Linux 4.19.133
[linux/fpc-iii.git] / drivers / base / regmap / regmap-irq.c
blob982c7ac311b8524eb2b5bbda1275d4a3c81aab50
1 /*
2 * regmap based irq_chip
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
22 #include "internal.h"
24 struct regmap_irq_chip_data {
25 struct mutex lock;
26 struct irq_chip irq_chip;
28 struct regmap *map;
29 const struct regmap_irq_chip *chip;
31 int irq_base;
32 struct irq_domain *domain;
34 int irq;
35 int wake_count;
37 void *status_reg_buf;
38 unsigned int *status_buf;
39 unsigned int *mask_buf;
40 unsigned int *mask_buf_def;
41 unsigned int *wake_buf;
42 unsigned int *type_buf;
43 unsigned int *type_buf_def;
45 unsigned int irq_reg_stride;
46 unsigned int type_reg_stride;
49 static inline const
50 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
51 int irq)
53 return &data->chip->irqs[irq];
56 static void regmap_irq_lock(struct irq_data *data)
58 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
60 mutex_lock(&d->lock);
63 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
64 unsigned int reg, unsigned int mask,
65 unsigned int val)
67 if (d->chip->mask_writeonly)
68 return regmap_write_bits(d->map, reg, mask, val);
69 else
70 return regmap_update_bits(d->map, reg, mask, val);
73 static void regmap_irq_sync_unlock(struct irq_data *data)
75 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
76 struct regmap *map = d->map;
77 int i, ret;
78 u32 reg;
79 u32 unmask_offset;
81 if (d->chip->runtime_pm) {
82 ret = pm_runtime_get_sync(map->dev);
83 if (ret < 0)
84 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 ret);
89 * If there's been a change in the mask write it back to the
90 * hardware. We rely on the use of the regmap core cache to
91 * suppress pointless writes.
93 for (i = 0; i < d->chip->num_regs; i++) {
94 if (!d->chip->mask_base)
95 continue;
97 reg = d->chip->mask_base +
98 (i * map->reg_stride * d->irq_reg_stride);
99 if (d->chip->mask_invert) {
100 ret = regmap_irq_update_bits(d, reg,
101 d->mask_buf_def[i], ~d->mask_buf[i]);
102 } else if (d->chip->unmask_base) {
103 /* set mask with mask_base register */
104 ret = regmap_irq_update_bits(d, reg,
105 d->mask_buf_def[i], ~d->mask_buf[i]);
106 if (ret < 0)
107 dev_err(d->map->dev,
108 "Failed to sync unmasks in %x\n",
109 reg);
110 unmask_offset = d->chip->unmask_base -
111 d->chip->mask_base;
112 /* clear mask with unmask_base register */
113 ret = regmap_irq_update_bits(d,
114 reg + unmask_offset,
115 d->mask_buf_def[i],
116 d->mask_buf[i]);
117 } else {
118 ret = regmap_irq_update_bits(d, reg,
119 d->mask_buf_def[i], d->mask_buf[i]);
121 if (ret != 0)
122 dev_err(d->map->dev, "Failed to sync masks in %x\n",
123 reg);
125 reg = d->chip->wake_base +
126 (i * map->reg_stride * d->irq_reg_stride);
127 if (d->wake_buf) {
128 if (d->chip->wake_invert)
129 ret = regmap_irq_update_bits(d, reg,
130 d->mask_buf_def[i],
131 ~d->wake_buf[i]);
132 else
133 ret = regmap_irq_update_bits(d, reg,
134 d->mask_buf_def[i],
135 d->wake_buf[i]);
136 if (ret != 0)
137 dev_err(d->map->dev,
138 "Failed to sync wakes in %x: %d\n",
139 reg, ret);
142 if (!d->chip->init_ack_masked)
143 continue;
145 * Ack all the masked interrupts unconditionally,
146 * OR if there is masked interrupt which hasn't been Acked,
147 * it'll be ignored in irq handler, then may introduce irq storm
149 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
150 reg = d->chip->ack_base +
151 (i * map->reg_stride * d->irq_reg_stride);
152 /* some chips ack by write 0 */
153 if (d->chip->ack_invert)
154 ret = regmap_write(map, reg, ~d->mask_buf[i]);
155 else
156 ret = regmap_write(map, reg, d->mask_buf[i]);
157 if (ret != 0)
158 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
159 reg, ret);
163 for (i = 0; i < d->chip->num_type_reg; i++) {
164 if (!d->type_buf_def[i])
165 continue;
166 reg = d->chip->type_base +
167 (i * map->reg_stride * d->type_reg_stride);
168 if (d->chip->type_invert)
169 ret = regmap_irq_update_bits(d, reg,
170 d->type_buf_def[i], ~d->type_buf[i]);
171 else
172 ret = regmap_irq_update_bits(d, reg,
173 d->type_buf_def[i], d->type_buf[i]);
174 if (ret != 0)
175 dev_err(d->map->dev, "Failed to sync type in %x\n",
176 reg);
179 if (d->chip->runtime_pm)
180 pm_runtime_put(map->dev);
182 /* If we've changed our wakeup count propagate it to the parent */
183 if (d->wake_count < 0)
184 for (i = d->wake_count; i < 0; i++)
185 irq_set_irq_wake(d->irq, 0);
186 else if (d->wake_count > 0)
187 for (i = 0; i < d->wake_count; i++)
188 irq_set_irq_wake(d->irq, 1);
190 d->wake_count = 0;
192 mutex_unlock(&d->lock);
195 static void regmap_irq_enable(struct irq_data *data)
197 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
198 struct regmap *map = d->map;
199 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
201 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
204 static void regmap_irq_disable(struct irq_data *data)
206 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
207 struct regmap *map = d->map;
208 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
210 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
213 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
215 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
216 struct regmap *map = d->map;
217 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
218 int reg = irq_data->type_reg_offset / map->reg_stride;
220 if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
221 return 0;
223 d->type_buf[reg] &= ~(irq_data->type_falling_mask |
224 irq_data->type_rising_mask);
225 switch (type) {
226 case IRQ_TYPE_EDGE_FALLING:
227 d->type_buf[reg] |= irq_data->type_falling_mask;
228 break;
230 case IRQ_TYPE_EDGE_RISING:
231 d->type_buf[reg] |= irq_data->type_rising_mask;
232 break;
234 case IRQ_TYPE_EDGE_BOTH:
235 d->type_buf[reg] |= (irq_data->type_falling_mask |
236 irq_data->type_rising_mask);
237 break;
239 default:
240 return -EINVAL;
242 return 0;
245 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
247 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
248 struct regmap *map = d->map;
249 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
251 if (on) {
252 if (d->wake_buf)
253 d->wake_buf[irq_data->reg_offset / map->reg_stride]
254 &= ~irq_data->mask;
255 d->wake_count++;
256 } else {
257 if (d->wake_buf)
258 d->wake_buf[irq_data->reg_offset / map->reg_stride]
259 |= irq_data->mask;
260 d->wake_count--;
263 return 0;
266 static const struct irq_chip regmap_irq_chip = {
267 .irq_bus_lock = regmap_irq_lock,
268 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
269 .irq_disable = regmap_irq_disable,
270 .irq_enable = regmap_irq_enable,
271 .irq_set_type = regmap_irq_set_type,
272 .irq_set_wake = regmap_irq_set_wake,
275 static irqreturn_t regmap_irq_thread(int irq, void *d)
277 struct regmap_irq_chip_data *data = d;
278 const struct regmap_irq_chip *chip = data->chip;
279 struct regmap *map = data->map;
280 int ret, i;
281 bool handled = false;
282 u32 reg;
284 if (chip->handle_pre_irq)
285 chip->handle_pre_irq(chip->irq_drv_data);
287 if (chip->runtime_pm) {
288 ret = pm_runtime_get_sync(map->dev);
289 if (ret < 0) {
290 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
291 ret);
292 pm_runtime_put(map->dev);
293 goto exit;
298 * Read in the statuses, using a single bulk read if possible
299 * in order to reduce the I/O overheads.
301 if (!map->use_single_read && map->reg_stride == 1 &&
302 data->irq_reg_stride == 1) {
303 u8 *buf8 = data->status_reg_buf;
304 u16 *buf16 = data->status_reg_buf;
305 u32 *buf32 = data->status_reg_buf;
307 BUG_ON(!data->status_reg_buf);
309 ret = regmap_bulk_read(map, chip->status_base,
310 data->status_reg_buf,
311 chip->num_regs);
312 if (ret != 0) {
313 dev_err(map->dev, "Failed to read IRQ status: %d\n",
314 ret);
315 goto exit;
318 for (i = 0; i < data->chip->num_regs; i++) {
319 switch (map->format.val_bytes) {
320 case 1:
321 data->status_buf[i] = buf8[i];
322 break;
323 case 2:
324 data->status_buf[i] = buf16[i];
325 break;
326 case 4:
327 data->status_buf[i] = buf32[i];
328 break;
329 default:
330 BUG();
331 goto exit;
335 } else {
336 for (i = 0; i < data->chip->num_regs; i++) {
337 ret = regmap_read(map, chip->status_base +
338 (i * map->reg_stride
339 * data->irq_reg_stride),
340 &data->status_buf[i]);
342 if (ret != 0) {
343 dev_err(map->dev,
344 "Failed to read IRQ status: %d\n",
345 ret);
346 if (chip->runtime_pm)
347 pm_runtime_put(map->dev);
348 goto exit;
354 * Ignore masked IRQs and ack if we need to; we ack early so
355 * there is no race between handling and acknowleding the
356 * interrupt. We assume that typically few of the interrupts
357 * will fire simultaneously so don't worry about overhead from
358 * doing a write per register.
360 for (i = 0; i < data->chip->num_regs; i++) {
361 data->status_buf[i] &= ~data->mask_buf[i];
363 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
364 reg = chip->ack_base +
365 (i * map->reg_stride * data->irq_reg_stride);
366 ret = regmap_write(map, reg, data->status_buf[i]);
367 if (ret != 0)
368 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
369 reg, ret);
373 for (i = 0; i < chip->num_irqs; i++) {
374 if (data->status_buf[chip->irqs[i].reg_offset /
375 map->reg_stride] & chip->irqs[i].mask) {
376 handle_nested_irq(irq_find_mapping(data->domain, i));
377 handled = true;
381 if (chip->runtime_pm)
382 pm_runtime_put(map->dev);
384 exit:
385 if (chip->handle_post_irq)
386 chip->handle_post_irq(chip->irq_drv_data);
388 if (handled)
389 return IRQ_HANDLED;
390 else
391 return IRQ_NONE;
394 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
395 irq_hw_number_t hw)
397 struct regmap_irq_chip_data *data = h->host_data;
399 irq_set_chip_data(virq, data);
400 irq_set_chip(virq, &data->irq_chip);
401 irq_set_nested_thread(virq, 1);
402 irq_set_parent(virq, data->irq);
403 irq_set_noprobe(virq);
405 return 0;
408 static const struct irq_domain_ops regmap_domain_ops = {
409 .map = regmap_irq_map,
410 .xlate = irq_domain_xlate_onetwocell,
414 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
416 * @map: The regmap for the device.
417 * @irq: The IRQ the device uses to signal interrupts.
418 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
419 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
420 * @chip: Configuration for the interrupt controller.
421 * @data: Runtime data structure for the controller, allocated on success.
423 * Returns 0 on success or an errno on failure.
425 * In order for this to be efficient the chip really should use a
426 * register cache. The chip driver is responsible for restoring the
427 * register values used by the IRQ controller over suspend and resume.
429 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
430 int irq_base, const struct regmap_irq_chip *chip,
431 struct regmap_irq_chip_data **data)
433 struct regmap_irq_chip_data *d;
434 int i;
435 int ret = -ENOMEM;
436 u32 reg;
437 u32 unmask_offset;
439 if (chip->num_regs <= 0)
440 return -EINVAL;
442 for (i = 0; i < chip->num_irqs; i++) {
443 if (chip->irqs[i].reg_offset % map->reg_stride)
444 return -EINVAL;
445 if (chip->irqs[i].reg_offset / map->reg_stride >=
446 chip->num_regs)
447 return -EINVAL;
450 if (irq_base) {
451 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
452 if (irq_base < 0) {
453 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
454 irq_base);
455 return irq_base;
459 d = kzalloc(sizeof(*d), GFP_KERNEL);
460 if (!d)
461 return -ENOMEM;
463 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
464 GFP_KERNEL);
465 if (!d->status_buf)
466 goto err_alloc;
468 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
469 GFP_KERNEL);
470 if (!d->mask_buf)
471 goto err_alloc;
473 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
474 GFP_KERNEL);
475 if (!d->mask_buf_def)
476 goto err_alloc;
478 if (chip->wake_base) {
479 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
480 GFP_KERNEL);
481 if (!d->wake_buf)
482 goto err_alloc;
485 if (chip->num_type_reg) {
486 d->type_buf_def = kcalloc(chip->num_type_reg,
487 sizeof(unsigned int), GFP_KERNEL);
488 if (!d->type_buf_def)
489 goto err_alloc;
491 d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
492 GFP_KERNEL);
493 if (!d->type_buf)
494 goto err_alloc;
497 d->irq_chip = regmap_irq_chip;
498 d->irq_chip.name = chip->name;
499 d->irq = irq;
500 d->map = map;
501 d->chip = chip;
502 d->irq_base = irq_base;
504 if (chip->irq_reg_stride)
505 d->irq_reg_stride = chip->irq_reg_stride;
506 else
507 d->irq_reg_stride = 1;
509 if (chip->type_reg_stride)
510 d->type_reg_stride = chip->type_reg_stride;
511 else
512 d->type_reg_stride = 1;
514 if (!map->use_single_read && map->reg_stride == 1 &&
515 d->irq_reg_stride == 1) {
516 d->status_reg_buf = kmalloc_array(chip->num_regs,
517 map->format.val_bytes,
518 GFP_KERNEL);
519 if (!d->status_reg_buf)
520 goto err_alloc;
523 mutex_init(&d->lock);
525 for (i = 0; i < chip->num_irqs; i++)
526 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
527 |= chip->irqs[i].mask;
529 /* Mask all the interrupts by default */
530 for (i = 0; i < chip->num_regs; i++) {
531 d->mask_buf[i] = d->mask_buf_def[i];
532 if (!chip->mask_base)
533 continue;
535 reg = chip->mask_base +
536 (i * map->reg_stride * d->irq_reg_stride);
537 if (chip->mask_invert)
538 ret = regmap_irq_update_bits(d, reg,
539 d->mask_buf[i], ~d->mask_buf[i]);
540 else if (d->chip->unmask_base) {
541 unmask_offset = d->chip->unmask_base -
542 d->chip->mask_base;
543 ret = regmap_irq_update_bits(d,
544 reg + unmask_offset,
545 d->mask_buf[i],
546 d->mask_buf[i]);
547 } else
548 ret = regmap_irq_update_bits(d, reg,
549 d->mask_buf[i], d->mask_buf[i]);
550 if (ret != 0) {
551 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
552 reg, ret);
553 goto err_alloc;
556 if (!chip->init_ack_masked)
557 continue;
559 /* Ack masked but set interrupts */
560 reg = chip->status_base +
561 (i * map->reg_stride * d->irq_reg_stride);
562 ret = regmap_read(map, reg, &d->status_buf[i]);
563 if (ret != 0) {
564 dev_err(map->dev, "Failed to read IRQ status: %d\n",
565 ret);
566 goto err_alloc;
569 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
570 reg = chip->ack_base +
571 (i * map->reg_stride * d->irq_reg_stride);
572 if (chip->ack_invert)
573 ret = regmap_write(map, reg,
574 ~(d->status_buf[i] & d->mask_buf[i]));
575 else
576 ret = regmap_write(map, reg,
577 d->status_buf[i] & d->mask_buf[i]);
578 if (ret != 0) {
579 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
580 reg, ret);
581 goto err_alloc;
586 /* Wake is disabled by default */
587 if (d->wake_buf) {
588 for (i = 0; i < chip->num_regs; i++) {
589 d->wake_buf[i] = d->mask_buf_def[i];
590 reg = chip->wake_base +
591 (i * map->reg_stride * d->irq_reg_stride);
593 if (chip->wake_invert)
594 ret = regmap_irq_update_bits(d, reg,
595 d->mask_buf_def[i],
597 else
598 ret = regmap_irq_update_bits(d, reg,
599 d->mask_buf_def[i],
600 d->wake_buf[i]);
601 if (ret != 0) {
602 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
603 reg, ret);
604 goto err_alloc;
609 if (chip->num_type_reg) {
610 for (i = 0; i < chip->num_irqs; i++) {
611 reg = chip->irqs[i].type_reg_offset / map->reg_stride;
612 d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
613 chip->irqs[i].type_falling_mask;
615 for (i = 0; i < chip->num_type_reg; ++i) {
616 if (!d->type_buf_def[i])
617 continue;
619 reg = chip->type_base +
620 (i * map->reg_stride * d->type_reg_stride);
621 if (chip->type_invert)
622 ret = regmap_irq_update_bits(d, reg,
623 d->type_buf_def[i], 0xFF);
624 else
625 ret = regmap_irq_update_bits(d, reg,
626 d->type_buf_def[i], 0x0);
627 if (ret != 0) {
628 dev_err(map->dev,
629 "Failed to set type in 0x%x: %x\n",
630 reg, ret);
631 goto err_alloc;
636 if (irq_base)
637 d->domain = irq_domain_add_legacy(map->dev->of_node,
638 chip->num_irqs, irq_base, 0,
639 &regmap_domain_ops, d);
640 else
641 d->domain = irq_domain_add_linear(map->dev->of_node,
642 chip->num_irqs,
643 &regmap_domain_ops, d);
644 if (!d->domain) {
645 dev_err(map->dev, "Failed to create IRQ domain\n");
646 ret = -ENOMEM;
647 goto err_alloc;
650 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
651 irq_flags | IRQF_ONESHOT,
652 chip->name, d);
653 if (ret != 0) {
654 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
655 irq, chip->name, ret);
656 goto err_domain;
659 *data = d;
661 return 0;
663 err_domain:
664 /* Should really dispose of the domain but... */
665 err_alloc:
666 kfree(d->type_buf);
667 kfree(d->type_buf_def);
668 kfree(d->wake_buf);
669 kfree(d->mask_buf_def);
670 kfree(d->mask_buf);
671 kfree(d->status_buf);
672 kfree(d->status_reg_buf);
673 kfree(d);
674 return ret;
676 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
679 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
681 * @irq: Primary IRQ for the device
682 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
684 * This function also disposes of all mapped IRQs on the chip.
686 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
688 unsigned int virq;
689 int hwirq;
691 if (!d)
692 return;
694 free_irq(irq, d);
696 /* Dispose all virtual irq from irq domain before removing it */
697 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
698 /* Ignore hwirq if holes in the IRQ list */
699 if (!d->chip->irqs[hwirq].mask)
700 continue;
703 * Find the virtual irq of hwirq on chip and if it is
704 * there then dispose it
706 virq = irq_find_mapping(d->domain, hwirq);
707 if (virq)
708 irq_dispose_mapping(virq);
711 irq_domain_remove(d->domain);
712 kfree(d->type_buf);
713 kfree(d->type_buf_def);
714 kfree(d->wake_buf);
715 kfree(d->mask_buf_def);
716 kfree(d->mask_buf);
717 kfree(d->status_reg_buf);
718 kfree(d->status_buf);
719 kfree(d);
721 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
723 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
725 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
727 regmap_del_irq_chip(d->irq, d);
730 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
733 struct regmap_irq_chip_data **r = res;
735 if (!r || !*r) {
736 WARN_ON(!r || !*r);
737 return 0;
739 return *r == data;
743 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
745 * @dev: The device pointer on which irq_chip belongs to.
746 * @map: The regmap for the device.
747 * @irq: The IRQ the device uses to signal interrupts
748 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
749 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
750 * @chip: Configuration for the interrupt controller.
751 * @data: Runtime data structure for the controller, allocated on success
753 * Returns 0 on success or an errno on failure.
755 * The &regmap_irq_chip_data will be automatically released when the device is
756 * unbound.
758 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
759 int irq_flags, int irq_base,
760 const struct regmap_irq_chip *chip,
761 struct regmap_irq_chip_data **data)
763 struct regmap_irq_chip_data **ptr, *d;
764 int ret;
766 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
767 GFP_KERNEL);
768 if (!ptr)
769 return -ENOMEM;
771 ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
772 chip, &d);
773 if (ret < 0) {
774 devres_free(ptr);
775 return ret;
778 *ptr = d;
779 devres_add(dev, ptr);
780 *data = d;
781 return 0;
783 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
786 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
788 * @dev: Device for which which resource was allocated.
789 * @irq: Primary IRQ for the device.
790 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
792 * A resource managed version of regmap_del_irq_chip().
794 void devm_regmap_del_irq_chip(struct device *dev, int irq,
795 struct regmap_irq_chip_data *data)
797 int rc;
799 WARN_ON(irq != data->irq);
800 rc = devres_release(dev, devm_regmap_irq_chip_release,
801 devm_regmap_irq_chip_match, data);
803 if (rc != 0)
804 WARN_ON(rc);
806 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
809 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
811 * @data: regmap irq controller to operate on.
813 * Useful for drivers to request their own IRQs.
815 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
817 WARN_ON(!data->irq_base);
818 return data->irq_base;
820 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
823 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
825 * @data: regmap irq controller to operate on.
826 * @irq: index of the interrupt requested in the chip IRQs.
828 * Useful for drivers to request their own IRQs.
830 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
832 /* Handle holes in the IRQ list */
833 if (!data->chip->irqs[irq].mask)
834 return -EINVAL;
836 return irq_create_mapping(data->domain, irq);
838 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
841 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
843 * @data: regmap_irq controller to operate on.
845 * Useful for drivers to request their own IRQs and for integration
846 * with subsystems. For ease of integration NULL is accepted as a
847 * domain, allowing devices to just call this even if no domain is
848 * allocated.
850 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
852 if (data)
853 return data->domain;
854 else
855 return NULL;
857 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);