf = rate_cps * he_dev->tx_numbuffs /
737 (he_dev->atm_dev->link_rate * 2);
738 #else
739 /* this is pretty, but avoids _divdu3 and is mostly correct */
740 mult = he_dev->atm_dev->link_rate / ATM_OC3_PCR;
741 if (rate_cps > (272ULL * mult))
742 buf = 4;
743 else if (rate_cps > (204ULL * mult))
744 buf = 3;
745 else if (rate_cps > (136ULL * mult))
746 buf = 2;
747 else if (rate_cps > (68ULL * mult))
748 buf = 1;
749 else
750 buf = 0;
751 #endif
752 if (buf > buf_limit)
753 buf = buf_limit;
754 reg = (reg << 16) | ((i << 8) | buf);
756 #define RTGTBL_OFFSET 0x400
758 if (rate_atmf & 0x1)
759 he_writel_rcm(he_dev, reg,
760 CONFIG_RCMABR + RTGTBL_OFFSET + (rate_atmf >> 1));
762 ++rate_atmf;
765 kfree(rategrid);
766 return 0;
769 static int he_init_group(struct he_dev *he_dev, int group)
771 struct he_buff *heb, *next;
772 dma_addr_t mapping;
773 int i;
775 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
776 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
777 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
778 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
779 G0_RBPS_BS + (group * 32));
781 /* bitmap table */
782 he_dev->rbpl_table = kmalloc_array(BITS_TO_LONGS(RBPL_TABLE_SIZE),
783 sizeof(*he_dev->rbpl_table),
784 GFP_KERNEL);
785 if (!he_dev->rbpl_table) {
786 hprintk("unable to allocate rbpl bitmap table\n");
787 return -ENOMEM;
789 bitmap_zero(he_dev->rbpl_table, RBPL_TABLE_SIZE);
791 /* rbpl_virt 64-bit pointers */
792 he_dev->rbpl_virt = kmalloc_array(RBPL_TABLE_SIZE,
793 sizeof(*he_dev->rbpl_virt),
794 GFP_KERNEL);
795 if (!he_dev->rbpl_virt) {
796 hprintk("unable to allocate rbpl virt table\n");
797 goto out_free_rbpl_table;
800 /* large buffer pool */
801 he_dev->rbpl_pool = dma_pool_create("rbpl", &he_dev->pci_dev->dev,
802 CONFIG_RBPL_BUFSIZE, 64, 0);
803 if (he_dev->rbpl_pool == NULL) {
804 hprintk("unable to create rbpl pool\n");
805 goto out_free_rbpl_virt;
808 he_dev->rbpl_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
809 CONFIG_RBPL_SIZE * sizeof(struct he_rbp),
810 &he_dev->rbpl_phys, GFP_KERNEL);
811 if (he_dev->rbpl_base == NULL) {
812 hprintk("failed to alloc rbpl_base\n");
813 goto out_destroy_rbpl_pool;
816 INIT_LIST_HEAD(&he_dev->rbpl_outstanding);
818 for (i = 0; i < CONFIG_RBPL_SIZE; ++i) {
820 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_KERNEL, &mapping);
821 if (!heb)
822 goto out_free_rbpl;
823 heb->mapping = mapping;
824 list_add(&heb->entry, &he_dev->rbpl_outstanding);
826 set_bit(i, he_dev->rbpl_table);
827 he_dev->rbpl_virt[i] = heb;
828 he_dev->rbpl_hint = i + 1;
829 he_dev->rbpl_base[i].idx = i << RBP_IDX_OFFSET;
830 he_dev->rbpl_base[i].phys = mapping + offsetof(struct he_buff, data);
832 he_dev->rbpl_tail = &he_dev->rbpl_base[CONFIG_RBPL_SIZE - 1];
834 he_writel(he_dev, he_dev->rbpl_phys, G0_RBPL_S + (group * 32));
835 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail),
836 G0_RBPL_T + (group * 32));
837 he_writel(he_dev, (CONFIG_RBPL_BUFSIZE - sizeof(struct he_buff))/4,
838 G0_RBPL_BS + (group * 32));
839 he_writel(he_dev,
840 RBP_THRESH(CONFIG_RBPL_THRESH) |
841 RBP_QSIZE(CONFIG_RBPL_SIZE - 1) |
842 RBP_INT_ENB,
843 G0_RBPL_QI + (group * 32));
845 /* rx buffer ready queue */
847 he_dev->rbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
848 CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
849 &he_dev->rbrq_phys, GFP_KERNEL);
850 if (he_dev->rbrq_base == NULL) {
851 hprintk("failed to allocate rbrq\n");
852 goto out_free_rbpl;
855 he_dev->rbrq_head = he_dev->rbrq_base;
856 he_writel(he_dev, he_dev->rbrq_phys, G0_RBRQ_ST + (group * 16));
857 he_writel(he_dev, 0, G0_RBRQ_H + (group * 16));
858 he_writel(he_dev,
859 RBRQ_THRESH(CONFIG_RBRQ_THRESH) | RBRQ_SIZE(CONFIG_RBRQ_SIZE - 1),
860 G0_RBRQ_Q + (group * 16));
861 if (irq_coalesce) {
862 hprintk("coalescing interrupts\n");
863 he_writel(he_dev, RBRQ_TIME(768) | RBRQ_COUNT(7),
864 G0_RBRQ_I + (group * 16));
865 } else
866 he_writel(he_dev, RBRQ_TIME(0) | RBRQ_COUNT(1),
867 G0_RBRQ_I + (group * 16));
869 /* tx buffer ready queue */
871 he_dev->tbrq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
872 CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
873 &he_dev->tbrq_phys, GFP_KERNEL);
874 if (he_dev->tbrq_base == NULL) {
875 hprintk("failed to allocate tbrq\n");
876 goto out_free_rbpq_base;
879 he_dev->tbrq_head = he_dev->tbrq_base;
881 he_writel(he_dev, he_dev->tbrq_phys, G0_TBRQ_B_T + (group * 16));
882 he_writel(he_dev, 0, G0_TBRQ_H + (group * 16));
883 he_writel(he_dev, CONFIG_TBRQ_SIZE - 1, G0_TBRQ_S + (group * 16));
884 he_writel(he_dev, CONFIG_TBRQ_THRESH, G0_TBRQ_THRESH + (group * 16));
886 return 0;
888 out_free_rbpq_base:
889 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE *
890 sizeof(struct he_rbrq), he_dev->rbrq_base,
891 he_dev->rbrq_phys);
892 out_free_rbpl:
893 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
894 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
896 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE *
897 sizeof(struct he_rbp), he_dev->rbpl_base,
898 he_dev->rbpl_phys);
899 out_destroy_rbpl_pool:
900 dma_pool_destroy(he_dev->rbpl_pool);
901 out_free_rbpl_virt:
902 kfree(he_dev->rbpl_virt);
903 out_free_rbpl_table:
904 kfree(he_dev->rbpl_table);
906 return -ENOMEM;
909 static int he_init_irq(struct he_dev *he_dev)
911 int i;
913 /* 2.9.3.5 tail offset for each interrupt queue is located after the
914 end of the interrupt queue */
916 he_dev->irq_base = dma_zalloc_coherent(&he_dev->pci_dev->dev,
917 (CONFIG_IRQ_SIZE + 1)
918 * sizeof(struct he_irq),
919 &he_dev->irq_phys,
920 GFP_KERNEL);
921 if (he_dev->irq_base == NULL) {
922 hprintk("failed to allocate irq\n");
923 return -ENOMEM;
925 he_dev->irq_tailoffset = (unsigned *)
926 &he_dev->irq_base[CONFIG_IRQ_SIZE];
927 *he_dev->irq_tailoffset = 0;
928 he_dev->irq_head = he_dev->irq_base;
929 he_dev->irq_tail = he_dev->irq_base;
931 for (i = 0; i < CONFIG_IRQ_SIZE; ++i)
932 he_dev->irq_base[i].isw = ITYPE_INVALID;
934 he_writel(he_dev, he_dev->irq_phys, IRQ0_BASE);
935 he_writel(he_dev,
936 IRQ_SIZE(CONFIG_IRQ_SIZE) | IRQ_THRESH(CONFIG_IRQ_THRESH),
937 IRQ0_HEAD);
938 he_writel(he_dev, IRQ_INT_A | IRQ_TYPE_LINE, IRQ0_CNTL);
939 he_writel(he_dev, 0x0, IRQ0_DATA);
941 he_writel(he_dev, 0x0, IRQ1_BASE);
942 he_writel(he_dev, 0x0, IRQ1_HEAD);
943 he_writel(he_dev, 0x0, IRQ1_CNTL);
944 he_writel(he_dev, 0x0, IRQ1_DATA);
946 he_writel(he_dev, 0x0, IRQ2_BASE);
947 he_writel(he_dev, 0x0, IRQ2_HEAD);
948 he_writel(he_dev, 0x0, IRQ2_CNTL);
949 he_writel(he_dev, 0x0, IRQ2_DATA);
951 he_writel(he_dev, 0x0, IRQ3_BASE);
952 he_writel(he_dev, 0x0, IRQ3_HEAD);
953 he_writel(he_dev, 0x0, IRQ3_CNTL);
954 he_writel(he_dev, 0x0, IRQ3_DATA);
956 /* 2.9.3.2 interrupt queue mapping registers */
958 he_writel(he_dev, 0x0, GRP_10_MAP);
959 he_writel(he_dev, 0x0, GRP_32_MAP);
960 he_writel(he_dev, 0x0, GRP_54_MAP);
961 he_writel(he_dev, 0x0, GRP_76_MAP);
963 if (request_irq(he_dev->pci_dev->irq,
964 he_irq_handler, IRQF_SHARED, DEV_LABEL, he_dev)) {
965 hprintk("irq %d already in use\n", he_dev->pci_dev->irq);
966 return -EINVAL;
969 he_dev->irq = he_dev->pci_dev->irq;
971 return 0;
974 static int he_start(struct atm_dev *dev)
976 struct he_dev *he_dev;
977 struct pci_dev *pci_dev;
978 unsigned long membase;
980 u16 command;
981 u32 gen_cntl_0, host_cntl, lb_swap;
982 u8 cache_size, timer;
984 unsigned err;
985 unsigned int status, reg;
986 int i, group;
988 he_dev = HE_DEV(dev);
989 pci_dev = he_dev->pci_dev;
991 membase = pci_resource_start(pci_dev, 0);
992 HPRINTK("membase = 0x%lx irq = %d.\n", membase, pci_dev->irq);
995 * pci bus controller initialization
998 /* 4.3 pci bus controller-specific initialization */
999 if (pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0) != 0) {
1000 hprintk("can't read GEN_CNTL_0\n");
1001 return -EINVAL;
1003 gen_cntl_0 |= (MRL_ENB | MRM_ENB | IGNORE_TIMEOUT);
1004 if (pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0) != 0) {
1005 hprintk("can't write GEN_CNTL_0.\n");
1006 return -EINVAL;
1009 if (pci_read_config_word(pci_dev, PCI_COMMAND, &command) != 0) {
1010 hprintk("can't read PCI_COMMAND.\n");
1011 return -EINVAL;
1014 command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
1015 if (pci_write_config_word(pci_dev, PCI_COMMAND, command) != 0) {
1016 hprintk("can't enable memory.\n");
1017 return -EINVAL;
1020 if (pci_read_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, &cache_size)) {
1021 hprintk("can't read cache line size?\n");
1022 return -EINVAL;
1025 if (cache_size < 16) {
1026 cache_size = 16;
1027 if (pci_write_config_byte(pci_dev, PCI_CACHE_LINE_SIZE, cache_size))
1028 hprintk("can't set cache line size to %d\n", cache_size);
1031 if (pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &timer)) {
1032 hprintk("can't read latency timer?\n");
1033 return -EINVAL;
1036 /* from table 3.9
1038 * LAT_TIMER = 1 + AVG_LAT + BURST_SIZE/BUS_SIZE
1040 * AVG_LAT: The average first data read/write latency [maximum 16 clock cycles]
1041 * BURST_SIZE: 1536 bytes (read) for 622, 768 bytes (read) for 155 [192 clock cycles]
1044 #define LAT_TIMER 209
1045 if (timer < LAT_TIMER) {
1046 HPRINTK("latency timer was %d, setting to %d\n", timer, LAT_TIMER);
1047 timer = LAT_TIMER;
1048 if (pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, timer))
1049 hprintk("can't set latency timer to %d\n", timer);
1052 if (!(he_dev->membase = ioremap(membase, HE_REGMAP_SIZE))) {
1053 hprintk("can't set up page mapping\n");
1054 return -EINVAL;
1057 /* 4.4 card reset */
1058 he_writel(he_dev, 0x0, RESET_CNTL);
1059 he_writel(he_dev, 0xff, RESET_CNTL);
1061 msleep(16); /* 16 ms */
1062 status = he_readl(he_dev, RESET_CNTL);
1063 if ((status & BOARD_RST_STATUS) == 0) {
1064 hprintk("reset failed\n");
1065 return -EINVAL;
1068 /* 4.5 set bus width */
1069 host_cntl = he_readl(he_dev, HOST_CNTL);
1070 if (host_cntl & PCI_BUS_SIZE64)
1071 gen_cntl_0 |= ENBL_64;
1072 else
1073 gen_cntl_0 &= ~ENBL_64;
1075 if (disable64 == 1) {
1076 hprintk("disabling 64-bit pci bus transfers\n");
1077 gen_cntl_0 &= ~ENBL_64;
1080 if (gen_cntl_0 & ENBL_64)
1081 hprintk("64-bit transfers enabled\n");
1083 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1085 /* 4.7 read prom contents */
1086 for (i = 0; i < PROD_ID_LEN; ++i)
1087 he_dev->prod_id[i] = read_prom_byte(he_dev, PROD_ID + i);
1089 he_dev->media = read_prom_byte(he_dev, MEDIA);
1091 for (i = 0; i < 6; ++i)
1092 dev->esi[i] = read_prom_byte(he_dev, MAC_ADDR + i);
1094 hprintk("%s%s, %pM\n", he_dev->prod_id,
1095 he_dev->media & 0x40 ? "SM" : "MM", dev->esi);
1096 he_dev->atm_dev->link_rate = he_is622(he_dev) ?
1097 ATM_OC12_PCR : ATM_OC3_PCR;
1099 /* 4.6 set host endianess */
1100 lb_swap = he_readl(he_dev, LB_SWAP);
1101 if (he_is622(he_dev))
1102 lb_swap &= ~XFER_SIZE; /* 4 cells */
1103 else
1104 lb_swap |= XFER_SIZE; /* 8 cells */
1105 #ifdef __BIG_ENDIAN
1106 lb_swap |= DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST;
1107 #else
1108 lb_swap &= ~(DESC_WR_SWAP | INTR_SWAP | BIG_ENDIAN_HOST |
1109 DATA_WR_SWAP | DATA_RD_SWAP | DESC_RD_SWAP);
1110 #endif /* __BIG_ENDIAN */
1111 he_writel(he_dev, lb_swap, LB_SWAP);
1113 /* 4.8 sdram controller initialization */
1114 he_writel(he_dev, he_is622(he_dev) ? LB_64_ENB : 0x0, SDRAM_CTL);
1116 /* 4.9 initialize rnum value */
1117 lb_swap |= SWAP_RNUM_MAX(0xf);
1118 he_writel(he_dev, lb_swap, LB_SWAP);
1120 /* 4.10 initialize the interrupt queues */
1121 if ((err = he_init_irq(he_dev)) != 0)
1122 return err;
1124 /* 4.11 enable pci bus controller state machines */
1125 host_cntl |= (OUTFF_ENB | CMDFF_ENB |
1126 QUICK_RD_RETRY | QUICK_WR_RETRY | PERR_INT_ENB);
1127 he_writel(he_dev, host_cntl, HOST_CNTL);
1129 gen_cntl_0 |= INT_PROC_ENBL|INIT_ENB;
1130 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1133 * atm network controller initialization
1136 /* 5.1.1 generic configuration state */
1139 * local (cell) buffer memory map
1141 * HE155 HE622
1143 * 0 ____________1023 bytes 0 _______________________2047 bytes
1144 * | | | | |
1145 * | utility | | rx0 | |
1146 * 5|____________| 255|___________________| u |
1147 * 6| | 256| | t |
1148 * | | | | i |
1149 * | rx0 | row | tx | l |
1150 * | | | | i |
1151 * | | 767|___________________| t |
1152 * 517|____________| 768| | y |
1153 * row 518| | | rx1 | |
1154 * | | 1023|___________________|___|
1155 * | |
1156 * | tx |
1157 * | |
1158 * | |
1159 * 1535|____________|
1160 * 1536| |
1161 * | rx1 |
1162 * 2047|____________|
1166 /* total 4096 connections */
1167 he_dev->vcibits = CONFIG_DEFAULT_VCIBITS;
1168 he_dev->vpibits = CONFIG_DEFAULT_VPIBITS;
1170 if (nvpibits != -1 && nvcibits != -1 && nvpibits+nvcibits != HE_MAXCIDBITS) {
1171 hprintk("nvpibits + nvcibits != %d\n", HE_MAXCIDBITS);
1172 return -ENODEV;
1175 if (nvpibits != -1) {
1176 he_dev->vpibits = nvpibits;
1177 he_dev->vcibits = HE_MAXCIDBITS - nvpibits;
1180 if (nvcibits != -1) {
1181 he_dev->vcibits = nvcibits;
1182 he_dev->vpibits = HE_MAXCIDBITS - nvcibits;
1186 if (he_is622(he_dev)) {
1187 he_dev->cells_per_row = 40;
1188 he_dev->bytes_per_row = 2048;
1189 he_dev->r0_numrows = 256;
1190 he_dev->tx_numrows = 512;
1191 he_dev->r1_numrows = 256;
1192 he_dev->r0_startrow = 0;
1193 he_dev->tx_startrow = 256;
1194 he_dev->r1_startrow = 768;
1195 } else {
1196 he_dev->cells_per_row = 20;
1197 he_dev->bytes_per_row = 1024;
1198 he_dev->r0_numrows = 512;
1199 he_dev->tx_numrows = 1018;
1200 he_dev->r1_numrows = 512;
1201 he_dev->r0_startrow = 6;
1202 he_dev->tx_startrow = 518;
1203 he_dev->r1_startrow = 1536;
1206 he_dev->cells_per_lbuf = 4;
1207 he_dev->buffer_limit = 4;
1208 he_dev->r0_numbuffs = he_dev->r0_numrows *
1209 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1210 if (he_dev->r0_numbuffs > 2560)
1211 he_dev->r0_numbuffs = 2560;
1213 he_dev->r1_numbuffs = he_dev->r1_numrows *
1214 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1215 if (he_dev->r1_numbuffs > 2560)
1216 he_dev->r1_numbuffs = 2560;
1218 he_dev->tx_numbuffs = he_dev->tx_numrows *
1219 he_dev->cells_per_row / he_dev->cells_per_lbuf;
1220 if (he_dev->tx_numbuffs > 5120)
1221 he_dev->tx_numbuffs = 5120;
1223 /* 5.1.2 configure hardware dependent registers */
1225 he_writel(he_dev,
1226 SLICE_X(0x2) | ARB_RNUM_MAX(0xf) | TH_PRTY(0x3) |
1227 RH_PRTY(0x3) | TL_PRTY(0x2) | RL_PRTY(0x1) |
1228 (he_is622(he_dev) ? BUS_MULTI(0x28) : BUS_MULTI(0x46)) |
1229 (he_is622(he_dev) ? NET_PREF(0x50) : NET_PREF(0x8c)),
1230 LBARB);
1232 he_writel(he_dev, BANK_ON |
1233 (he_is622(he_dev) ? (REF_RATE(0x384) | WIDE_DATA) : REF_RATE(0x150)),
1234 SDRAMCON);
1236 he_writel(he_dev,
1237 (he_is622(he_dev) ? RM_BANK_WAIT(1) : RM_BANK_WAIT(0)) |
1238 RM_RW_WAIT(1), RCMCONFIG);
1239 he_writel(he_dev,
1240 (he_is622(he_dev) ? TM_BANK_WAIT(2) : TM_BANK_WAIT(1)) |
1241 TM_RW_WAIT(1), TCMCONFIG);
1243 he_writel(he_dev, he_dev->cells_per_lbuf * ATM_CELL_PAYLOAD, LB_CONFIG);
1245 he_writel(he_dev,
1246 (he_is622(he_dev) ? UT_RD_DELAY(8) : UT_RD_DELAY(0)) |
1247 (he_is622(he_dev) ? RC_UT_MODE(0) : RC_UT_MODE(1)) |
1248 RX_VALVP(he_dev->vpibits) |
1249 RX_VALVC(he_dev->vcibits), RC_CONFIG);
1251 he_writel(he_dev, DRF_THRESH(0x20) |
1252 (he_is622(he_dev) ? TX_UT_MODE(0) : TX_UT_MODE(1)) |
1253 TX_VCI_MASK(he_dev->vcibits) |
1254 LBFREE_CNT(he_dev->tx_numbuffs), TX_CONFIG);
1256 he_writel(he_dev, 0x0, TXAAL5_PROTO);
1258 he_writel(he_dev, PHY_INT_ENB |
1259 (he_is622(he_dev) ? PTMR_PRE(67 - 1) : PTMR_PRE(50 - 1)),
1260 RH_CONFIG);
1262 /* 5.1.3 initialize connection memory */
1264 for (i = 0; i < TCM_MEM_SIZE; ++i)
1265 he_writel_tcm(he_dev, 0, i);
1267 for (i = 0; i < RCM_MEM_SIZE; ++i)
1268 he_writel_rcm(he_dev, 0, i);
1271 * transmit connection memory map
1273 * tx memory
1274 * 0x0 ___________________
1275 * | |
1276 * | |
1277 * | TSRa |
1278 * | |
1279 * | |
1280 * 0x8000|___________________|
1281 * | |
1282 * | TSRb |
1283 * 0xc000|___________________|
1284 * | |
1285 * | TSRc |
1286 * 0xe000|___________________|
1287 * | TSRd |
1288 * 0xf000|___________________|
1289 * | tmABR |
1290 * 0x10000|___________________|
1291 * | |
1292 * | tmTPD |
1293 * |___________________|
1294 * | |
1295 * ....
1296 * 0x1ffff|___________________|
1301 he_writel(he_dev, CONFIG_TSRB, TSRB_BA);
1302 he_writel(he_dev, CONFIG_TSRC, TSRC_BA);
1303 he_writel(he_dev, CONFIG_TSRD, TSRD_BA);
1304 he_writel(he_dev, CONFIG_TMABR, TMABR_BA);
1305 he_writel(he_dev, CONFIG_TPDBA, TPD_BA);
1309 * receive connection memory map
1311 * 0x0 ___________________
1312 * | |
1313 * | |
1314 * | RSRa |
1315 * | |
1316 * | |
1317 * 0x8000|___________________|
1318 * | |
1319 * | rx0/1 |
1320 * | LBM | link lists of local
1321 * | tx | buffer memory
1322 * | |
1323 * 0xd000|___________________|
1324 * | |
1325 * | rmABR |
1326 * 0xe000|___________________|
1327 * | |
1328 * | RSRb |
1329 * |___________________|
1330 * | |
1331 * ....
1332 * 0xffff|___________________|
1335 he_writel(he_dev, 0x08000, RCMLBM_BA);
1336 he_writel(he_dev, 0x0e000, RCMRSRB_BA);
1337 he_writel(he_dev, 0x0d800, RCMABR_BA);
1339 /* 5.1.4 initialize local buffer free pools linked lists */
1341 he_init_rx_lbfp0(he_dev);
1342 he_init_rx_lbfp1(he_dev);
1344 he_writel(he_dev, 0x0, RLBC_H);
1345 he_writel(he_dev, 0x0, RLBC_T);
1346 he_writel(he_dev, 0x0, RLBC_H2);
1348 he_writel(he_dev, 512, RXTHRSH); /* 10% of r0+r1 buffers */
1349 he_writel(he_dev, 256, LITHRSH); /* 5% of r0+r1 buffers */
1351 he_init_tx_lbfp(he_dev);
1353 he_writel(he_dev, he_is622(he_dev) ? 0x104780 : 0x800, UBUFF_BA);
1355 /* 5.1.5 initialize intermediate receive queues */
1357 if (he_is622(he_dev)) {
1358 he_writel(he_dev, 0x000f, G0_INMQ_S);
1359 he_writel(he_dev, 0x200f, G0_INMQ_L);
1361 he_writel(he_dev, 0x001f, G1_INMQ_S);
1362 he_writel(he_dev, 0x201f, G1_INMQ_L);
1364 he_writel(he_dev, 0x002f, G2_INMQ_S);
1365 he_writel(he_dev, 0x202f, G2_INMQ_L);
1367 he_writel(he_dev, 0x003f, G3_INMQ_S);
1368 he_writel(he_dev, 0x203f, G3_INMQ_L);
1370 he_writel(he_dev, 0x004f, G4_INMQ_S);
1371 he_writel(he_dev, 0x204f, G4_INMQ_L);
1373 he_writel(he_dev, 0x005f, G5_INMQ_S);
1374 he_writel(he_dev, 0x205f, G5_INMQ_L);
1376 he_writel(he_dev, 0x006f, G6_INMQ_S);
1377 he_writel(he_dev, 0x206f, G6_INMQ_L);
1379 he_writel(he_dev, 0x007f, G7_INMQ_S);
1380 he_writel(he_dev, 0x207f, G7_INMQ_L);
1381 } else {
1382 he_writel(he_dev, 0x0000, G0_INMQ_S);
1383 he_writel(he_dev, 0x0008, G0_INMQ_L);
1385 he_writel(he_dev, 0x0001, G1_INMQ_S);
1386 he_writel(he_dev, 0x0009, G1_INMQ_L);
1388 he_writel(he_dev, 0x0002, G2_INMQ_S);
1389 he_writel(he_dev, 0x000a, G2_INMQ_L);
1391 he_writel(he_dev, 0x0003, G3_INMQ_S);
1392 he_writel(he_dev, 0x000b, G3_INMQ_L);
1394 he_writel(he_dev, 0x0004, G4_INMQ_S);
1395 he_writel(he_dev, 0x000c, G4_INMQ_L);
1397 he_writel(he_dev, 0x0005, G5_INMQ_S);
1398 he_writel(he_dev, 0x000d, G5_INMQ_L);
1400 he_writel(he_dev, 0x0006, G6_INMQ_S);
1401 he_writel(he_dev, 0x000e, G6_INMQ_L);
1403 he_writel(he_dev, 0x0007, G7_INMQ_S);
1404 he_writel(he_dev, 0x000f, G7_INMQ_L);
1407 /* 5.1.6 application tunable parameters */
1409 he_writel(he_dev, 0x0, MCC);
1410 he_writel(he_dev, 0x0, OEC);
1411 he_writel(he_dev, 0x0, DCC);
1412 he_writel(he_dev, 0x0, CEC);
1414 /* 5.1.7 cs block initialization */
1416 he_init_cs_block(he_dev);
1418 /* 5.1.8 cs block connection memory initialization */
1420 if (he_init_cs_block_rcm(he_dev) < 0)
1421 return -ENOMEM;
1423 /* 5.1.10 initialize host structures */
1425 he_init_tpdrq(he_dev);
1427 he_dev->tpd_pool = dma_pool_create("tpd", &he_dev->pci_dev->dev,
1428 sizeof(struct he_tpd), TPD_ALIGNMENT, 0);
1429 if (he_dev->tpd_pool == NULL) {
1430 hprintk("unable to create tpd dma_pool\n");
1431 return -ENOMEM;
1434 INIT_LIST_HEAD(&he_dev->outstanding_tpds);
1436 if (he_init_group(he_dev, 0) != 0)
1437 return -ENOMEM;
1439 for (group = 1; group < HE_NUM_GROUPS; ++group) {
1440 he_writel(he_dev, 0x0, G0_RBPS_S + (group * 32));
1441 he_writel(he_dev, 0x0, G0_RBPS_T + (group * 32));
1442 he_writel(he_dev, 0x0, G0_RBPS_QI + (group * 32));
1443 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1444 G0_RBPS_BS + (group * 32));
1446 he_writel(he_dev, 0x0, G0_RBPL_S + (group * 32));
1447 he_writel(he_dev, 0x0, G0_RBPL_T + (group * 32));
1448 he_writel(he_dev, RBP_THRESH(0x1) | RBP_QSIZE(0x0),
1449 G0_RBPL_QI + (group * 32));
1450 he_writel(he_dev, 0x0, G0_RBPL_BS + (group * 32));
1452 he_writel(he_dev, 0x0, G0_RBRQ_ST + (group * 16));
1453 he_writel(he_dev, 0x0, G0_RBRQ_H + (group * 16));
1454 he_writel(he_dev, RBRQ_THRESH(0x1) | RBRQ_SIZE(0x0),
1455 G0_RBRQ_Q + (group * 16));
1456 he_writel(he_dev, 0x0, G0_RBRQ_I + (group * 16));
1458 he_writel(he_dev, 0x0, G0_TBRQ_B_T + (group * 16));
1459 he_writel(he_dev, 0x0, G0_TBRQ_H + (group * 16));
1460 he_writel(he_dev, TBRQ_THRESH(0x1),
1461 G0_TBRQ_THRESH + (group * 16));
1462 he_writel(he_dev, 0x0, G0_TBRQ_S + (group * 16));
1465 /* host status page */
1467 he_dev->hsp = dma_zalloc_coherent(&he_dev->pci_dev->dev,
1468 sizeof(struct he_hsp),
1469 &he_dev->hsp_phys, GFP_KERNEL);
1470 if (he_dev->hsp == NULL) {
1471 hprintk("failed to allocate host status page\n");
1472 return -ENOMEM;
1474 he_writel(he_dev, he_dev->hsp_phys, HSP_BA);
1476 /* initialize framer */
1478 #ifdef CONFIG_ATM_HE_USE_SUNI
1479 if (he_isMM(he_dev))
1480 suni_init(he_dev->atm_dev);
1481 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->start)
1482 he_dev->atm_dev->phy->start(he_dev->atm_dev);
1483 #endif /* CONFIG_ATM_HE_USE_SUNI */
1485 if (sdh) {
1486 /* this really should be in suni.c but for now... */
1487 int val;
1489 val = he_phy_get(he_dev->atm_dev, SUNI_TPOP_APM);
1490 val = (val & ~SUNI_TPOP_APM_S) | (SUNI_TPOP_S_SDH << SUNI_TPOP_APM_S_SHIFT);
1491 he_phy_put(he_dev->atm_dev, val, SUNI_TPOP_APM);
1492 he_phy_put(he_dev->atm_dev, SUNI_TACP_IUCHP_CLP, SUNI_TACP_IUCHP);
1495 /* 5.1.12 enable transmit and receive */
1497 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1498 reg |= TX_ENABLE|ER_ENABLE;
1499 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1501 reg = he_readl(he_dev, RC_CONFIG);
1502 reg |= RX_ENABLE;
1503 he_writel(he_dev, reg, RC_CONFIG);
1505 for (i = 0; i < HE_NUM_CS_STPER; ++i) {
1506 he_dev->cs_stper[i].inuse = 0;
1507 he_dev->cs_stper[i].pcr = -1;
1509 he_dev->total_bw = 0;
1512 /* atm linux initialization */
1514 he_dev->atm_dev->ci_range.vpi_bits = he_dev->vpibits;
1515 he_dev->atm_dev->ci_range.vci_bits = he_dev->vcibits;
1517 he_dev->irq_peak = 0;
1518 he_dev->rbrq_peak = 0;
1519 he_dev->rbpl_peak = 0;
1520 he_dev->tbrq_peak = 0;
1522 HPRINTK("hell bent for leather!\n");
1524 return 0;
1527 static void
1528 he_stop(struct he_dev *he_dev)
1530 struct he_buff *heb, *next;
1531 struct pci_dev *pci_dev;
1532 u32 gen_cntl_0, reg;
1533 u16 command;
1535 pci_dev = he_dev->pci_dev;
1537 /* disable interrupts */
1539 if (he_dev->membase) {
1540 pci_read_config_dword(pci_dev, GEN_CNTL_0, &gen_cntl_0);
1541 gen_cntl_0 &= ~(INT_PROC_ENBL | INIT_ENB);
1542 pci_write_config_dword(pci_dev, GEN_CNTL_0, gen_cntl_0);
1544 tasklet_disable(&he_dev->tasklet);
1546 /* disable recv and transmit */
1548 reg = he_readl_mbox(he_dev, CS_ERCTL0);
1549 reg &= ~(TX_ENABLE|ER_ENABLE);
1550 he_writel_mbox(he_dev, reg, CS_ERCTL0);
1552 reg = he_readl(he_dev, RC_CONFIG);
1553 reg &= ~(RX_ENABLE);
1554 he_writel(he_dev, reg, RC_CONFIG);
1557 #ifdef CONFIG_ATM_HE_USE_SUNI
1558 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->stop)
1559 he_dev->atm_dev->phy->stop(he_dev->atm_dev);
1560 #endif /* CONFIG_ATM_HE_USE_SUNI */
1562 if (he_dev->irq)
1563 free_irq(he_dev->irq, he_dev);
1565 if (he_dev->irq_base)
1566 dma_free_coherent(&he_dev->pci_dev->dev, (CONFIG_IRQ_SIZE + 1)
1567 * sizeof(struct he_irq), he_dev->irq_base, he_dev->irq_phys);
1569 if (he_dev->hsp)
1570 dma_free_coherent(&he_dev->pci_dev->dev, sizeof(struct he_hsp),
1571 he_dev->hsp, he_dev->hsp_phys);
1573 if (he_dev->rbpl_base) {
1574 list_for_each_entry_safe(heb, next, &he_dev->rbpl_outstanding, entry)
1575 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1577 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBPL_SIZE
1578 * sizeof(struct he_rbp), he_dev->rbpl_base, he_dev->rbpl_phys);
1581 kfree(he_dev->rbpl_virt);
1582 kfree(he_dev->rbpl_table);
1583 dma_pool_destroy(he_dev->rbpl_pool);
1585 if (he_dev->rbrq_base)
1586 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_RBRQ_SIZE * sizeof(struct he_rbrq),
1587 he_dev->rbrq_base, he_dev->rbrq_phys);
1589 if (he_dev->tbrq_base)
1590 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1591 he_dev->tbrq_base, he_dev->tbrq_phys);
1593 if (he_dev->tpdrq_base)
1594 dma_free_coherent(&he_dev->pci_dev->dev, CONFIG_TBRQ_SIZE * sizeof(struct he_tbrq),
1595 he_dev->tpdrq_base, he_dev->tpdrq_phys);
1597 dma_pool_destroy(he_dev->tpd_pool);
1599 if (he_dev->pci_dev) {
1600 pci_read_config_word(he_dev->pci_dev, PCI_COMMAND, &command);
1601 command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
1602 pci_write_config_word(he_dev->pci_dev, PCI_COMMAND, command);
1605 if (he_dev->membase)
1606 iounmap(he_dev->membase);
1609 static struct he_tpd *
1610 __alloc_tpd(struct he_dev *he_dev)
1612 struct he_tpd *tpd;
1613 dma_addr_t mapping;
1615 tpd = dma_pool_alloc(he_dev->tpd_pool, GFP_ATOMIC, &mapping);
1616 if (tpd == NULL)
1617 return NULL;
1619 tpd->status = TPD_ADDR(mapping);
1620 tpd->reserved = 0;
1621 tpd->iovec[0].addr = 0; tpd->iovec[0].len = 0;
1622 tpd->iovec[1].addr = 0; tpd->iovec[1].len = 0;
1623 tpd->iovec[2].addr = 0; tpd->iovec[2].len = 0;
1625 return tpd;
1628 #define AAL5_LEN(buf,len) \
1629 ((((unsigned char *)(buf))[(len)-6] << 8) | \
1630 (((unsigned char *)(buf))[(len)-5]))
1632 /* 2.10.1.2 receive
1634 * aal5 packets can optionally return the tcp checksum in the lower
1635 * 16 bits of the crc (RSR0_TCP_CKSUM)
1638 #define TCP_CKSUM(buf,len) \
1639 ((((unsigned char *)(buf))[(len)-2] << 8) | \
1640 (((unsigned char *)(buf))[(len-1)]))
1642 static int
1643 he_service_rbrq(struct he_dev *he_dev, int group)
1645 struct he_rbrq *rbrq_tail = (struct he_rbrq *)
1646 ((unsigned long)he_dev->rbrq_base |
1647 he_dev->hsp->group[group].rbrq_tail);
1648 unsigned cid, lastcid = -1;
1649 struct sk_buff *skb;
1650 struct atm_vcc *vcc = NULL;
1651 struct he_vcc *he_vcc;
1652 struct he_buff *heb, *next;
1653 int i;
1654 int pdus_assembled = 0;
1655 int updated = 0;
1657 read_lock(&vcc_sklist_lock);
1658 while (he_dev->rbrq_head != rbrq_tail) {
1659 ++updated;
1661 HPRINTK("%p rbrq%d 0x%x len=%d cid=0x%x %s%s%s%s%s%s\n",
1662 he_dev->rbrq_head, group,
1663 RBRQ_ADDR(he_dev->rbrq_head),
1664 RBRQ_BUFLEN(he_dev->rbrq_head),
1665 RBRQ_CID(he_dev->rbrq_head),
1666 RBRQ_CRC_ERR(he_dev->rbrq_head) ? " CRC_ERR" : "",
1667 RBRQ_LEN_ERR(he_dev->rbrq_head) ? " LEN_ERR" : "",
1668 RBRQ_END_PDU(he_dev->rbrq_head) ? " END_PDU" : "",
1669 RBRQ_AAL5_PROT(he_dev->rbrq_head) ? " AAL5_PROT" : "",
1670 RBRQ_CON_CLOSED(he_dev->rbrq_head) ? " CON_CLOSED" : "",
1671 RBRQ_HBUF_ERR(he_dev->rbrq_head) ? " HBUF_ERR" : "");
1673 i = RBRQ_ADDR(he_dev->rbrq_head) >> RBP_IDX_OFFSET;
1674 heb = he_dev->rbpl_virt[i];
1676 cid = RBRQ_CID(he_dev->rbrq_head);
1677 if (cid != lastcid)
1678 vcc = __find_vcc(he_dev, cid);
1679 lastcid = cid;
1681 if (vcc == NULL || (he_vcc = HE_VCC(vcc)) == NULL) {
1682 hprintk("vcc/he_vcc == NULL (cid 0x%x)\n", cid);
1683 if (!RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1684 clear_bit(i, he_dev->rbpl_table);
1685 list_del(&heb->entry);
1686 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1689 goto next_rbrq_entry;
1692 if (RBRQ_HBUF_ERR(he_dev->rbrq_head)) {
1693 hprintk("HBUF_ERR! (cid 0x%x)\n", cid);
1694 atomic_inc(&vcc->stats->rx_drop);
1695 goto return_host_buffers;
1698 heb->len = RBRQ_BUFLEN(he_dev->rbrq_head) * 4;
1699 clear_bit(i, he_dev->rbpl_table);
1700 list_move_tail(&heb->entry, &he_vcc->buffers);
1701 he_vcc->pdu_len += heb->len;
1703 if (RBRQ_CON_CLOSED(he_dev->rbrq_head)) {
1704 lastcid = -1;
1705 HPRINTK("wake_up rx_waitq (cid 0x%x)\n", cid);
1706 wake_up(&he_vcc->rx_waitq);
1707 goto return_host_buffers;
1710 if (!RBRQ_END_PDU(he_dev->rbrq_head))
1711 goto next_rbrq_entry;
1713 if (RBRQ_LEN_ERR(he_dev->rbrq_head)
1714 || RBRQ_CRC_ERR(he_dev->rbrq_head)) {
1715 HPRINTK("%s%s (%d.%d)\n",
1716 RBRQ_CRC_ERR(he_dev->rbrq_head)
1717 ? "CRC_ERR " : "",
1718 RBRQ_LEN_ERR(he_dev->rbrq_head)
1719 ? "LEN_ERR" : "",
1720 vcc->vpi, vcc->vci);
1721 atomic_inc(&vcc->stats->rx_err);
1722 goto return_host_buffers;
1725 skb = atm_alloc_charge(vcc, he_vcc->pdu_len + rx_skb_reserve,
1726 GFP_ATOMIC);
1727 if (!skb) {
1728 HPRINTK("charge failed (%d.%d)\n", vcc->vpi, vcc->vci);
1729 goto return_host_buffers;
1732 if (rx_skb_reserve > 0)
1733 skb_reserve(skb, rx_skb_reserve);
1735 __net_timestamp(skb);
1737 list_for_each_entry(heb, &he_vcc->buffers, entry)
1738 skb_put_data(skb, &heb->data, heb->len);
1740 switch (vcc->qos.aal) {
1741 case ATM_AAL0:
1742 /* 2.10.1.5 raw cell receive */
1743 skb->len = ATM_AAL0_SDU;
1744 skb_set_tail_pointer(skb, skb->len);
1745 break;
1746 case ATM_AAL5:
1747 /* 2.10.1.2 aal5 receive */
1749 skb->len = AAL5_LEN(skb->data, he_vcc->pdu_len);
1750 skb_set_tail_pointer(skb, skb->len);
1751 #ifdef USE_CHECKSUM_HW
1752 if (vcc->vpi == 0 && vcc->vci >= ATM_NOT_RSV_VCI) {
1753 skb->ip_summed = CHECKSUM_COMPLETE;
1754 skb->csum = TCP_CKSUM(skb->data,
1755 he_vcc->pdu_len);
1757 #endif
1758 break;
1761 #ifdef should_never_happen
1762 if (skb->len > vcc->qos.rxtp.max_sdu)
1763 hprintk("pdu_len (%d) > vcc->qos.rxtp.max_sdu (%d)! cid 0x%x\n", skb->len, vcc->qos.rxtp.max_sdu, cid);
1764 #endif
1766 #ifdef notdef
1767 ATM_SKB(skb)->vcc = vcc;
1768 #endif
1769 spin_unlock(&he_dev->global_lock);
1770 vcc->push(vcc, skb);
1771 spin_lock(&he_dev->global_lock);
1773 atomic_inc(&vcc->stats->rx);
1775 return_host_buffers:
1776 ++pdus_assembled;
1778 list_for_each_entry_safe(heb, next, &he_vcc->buffers, entry)
1779 dma_pool_free(he_dev->rbpl_pool, heb, heb->mapping);
1780 INIT_LIST_HEAD(&he_vcc->buffers);
1781 he_vcc->pdu_len = 0;
1783 next_rbrq_entry:
1784 he_dev->rbrq_head = (struct he_rbrq *)
1785 ((unsigned long) he_dev->rbrq_base |
1786 RBRQ_MASK(he_dev->rbrq_head + 1));
1789 read_unlock(&vcc_sklist_lock);
1791 if (updated) {
1792 if (updated > he_dev->rbrq_peak)
1793 he_dev->rbrq_peak = updated;
1795 he_writel(he_dev, RBRQ_MASK(he_dev->rbrq_head),
1796 G0_RBRQ_H + (group * 16));
1799 return pdus_assembled;
1802 static void
1803 he_service_tbrq(struct he_dev *he_dev, int group)
1805 struct he_tbrq *tbrq_tail = (struct he_tbrq *)
1806 ((unsigned long)he_dev->tbrq_base |
1807 he_dev->hsp->group[group].tbrq_tail);
1808 struct he_tpd *tpd;
1809 int slot, updated = 0;
1810 struct he_tpd *__tpd;
1812 /* 2.1.6 transmit buffer return queue */
1814 while (he_dev->tbrq_head != tbrq_tail) {
1815 ++updated;
1817 HPRINTK("tbrq%d 0x%x%s%s\n",
1818 group,
1819 TBRQ_TPD(he_dev->tbrq_head),
1820 TBRQ_EOS(he_dev->tbrq_head) ? " EOS" : "",
1821 TBRQ_MULTIPLE(he_dev->tbrq_head) ? " MULTIPLE" : "");
1822 tpd = NULL;
1823 list_for_each_entry(__tpd, &he_dev->outstanding_tpds, entry) {
1824 if (TPD_ADDR(__tpd->status) == TBRQ_TPD(he_dev->tbrq_head)) {
1825 tpd = __tpd;
1826 list_del(&__tpd->entry);
1827 break;
1831 if (tpd == NULL) {
1832 hprintk("unable to locate tpd for dma buffer %x\n",
1833 TBRQ_TPD(he_dev->tbrq_head));
1834 goto next_tbrq_entry;
1837 if (TBRQ_EOS(he_dev->tbrq_head)) {
1838 HPRINTK("wake_up(tx_waitq) cid 0x%x\n",
1839 he_mkcid(he_dev, tpd->vcc->vpi, tpd->vcc->vci));
1840 if (tpd->vcc)
1841 wake_up(&HE_VCC(tpd->vcc)->tx_waitq);
1843 goto next_tbrq_entry;
1846 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
1847 if (tpd->iovec[slot].addr)
1848 dma_unmap_single(&he_dev->pci_dev->dev,
1849 tpd->iovec[slot].addr,
1850 tpd->iovec[slot].len & TPD_LEN_MASK,
1851 DMA_TO_DEVICE);
1852 if (tpd->iovec[slot].len & TPD_LST)
1853 break;
1857 if (tpd->skb) { /* && !TBRQ_MULTIPLE(he_dev->tbrq_head) */
1858 if (tpd->vcc && tpd->vcc->pop)
1859 tpd->vcc->pop(tpd->vcc, tpd->skb);
1860 else
1861 dev_kfree_skb_any(tpd->skb);
1864 next_tbrq_entry:
1865 if (tpd)
1866 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
1867 he_dev->tbrq_head = (struct he_tbrq *)
1868 ((unsigned long) he_dev->tbrq_base |
1869 TBRQ_MASK(he_dev->tbrq_head + 1));
1872 if (updated) {
1873 if (updated > he_dev->tbrq_peak)
1874 he_dev->tbrq_peak = updated;
1876 he_writel(he_dev, TBRQ_MASK(he_dev->tbrq_head),
1877 G0_TBRQ_H + (group * 16));
1881 static void
1882 he_service_rbpl(struct he_dev *he_dev, int group)
1884 struct he_rbp *new_tail;
1885 struct he_rbp *rbpl_head;
1886 struct he_buff *heb;
1887 dma_addr_t mapping;
1888 int i;
1889 int moved = 0;
1891 rbpl_head = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1892 RBPL_MASK(he_readl(he_dev, G0_RBPL_S)));
1894 for (;;) {
1895 new_tail = (struct he_rbp *) ((unsigned long)he_dev->rbpl_base |
1896 RBPL_MASK(he_dev->rbpl_tail+1));
1898 /* table 3.42 -- rbpl_tail should never be set to rbpl_head */
1899 if (new_tail == rbpl_head)
1900 break;
1902 i = find_next_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE, he_dev->rbpl_hint);
1903 if (i > (RBPL_TABLE_SIZE - 1)) {
1904 i = find_first_zero_bit(he_dev->rbpl_table, RBPL_TABLE_SIZE);
1905 if (i > (RBPL_TABLE_SIZE - 1))
1906 break;
1908 he_dev->rbpl_hint = i + 1;
1910 heb = dma_pool_alloc(he_dev->rbpl_pool, GFP_ATOMIC, &mapping);
1911 if (!heb)
1912 break;
1913 heb->mapping = mapping;
1914 list_add(&heb->entry, &he_dev->rbpl_outstanding);
1915 he_dev->rbpl_virt[i] = heb;
1916 set_bit(i, he_dev->rbpl_table);
1917 new_tail->idx = i << RBP_IDX_OFFSET;
1918 new_tail->phys = mapping + offsetof(struct he_buff, data);
1920 he_dev->rbpl_tail = new_tail;
1921 ++moved;
1924 if (moved)
1925 he_writel(he_dev, RBPL_MASK(he_dev->rbpl_tail), G0_RBPL_T);
1928 static void
1929 he_tasklet(unsigned long data)
1931 unsigned long flags;
1932 struct he_dev *he_dev = (struct he_dev *) data;
1933 int group, type;
1934 int updated = 0;
1936 HPRINTK("tasklet (0x%lx)\n", data);
1937 spin_lock_irqsave(&he_dev->global_lock, flags);
1939 while (he_dev->irq_head != he_dev->irq_tail) {
1940 ++updated;
1942 type = ITYPE_TYPE(he_dev->irq_head->isw);
1943 group = ITYPE_GROUP(he_dev->irq_head->isw);
1945 switch (type) {
1946 case ITYPE_RBRQ_THRESH:
1947 HPRINTK("rbrq%d threshold\n", group);
1948 /* fall through */
1949 case ITYPE_RBRQ_TIMER:
1950 if (he_service_rbrq(he_dev, group))
1951 he_service_rbpl(he_dev, group);
1952 break;
1953 case ITYPE_TBRQ_THRESH:
1954 HPRINTK("tbrq%d threshold\n", group);
1955 /* fall through */
1956 case ITYPE_TPD_COMPLETE:
1957 he_service_tbrq(he_dev, group);
1958 break;
1959 case ITYPE_RBPL_THRESH:
1960 he_service_rbpl(he_dev, group);
1961 break;
1962 case ITYPE_RBPS_THRESH:
1963 /* shouldn't happen unless small buffers enabled */
1964 break;
1965 case ITYPE_PHY:
1966 HPRINTK("phy interrupt\n");
1967 #ifdef CONFIG_ATM_HE_USE_SUNI
1968 spin_unlock_irqrestore(&he_dev->global_lock, flags);
1969 if (he_dev->atm_dev->phy && he_dev->atm_dev->phy->interrupt)
1970 he_dev->atm_dev->phy->interrupt(he_dev->atm_dev);
1971 spin_lock_irqsave(&he_dev->global_lock, flags);
1972 #endif
1973 break;
1974 case ITYPE_OTHER:
1975 switch (type|group) {
1976 case ITYPE_PARITY:
1977 hprintk("parity error\n");
1978 break;
1979 case ITYPE_ABORT:
1980 hprintk("abort 0x%x\n", he_readl(he_dev, ABORT_ADDR));
1981 break;
1983 break;
1984 case ITYPE_TYPE(ITYPE_INVALID):
1985 /* see 8.1.1 -- check all queues */
1987 HPRINTK("isw not updated 0x%x\n", he_dev->irq_head->isw);
1989 he_service_rbrq(he_dev, 0);
1990 he_service_rbpl(he_dev, 0);
1991 he_service_tbrq(he_dev, 0);
1992 break;
1993 default:
1994 hprintk("bad isw 0x%x?\n", he_dev->irq_head->isw);
1997 he_dev->irq_head->isw = ITYPE_INVALID;
1999 he_dev->irq_head = (struct he_irq *) NEXT_ENTRY(he_dev->irq_base, he_dev->irq_head, IRQ_MASK);
2002 if (updated) {
2003 if (updated > he_dev->irq_peak)
2004 he_dev->irq_peak = updated;
2006 he_writel(he_dev,
2007 IRQ_SIZE(CONFIG_IRQ_SIZE) |
2008 IRQ_THRESH(CONFIG_IRQ_THRESH) |
2009 IRQ_TAIL(he_dev->irq_tail), IRQ0_HEAD);
2010 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata; flush posted writes */
2012 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2015 static irqreturn_t
2016 he_irq_handler(int irq, void *dev_id)
2018 unsigned long flags;
2019 struct he_dev *he_dev = (struct he_dev * )dev_id;
2020 int handled = 0;
2022 if (he_dev == NULL)
2023 return IRQ_NONE;
2025 spin_lock_irqsave(&he_dev->global_lock, flags);
2027 he_dev->irq_tail = (struct he_irq *) (((unsigned long)he_dev->irq_base) |
2028 (*he_dev->irq_tailoffset << 2));
2030 if (he_dev->irq_tail == he_dev->irq_head) {
2031 HPRINTK("tailoffset not updated?\n");
2032 he_dev->irq_tail = (struct he_irq *) ((unsigned long)he_dev->irq_base |
2033 ((he_readl(he_dev, IRQ0_BASE) & IRQ_MASK) << 2));
2034 (void) he_readl(he_dev, INT_FIFO); /* 8.1.2 controller errata */
2037 #ifdef DEBUG
2038 if (he_dev->irq_head == he_dev->irq_tail /* && !IRQ_PENDING */)
2039 hprintk("spurious (or shared) interrupt?\n");
2040 #endif
2042 if (he_dev->irq_head != he_dev->irq_tail) {
2043 handled = 1;
2044 tasklet_schedule(&he_dev->tasklet);
2045 he_writel(he_dev, INT_CLEAR_A, INT_FIFO); /* clear interrupt */
2046 (void) he_readl(he_dev, INT_FIFO); /* flush posted writes */
2048 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2049 return IRQ_RETVAL(handled);
2053 static __inline__ void
2054 __enqueue_tpd(struct he_dev *he_dev, struct he_tpd *tpd, unsigned cid)
2056 struct he_tpdrq *new_tail;
2058 HPRINTK("tpdrq %p cid 0x%x -> tpdrq_tail %p\n",
2059 tpd, cid, he_dev->tpdrq_tail);
2061 /* new_tail = he_dev->tpdrq_tail; */
2062 new_tail = (struct he_tpdrq *) ((unsigned long) he_dev->tpdrq_base |
2063 TPDRQ_MASK(he_dev->tpdrq_tail+1));
2066 * check to see if we are about to set the tail == head
2067 * if true, update the head pointer from the adapter
2068 * to see if this is really the case (reading the queue
2069 * head for every enqueue would be unnecessarily slow)
2072 if (new_tail == he_dev->tpdrq_head) {
2073 he_dev->tpdrq_head = (struct he_tpdrq *)
2074 (((unsigned long)he_dev->tpdrq_base) |
2075 TPDRQ_MASK(he_readl(he_dev, TPDRQ_B_H)));
2077 if (new_tail == he_dev->tpdrq_head) {
2078 int slot;
2080 hprintk("tpdrq full (cid 0x%x)\n", cid);
2082 * FIXME
2083 * push tpd onto a transmit backlog queue
2084 * after service_tbrq, service the backlog
2085 * for now, we just drop the pdu
2087 for (slot = 0; slot < TPD_MAXIOV; ++slot) {
2088 if (tpd->iovec[slot].addr)
2089 dma_unmap_single(&he_dev->pci_dev->dev,
2090 tpd->iovec[slot].addr,
2091 tpd->iovec[slot].len & TPD_LEN_MASK,
2092 DMA_TO_DEVICE);
2094 if (tpd->skb) {
2095 if (tpd->vcc->pop)
2096 tpd->vcc->pop(tpd->vcc, tpd->skb);
2097 else
2098 dev_kfree_skb_any(tpd->skb);
2099 atomic_inc(&tpd->vcc->stats->tx_err);
2101 dma_pool_free(he_dev->tpd_pool, tpd, TPD_ADDR(tpd->status));
2102 return;
2106 /* 2.1.5 transmit packet descriptor ready queue */
2107 list_add_tail(&tpd->entry, &he_dev->outstanding_tpds);
2108 he_dev->tpdrq_tail->tpd = TPD_ADDR(tpd->status);
2109 he_dev->tpdrq_tail->cid = cid;
2110 wmb();
2112 he_dev->tpdrq_tail = new_tail;
2114 he_writel(he_dev, TPDRQ_MASK(he_dev->tpdrq_tail), TPDRQ_T);
2115 (void) he_readl(he_dev, TPDRQ_T); /* flush posted writes */
2118 static int
2119 he_open(struct atm_vcc *vcc)
2121 unsigned long flags;
2122 struct he_dev *he_dev = HE_DEV(vcc->dev);
2123 struct he_vcc *he_vcc;
2124 int err = 0;
2125 unsigned cid, rsr0, rsr1, rsr4, tsr0, tsr0_aal, tsr4, period, reg, clock;
2126 short vpi = vcc->vpi;
2127 int vci = vcc->vci;
2129 if (vci == ATM_VCI_UNSPEC || vpi == ATM_VPI_UNSPEC)
2130 return 0;
2132 HPRINTK("open vcc %p %d.%d\n", vcc, vpi, vci);
2134 set_bit(ATM_VF_ADDR, &vcc->flags);
2136 cid = he_mkcid(he_dev, vpi, vci);
2138 he_vcc = kmalloc(sizeof(struct he_vcc), GFP_ATOMIC);
2139 if (he_vcc == NULL) {
2140 hprintk("unable to allocate he_vcc during open\n");
2141 return -ENOMEM;
2144 INIT_LIST_HEAD(&he_vcc->buffers);
2145 he_vcc->pdu_len = 0;
2146 he_vcc->rc_index = -1;
2148 init_waitqueue_head(&he_vcc->rx_waitq);
2149 init_waitqueue_head(&he_vcc->tx_waitq);
2151 vcc->dev_data = he_vcc;
2153 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2154 int pcr_goal;
2156 pcr_goal = atm_pcr_goal(&vcc->qos.txtp);
2157 if (pcr_goal == 0)
2158 pcr_goal = he_dev->atm_dev->link_rate;
2159 if (pcr_goal < 0) /* means round down, technically */
2160 pcr_goal = -pcr_goal;
2162 HPRINTK("open tx cid 0x%x pcr_goal %d\n", cid, pcr_goal);
2164 switch (vcc->qos.aal) {
2165 case ATM_AAL5:
2166 tsr0_aal = TSR0_AAL5;
2167 tsr4 = TSR4_AAL5;
2168 break;
2169 case ATM_AAL0:
2170 tsr0_aal = TSR0_AAL0_SDU;
2171 tsr4 = TSR4_AAL0_SDU;
2172 break;
2173 default:
2174 err = -EINVAL;
2175 goto open_failed;
2178 spin_lock_irqsave(&he_dev->global_lock, flags);
2179 tsr0 = he_readl_tsr0(he_dev, cid);
2180 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2182 if (TSR0_CONN_STATE(tsr0) != 0) {
2183 hprintk("cid 0x%x not idle (tsr0 = 0x%x)\n", cid, tsr0);
2184 err = -EBUSY;
2185 goto open_failed;
2188 switch (vcc->qos.txtp.traffic_class) {
2189 case ATM_UBR:
2190 /* 2.3.3.1 open connection ubr */
2192 tsr0 = TSR0_UBR | TSR0_GROUP(0) | tsr0_aal |
2193 TSR0_USE_WMIN | TSR0_UPDATE_GER;
2194 break;
2196 case ATM_CBR:
2197 /* 2.3.3.2 open connection cbr */
2199 /* 8.2.3 cbr scheduler wrap problem -- limit to 90% total link rate */
2200 if ((he_dev->total_bw + pcr_goal)
2201 > (he_dev->atm_dev->link_rate * 9 / 10))
2203 err = -EBUSY;
2204 goto open_failed;
2207 spin_lock_irqsave(&he_dev->global_lock, flags); /* also protects he_dev->cs_stper[] */
2209 /* find an unused cs_stper register */
2210 for (reg = 0; reg < HE_NUM_CS_STPER; ++reg)
2211 if (he_dev->cs_stper[reg].inuse == 0 ||
2212 he_dev->cs_stper[reg].pcr == pcr_goal)
2213 break;
2215 if (reg == HE_NUM_CS_STPER) {
2216 err = -EBUSY;
2217 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2218 goto open_failed;
2221 he_dev->total_bw += pcr_goal;
2223 he_vcc->rc_index = reg;
2224 ++he_dev->cs_stper[reg].inuse;
2225 he_dev->cs_stper[reg].pcr = pcr_goal;
2227 clock = he_is622(he_dev) ? 66667000 : 50000000;
2228 period = clock / pcr_goal;
2230 HPRINTK("rc_index = %d period = %d\n",
2231 reg, period);
2233 he_writel_mbox(he_dev, rate_to_atmf(period/2),
2234 CS_STPER0 + reg);
2235 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2237 tsr0 = TSR0_CBR | TSR0_GROUP(0) | tsr0_aal |
2238 TSR0_RC_INDEX(reg);
2240 break;
2241 default:
2242 err = -EINVAL;
2243 goto open_failed;
2246 spin_lock_irqsave(&he_dev->global_lock, flags);
2248 he_writel_tsr0(he_dev, tsr0, cid);
2249 he_writel_tsr4(he_dev, tsr4 | 1, cid);
2250 he_writel_tsr1(he_dev, TSR1_MCR(rate_to_atmf(0)) |
2251 TSR1_PCR(rate_to_atmf(pcr_goal)), cid);
2252 he_writel_tsr2(he_dev, TSR2_ACR(rate_to_atmf(pcr_goal)), cid);
2253 he_writel_tsr9(he_dev, TSR9_OPEN_CONN, cid);
2255 he_writel_tsr3(he_dev, 0x0, cid);
2256 he_writel_tsr5(he_dev, 0x0, cid);
2257 he_writel_tsr6(he_dev, 0x0, cid);
2258 he_writel_tsr7(he_dev, 0x0, cid);
2259 he_writel_tsr8(he_dev, 0x0, cid);
2260 he_writel_tsr10(he_dev, 0x0, cid);
2261 he_writel_tsr11(he_dev, 0x0, cid);
2262 he_writel_tsr12(he_dev, 0x0, cid);
2263 he_writel_tsr13(he_dev, 0x0, cid);
2264 he_writel_tsr14(he_dev, 0x0, cid);
2265 (void) he_readl_tsr0(he_dev, cid); /* flush posted writes */
2266 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2269 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2270 unsigned aal;
2272 HPRINTK("open rx cid 0x%x (rx_waitq %p)\n", cid,
2273 &HE_VCC(vcc)->rx_waitq);
2275 switch (vcc->qos.aal) {
2276 case ATM_AAL5:
2277 aal = RSR0_AAL5;
2278 break;
2279 case ATM_AAL0:
2280 aal = RSR0_RAWCELL;
2281 break;
2282 default:
2283 err = -EINVAL;
2284 goto open_failed;
2287 spin_lock_irqsave(&he_dev->global_lock, flags);
2289 rsr0 = he_readl_rsr0(he_dev, cid);
2290 if (rsr0 & RSR0_OPEN_CONN) {
2291 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2293 hprintk("cid 0x%x not idle (rsr0 = 0x%x)\n", cid, rsr0);
2294 err = -EBUSY;
2295 goto open_failed;
2298 rsr1 = RSR1_GROUP(0) | RSR1_RBPL_ONLY;
2299 rsr4 = RSR4_GROUP(0) | RSR4_RBPL_ONLY;
2300 rsr0 = vcc->qos.rxtp.traffic_class == ATM_UBR ?
2301 (RSR0_EPD_ENABLE|RSR0_PPD_ENABLE) : 0;
2303 #ifdef USE_CHECKSUM_HW
2304 if (vpi == 0 && vci >= ATM_NOT_RSV_VCI)
2305 rsr0 |= RSR0_TCP_CKSUM;
2306 #endif
2308 he_writel_rsr4(he_dev, rsr4, cid);
2309 he_writel_rsr1(he_dev, rsr1, cid);
2310 /* 5.1.11 last parameter initialized should be
2311 the open/closed indication in rsr0 */
2312 he_writel_rsr0(he_dev,
2313 rsr0 | RSR0_START_PDU | RSR0_OPEN_CONN | aal, cid);
2314 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2316 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2319 open_failed:
2321 if (err) {
2322 kfree(he_vcc);
2323 clear_bit(ATM_VF_ADDR, &vcc->flags);
2325 else
2326 set_bit(ATM_VF_READY, &vcc->flags);
2328 return err;
2331 static void
2332 he_close(struct atm_vcc *vcc)
2334 unsigned long flags;
2335 DECLARE_WAITQUEUE(wait, current);
2336 struct he_dev *he_dev = HE_DEV(vcc->dev);
2337 struct he_tpd *tpd;
2338 unsigned cid;
2339 struct he_vcc *he_vcc = HE_VCC(vcc);
2340 #define MAX_RETRY 30
2341 int retry = 0, sleep = 1, tx_inuse;
2343 HPRINTK("close vcc %p %d.%d\n", vcc, vcc->vpi, vcc->vci);
2345 clear_bit(ATM_VF_READY, &vcc->flags);
2346 cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2348 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
2349 int timeout;
2351 HPRINTK("close rx cid 0x%x\n", cid);
2353 /* 2.7.2.2 close receive operation */
2355 /* wait for previous close (if any) to finish */
2357 spin_lock_irqsave(&he_dev->global_lock, flags);
2358 while (he_readl(he_dev, RCC_STAT) & RCC_BUSY) {
2359 HPRINTK("close cid 0x%x RCC_BUSY\n", cid);
2360 udelay(250);
2363 set_current_state(TASK_UNINTERRUPTIBLE);
2364 add_wait_queue(&he_vcc->rx_waitq, &wait);
2366 he_writel_rsr0(he_dev, RSR0_CLOSE_CONN, cid);
2367 (void) he_readl_rsr0(he_dev, cid); /* flush posted writes */
2368 he_writel_mbox(he_dev, cid, RXCON_CLOSE);
2369 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2371 timeout = schedule_timeout(30*HZ);
2373 remove_wait_queue(&he_vcc->rx_waitq, &wait);
2374 set_current_state(TASK_RUNNING);
2376 if (timeout == 0)
2377 hprintk("close rx timeout cid 0x%x\n", cid);
2379 HPRINTK("close rx cid 0x%x complete\n", cid);
2383 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
2384 volatile unsigned tsr4, tsr0;
2385 int timeout;
2387 HPRINTK("close tx cid 0x%x\n", cid);
2389 /* 2.1.2
2391 * ... the host must first stop queueing packets to the TPDRQ
2392 * on the connection to be closed, then wait for all outstanding
2393 * packets to be transmitted and their buffers returned to the
2394 * TBRQ. When the last packet on the connection arrives in the
2395 * TBRQ, the host issues the close command to the adapter.
2398 while (((tx_inuse = refcount_read(&sk_atm(vcc)->sk_wmem_alloc)) > 1) &&
2399 (retry < MAX_RETRY)) {
2400 msleep(sleep);
2401 if (sleep < 250)
2402 sleep = sleep * 2;
2404 ++retry;
2407 if (tx_inuse > 1)
2408 hprintk("close tx cid 0x%x tx_inuse = %d\n", cid, tx_inuse);
2410 /* 2.3.1.1 generic close operations with flush */
2412 spin_lock_irqsave(&he_dev->global_lock, flags);
2413 he_writel_tsr4_upper(he_dev, TSR4_FLUSH_CONN, cid);
2414 /* also clears TSR4_SESSION_ENDED */
2416 switch (vcc->qos.txtp.traffic_class) {
2417 case ATM_UBR:
2418 he_writel_tsr1(he_dev,
2419 TSR1_MCR(rate_to_atmf(200000))
2420 | TSR1_PCR(0), cid);
2421 break;
2422 case ATM_CBR:
2423 he_writel_tsr14_upper(he_dev, TSR14_DELETE, cid);
2424 break;
2426 (void) he_readl_tsr4(he_dev, cid); /* flush posted writes */
2428 tpd = __alloc_tpd(he_dev);
2429 if (tpd == NULL) {
2430 hprintk("close tx he_alloc_tpd failed cid 0x%x\n", cid);
2431 goto close_tx_incomplete;
2433 tpd->status |= TPD_EOS | TPD_INT;
2434 tpd->skb = NULL;
2435 tpd->vcc = vcc;
2436 wmb();
2438 set_current_state(TASK_UNINTERRUPTIBLE);
2439 add_wait_queue(&he_vcc->tx_waitq, &wait);
2440 __enqueue_tpd(he_dev, tpd, cid);
2441 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2443 timeout = schedule_timeout(30*HZ);
2445 remove_wait_queue(&he_vcc->tx_waitq, &wait);
2446 set_current_state(TASK_RUNNING);
2448 spin_lock_irqsave(&he_dev->global_lock, flags);
2450 if (timeout == 0) {
2451 hprintk("close tx timeout cid 0x%x\n", cid);
2452 goto close_tx_incomplete;
2455 while (!((tsr4 = he_readl_tsr4(he_dev, cid)) & TSR4_SESSION_ENDED)) {
2456 HPRINTK("close tx cid 0x%x !TSR4_SESSION_ENDED (tsr4 = 0x%x)\n", cid, tsr4);
2457 udelay(250);
2460 while (TSR0_CONN_STATE(tsr0 = he_readl_tsr0(he_dev, cid)) != 0) {
2461 HPRINTK("close tx cid 0x%x TSR0_CONN_STATE != 0 (tsr0 = 0x%x)\n", cid, tsr0);
2462 udelay(250);
2465 close_tx_incomplete:
2467 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
2468 int reg = he_vcc->rc_index;
2470 HPRINTK("cs_stper reg = %d\n", reg);
2472 if (he_dev->cs_stper[reg].inuse == 0)
2473 hprintk("cs_stper[%d].inuse = 0!\n", reg);
2474 else
2475 --he_dev->cs_stper[reg].inuse;
2477 he_dev->total_bw -= he_dev->cs_stper[reg].pcr;
2479 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2481 HPRINTK("close tx cid 0x%x complete\n", cid);
2484 kfree(he_vcc);
2486 clear_bit(ATM_VF_ADDR, &vcc->flags);
2489 static int
2490 he_send(struct atm_vcc *vcc, struct sk_buff *skb)
2492 unsigned long flags;
2493 struct he_dev *he_dev = HE_DEV(vcc->dev);
2494 unsigned cid = he_mkcid(he_dev, vcc->vpi, vcc->vci);
2495 struct he_tpd *tpd;
2496 #ifdef USE_SCATTERGATHER
2497 int i, slot = 0;
2498 #endif
2500 #define HE_TPD_BUFSIZE 0xffff
2502 HPRINTK("send %d.%d\n", vcc->vpi, vcc->vci);
2504 if ((skb->len > HE_TPD_BUFSIZE) ||
2505 ((vcc->qos.aal == ATM_AAL0) && (skb->len != ATM_AAL0_SDU))) {
2506 hprintk("buffer too large (or small) -- %d bytes\n", skb->len );
2507 if (vcc->pop)
2508 vcc->pop(vcc, skb);
2509 else
2510 dev_kfree_skb_any(skb);
2511 atomic_inc(&vcc->stats->tx_err);
2512 return -EINVAL;
2515 #ifndef USE_SCATTERGATHER
2516 if (skb_shinfo(skb)->nr_frags) {
2517 hprintk("no scatter/gather support\n");
2518 if (vcc->pop)
2519 vcc->pop(vcc, skb);
2520 else
2521 dev_kfree_skb_any(skb);
2522 atomic_inc(&vcc->stats->tx_err);
2523 return -EINVAL;
2525 #endif
2526 spin_lock_irqsave(&he_dev->global_lock, flags);
2528 tpd = __alloc_tpd(he_dev);
2529 if (tpd == NULL) {
2530 if (vcc->pop)
2531 vcc->pop(vcc, skb);
2532 else
2533 dev_kfree_skb_any(skb);
2534 atomic_inc(&vcc->stats->tx_err);
2535 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2536 return -ENOMEM;
2539 if (vcc->qos.aal == ATM_AAL5)
2540 tpd->status |= TPD_CELLTYPE(TPD_USERCELL);
2541 else {
2542 char *pti_clp = (void *) (skb->data + 3);
2543 int clp, pti;
2545 pti = (*pti_clp & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
2546 clp = (*pti_clp & ATM_HDR_CLP);
2547 tpd->status |= TPD_CELLTYPE(pti);
2548 if (clp)
2549 tpd->status |= TPD_CLP;
2551 skb_pull(skb, ATM_AAL0_SDU - ATM_CELL_PAYLOAD);
2554 #ifdef USE_SCATTERGATHER
2555 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev, skb->data,
2556 skb_headlen(skb), DMA_TO_DEVICE);
2557 tpd->iovec[slot].len = skb_headlen(skb);
2558 ++slot;
2560 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2561 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 if (slot == TPD_MAXIOV) { /* queue tpd; start new tpd */
2564 tpd->vcc = vcc;
2565 tpd->skb = NULL; /* not the last fragment
2566 so dont ->push() yet */
2567 wmb();
2569 __enqueue_tpd(he_dev, tpd, cid);
2570 tpd = __alloc_tpd(he_dev);
2571 if (tpd == NULL) {
2572 if (vcc->pop)
2573 vcc->pop(vcc, skb);
2574 else
2575 dev_kfree_skb_any(skb);
2576 atomic_inc(&vcc->stats->tx_err);
2577 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2578 return -ENOMEM;
2580 tpd->status |= TPD_USERCELL;
2581 slot = 0;
2584 tpd->iovec[slot].addr = dma_map_single(&he_dev->pci_dev->dev,
2585 (void *) page_address(frag->page) + frag->page_offset,
2586 frag->size, DMA_TO_DEVICE);
2587 tpd->iovec[slot].len = frag->size;
2588 ++slot;
2592 tpd->iovec[slot - 1].len |= TPD_LST;
2593 #else
2594 tpd->address0 = dma_map_single(&he_dev->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
2595 tpd->length0 = skb->len | TPD_LST;
2596 #endif
2597 tpd->status |= TPD_INT;
2599 tpd->vcc = vcc;
2600 tpd->skb = skb;
2601 wmb();
2602 ATM_SKB(skb)->vcc = vcc;
2604 __enqueue_tpd(he_dev, tpd, cid);
2605 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2607 atomic_inc(&vcc->stats->tx);
2609 return 0;
2612 static int
2613 he_ioctl(struct atm_dev *atm_dev, unsigned int cmd, void __user *arg)
2615 unsigned long flags;
2616 struct he_dev *he_dev = HE_DEV(atm_dev);
2617 struct he_ioctl_reg reg;
2618 int err = 0;
2620 switch (cmd) {
2621 case HE_GET_REG:
2622 if (!capable(CAP_NET_ADMIN))
2623 return -EPERM;
2625 if (copy_from_user(&reg, arg,
2626 sizeof(struct he_ioctl_reg)))
2627 return -EFAULT;
2629 spin_lock_irqsave(&he_dev->global_lock, flags);
2630 switch (reg.type) {
2631 case HE_REGTYPE_PCI:
2632 if (reg.addr >= HE_REGMAP_SIZE) {
2633 err = -EINVAL;
2634 break;
2637 reg.val = he_readl(he_dev, reg.addr);
2638 break;
2639 case HE_REGTYPE_RCM:
2640 reg.val =
2641 he_readl_rcm(he_dev, reg.addr);
2642 break;
2643 case HE_REGTYPE_TCM:
2644 reg.val =
2645 he_readl_tcm(he_dev, reg.addr);
2646 break;
2647 case HE_REGTYPE_MBOX:
2648 reg.val =
2649 he_readl_mbox(he_dev, reg.addr);
2650 break;
2651 default:
2652 err = -EINVAL;
2653 break;
2655 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2656 if (err == 0)
2657 if (copy_to_user(arg, &reg,
2658 sizeof(struct he_ioctl_reg)))
2659 return -EFAULT;
2660 break;
2661 default:
2662 #ifdef CONFIG_ATM_HE_USE_SUNI
2663 if (atm_dev->phy && atm_dev->phy->ioctl)
2664 err = atm_dev->phy->ioctl(atm_dev, cmd, arg);
2665 #else /* CONFIG_ATM_HE_USE_SUNI */
2666 err = -EINVAL;
2667 #endif /* CONFIG_ATM_HE_USE_SUNI */
2668 break;
2671 return err;
2674 static void
2675 he_phy_put(struct atm_dev *atm_dev, unsigned char val, unsigned long addr)
2677 unsigned long flags;
2678 struct he_dev *he_dev = HE_DEV(atm_dev);
2680 HPRINTK("phy_put(val 0x%x, addr 0x%lx)\n", val, addr);
2682 spin_lock_irqsave(&he_dev->global_lock, flags);
2683 he_writel(he_dev, val, FRAMER + (addr*4));
2684 (void) he_readl(he_dev, FRAMER + (addr*4)); /* flush posted writes */
2685 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2689 static unsigned char
2690 he_phy_get(struct atm_dev *atm_dev, unsigned long addr)
2692 unsigned long flags;
2693 struct he_dev *he_dev = HE_DEV(atm_dev);
2694 unsigned reg;
2696 spin_lock_irqsave(&he_dev->global_lock, flags);
2697 reg = he_readl(he_dev, FRAMER + (addr*4));
2698 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2700 HPRINTK("phy_get(addr 0x%lx) =0x%x\n", addr, reg);
2701 return reg;
2704 static int
2705 he_proc_read(struct atm_dev *dev, loff_t *pos, char *page)
2707 unsigned long flags;
2708 struct he_dev *he_dev = HE_DEV(dev);
2709 int left, i;
2710 #ifdef notdef
2711 struct he_rbrq *rbrq_tail;
2712 struct he_tpdrq *tpdrq_head;
2713 int rbpl_head, rbpl_tail;
2714 #endif
2715 static long mcc = 0, oec = 0, dcc = 0, cec = 0;
2718 left = *pos;
2719 if (!left--)
2720 return sprintf(page, "ATM he driver\n");
2722 if (!left--)
2723 return sprintf(page, "%s%s\n\n",
2724 he_dev->prod_id, he_dev->media & 0x40 ? "SM" : "MM");
2726 if (!left--)
2727 return sprintf(page, "Mismatched Cells VPI/VCI Not Open Dropped Cells RCM Dropped Cells\n");
2729 spin_lock_irqsave(&he_dev->global_lock, flags);
2730 mcc += he_readl(he_dev, MCC);
2731 oec += he_readl(he_dev, OEC);
2732 dcc += he_readl(he_dev, DCC);
2733 cec += he_readl(he_dev, CEC);
2734 spin_unlock_irqrestore(&he_dev->global_lock, flags);
2736 if (!left--)
2737 return sprintf(page, "%16ld %16ld %13ld %17ld\n\n",
2738 mcc, oec, dcc, cec);
2740 if (!left--)
2741 return sprintf(page, "irq_size = %d inuse = ? peak = %d\n",
2742 CONFIG_IRQ_SIZE, he_dev->irq_peak);
2744 if (!left--)
2745 return sprintf(page, "tpdrq_size = %d inuse = ?\n",
2746 CONFIG_TPDRQ_SIZE);
2748 if (!left--)
2749 return sprintf(page, "rbrq_size = %d inuse = ? peak = %d\n",
2750 CONFIG_RBRQ_SIZE, he_dev->rbrq_peak);
2752 if (!left--)
2753 return sprintf(page, "tbrq_size = %d peak = %d\n",
2754 CONFIG_TBRQ_SIZE, he_dev->tbrq_peak);
2757 #ifdef notdef
2758 rbpl_head = RBPL_MASK(he_readl(he_dev, G0_RBPL_S));
2759 rbpl_tail = RBPL_MASK(he_readl(he_dev, G0_RBPL_T));
2761 inuse = rbpl_head - rbpl_tail;
2762 if (inuse < 0)
2763 inuse += CONFIG_RBPL_SIZE * sizeof(struct he_rbp);
2764 inuse /= sizeof(struct he_rbp);
2766 if (!left--)
2767 return sprintf(page, "rbpl_size = %d inuse = %d\n\n",
2768 CONFIG_RBPL_SIZE, inuse);
2769 #endif
2771 if (!left--)
2772 return sprintf(page, "rate controller periods (cbr)\n pcr #vc\n");
2774 for (i = 0; i < HE_NUM_CS_STPER; ++i)
2775 if (!left--)
2776 return sprintf(page, "cs_stper%-2d %8ld %3d\n", i,
2777 he_dev->cs_stper[i].pcr,
2778 he_dev->cs_stper[i].inuse);
2780 if (!left--)
2781 return sprintf(page, "total bw (cbr): %d (limit %d)\n",
2782 he_dev->total_bw, he_dev->atm_dev->link_rate * 10 / 9);
2784 return 0;
2787 /* eeprom routines -- see 4.7 */
2789 static u8 read_prom_byte(struct he_dev *he_dev, int addr)
2791 u32 val = 0, tmp_read = 0;
2792 int i, j = 0;
2793 u8 byte_read = 0;
2795 val = readl(he_dev->membase + HOST_CNTL);
2796 val &= 0xFFFFE0FF;
2798 /* Turn on write enable */
2799 val |= 0x800;
2800 he_writel(he_dev, val, HOST_CNTL);
2802 /* Send READ instruction */
2803 for (i = 0; i < ARRAY_SIZE(readtab); i++) {
2804 he_writel(he_dev, val | readtab[i], HOST_CNTL);
2805 udelay(EEPROM_DELAY);
2808 /* Next, we need to send the byte address to read from */
2809 for (i = 7; i >= 0; i--) {
2810 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2811 udelay(EEPROM_DELAY);
2812 he_writel(he_dev, val | clocktab[j++] | (((addr >> i) & 1) << 9), HOST_CNTL);
2813 udelay(EEPROM_DELAY);
2816 j = 0;
2818 val &= 0xFFFFF7FF; /* Turn off write enable */
2819 he_writel(he_dev, val, HOST_CNTL);
2821 /* Now, we can read data from the EEPROM by clocking it in */
2822 for (i = 7; i >= 0; i--) {
2823 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2824 udelay(EEPROM_DELAY);
2825 tmp_read = he_readl(he_dev, HOST_CNTL);
2826 byte_read |= (unsigned char)
2827 ((tmp_read & ID_DOUT) >> ID_DOFFSET << i);
2828 he_writel(he_dev, val | clocktab[j++], HOST_CNTL);
2829 udelay(EEPROM_DELAY);
2832 he_writel(he_dev, val | ID_CS, HOST_CNTL);
2833 udelay(EEPROM_DELAY);
2835 return byte_read;
2838 MODULE_LICENSE("GPL");
2839 MODULE_AUTHOR("chas williams <chas@cmf.nrl.navy.mil>");
2840 MODULE_DESCRIPTION("ForeRunnerHE ATM Adapter driver");
2841 module_param(disable64, bool, 0);
2842 MODULE_PARM_DESC(disable64, "disable 64-bit pci bus transfers");
2843 module_param(nvpibits, short, 0);
2844 MODULE_PARM_DESC(nvpibits, "numbers of bits for vpi (default 0)");
2845 module_param(nvcibits, short, 0);
2846 MODULE_PARM_DESC(nvcibits, "numbers of bits for vci (default 12)");
2847 module_param(rx_skb_reserve, short, 0);
2848 MODULE_PARM_DESC(rx_skb_reserve, "padding for receive skb (default 16)");
2849 module_param(irq_coalesce, bool, 0);
2850 MODULE_PARM_DESC(irq_coalesce, "use interrupt coalescing (default 1)");
2851 module_param(sdh, bool, 0);
2852 MODULE_PARM_DESC(sdh, "use SDH framing (default 0)");
2854 static const struct pci_device_id he_pci_tbl[] = {
2855 { PCI_VDEVICE(FORE, PCI_DEVICE_ID_FORE_HE), 0 },
2856 { 0, }
2859 MODULE_DEVICE_TABLE(pci, he_pci_tbl);
2861 static struct pci_driver he_driver = {
2862 .name = "he",
2863 .probe = he_init_one,
2864 .remove = he_remove_one,
2865 .id_table = he_pci_tbl,
2868 module_pci_driver(he_driver);