Linux 4.19.133
[linux/fpc-iii.git] / drivers / atm / nicstar.c
blobcbec9adc01c768e95cf8a3ad000697019f38f65c
1 /*
2 * nicstar.c
4 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
6 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
7 * It was taken from the frle-0.22 device driver.
8 * As the file doesn't have a copyright notice, in the file
9 * nicstarmac.copyright I put the copyright notice from the
10 * frle-0.22 device driver.
11 * Some code is based on the nicstar driver by M. Welsh.
13 * Author: Rui Prior (rprior@inescn.pt)
14 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
17 * (C) INESC 1999
21 * IMPORTANT INFORMATION
23 * There are currently three types of spinlocks:
25 * 1 - Per card interrupt spinlock (to protect structures and such)
26 * 2 - Per SCQ scq spinlock
27 * 3 - Per card resource spinlock (to access registers, etc.)
29 * These must NEVER be grabbed in reverse order.
33 /* Header files */
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/skbuff.h>
38 #include <linux/atmdev.h>
39 #include <linux/atm.h>
40 #include <linux/pci.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/types.h>
43 #include <linux/string.h>
44 #include <linux/delay.h>
45 #include <linux/init.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48 #include <linux/interrupt.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <linux/idr.h>
52 #include <asm/io.h>
53 #include <linux/uaccess.h>
54 #include <linux/atomic.h>
55 #include <linux/etherdevice.h>
56 #include "nicstar.h"
57 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
58 #include "suni.h"
59 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
60 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
61 #include "idt77105.h"
62 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
64 /* Additional code */
66 #include "nicstarmac.c"
68 /* Configurable parameters */
70 #undef PHY_LOOPBACK
71 #undef TX_DEBUG
72 #undef RX_DEBUG
73 #undef GENERAL_DEBUG
74 #undef EXTRA_DEBUG
76 /* Do not touch these */
78 #ifdef TX_DEBUG
79 #define TXPRINTK(args...) printk(args)
80 #else
81 #define TXPRINTK(args...)
82 #endif /* TX_DEBUG */
84 #ifdef RX_DEBUG
85 #define RXPRINTK(args...) printk(args)
86 #else
87 #define RXPRINTK(args...)
88 #endif /* RX_DEBUG */
90 #ifdef GENERAL_DEBUG
91 #define PRINTK(args...) printk(args)
92 #else
93 #define PRINTK(args...)
94 #endif /* GENERAL_DEBUG */
96 #ifdef EXTRA_DEBUG
97 #define XPRINTK(args...) printk(args)
98 #else
99 #define XPRINTK(args...)
100 #endif /* EXTRA_DEBUG */
102 /* Macros */
104 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
106 #define NS_DELAY mdelay(1)
108 #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b)))
110 #ifndef ATM_SKB
111 #define ATM_SKB(s) (&(s)->atm)
112 #endif
114 #define scq_virt_to_bus(scq, p) \
115 (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
117 /* Function declarations */
119 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
120 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
121 int count);
122 static int ns_init_card(int i, struct pci_dev *pcidev);
123 static void ns_init_card_error(ns_dev * card, int error);
124 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
125 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
126 static void push_rxbufs(ns_dev *, struct sk_buff *);
127 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
128 static int ns_open(struct atm_vcc *vcc);
129 static void ns_close(struct atm_vcc *vcc);
130 static void fill_tst(ns_dev * card, int n, vc_map * vc);
131 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
132 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
133 struct sk_buff *skb);
134 static void process_tsq(ns_dev * card);
135 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
136 static void process_rsq(ns_dev * card);
137 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
138 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
139 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
140 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
141 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
142 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
143 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
144 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
145 #ifdef EXTRA_DEBUG
146 static void which_list(ns_dev * card, struct sk_buff *skb);
147 #endif
148 static void ns_poll(struct timer_list *unused);
149 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
150 unsigned long addr);
151 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
153 /* Global variables */
155 static struct ns_dev *cards[NS_MAX_CARDS];
156 static unsigned num_cards;
157 static const struct atmdev_ops atm_ops = {
158 .open = ns_open,
159 .close = ns_close,
160 .ioctl = ns_ioctl,
161 .send = ns_send,
162 .phy_put = ns_phy_put,
163 .phy_get = ns_phy_get,
164 .proc_read = ns_proc_read,
165 .owner = THIS_MODULE,
168 static struct timer_list ns_timer;
169 static char *mac[NS_MAX_CARDS];
170 module_param_array(mac, charp, NULL, 0);
171 MODULE_LICENSE("GPL");
173 /* Functions */
175 static int nicstar_init_one(struct pci_dev *pcidev,
176 const struct pci_device_id *ent)
178 static int index = -1;
179 unsigned int error;
181 index++;
182 cards[index] = NULL;
184 error = ns_init_card(index, pcidev);
185 if (error) {
186 cards[index--] = NULL; /* don't increment index */
187 goto err_out;
190 return 0;
191 err_out:
192 return -ENODEV;
195 static void nicstar_remove_one(struct pci_dev *pcidev)
197 int i, j;
198 ns_dev *card = pci_get_drvdata(pcidev);
199 struct sk_buff *hb;
200 struct sk_buff *iovb;
201 struct sk_buff *lb;
202 struct sk_buff *sb;
204 i = card->index;
206 if (cards[i] == NULL)
207 return;
209 if (card->atmdev->phy && card->atmdev->phy->stop)
210 card->atmdev->phy->stop(card->atmdev);
212 /* Stop everything */
213 writel(0x00000000, card->membase + CFG);
215 /* De-register device */
216 atm_dev_deregister(card->atmdev);
218 /* Disable PCI device */
219 pci_disable_device(pcidev);
221 /* Free up resources */
222 j = 0;
223 PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
224 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
225 dev_kfree_skb_any(hb);
226 j++;
228 PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
229 j = 0;
230 PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
231 card->iovpool.count);
232 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
233 dev_kfree_skb_any(iovb);
234 j++;
236 PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
237 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
238 dev_kfree_skb_any(lb);
239 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
240 dev_kfree_skb_any(sb);
241 free_scq(card, card->scq0, NULL);
242 for (j = 0; j < NS_FRSCD_NUM; j++) {
243 if (card->scd2vc[j] != NULL)
244 free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
246 idr_destroy(&card->idr);
247 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
248 card->rsq.org, card->rsq.dma);
249 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
250 card->tsq.org, card->tsq.dma);
251 free_irq(card->pcidev->irq, card);
252 iounmap(card->membase);
253 kfree(card);
256 static const struct pci_device_id nicstar_pci_tbl[] = {
257 { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
258 {0,} /* terminate list */
261 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
263 static struct pci_driver nicstar_driver = {
264 .name = "nicstar",
265 .id_table = nicstar_pci_tbl,
266 .probe = nicstar_init_one,
267 .remove = nicstar_remove_one,
270 static int __init nicstar_init(void)
272 unsigned error = 0; /* Initialized to remove compile warning */
274 XPRINTK("nicstar: nicstar_init() called.\n");
276 error = pci_register_driver(&nicstar_driver);
278 TXPRINTK("nicstar: TX debug enabled.\n");
279 RXPRINTK("nicstar: RX debug enabled.\n");
280 PRINTK("nicstar: General debug enabled.\n");
281 #ifdef PHY_LOOPBACK
282 printk("nicstar: using PHY loopback.\n");
283 #endif /* PHY_LOOPBACK */
284 XPRINTK("nicstar: nicstar_init() returned.\n");
286 if (!error) {
287 timer_setup(&ns_timer, ns_poll, 0);
288 ns_timer.expires = jiffies + NS_POLL_PERIOD;
289 add_timer(&ns_timer);
292 return error;
295 static void __exit nicstar_cleanup(void)
297 XPRINTK("nicstar: nicstar_cleanup() called.\n");
299 del_timer(&ns_timer);
301 pci_unregister_driver(&nicstar_driver);
303 XPRINTK("nicstar: nicstar_cleanup() returned.\n");
306 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
308 unsigned long flags;
309 u32 data;
310 sram_address <<= 2;
311 sram_address &= 0x0007FFFC; /* address must be dword aligned */
312 sram_address |= 0x50000000; /* SRAM read command */
313 spin_lock_irqsave(&card->res_lock, flags);
314 while (CMD_BUSY(card)) ;
315 writel(sram_address, card->membase + CMD);
316 while (CMD_BUSY(card)) ;
317 data = readl(card->membase + DR0);
318 spin_unlock_irqrestore(&card->res_lock, flags);
319 return data;
322 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
323 int count)
325 unsigned long flags;
326 int i, c;
327 count--; /* count range now is 0..3 instead of 1..4 */
328 c = count;
329 c <<= 2; /* to use increments of 4 */
330 spin_lock_irqsave(&card->res_lock, flags);
331 while (CMD_BUSY(card)) ;
332 for (i = 0; i <= c; i += 4)
333 writel(*(value++), card->membase + i);
334 /* Note: DR# registers are the first 4 dwords in nicstar's memspace,
335 so card->membase + DR0 == card->membase */
336 sram_address <<= 2;
337 sram_address &= 0x0007FFFC;
338 sram_address |= (0x40000000 | count);
339 writel(sram_address, card->membase + CMD);
340 spin_unlock_irqrestore(&card->res_lock, flags);
343 static int ns_init_card(int i, struct pci_dev *pcidev)
345 int j;
346 struct ns_dev *card = NULL;
347 unsigned char pci_latency;
348 unsigned error;
349 u32 data;
350 u32 u32d[4];
351 u32 ns_cfg_rctsize;
352 int bcount;
353 unsigned long membase;
355 error = 0;
357 if (pci_enable_device(pcidev)) {
358 printk("nicstar%d: can't enable PCI device\n", i);
359 error = 2;
360 ns_init_card_error(card, error);
361 return error;
363 if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
364 printk(KERN_WARNING
365 "nicstar%d: No suitable DMA available.\n", i);
366 error = 2;
367 ns_init_card_error(card, error);
368 return error;
371 card = kmalloc(sizeof(*card), GFP_KERNEL);
372 if (!card) {
373 printk
374 ("nicstar%d: can't allocate memory for device structure.\n",
376 error = 2;
377 ns_init_card_error(card, error);
378 return error;
380 cards[i] = card;
381 spin_lock_init(&card->int_lock);
382 spin_lock_init(&card->res_lock);
384 pci_set_drvdata(pcidev, card);
386 card->index = i;
387 card->atmdev = NULL;
388 card->pcidev = pcidev;
389 membase = pci_resource_start(pcidev, 1);
390 card->membase = ioremap(membase, NS_IOREMAP_SIZE);
391 if (!card->membase) {
392 printk("nicstar%d: can't ioremap() membase.\n", i);
393 error = 3;
394 ns_init_card_error(card, error);
395 return error;
397 PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
399 pci_set_master(pcidev);
401 if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
402 printk("nicstar%d: can't read PCI latency timer.\n", i);
403 error = 6;
404 ns_init_card_error(card, error);
405 return error;
407 #ifdef NS_PCI_LATENCY
408 if (pci_latency < NS_PCI_LATENCY) {
409 PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
410 NS_PCI_LATENCY);
411 for (j = 1; j < 4; j++) {
412 if (pci_write_config_byte
413 (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
414 break;
416 if (j == 4) {
417 printk
418 ("nicstar%d: can't set PCI latency timer to %d.\n",
419 i, NS_PCI_LATENCY);
420 error = 7;
421 ns_init_card_error(card, error);
422 return error;
425 #endif /* NS_PCI_LATENCY */
427 /* Clear timer overflow */
428 data = readl(card->membase + STAT);
429 if (data & NS_STAT_TMROF)
430 writel(NS_STAT_TMROF, card->membase + STAT);
432 /* Software reset */
433 writel(NS_CFG_SWRST, card->membase + CFG);
434 NS_DELAY;
435 writel(0x00000000, card->membase + CFG);
437 /* PHY reset */
438 writel(0x00000008, card->membase + GP);
439 NS_DELAY;
440 writel(0x00000001, card->membase + GP);
441 NS_DELAY;
442 while (CMD_BUSY(card)) ;
443 writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
444 NS_DELAY;
446 /* Detect PHY type */
447 while (CMD_BUSY(card)) ;
448 writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
449 while (CMD_BUSY(card)) ;
450 data = readl(card->membase + DR0);
451 switch (data) {
452 case 0x00000009:
453 printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
454 card->max_pcr = ATM_25_PCR;
455 while (CMD_BUSY(card)) ;
456 writel(0x00000008, card->membase + DR0);
457 writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
458 /* Clear an eventual pending interrupt */
459 writel(NS_STAT_SFBQF, card->membase + STAT);
460 #ifdef PHY_LOOPBACK
461 while (CMD_BUSY(card)) ;
462 writel(0x00000022, card->membase + DR0);
463 writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
464 #endif /* PHY_LOOPBACK */
465 break;
466 case 0x00000030:
467 case 0x00000031:
468 printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
469 card->max_pcr = ATM_OC3_PCR;
470 #ifdef PHY_LOOPBACK
471 while (CMD_BUSY(card)) ;
472 writel(0x00000002, card->membase + DR0);
473 writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
474 #endif /* PHY_LOOPBACK */
475 break;
476 default:
477 printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
478 error = 8;
479 ns_init_card_error(card, error);
480 return error;
482 writel(0x00000000, card->membase + GP);
484 /* Determine SRAM size */
485 data = 0x76543210;
486 ns_write_sram(card, 0x1C003, &data, 1);
487 data = 0x89ABCDEF;
488 ns_write_sram(card, 0x14003, &data, 1);
489 if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
490 ns_read_sram(card, 0x1C003) == 0x76543210)
491 card->sram_size = 128;
492 else
493 card->sram_size = 32;
494 PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
496 card->rct_size = NS_MAX_RCTSIZE;
498 #if (NS_MAX_RCTSIZE == 4096)
499 if (card->sram_size == 128)
500 printk
501 ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
503 #elif (NS_MAX_RCTSIZE == 16384)
504 if (card->sram_size == 32) {
505 printk
506 ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
508 card->rct_size = 4096;
510 #else
511 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
512 #endif
514 card->vpibits = NS_VPIBITS;
515 if (card->rct_size == 4096)
516 card->vcibits = 12 - NS_VPIBITS;
517 else /* card->rct_size == 16384 */
518 card->vcibits = 14 - NS_VPIBITS;
520 /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
521 if (mac[i] == NULL)
522 nicstar_init_eprom(card->membase);
524 /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
525 writel(0x00000000, card->membase + VPM);
527 /* Initialize TSQ */
528 card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
529 NS_TSQSIZE + NS_TSQ_ALIGNMENT,
530 &card->tsq.dma, GFP_KERNEL);
531 if (card->tsq.org == NULL) {
532 printk("nicstar%d: can't allocate TSQ.\n", i);
533 error = 10;
534 ns_init_card_error(card, error);
535 return error;
537 card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
538 card->tsq.next = card->tsq.base;
539 card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
540 for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
541 ns_tsi_init(card->tsq.base + j);
542 writel(0x00000000, card->membase + TSQH);
543 writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
544 PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
546 /* Initialize RSQ */
547 card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
548 NS_RSQSIZE + NS_RSQ_ALIGNMENT,
549 &card->rsq.dma, GFP_KERNEL);
550 if (card->rsq.org == NULL) {
551 printk("nicstar%d: can't allocate RSQ.\n", i);
552 error = 11;
553 ns_init_card_error(card, error);
554 return error;
556 card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
557 card->rsq.next = card->rsq.base;
558 card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
559 for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
560 ns_rsqe_init(card->rsq.base + j);
561 writel(0x00000000, card->membase + RSQH);
562 writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
563 PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
565 /* Initialize SCQ0, the only VBR SCQ used */
566 card->scq1 = NULL;
567 card->scq2 = NULL;
568 card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
569 if (card->scq0 == NULL) {
570 printk("nicstar%d: can't get SCQ0.\n", i);
571 error = 12;
572 ns_init_card_error(card, error);
573 return error;
575 u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
576 u32d[1] = (u32) 0x00000000;
577 u32d[2] = (u32) 0xffffffff;
578 u32d[3] = (u32) 0x00000000;
579 ns_write_sram(card, NS_VRSCD0, u32d, 4);
580 ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
581 ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
582 card->scq0->scd = NS_VRSCD0;
583 PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
585 /* Initialize TSTs */
586 card->tst_addr = NS_TST0;
587 card->tst_free_entries = NS_TST_NUM_ENTRIES;
588 data = NS_TST_OPCODE_VARIABLE;
589 for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
590 ns_write_sram(card, NS_TST0 + j, &data, 1);
591 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
592 ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
593 for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
594 ns_write_sram(card, NS_TST1 + j, &data, 1);
595 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
596 ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
597 for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
598 card->tste2vc[j] = NULL;
599 writel(NS_TST0 << 2, card->membase + TSTB);
601 /* Initialize RCT. AAL type is set on opening the VC. */
602 #ifdef RCQ_SUPPORT
603 u32d[0] = NS_RCTE_RAWCELLINTEN;
604 #else
605 u32d[0] = 0x00000000;
606 #endif /* RCQ_SUPPORT */
607 u32d[1] = 0x00000000;
608 u32d[2] = 0x00000000;
609 u32d[3] = 0xFFFFFFFF;
610 for (j = 0; j < card->rct_size; j++)
611 ns_write_sram(card, j * 4, u32d, 4);
613 memset(card->vcmap, 0, sizeof(card->vcmap));
615 for (j = 0; j < NS_FRSCD_NUM; j++)
616 card->scd2vc[j] = NULL;
618 /* Initialize buffer levels */
619 card->sbnr.min = MIN_SB;
620 card->sbnr.init = NUM_SB;
621 card->sbnr.max = MAX_SB;
622 card->lbnr.min = MIN_LB;
623 card->lbnr.init = NUM_LB;
624 card->lbnr.max = MAX_LB;
625 card->iovnr.min = MIN_IOVB;
626 card->iovnr.init = NUM_IOVB;
627 card->iovnr.max = MAX_IOVB;
628 card->hbnr.min = MIN_HB;
629 card->hbnr.init = NUM_HB;
630 card->hbnr.max = MAX_HB;
632 card->sm_handle = NULL;
633 card->sm_addr = 0x00000000;
634 card->lg_handle = NULL;
635 card->lg_addr = 0x00000000;
637 card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
639 idr_init(&card->idr);
641 /* Pre-allocate some huge buffers */
642 skb_queue_head_init(&card->hbpool.queue);
643 card->hbpool.count = 0;
644 for (j = 0; j < NUM_HB; j++) {
645 struct sk_buff *hb;
646 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
647 if (hb == NULL) {
648 printk
649 ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
650 i, j, NUM_HB);
651 error = 13;
652 ns_init_card_error(card, error);
653 return error;
655 NS_PRV_BUFTYPE(hb) = BUF_NONE;
656 skb_queue_tail(&card->hbpool.queue, hb);
657 card->hbpool.count++;
660 /* Allocate large buffers */
661 skb_queue_head_init(&card->lbpool.queue);
662 card->lbpool.count = 0; /* Not used */
663 for (j = 0; j < NUM_LB; j++) {
664 struct sk_buff *lb;
665 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
666 if (lb == NULL) {
667 printk
668 ("nicstar%d: can't allocate %dth of %d large buffers.\n",
669 i, j, NUM_LB);
670 error = 14;
671 ns_init_card_error(card, error);
672 return error;
674 NS_PRV_BUFTYPE(lb) = BUF_LG;
675 skb_queue_tail(&card->lbpool.queue, lb);
676 skb_reserve(lb, NS_SMBUFSIZE);
677 push_rxbufs(card, lb);
678 /* Due to the implementation of push_rxbufs() this is 1, not 0 */
679 if (j == 1) {
680 card->rcbuf = lb;
681 card->rawcell = (struct ns_rcqe *) lb->data;
682 card->rawch = NS_PRV_DMA(lb);
685 /* Test for strange behaviour which leads to crashes */
686 if ((bcount =
687 ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
688 printk
689 ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
690 i, j, bcount);
691 error = 14;
692 ns_init_card_error(card, error);
693 return error;
696 /* Allocate small buffers */
697 skb_queue_head_init(&card->sbpool.queue);
698 card->sbpool.count = 0; /* Not used */
699 for (j = 0; j < NUM_SB; j++) {
700 struct sk_buff *sb;
701 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
702 if (sb == NULL) {
703 printk
704 ("nicstar%d: can't allocate %dth of %d small buffers.\n",
705 i, j, NUM_SB);
706 error = 15;
707 ns_init_card_error(card, error);
708 return error;
710 NS_PRV_BUFTYPE(sb) = BUF_SM;
711 skb_queue_tail(&card->sbpool.queue, sb);
712 skb_reserve(sb, NS_AAL0_HEADER);
713 push_rxbufs(card, sb);
715 /* Test for strange behaviour which leads to crashes */
716 if ((bcount =
717 ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
718 printk
719 ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
720 i, j, bcount);
721 error = 15;
722 ns_init_card_error(card, error);
723 return error;
726 /* Allocate iovec buffers */
727 skb_queue_head_init(&card->iovpool.queue);
728 card->iovpool.count = 0;
729 for (j = 0; j < NUM_IOVB; j++) {
730 struct sk_buff *iovb;
731 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
732 if (iovb == NULL) {
733 printk
734 ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
735 i, j, NUM_IOVB);
736 error = 16;
737 ns_init_card_error(card, error);
738 return error;
740 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
741 skb_queue_tail(&card->iovpool.queue, iovb);
742 card->iovpool.count++;
745 /* Configure NICStAR */
746 if (card->rct_size == 4096)
747 ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
748 else /* (card->rct_size == 16384) */
749 ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
751 card->efbie = 1;
753 card->intcnt = 0;
754 if (request_irq
755 (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
756 printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
757 error = 9;
758 ns_init_card_error(card, error);
759 return error;
762 /* Register device */
763 card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
764 -1, NULL);
765 if (card->atmdev == NULL) {
766 printk("nicstar%d: can't register device.\n", i);
767 error = 17;
768 ns_init_card_error(card, error);
769 return error;
772 if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
773 nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
774 card->atmdev->esi, 6);
775 if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
776 nicstar_read_eprom(card->membase,
777 NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
778 card->atmdev->esi, 6);
782 printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
784 card->atmdev->dev_data = card;
785 card->atmdev->ci_range.vpi_bits = card->vpibits;
786 card->atmdev->ci_range.vci_bits = card->vcibits;
787 card->atmdev->link_rate = card->max_pcr;
788 card->atmdev->phy = NULL;
790 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
791 if (card->max_pcr == ATM_OC3_PCR)
792 suni_init(card->atmdev);
793 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
795 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
796 if (card->max_pcr == ATM_25_PCR)
797 idt77105_init(card->atmdev);
798 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
800 if (card->atmdev->phy && card->atmdev->phy->start)
801 card->atmdev->phy->start(card->atmdev);
803 writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
804 NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
805 NS_CFG_PHYIE, card->membase + CFG);
807 num_cards++;
809 return error;
812 static void ns_init_card_error(ns_dev *card, int error)
814 if (error >= 17) {
815 writel(0x00000000, card->membase + CFG);
817 if (error >= 16) {
818 struct sk_buff *iovb;
819 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
820 dev_kfree_skb_any(iovb);
822 if (error >= 15) {
823 struct sk_buff *sb;
824 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
825 dev_kfree_skb_any(sb);
826 free_scq(card, card->scq0, NULL);
828 if (error >= 14) {
829 struct sk_buff *lb;
830 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
831 dev_kfree_skb_any(lb);
833 if (error >= 13) {
834 struct sk_buff *hb;
835 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
836 dev_kfree_skb_any(hb);
838 if (error >= 12) {
839 kfree(card->rsq.org);
841 if (error >= 11) {
842 kfree(card->tsq.org);
844 if (error >= 10) {
845 free_irq(card->pcidev->irq, card);
847 if (error >= 4) {
848 iounmap(card->membase);
850 if (error >= 3) {
851 pci_disable_device(card->pcidev);
852 kfree(card);
856 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
858 scq_info *scq;
859 int i;
861 if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
862 return NULL;
864 scq = kmalloc(sizeof(*scq), GFP_KERNEL);
865 if (!scq)
866 return NULL;
867 scq->org = dma_alloc_coherent(&card->pcidev->dev,
868 2 * size, &scq->dma, GFP_KERNEL);
869 if (!scq->org) {
870 kfree(scq);
871 return NULL;
873 scq->skb = kmalloc_array(size / NS_SCQE_SIZE,
874 sizeof(*scq->skb),
875 GFP_KERNEL);
876 if (!scq->skb) {
877 dma_free_coherent(&card->pcidev->dev,
878 2 * size, scq->org, scq->dma);
879 kfree(scq);
880 return NULL;
882 scq->num_entries = size / NS_SCQE_SIZE;
883 scq->base = PTR_ALIGN(scq->org, size);
884 scq->next = scq->base;
885 scq->last = scq->base + (scq->num_entries - 1);
886 scq->tail = scq->last;
887 scq->scd = scd;
888 scq->num_entries = size / NS_SCQE_SIZE;
889 scq->tbd_count = 0;
890 init_waitqueue_head(&scq->scqfull_waitq);
891 scq->full = 0;
892 spin_lock_init(&scq->lock);
894 for (i = 0; i < scq->num_entries; i++)
895 scq->skb[i] = NULL;
897 return scq;
900 /* For variable rate SCQ vcc must be NULL */
901 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
903 int i;
905 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
906 for (i = 0; i < scq->num_entries; i++) {
907 if (scq->skb[i] != NULL) {
908 vcc = ATM_SKB(scq->skb[i])->vcc;
909 if (vcc->pop != NULL)
910 vcc->pop(vcc, scq->skb[i]);
911 else
912 dev_kfree_skb_any(scq->skb[i]);
914 } else { /* vcc must be != NULL */
916 if (vcc == NULL) {
917 printk
918 ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
919 for (i = 0; i < scq->num_entries; i++)
920 dev_kfree_skb_any(scq->skb[i]);
921 } else
922 for (i = 0; i < scq->num_entries; i++) {
923 if (scq->skb[i] != NULL) {
924 if (vcc->pop != NULL)
925 vcc->pop(vcc, scq->skb[i]);
926 else
927 dev_kfree_skb_any(scq->skb[i]);
931 kfree(scq->skb);
932 dma_free_coherent(&card->pcidev->dev,
933 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
934 VBR_SCQSIZE : CBR_SCQSIZE),
935 scq->org, scq->dma);
936 kfree(scq);
939 /* The handles passed must be pointers to the sk_buff containing the small
940 or large buffer(s) cast to u32. */
941 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
943 struct sk_buff *handle1, *handle2;
944 int id1, id2;
945 u32 addr1, addr2;
946 u32 stat;
947 unsigned long flags;
949 /* *BARF* */
950 handle2 = NULL;
951 addr2 = 0;
952 handle1 = skb;
953 addr1 = dma_map_single(&card->pcidev->dev,
954 skb->data,
955 (NS_PRV_BUFTYPE(skb) == BUF_SM
956 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
957 DMA_TO_DEVICE);
958 NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
960 #ifdef GENERAL_DEBUG
961 if (!addr1)
962 printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
963 card->index);
964 #endif /* GENERAL_DEBUG */
966 stat = readl(card->membase + STAT);
967 card->sbfqc = ns_stat_sfbqc_get(stat);
968 card->lbfqc = ns_stat_lfbqc_get(stat);
969 if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
970 if (!addr2) {
971 if (card->sm_addr) {
972 addr2 = card->sm_addr;
973 handle2 = card->sm_handle;
974 card->sm_addr = 0x00000000;
975 card->sm_handle = NULL;
976 } else { /* (!sm_addr) */
978 card->sm_addr = addr1;
979 card->sm_handle = handle1;
982 } else { /* buf_type == BUF_LG */
984 if (!addr2) {
985 if (card->lg_addr) {
986 addr2 = card->lg_addr;
987 handle2 = card->lg_handle;
988 card->lg_addr = 0x00000000;
989 card->lg_handle = NULL;
990 } else { /* (!lg_addr) */
992 card->lg_addr = addr1;
993 card->lg_handle = handle1;
998 if (addr2) {
999 if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1000 if (card->sbfqc >= card->sbnr.max) {
1001 skb_unlink(handle1, &card->sbpool.queue);
1002 dev_kfree_skb_any(handle1);
1003 skb_unlink(handle2, &card->sbpool.queue);
1004 dev_kfree_skb_any(handle2);
1005 return;
1006 } else
1007 card->sbfqc += 2;
1008 } else { /* (buf_type == BUF_LG) */
1010 if (card->lbfqc >= card->lbnr.max) {
1011 skb_unlink(handle1, &card->lbpool.queue);
1012 dev_kfree_skb_any(handle1);
1013 skb_unlink(handle2, &card->lbpool.queue);
1014 dev_kfree_skb_any(handle2);
1015 return;
1016 } else
1017 card->lbfqc += 2;
1020 id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1021 if (id1 < 0)
1022 goto out;
1024 id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1025 if (id2 < 0)
1026 goto out;
1028 spin_lock_irqsave(&card->res_lock, flags);
1029 while (CMD_BUSY(card)) ;
1030 writel(addr2, card->membase + DR3);
1031 writel(id2, card->membase + DR2);
1032 writel(addr1, card->membase + DR1);
1033 writel(id1, card->membase + DR0);
1034 writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1035 card->membase + CMD);
1036 spin_unlock_irqrestore(&card->res_lock, flags);
1038 XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1039 card->index,
1040 (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1041 addr1, addr2);
1044 if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1045 card->lbfqc >= card->lbnr.min) {
1046 card->efbie = 1;
1047 writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1048 card->membase + CFG);
1051 out:
1052 return;
1055 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1057 u32 stat_r;
1058 ns_dev *card;
1059 struct atm_dev *dev;
1060 unsigned long flags;
1062 card = (ns_dev *) dev_id;
1063 dev = card->atmdev;
1064 card->intcnt++;
1066 PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1068 spin_lock_irqsave(&card->int_lock, flags);
1070 stat_r = readl(card->membase + STAT);
1072 /* Transmit Status Indicator has been written to T. S. Queue */
1073 if (stat_r & NS_STAT_TSIF) {
1074 TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1075 process_tsq(card);
1076 writel(NS_STAT_TSIF, card->membase + STAT);
1079 /* Incomplete CS-PDU has been transmitted */
1080 if (stat_r & NS_STAT_TXICP) {
1081 writel(NS_STAT_TXICP, card->membase + STAT);
1082 TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1083 card->index);
1086 /* Transmit Status Queue 7/8 full */
1087 if (stat_r & NS_STAT_TSQF) {
1088 writel(NS_STAT_TSQF, card->membase + STAT);
1089 PRINTK("nicstar%d: TSQ full.\n", card->index);
1090 process_tsq(card);
1093 /* Timer overflow */
1094 if (stat_r & NS_STAT_TMROF) {
1095 writel(NS_STAT_TMROF, card->membase + STAT);
1096 PRINTK("nicstar%d: Timer overflow.\n", card->index);
1099 /* PHY device interrupt signal active */
1100 if (stat_r & NS_STAT_PHYI) {
1101 writel(NS_STAT_PHYI, card->membase + STAT);
1102 PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1103 if (dev->phy && dev->phy->interrupt) {
1104 dev->phy->interrupt(dev);
1108 /* Small Buffer Queue is full */
1109 if (stat_r & NS_STAT_SFBQF) {
1110 writel(NS_STAT_SFBQF, card->membase + STAT);
1111 printk("nicstar%d: Small free buffer queue is full.\n",
1112 card->index);
1115 /* Large Buffer Queue is full */
1116 if (stat_r & NS_STAT_LFBQF) {
1117 writel(NS_STAT_LFBQF, card->membase + STAT);
1118 printk("nicstar%d: Large free buffer queue is full.\n",
1119 card->index);
1122 /* Receive Status Queue is full */
1123 if (stat_r & NS_STAT_RSQF) {
1124 writel(NS_STAT_RSQF, card->membase + STAT);
1125 printk("nicstar%d: RSQ full.\n", card->index);
1126 process_rsq(card);
1129 /* Complete CS-PDU received */
1130 if (stat_r & NS_STAT_EOPDU) {
1131 RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1132 process_rsq(card);
1133 writel(NS_STAT_EOPDU, card->membase + STAT);
1136 /* Raw cell received */
1137 if (stat_r & NS_STAT_RAWCF) {
1138 writel(NS_STAT_RAWCF, card->membase + STAT);
1139 #ifndef RCQ_SUPPORT
1140 printk("nicstar%d: Raw cell received and no support yet...\n",
1141 card->index);
1142 #endif /* RCQ_SUPPORT */
1143 /* NOTE: the following procedure may keep a raw cell pending until the
1144 next interrupt. As this preliminary support is only meant to
1145 avoid buffer leakage, this is not an issue. */
1146 while (readl(card->membase + RAWCT) != card->rawch) {
1148 if (ns_rcqe_islast(card->rawcell)) {
1149 struct sk_buff *oldbuf;
1151 oldbuf = card->rcbuf;
1152 card->rcbuf = idr_find(&card->idr,
1153 ns_rcqe_nextbufhandle(card->rawcell));
1154 card->rawch = NS_PRV_DMA(card->rcbuf);
1155 card->rawcell = (struct ns_rcqe *)
1156 card->rcbuf->data;
1157 recycle_rx_buf(card, oldbuf);
1158 } else {
1159 card->rawch += NS_RCQE_SIZE;
1160 card->rawcell++;
1165 /* Small buffer queue is empty */
1166 if (stat_r & NS_STAT_SFBQE) {
1167 int i;
1168 struct sk_buff *sb;
1170 writel(NS_STAT_SFBQE, card->membase + STAT);
1171 printk("nicstar%d: Small free buffer queue empty.\n",
1172 card->index);
1173 for (i = 0; i < card->sbnr.min; i++) {
1174 sb = dev_alloc_skb(NS_SMSKBSIZE);
1175 if (sb == NULL) {
1176 writel(readl(card->membase + CFG) &
1177 ~NS_CFG_EFBIE, card->membase + CFG);
1178 card->efbie = 0;
1179 break;
1181 NS_PRV_BUFTYPE(sb) = BUF_SM;
1182 skb_queue_tail(&card->sbpool.queue, sb);
1183 skb_reserve(sb, NS_AAL0_HEADER);
1184 push_rxbufs(card, sb);
1186 card->sbfqc = i;
1187 process_rsq(card);
1190 /* Large buffer queue empty */
1191 if (stat_r & NS_STAT_LFBQE) {
1192 int i;
1193 struct sk_buff *lb;
1195 writel(NS_STAT_LFBQE, card->membase + STAT);
1196 printk("nicstar%d: Large free buffer queue empty.\n",
1197 card->index);
1198 for (i = 0; i < card->lbnr.min; i++) {
1199 lb = dev_alloc_skb(NS_LGSKBSIZE);
1200 if (lb == NULL) {
1201 writel(readl(card->membase + CFG) &
1202 ~NS_CFG_EFBIE, card->membase + CFG);
1203 card->efbie = 0;
1204 break;
1206 NS_PRV_BUFTYPE(lb) = BUF_LG;
1207 skb_queue_tail(&card->lbpool.queue, lb);
1208 skb_reserve(lb, NS_SMBUFSIZE);
1209 push_rxbufs(card, lb);
1211 card->lbfqc = i;
1212 process_rsq(card);
1215 /* Receive Status Queue is 7/8 full */
1216 if (stat_r & NS_STAT_RSQAF) {
1217 writel(NS_STAT_RSQAF, card->membase + STAT);
1218 RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1219 process_rsq(card);
1222 spin_unlock_irqrestore(&card->int_lock, flags);
1223 PRINTK("nicstar%d: end of interrupt service\n", card->index);
1224 return IRQ_HANDLED;
1227 static int ns_open(struct atm_vcc *vcc)
1229 ns_dev *card;
1230 vc_map *vc;
1231 unsigned long tmpl, modl;
1232 int tcr, tcra; /* target cell rate, and absolute value */
1233 int n = 0; /* Number of entries in the TST. Initialized to remove
1234 the compiler warning. */
1235 u32 u32d[4];
1236 int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
1237 warning. How I wish compilers were clever enough to
1238 tell which variables can truly be used
1239 uninitialized... */
1240 int inuse; /* tx or rx vc already in use by another vcc */
1241 short vpi = vcc->vpi;
1242 int vci = vcc->vci;
1244 card = (ns_dev *) vcc->dev->dev_data;
1245 PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1246 vci);
1247 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1248 PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1249 return -EINVAL;
1252 vc = &(card->vcmap[vpi << card->vcibits | vci]);
1253 vcc->dev_data = vc;
1255 inuse = 0;
1256 if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1257 inuse = 1;
1258 if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1259 inuse += 2;
1260 if (inuse) {
1261 printk("nicstar%d: %s vci already in use.\n", card->index,
1262 inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1263 return -EINVAL;
1266 set_bit(ATM_VF_ADDR, &vcc->flags);
1268 /* NOTE: You are not allowed to modify an open connection's QOS. To change
1269 that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1270 needed to do that. */
1271 if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1272 scq_info *scq;
1274 set_bit(ATM_VF_PARTIAL, &vcc->flags);
1275 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1276 /* Check requested cell rate and availability of SCD */
1277 if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1278 && vcc->qos.txtp.min_pcr == 0) {
1279 PRINTK
1280 ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1281 card->index);
1282 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1283 clear_bit(ATM_VF_ADDR, &vcc->flags);
1284 return -EINVAL;
1287 tcr = atm_pcr_goal(&(vcc->qos.txtp));
1288 tcra = tcr >= 0 ? tcr : -tcr;
1290 PRINTK("nicstar%d: target cell rate = %d.\n",
1291 card->index, vcc->qos.txtp.max_pcr);
1293 tmpl =
1294 (unsigned long)tcra *(unsigned long)
1295 NS_TST_NUM_ENTRIES;
1296 modl = tmpl % card->max_pcr;
1298 n = (int)(tmpl / card->max_pcr);
1299 if (tcr > 0) {
1300 if (modl > 0)
1301 n++;
1302 } else if (tcr == 0) {
1303 if ((n =
1304 (card->tst_free_entries -
1305 NS_TST_RESERVED)) <= 0) {
1306 PRINTK
1307 ("nicstar%d: no CBR bandwidth free.\n",
1308 card->index);
1309 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1310 clear_bit(ATM_VF_ADDR, &vcc->flags);
1311 return -EINVAL;
1315 if (n == 0) {
1316 printk
1317 ("nicstar%d: selected bandwidth < granularity.\n",
1318 card->index);
1319 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1320 clear_bit(ATM_VF_ADDR, &vcc->flags);
1321 return -EINVAL;
1324 if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1325 PRINTK
1326 ("nicstar%d: not enough free CBR bandwidth.\n",
1327 card->index);
1328 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1329 clear_bit(ATM_VF_ADDR, &vcc->flags);
1330 return -EINVAL;
1331 } else
1332 card->tst_free_entries -= n;
1334 XPRINTK("nicstar%d: writing %d tst entries.\n",
1335 card->index, n);
1336 for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1337 if (card->scd2vc[frscdi] == NULL) {
1338 card->scd2vc[frscdi] = vc;
1339 break;
1342 if (frscdi == NS_FRSCD_NUM) {
1343 PRINTK
1344 ("nicstar%d: no SCD available for CBR channel.\n",
1345 card->index);
1346 card->tst_free_entries += n;
1347 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1348 clear_bit(ATM_VF_ADDR, &vcc->flags);
1349 return -EBUSY;
1352 vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1354 scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1355 if (scq == NULL) {
1356 PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1357 card->index);
1358 card->scd2vc[frscdi] = NULL;
1359 card->tst_free_entries += n;
1360 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1361 clear_bit(ATM_VF_ADDR, &vcc->flags);
1362 return -ENOMEM;
1364 vc->scq = scq;
1365 u32d[0] = scq_virt_to_bus(scq, scq->base);
1366 u32d[1] = (u32) 0x00000000;
1367 u32d[2] = (u32) 0xffffffff;
1368 u32d[3] = (u32) 0x00000000;
1369 ns_write_sram(card, vc->cbr_scd, u32d, 4);
1371 fill_tst(card, n, vc);
1372 } else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1373 vc->cbr_scd = 0x00000000;
1374 vc->scq = card->scq0;
1377 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1378 vc->tx = 1;
1379 vc->tx_vcc = vcc;
1380 vc->tbd_count = 0;
1382 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1383 u32 status;
1385 vc->rx = 1;
1386 vc->rx_vcc = vcc;
1387 vc->rx_iov = NULL;
1389 /* Open the connection in hardware */
1390 if (vcc->qos.aal == ATM_AAL5)
1391 status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1392 else /* vcc->qos.aal == ATM_AAL0 */
1393 status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1394 #ifdef RCQ_SUPPORT
1395 status |= NS_RCTE_RAWCELLINTEN;
1396 #endif /* RCQ_SUPPORT */
1397 ns_write_sram(card,
1398 NS_RCT +
1399 (vpi << card->vcibits | vci) *
1400 NS_RCT_ENTRY_SIZE, &status, 1);
1405 set_bit(ATM_VF_READY, &vcc->flags);
1406 return 0;
1409 static void ns_close(struct atm_vcc *vcc)
1411 vc_map *vc;
1412 ns_dev *card;
1413 u32 data;
1414 int i;
1416 vc = vcc->dev_data;
1417 card = vcc->dev->dev_data;
1418 PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1419 (int)vcc->vpi, vcc->vci);
1421 clear_bit(ATM_VF_READY, &vcc->flags);
1423 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1424 u32 addr;
1425 unsigned long flags;
1427 addr =
1428 NS_RCT +
1429 (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1430 spin_lock_irqsave(&card->res_lock, flags);
1431 while (CMD_BUSY(card)) ;
1432 writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1433 card->membase + CMD);
1434 spin_unlock_irqrestore(&card->res_lock, flags);
1436 vc->rx = 0;
1437 if (vc->rx_iov != NULL) {
1438 struct sk_buff *iovb;
1439 u32 stat;
1441 stat = readl(card->membase + STAT);
1442 card->sbfqc = ns_stat_sfbqc_get(stat);
1443 card->lbfqc = ns_stat_lfbqc_get(stat);
1445 PRINTK
1446 ("nicstar%d: closing a VC with pending rx buffers.\n",
1447 card->index);
1448 iovb = vc->rx_iov;
1449 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1450 NS_PRV_IOVCNT(iovb));
1451 NS_PRV_IOVCNT(iovb) = 0;
1452 spin_lock_irqsave(&card->int_lock, flags);
1453 recycle_iov_buf(card, iovb);
1454 spin_unlock_irqrestore(&card->int_lock, flags);
1455 vc->rx_iov = NULL;
1459 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1460 vc->tx = 0;
1463 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1464 unsigned long flags;
1465 ns_scqe *scqep;
1466 scq_info *scq;
1468 scq = vc->scq;
1470 for (;;) {
1471 spin_lock_irqsave(&scq->lock, flags);
1472 scqep = scq->next;
1473 if (scqep == scq->base)
1474 scqep = scq->last;
1475 else
1476 scqep--;
1477 if (scqep == scq->tail) {
1478 spin_unlock_irqrestore(&scq->lock, flags);
1479 break;
1481 /* If the last entry is not a TSR, place one in the SCQ in order to
1482 be able to completely drain it and then close. */
1483 if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1484 ns_scqe tsr;
1485 u32 scdi, scqi;
1486 u32 data;
1487 int index;
1489 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1490 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1491 scqi = scq->next - scq->base;
1492 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1493 tsr.word_3 = 0x00000000;
1494 tsr.word_4 = 0x00000000;
1495 *scq->next = tsr;
1496 index = (int)scqi;
1497 scq->skb[index] = NULL;
1498 if (scq->next == scq->last)
1499 scq->next = scq->base;
1500 else
1501 scq->next++;
1502 data = scq_virt_to_bus(scq, scq->next);
1503 ns_write_sram(card, scq->scd, &data, 1);
1505 spin_unlock_irqrestore(&scq->lock, flags);
1506 schedule();
1509 /* Free all TST entries */
1510 data = NS_TST_OPCODE_VARIABLE;
1511 for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1512 if (card->tste2vc[i] == vc) {
1513 ns_write_sram(card, card->tst_addr + i, &data,
1515 card->tste2vc[i] = NULL;
1516 card->tst_free_entries++;
1520 card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1521 free_scq(card, vc->scq, vcc);
1524 /* remove all references to vcc before deleting it */
1525 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1526 unsigned long flags;
1527 scq_info *scq = card->scq0;
1529 spin_lock_irqsave(&scq->lock, flags);
1531 for (i = 0; i < scq->num_entries; i++) {
1532 if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1533 ATM_SKB(scq->skb[i])->vcc = NULL;
1534 atm_return(vcc, scq->skb[i]->truesize);
1535 PRINTK
1536 ("nicstar: deleted pending vcc mapping\n");
1540 spin_unlock_irqrestore(&scq->lock, flags);
1543 vcc->dev_data = NULL;
1544 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1545 clear_bit(ATM_VF_ADDR, &vcc->flags);
1547 #ifdef RX_DEBUG
1549 u32 stat, cfg;
1550 stat = readl(card->membase + STAT);
1551 cfg = readl(card->membase + CFG);
1552 printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
1553 printk
1554 ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n",
1555 card->tsq.base, card->tsq.next,
1556 card->tsq.last, readl(card->membase + TSQT));
1557 printk
1558 ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n",
1559 card->rsq.base, card->rsq.next,
1560 card->rsq.last, readl(card->membase + RSQT));
1561 printk("Empty free buffer queue interrupt %s \n",
1562 card->efbie ? "enabled" : "disabled");
1563 printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
1564 ns_stat_sfbqc_get(stat), card->sbpool.count,
1565 ns_stat_lfbqc_get(stat), card->lbpool.count);
1566 printk("hbpool.count = %d iovpool.count = %d \n",
1567 card->hbpool.count, card->iovpool.count);
1569 #endif /* RX_DEBUG */
1572 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1574 u32 new_tst;
1575 unsigned long cl;
1576 int e, r;
1577 u32 data;
1579 /* It would be very complicated to keep the two TSTs synchronized while
1580 assuring that writes are only made to the inactive TST. So, for now I
1581 will use only one TST. If problems occur, I will change this again */
1583 new_tst = card->tst_addr;
1585 /* Fill procedure */
1587 for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1588 if (card->tste2vc[e] == NULL)
1589 break;
1591 if (e == NS_TST_NUM_ENTRIES) {
1592 printk("nicstar%d: No free TST entries found. \n", card->index);
1593 return;
1596 r = n;
1597 cl = NS_TST_NUM_ENTRIES;
1598 data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1600 while (r > 0) {
1601 if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1602 card->tste2vc[e] = vc;
1603 ns_write_sram(card, new_tst + e, &data, 1);
1604 cl -= NS_TST_NUM_ENTRIES;
1605 r--;
1608 if (++e == NS_TST_NUM_ENTRIES) {
1609 e = 0;
1611 cl += n;
1614 /* End of fill procedure */
1616 data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1617 ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1618 ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1619 card->tst_addr = new_tst;
1622 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1624 ns_dev *card;
1625 vc_map *vc;
1626 scq_info *scq;
1627 unsigned long buflen;
1628 ns_scqe scqe;
1629 u32 flags; /* TBD flags, not CPU flags */
1631 card = vcc->dev->dev_data;
1632 TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1633 if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1634 printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1635 card->index);
1636 atomic_inc(&vcc->stats->tx_err);
1637 dev_kfree_skb_any(skb);
1638 return -EINVAL;
1641 if (!vc->tx) {
1642 printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1643 card->index);
1644 atomic_inc(&vcc->stats->tx_err);
1645 dev_kfree_skb_any(skb);
1646 return -EINVAL;
1649 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1650 printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1651 card->index);
1652 atomic_inc(&vcc->stats->tx_err);
1653 dev_kfree_skb_any(skb);
1654 return -EINVAL;
1657 if (skb_shinfo(skb)->nr_frags != 0) {
1658 printk("nicstar%d: No scatter-gather yet.\n", card->index);
1659 atomic_inc(&vcc->stats->tx_err);
1660 dev_kfree_skb_any(skb);
1661 return -EINVAL;
1664 ATM_SKB(skb)->vcc = vcc;
1666 NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1667 skb->len, DMA_TO_DEVICE);
1669 if (vcc->qos.aal == ATM_AAL5) {
1670 buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
1671 flags = NS_TBD_AAL5;
1672 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1673 scqe.word_3 = cpu_to_le32(skb->len);
1674 scqe.word_4 =
1675 ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1676 ATM_SKB(skb)->
1677 atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1678 flags |= NS_TBD_EOPDU;
1679 } else { /* (vcc->qos.aal == ATM_AAL0) */
1681 buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
1682 flags = NS_TBD_AAL0;
1683 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1684 scqe.word_3 = cpu_to_le32(0x00000000);
1685 if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
1686 flags |= NS_TBD_EOPDU;
1687 scqe.word_4 =
1688 cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1689 /* Force the VPI/VCI to be the same as in VCC struct */
1690 scqe.word_4 |=
1691 cpu_to_le32((((u32) vcc->
1692 vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1693 vci) <<
1694 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1697 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1698 scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1699 scq = ((vc_map *) vcc->dev_data)->scq;
1700 } else {
1701 scqe.word_1 =
1702 ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1703 scq = card->scq0;
1706 if (push_scqe(card, vc, scq, &scqe, skb) != 0) {
1707 atomic_inc(&vcc->stats->tx_err);
1708 dev_kfree_skb_any(skb);
1709 return -EIO;
1711 atomic_inc(&vcc->stats->tx);
1713 return 0;
1716 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1717 struct sk_buff *skb)
1719 unsigned long flags;
1720 ns_scqe tsr;
1721 u32 scdi, scqi;
1722 int scq_is_vbr;
1723 u32 data;
1724 int index;
1726 spin_lock_irqsave(&scq->lock, flags);
1727 while (scq->tail == scq->next) {
1728 if (in_interrupt()) {
1729 spin_unlock_irqrestore(&scq->lock, flags);
1730 printk("nicstar%d: Error pushing TBD.\n", card->index);
1731 return 1;
1734 scq->full = 1;
1735 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1736 scq->tail != scq->next,
1737 scq->lock,
1738 SCQFULL_TIMEOUT);
1740 if (scq->full) {
1741 spin_unlock_irqrestore(&scq->lock, flags);
1742 printk("nicstar%d: Timeout pushing TBD.\n",
1743 card->index);
1744 return 1;
1747 *scq->next = *tbd;
1748 index = (int)(scq->next - scq->base);
1749 scq->skb[index] = skb;
1750 XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1751 card->index, skb, index);
1752 XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1753 card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1754 le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1755 scq->next);
1756 if (scq->next == scq->last)
1757 scq->next = scq->base;
1758 else
1759 scq->next++;
1761 vc->tbd_count++;
1762 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1763 scq->tbd_count++;
1764 scq_is_vbr = 1;
1765 } else
1766 scq_is_vbr = 0;
1768 if (vc->tbd_count >= MAX_TBD_PER_VC
1769 || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1770 int has_run = 0;
1772 while (scq->tail == scq->next) {
1773 if (in_interrupt()) {
1774 data = scq_virt_to_bus(scq, scq->next);
1775 ns_write_sram(card, scq->scd, &data, 1);
1776 spin_unlock_irqrestore(&scq->lock, flags);
1777 printk("nicstar%d: Error pushing TSR.\n",
1778 card->index);
1779 return 0;
1782 scq->full = 1;
1783 if (has_run++)
1784 break;
1785 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1786 scq->tail != scq->next,
1787 scq->lock,
1788 SCQFULL_TIMEOUT);
1791 if (!scq->full) {
1792 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1793 if (scq_is_vbr)
1794 scdi = NS_TSR_SCDISVBR;
1795 else
1796 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1797 scqi = scq->next - scq->base;
1798 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1799 tsr.word_3 = 0x00000000;
1800 tsr.word_4 = 0x00000000;
1802 *scq->next = tsr;
1803 index = (int)scqi;
1804 scq->skb[index] = NULL;
1805 XPRINTK
1806 ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1807 card->index, le32_to_cpu(tsr.word_1),
1808 le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1809 le32_to_cpu(tsr.word_4), scq->next);
1810 if (scq->next == scq->last)
1811 scq->next = scq->base;
1812 else
1813 scq->next++;
1814 vc->tbd_count = 0;
1815 scq->tbd_count = 0;
1816 } else
1817 PRINTK("nicstar%d: Timeout pushing TSR.\n",
1818 card->index);
1820 data = scq_virt_to_bus(scq, scq->next);
1821 ns_write_sram(card, scq->scd, &data, 1);
1823 spin_unlock_irqrestore(&scq->lock, flags);
1825 return 0;
1828 static void process_tsq(ns_dev * card)
1830 u32 scdi;
1831 scq_info *scq;
1832 ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1833 int serviced_entries; /* flag indicating at least on entry was serviced */
1835 serviced_entries = 0;
1837 if (card->tsq.next == card->tsq.last)
1838 one_ahead = card->tsq.base;
1839 else
1840 one_ahead = card->tsq.next + 1;
1842 if (one_ahead == card->tsq.last)
1843 two_ahead = card->tsq.base;
1844 else
1845 two_ahead = one_ahead + 1;
1847 while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1848 !ns_tsi_isempty(two_ahead))
1849 /* At most two empty, as stated in the 77201 errata */
1851 serviced_entries = 1;
1853 /* Skip the one or two possible empty entries */
1854 while (ns_tsi_isempty(card->tsq.next)) {
1855 if (card->tsq.next == card->tsq.last)
1856 card->tsq.next = card->tsq.base;
1857 else
1858 card->tsq.next++;
1861 if (!ns_tsi_tmrof(card->tsq.next)) {
1862 scdi = ns_tsi_getscdindex(card->tsq.next);
1863 if (scdi == NS_TSI_SCDISVBR)
1864 scq = card->scq0;
1865 else {
1866 if (card->scd2vc[scdi] == NULL) {
1867 printk
1868 ("nicstar%d: could not find VC from SCD index.\n",
1869 card->index);
1870 ns_tsi_init(card->tsq.next);
1871 return;
1873 scq = card->scd2vc[scdi]->scq;
1875 drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1876 scq->full = 0;
1877 wake_up_interruptible(&(scq->scqfull_waitq));
1880 ns_tsi_init(card->tsq.next);
1881 previous = card->tsq.next;
1882 if (card->tsq.next == card->tsq.last)
1883 card->tsq.next = card->tsq.base;
1884 else
1885 card->tsq.next++;
1887 if (card->tsq.next == card->tsq.last)
1888 one_ahead = card->tsq.base;
1889 else
1890 one_ahead = card->tsq.next + 1;
1892 if (one_ahead == card->tsq.last)
1893 two_ahead = card->tsq.base;
1894 else
1895 two_ahead = one_ahead + 1;
1898 if (serviced_entries)
1899 writel(PTR_DIFF(previous, card->tsq.base),
1900 card->membase + TSQH);
1903 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1905 struct atm_vcc *vcc;
1906 struct sk_buff *skb;
1907 int i;
1908 unsigned long flags;
1910 XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1911 card->index, scq, pos);
1912 if (pos >= scq->num_entries) {
1913 printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1914 return;
1917 spin_lock_irqsave(&scq->lock, flags);
1918 i = (int)(scq->tail - scq->base);
1919 if (++i == scq->num_entries)
1920 i = 0;
1921 while (i != pos) {
1922 skb = scq->skb[i];
1923 XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1924 card->index, skb, i);
1925 if (skb != NULL) {
1926 dma_unmap_single(&card->pcidev->dev,
1927 NS_PRV_DMA(skb),
1928 skb->len,
1929 DMA_TO_DEVICE);
1930 vcc = ATM_SKB(skb)->vcc;
1931 if (vcc && vcc->pop != NULL) {
1932 vcc->pop(vcc, skb);
1933 } else {
1934 dev_kfree_skb_irq(skb);
1936 scq->skb[i] = NULL;
1938 if (++i == scq->num_entries)
1939 i = 0;
1941 scq->tail = scq->base + pos;
1942 spin_unlock_irqrestore(&scq->lock, flags);
1945 static void process_rsq(ns_dev * card)
1947 ns_rsqe *previous;
1949 if (!ns_rsqe_valid(card->rsq.next))
1950 return;
1951 do {
1952 dequeue_rx(card, card->rsq.next);
1953 ns_rsqe_init(card->rsq.next);
1954 previous = card->rsq.next;
1955 if (card->rsq.next == card->rsq.last)
1956 card->rsq.next = card->rsq.base;
1957 else
1958 card->rsq.next++;
1959 } while (ns_rsqe_valid(card->rsq.next));
1960 writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1963 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1965 u32 vpi, vci;
1966 vc_map *vc;
1967 struct sk_buff *iovb;
1968 struct iovec *iov;
1969 struct atm_vcc *vcc;
1970 struct sk_buff *skb;
1971 unsigned short aal5_len;
1972 int len;
1973 u32 stat;
1974 u32 id;
1976 stat = readl(card->membase + STAT);
1977 card->sbfqc = ns_stat_sfbqc_get(stat);
1978 card->lbfqc = ns_stat_lfbqc_get(stat);
1980 id = le32_to_cpu(rsqe->buffer_handle);
1981 skb = idr_remove(&card->idr, id);
1982 if (!skb) {
1983 RXPRINTK(KERN_ERR
1984 "nicstar%d: skb not found!\n", card->index);
1985 return;
1987 dma_sync_single_for_cpu(&card->pcidev->dev,
1988 NS_PRV_DMA(skb),
1989 (NS_PRV_BUFTYPE(skb) == BUF_SM
1990 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
1991 DMA_FROM_DEVICE);
1992 dma_unmap_single(&card->pcidev->dev,
1993 NS_PRV_DMA(skb),
1994 (NS_PRV_BUFTYPE(skb) == BUF_SM
1995 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
1996 DMA_FROM_DEVICE);
1997 vpi = ns_rsqe_vpi(rsqe);
1998 vci = ns_rsqe_vci(rsqe);
1999 if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2000 printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2001 card->index, vpi, vci);
2002 recycle_rx_buf(card, skb);
2003 return;
2006 vc = &(card->vcmap[vpi << card->vcibits | vci]);
2007 if (!vc->rx) {
2008 RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2009 card->index, vpi, vci);
2010 recycle_rx_buf(card, skb);
2011 return;
2014 vcc = vc->rx_vcc;
2016 if (vcc->qos.aal == ATM_AAL0) {
2017 struct sk_buff *sb;
2018 unsigned char *cell;
2019 int i;
2021 cell = skb->data;
2022 for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2023 sb = dev_alloc_skb(NS_SMSKBSIZE);
2024 if (!sb) {
2025 printk
2026 ("nicstar%d: Can't allocate buffers for aal0.\n",
2027 card->index);
2028 atomic_add(i, &vcc->stats->rx_drop);
2029 break;
2031 if (!atm_charge(vcc, sb->truesize)) {
2032 RXPRINTK
2033 ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2034 card->index);
2035 atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */
2036 dev_kfree_skb_any(sb);
2037 break;
2039 /* Rebuild the header */
2040 *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2041 (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2042 if (i == 1 && ns_rsqe_eopdu(rsqe))
2043 *((u32 *) sb->data) |= 0x00000002;
2044 skb_put(sb, NS_AAL0_HEADER);
2045 memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2046 skb_put(sb, ATM_CELL_PAYLOAD);
2047 ATM_SKB(sb)->vcc = vcc;
2048 __net_timestamp(sb);
2049 vcc->push(vcc, sb);
2050 atomic_inc(&vcc->stats->rx);
2051 cell += ATM_CELL_PAYLOAD;
2054 recycle_rx_buf(card, skb);
2055 return;
2058 /* To reach this point, the AAL layer can only be AAL5 */
2060 if ((iovb = vc->rx_iov) == NULL) {
2061 iovb = skb_dequeue(&(card->iovpool.queue));
2062 if (iovb == NULL) { /* No buffers in the queue */
2063 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2064 if (iovb == NULL) {
2065 printk("nicstar%d: Out of iovec buffers.\n",
2066 card->index);
2067 atomic_inc(&vcc->stats->rx_drop);
2068 recycle_rx_buf(card, skb);
2069 return;
2071 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2072 } else if (--card->iovpool.count < card->iovnr.min) {
2073 struct sk_buff *new_iovb;
2074 if ((new_iovb =
2075 alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2076 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2077 skb_queue_tail(&card->iovpool.queue, new_iovb);
2078 card->iovpool.count++;
2081 vc->rx_iov = iovb;
2082 NS_PRV_IOVCNT(iovb) = 0;
2083 iovb->len = 0;
2084 iovb->data = iovb->head;
2085 skb_reset_tail_pointer(iovb);
2086 /* IMPORTANT: a pointer to the sk_buff containing the small or large
2087 buffer is stored as iovec base, NOT a pointer to the
2088 small or large buffer itself. */
2089 } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2090 printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2091 atomic_inc(&vcc->stats->rx_err);
2092 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2093 NS_MAX_IOVECS);
2094 NS_PRV_IOVCNT(iovb) = 0;
2095 iovb->len = 0;
2096 iovb->data = iovb->head;
2097 skb_reset_tail_pointer(iovb);
2099 iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2100 iov->iov_base = (void *)skb;
2101 iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2102 iovb->len += iov->iov_len;
2104 #ifdef EXTRA_DEBUG
2105 if (NS_PRV_IOVCNT(iovb) == 1) {
2106 if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2107 printk
2108 ("nicstar%d: Expected a small buffer, and this is not one.\n",
2109 card->index);
2110 which_list(card, skb);
2111 atomic_inc(&vcc->stats->rx_err);
2112 recycle_rx_buf(card, skb);
2113 vc->rx_iov = NULL;
2114 recycle_iov_buf(card, iovb);
2115 return;
2117 } else { /* NS_PRV_IOVCNT(iovb) >= 2 */
2119 if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2120 printk
2121 ("nicstar%d: Expected a large buffer, and this is not one.\n",
2122 card->index);
2123 which_list(card, skb);
2124 atomic_inc(&vcc->stats->rx_err);
2125 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2126 NS_PRV_IOVCNT(iovb));
2127 vc->rx_iov = NULL;
2128 recycle_iov_buf(card, iovb);
2129 return;
2132 #endif /* EXTRA_DEBUG */
2134 if (ns_rsqe_eopdu(rsqe)) {
2135 /* This works correctly regardless of the endianness of the host */
2136 unsigned char *L1L2 = (unsigned char *)
2137 (skb->data + iov->iov_len - 6);
2138 aal5_len = L1L2[0] << 8 | L1L2[1];
2139 len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2140 if (ns_rsqe_crcerr(rsqe) ||
2141 len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2142 printk("nicstar%d: AAL5 CRC error", card->index);
2143 if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2144 printk(" - PDU size mismatch.\n");
2145 else
2146 printk(".\n");
2147 atomic_inc(&vcc->stats->rx_err);
2148 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2149 NS_PRV_IOVCNT(iovb));
2150 vc->rx_iov = NULL;
2151 recycle_iov_buf(card, iovb);
2152 return;
2155 /* By this point we (hopefully) have a complete SDU without errors. */
2157 if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */
2158 /* skb points to a small buffer */
2159 if (!atm_charge(vcc, skb->truesize)) {
2160 push_rxbufs(card, skb);
2161 atomic_inc(&vcc->stats->rx_drop);
2162 } else {
2163 skb_put(skb, len);
2164 dequeue_sm_buf(card, skb);
2165 ATM_SKB(skb)->vcc = vcc;
2166 __net_timestamp(skb);
2167 vcc->push(vcc, skb);
2168 atomic_inc(&vcc->stats->rx);
2170 } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */
2171 struct sk_buff *sb;
2173 sb = (struct sk_buff *)(iov - 1)->iov_base;
2174 /* skb points to a large buffer */
2176 if (len <= NS_SMBUFSIZE) {
2177 if (!atm_charge(vcc, sb->truesize)) {
2178 push_rxbufs(card, sb);
2179 atomic_inc(&vcc->stats->rx_drop);
2180 } else {
2181 skb_put(sb, len);
2182 dequeue_sm_buf(card, sb);
2183 ATM_SKB(sb)->vcc = vcc;
2184 __net_timestamp(sb);
2185 vcc->push(vcc, sb);
2186 atomic_inc(&vcc->stats->rx);
2189 push_rxbufs(card, skb);
2191 } else { /* len > NS_SMBUFSIZE, the usual case */
2193 if (!atm_charge(vcc, skb->truesize)) {
2194 push_rxbufs(card, skb);
2195 atomic_inc(&vcc->stats->rx_drop);
2196 } else {
2197 dequeue_lg_buf(card, skb);
2198 skb_push(skb, NS_SMBUFSIZE);
2199 skb_copy_from_linear_data(sb, skb->data,
2200 NS_SMBUFSIZE);
2201 skb_put(skb, len - NS_SMBUFSIZE);
2202 ATM_SKB(skb)->vcc = vcc;
2203 __net_timestamp(skb);
2204 vcc->push(vcc, skb);
2205 atomic_inc(&vcc->stats->rx);
2208 push_rxbufs(card, sb);
2212 } else { /* Must push a huge buffer */
2214 struct sk_buff *hb, *sb, *lb;
2215 int remaining, tocopy;
2216 int j;
2218 hb = skb_dequeue(&(card->hbpool.queue));
2219 if (hb == NULL) { /* No buffers in the queue */
2221 hb = dev_alloc_skb(NS_HBUFSIZE);
2222 if (hb == NULL) {
2223 printk
2224 ("nicstar%d: Out of huge buffers.\n",
2225 card->index);
2226 atomic_inc(&vcc->stats->rx_drop);
2227 recycle_iovec_rx_bufs(card,
2228 (struct iovec *)
2229 iovb->data,
2230 NS_PRV_IOVCNT(iovb));
2231 vc->rx_iov = NULL;
2232 recycle_iov_buf(card, iovb);
2233 return;
2234 } else if (card->hbpool.count < card->hbnr.min) {
2235 struct sk_buff *new_hb;
2236 if ((new_hb =
2237 dev_alloc_skb(NS_HBUFSIZE)) !=
2238 NULL) {
2239 skb_queue_tail(&card->hbpool.
2240 queue, new_hb);
2241 card->hbpool.count++;
2244 NS_PRV_BUFTYPE(hb) = BUF_NONE;
2245 } else if (--card->hbpool.count < card->hbnr.min) {
2246 struct sk_buff *new_hb;
2247 if ((new_hb =
2248 dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2249 NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2250 skb_queue_tail(&card->hbpool.queue,
2251 new_hb);
2252 card->hbpool.count++;
2254 if (card->hbpool.count < card->hbnr.min) {
2255 if ((new_hb =
2256 dev_alloc_skb(NS_HBUFSIZE)) !=
2257 NULL) {
2258 NS_PRV_BUFTYPE(new_hb) =
2259 BUF_NONE;
2260 skb_queue_tail(&card->hbpool.
2261 queue, new_hb);
2262 card->hbpool.count++;
2267 iov = (struct iovec *)iovb->data;
2269 if (!atm_charge(vcc, hb->truesize)) {
2270 recycle_iovec_rx_bufs(card, iov,
2271 NS_PRV_IOVCNT(iovb));
2272 if (card->hbpool.count < card->hbnr.max) {
2273 skb_queue_tail(&card->hbpool.queue, hb);
2274 card->hbpool.count++;
2275 } else
2276 dev_kfree_skb_any(hb);
2277 atomic_inc(&vcc->stats->rx_drop);
2278 } else {
2279 /* Copy the small buffer to the huge buffer */
2280 sb = (struct sk_buff *)iov->iov_base;
2281 skb_copy_from_linear_data(sb, hb->data,
2282 iov->iov_len);
2283 skb_put(hb, iov->iov_len);
2284 remaining = len - iov->iov_len;
2285 iov++;
2286 /* Free the small buffer */
2287 push_rxbufs(card, sb);
2289 /* Copy all large buffers to the huge buffer and free them */
2290 for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2291 lb = (struct sk_buff *)iov->iov_base;
2292 tocopy =
2293 min_t(int, remaining, iov->iov_len);
2294 skb_copy_from_linear_data(lb,
2295 skb_tail_pointer
2296 (hb), tocopy);
2297 skb_put(hb, tocopy);
2298 iov++;
2299 remaining -= tocopy;
2300 push_rxbufs(card, lb);
2302 #ifdef EXTRA_DEBUG
2303 if (remaining != 0 || hb->len != len)
2304 printk
2305 ("nicstar%d: Huge buffer len mismatch.\n",
2306 card->index);
2307 #endif /* EXTRA_DEBUG */
2308 ATM_SKB(hb)->vcc = vcc;
2309 __net_timestamp(hb);
2310 vcc->push(vcc, hb);
2311 atomic_inc(&vcc->stats->rx);
2315 vc->rx_iov = NULL;
2316 recycle_iov_buf(card, iovb);
2321 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2323 if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2324 printk("nicstar%d: What kind of rx buffer is this?\n",
2325 card->index);
2326 dev_kfree_skb_any(skb);
2327 } else
2328 push_rxbufs(card, skb);
2331 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2333 while (count-- > 0)
2334 recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2337 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2339 if (card->iovpool.count < card->iovnr.max) {
2340 skb_queue_tail(&card->iovpool.queue, iovb);
2341 card->iovpool.count++;
2342 } else
2343 dev_kfree_skb_any(iovb);
2346 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2348 skb_unlink(sb, &card->sbpool.queue);
2349 if (card->sbfqc < card->sbnr.init) {
2350 struct sk_buff *new_sb;
2351 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2352 NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2353 skb_queue_tail(&card->sbpool.queue, new_sb);
2354 skb_reserve(new_sb, NS_AAL0_HEADER);
2355 push_rxbufs(card, new_sb);
2358 if (card->sbfqc < card->sbnr.init)
2360 struct sk_buff *new_sb;
2361 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2362 NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2363 skb_queue_tail(&card->sbpool.queue, new_sb);
2364 skb_reserve(new_sb, NS_AAL0_HEADER);
2365 push_rxbufs(card, new_sb);
2370 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2372 skb_unlink(lb, &card->lbpool.queue);
2373 if (card->lbfqc < card->lbnr.init) {
2374 struct sk_buff *new_lb;
2375 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2376 NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2377 skb_queue_tail(&card->lbpool.queue, new_lb);
2378 skb_reserve(new_lb, NS_SMBUFSIZE);
2379 push_rxbufs(card, new_lb);
2382 if (card->lbfqc < card->lbnr.init)
2384 struct sk_buff *new_lb;
2385 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2386 NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2387 skb_queue_tail(&card->lbpool.queue, new_lb);
2388 skb_reserve(new_lb, NS_SMBUFSIZE);
2389 push_rxbufs(card, new_lb);
2394 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2396 u32 stat;
2397 ns_dev *card;
2398 int left;
2400 left = (int)*pos;
2401 card = (ns_dev *) dev->dev_data;
2402 stat = readl(card->membase + STAT);
2403 if (!left--)
2404 return sprintf(page, "Pool count min init max \n");
2405 if (!left--)
2406 return sprintf(page, "Small %5d %5d %5d %5d \n",
2407 ns_stat_sfbqc_get(stat), card->sbnr.min,
2408 card->sbnr.init, card->sbnr.max);
2409 if (!left--)
2410 return sprintf(page, "Large %5d %5d %5d %5d \n",
2411 ns_stat_lfbqc_get(stat), card->lbnr.min,
2412 card->lbnr.init, card->lbnr.max);
2413 if (!left--)
2414 return sprintf(page, "Huge %5d %5d %5d %5d \n",
2415 card->hbpool.count, card->hbnr.min,
2416 card->hbnr.init, card->hbnr.max);
2417 if (!left--)
2418 return sprintf(page, "Iovec %5d %5d %5d %5d \n",
2419 card->iovpool.count, card->iovnr.min,
2420 card->iovnr.init, card->iovnr.max);
2421 if (!left--) {
2422 int retval;
2423 retval =
2424 sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2425 card->intcnt = 0;
2426 return retval;
2428 #if 0
2429 /* Dump 25.6 Mbps PHY registers */
2430 /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2431 here just in case it's needed for debugging. */
2432 if (card->max_pcr == ATM_25_PCR && !left--) {
2433 u32 phy_regs[4];
2434 u32 i;
2436 for (i = 0; i < 4; i++) {
2437 while (CMD_BUSY(card)) ;
2438 writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2439 card->membase + CMD);
2440 while (CMD_BUSY(card)) ;
2441 phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2444 return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2445 phy_regs[0], phy_regs[1], phy_regs[2],
2446 phy_regs[3]);
2448 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2449 #if 0
2450 /* Dump TST */
2451 if (left-- < NS_TST_NUM_ENTRIES) {
2452 if (card->tste2vc[left + 1] == NULL)
2453 return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2454 else
2455 return sprintf(page, "%5d - %d %d \n", left + 1,
2456 card->tste2vc[left + 1]->tx_vcc->vpi,
2457 card->tste2vc[left + 1]->tx_vcc->vci);
2459 #endif /* 0 */
2460 return 0;
2463 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2465 ns_dev *card;
2466 pool_levels pl;
2467 long btype;
2468 unsigned long flags;
2470 card = dev->dev_data;
2471 switch (cmd) {
2472 case NS_GETPSTAT:
2473 if (get_user
2474 (pl.buftype, &((pool_levels __user *) arg)->buftype))
2475 return -EFAULT;
2476 switch (pl.buftype) {
2477 case NS_BUFTYPE_SMALL:
2478 pl.count =
2479 ns_stat_sfbqc_get(readl(card->membase + STAT));
2480 pl.level.min = card->sbnr.min;
2481 pl.level.init = card->sbnr.init;
2482 pl.level.max = card->sbnr.max;
2483 break;
2485 case NS_BUFTYPE_LARGE:
2486 pl.count =
2487 ns_stat_lfbqc_get(readl(card->membase + STAT));
2488 pl.level.min = card->lbnr.min;
2489 pl.level.init = card->lbnr.init;
2490 pl.level.max = card->lbnr.max;
2491 break;
2493 case NS_BUFTYPE_HUGE:
2494 pl.count = card->hbpool.count;
2495 pl.level.min = card->hbnr.min;
2496 pl.level.init = card->hbnr.init;
2497 pl.level.max = card->hbnr.max;
2498 break;
2500 case NS_BUFTYPE_IOVEC:
2501 pl.count = card->iovpool.count;
2502 pl.level.min = card->iovnr.min;
2503 pl.level.init = card->iovnr.init;
2504 pl.level.max = card->iovnr.max;
2505 break;
2507 default:
2508 return -ENOIOCTLCMD;
2511 if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2512 return (sizeof(pl));
2513 else
2514 return -EFAULT;
2516 case NS_SETBUFLEV:
2517 if (!capable(CAP_NET_ADMIN))
2518 return -EPERM;
2519 if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2520 return -EFAULT;
2521 if (pl.level.min >= pl.level.init
2522 || pl.level.init >= pl.level.max)
2523 return -EINVAL;
2524 if (pl.level.min == 0)
2525 return -EINVAL;
2526 switch (pl.buftype) {
2527 case NS_BUFTYPE_SMALL:
2528 if (pl.level.max > TOP_SB)
2529 return -EINVAL;
2530 card->sbnr.min = pl.level.min;
2531 card->sbnr.init = pl.level.init;
2532 card->sbnr.max = pl.level.max;
2533 break;
2535 case NS_BUFTYPE_LARGE:
2536 if (pl.level.max > TOP_LB)
2537 return -EINVAL;
2538 card->lbnr.min = pl.level.min;
2539 card->lbnr.init = pl.level.init;
2540 card->lbnr.max = pl.level.max;
2541 break;
2543 case NS_BUFTYPE_HUGE:
2544 if (pl.level.max > TOP_HB)
2545 return -EINVAL;
2546 card->hbnr.min = pl.level.min;
2547 card->hbnr.init = pl.level.init;
2548 card->hbnr.max = pl.level.max;
2549 break;
2551 case NS_BUFTYPE_IOVEC:
2552 if (pl.level.max > TOP_IOVB)
2553 return -EINVAL;
2554 card->iovnr.min = pl.level.min;
2555 card->iovnr.init = pl.level.init;
2556 card->iovnr.max = pl.level.max;
2557 break;
2559 default:
2560 return -EINVAL;
2563 return 0;
2565 case NS_ADJBUFLEV:
2566 if (!capable(CAP_NET_ADMIN))
2567 return -EPERM;
2568 btype = (long)arg; /* a long is the same size as a pointer or bigger */
2569 switch (btype) {
2570 case NS_BUFTYPE_SMALL:
2571 while (card->sbfqc < card->sbnr.init) {
2572 struct sk_buff *sb;
2574 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2575 if (sb == NULL)
2576 return -ENOMEM;
2577 NS_PRV_BUFTYPE(sb) = BUF_SM;
2578 skb_queue_tail(&card->sbpool.queue, sb);
2579 skb_reserve(sb, NS_AAL0_HEADER);
2580 push_rxbufs(card, sb);
2582 break;
2584 case NS_BUFTYPE_LARGE:
2585 while (card->lbfqc < card->lbnr.init) {
2586 struct sk_buff *lb;
2588 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2589 if (lb == NULL)
2590 return -ENOMEM;
2591 NS_PRV_BUFTYPE(lb) = BUF_LG;
2592 skb_queue_tail(&card->lbpool.queue, lb);
2593 skb_reserve(lb, NS_SMBUFSIZE);
2594 push_rxbufs(card, lb);
2596 break;
2598 case NS_BUFTYPE_HUGE:
2599 while (card->hbpool.count > card->hbnr.init) {
2600 struct sk_buff *hb;
2602 spin_lock_irqsave(&card->int_lock, flags);
2603 hb = skb_dequeue(&card->hbpool.queue);
2604 card->hbpool.count--;
2605 spin_unlock_irqrestore(&card->int_lock, flags);
2606 if (hb == NULL)
2607 printk
2608 ("nicstar%d: huge buffer count inconsistent.\n",
2609 card->index);
2610 else
2611 dev_kfree_skb_any(hb);
2614 while (card->hbpool.count < card->hbnr.init) {
2615 struct sk_buff *hb;
2617 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2618 if (hb == NULL)
2619 return -ENOMEM;
2620 NS_PRV_BUFTYPE(hb) = BUF_NONE;
2621 spin_lock_irqsave(&card->int_lock, flags);
2622 skb_queue_tail(&card->hbpool.queue, hb);
2623 card->hbpool.count++;
2624 spin_unlock_irqrestore(&card->int_lock, flags);
2626 break;
2628 case NS_BUFTYPE_IOVEC:
2629 while (card->iovpool.count > card->iovnr.init) {
2630 struct sk_buff *iovb;
2632 spin_lock_irqsave(&card->int_lock, flags);
2633 iovb = skb_dequeue(&card->iovpool.queue);
2634 card->iovpool.count--;
2635 spin_unlock_irqrestore(&card->int_lock, flags);
2636 if (iovb == NULL)
2637 printk
2638 ("nicstar%d: iovec buffer count inconsistent.\n",
2639 card->index);
2640 else
2641 dev_kfree_skb_any(iovb);
2644 while (card->iovpool.count < card->iovnr.init) {
2645 struct sk_buff *iovb;
2647 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2648 if (iovb == NULL)
2649 return -ENOMEM;
2650 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2651 spin_lock_irqsave(&card->int_lock, flags);
2652 skb_queue_tail(&card->iovpool.queue, iovb);
2653 card->iovpool.count++;
2654 spin_unlock_irqrestore(&card->int_lock, flags);
2656 break;
2658 default:
2659 return -EINVAL;
2662 return 0;
2664 default:
2665 if (dev->phy && dev->phy->ioctl) {
2666 return dev->phy->ioctl(dev, cmd, arg);
2667 } else {
2668 printk("nicstar%d: %s == NULL \n", card->index,
2669 dev->phy ? "dev->phy->ioctl" : "dev->phy");
2670 return -ENOIOCTLCMD;
2675 #ifdef EXTRA_DEBUG
2676 static void which_list(ns_dev * card, struct sk_buff *skb)
2678 printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2680 #endif /* EXTRA_DEBUG */
2682 static void ns_poll(struct timer_list *unused)
2684 int i;
2685 ns_dev *card;
2686 unsigned long flags;
2687 u32 stat_r, stat_w;
2689 PRINTK("nicstar: Entering ns_poll().\n");
2690 for (i = 0; i < num_cards; i++) {
2691 card = cards[i];
2692 if (spin_is_locked(&card->int_lock)) {
2693 /* Probably it isn't worth spinning */
2694 continue;
2696 spin_lock_irqsave(&card->int_lock, flags);
2698 stat_w = 0;
2699 stat_r = readl(card->membase + STAT);
2700 if (stat_r & NS_STAT_TSIF)
2701 stat_w |= NS_STAT_TSIF;
2702 if (stat_r & NS_STAT_EOPDU)
2703 stat_w |= NS_STAT_EOPDU;
2705 process_tsq(card);
2706 process_rsq(card);
2708 writel(stat_w, card->membase + STAT);
2709 spin_unlock_irqrestore(&card->int_lock, flags);
2711 mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2712 PRINTK("nicstar: Leaving ns_poll().\n");
2715 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2716 unsigned long addr)
2718 ns_dev *card;
2719 unsigned long flags;
2721 card = dev->dev_data;
2722 spin_lock_irqsave(&card->res_lock, flags);
2723 while (CMD_BUSY(card)) ;
2724 writel((u32) value, card->membase + DR0);
2725 writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2726 card->membase + CMD);
2727 spin_unlock_irqrestore(&card->res_lock, flags);
2730 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2732 ns_dev *card;
2733 unsigned long flags;
2734 u32 data;
2736 card = dev->dev_data;
2737 spin_lock_irqsave(&card->res_lock, flags);
2738 while (CMD_BUSY(card)) ;
2739 writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2740 card->membase + CMD);
2741 while (CMD_BUSY(card)) ;
2742 data = readl(card->membase + DR0) & 0x000000FF;
2743 spin_unlock_irqrestore(&card->res_lock, flags);
2744 return (unsigned char)data;
2747 module_init(nicstar_init);
2748 module_exit(nicstar_cleanup);