2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
83 #include <linux/uaccess.h>
85 static DEFINE_IDR(loop_index_idr
);
86 static DEFINE_MUTEX(loop_ctl_mutex
);
89 static int part_shift
;
91 static int transfer_xor(struct loop_device
*lo
, int cmd
,
92 struct page
*raw_page
, unsigned raw_off
,
93 struct page
*loop_page
, unsigned loop_off
,
94 int size
, sector_t real_block
)
96 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
97 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
109 key
= lo
->lo_encrypt_key
;
110 keysize
= lo
->lo_encrypt_key_size
;
111 for (i
= 0; i
< size
; i
++)
112 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
114 kunmap_atomic(loop_buf
);
115 kunmap_atomic(raw_buf
);
120 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
122 if (unlikely(info
->lo_encrypt_key_size
<= 0))
127 static struct loop_func_table none_funcs
= {
128 .number
= LO_CRYPT_NONE
,
131 static struct loop_func_table xor_funcs
= {
132 .number
= LO_CRYPT_XOR
,
133 .transfer
= transfer_xor
,
137 /* xfer_funcs[0] is special - its release function is never called */
138 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
143 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
147 /* Compute loopsize in bytes */
148 loopsize
= i_size_read(file
->f_mapping
->host
);
151 /* offset is beyond i_size, weird but possible */
155 if (sizelimit
> 0 && sizelimit
< loopsize
)
156 loopsize
= sizelimit
;
158 * Unfortunately, if we want to do I/O on the device,
159 * the number of 512-byte sectors has to fit into a sector_t.
161 return loopsize
>> 9;
164 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
166 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
169 static void __loop_update_dio(struct loop_device
*lo
, bool dio
)
171 struct file
*file
= lo
->lo_backing_file
;
172 struct address_space
*mapping
= file
->f_mapping
;
173 struct inode
*inode
= mapping
->host
;
174 unsigned short sb_bsize
= 0;
175 unsigned dio_align
= 0;
178 if (inode
->i_sb
->s_bdev
) {
179 sb_bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
180 dio_align
= sb_bsize
- 1;
184 * We support direct I/O only if lo_offset is aligned with the
185 * logical I/O size of backing device, and the logical block
186 * size of loop is bigger than the backing device's and the loop
187 * needn't transform transfer.
189 * TODO: the above condition may be loosed in the future, and
190 * direct I/O may be switched runtime at that time because most
191 * of requests in sane applications should be PAGE_SIZE aligned
194 if (queue_logical_block_size(lo
->lo_queue
) >= sb_bsize
&&
195 !(lo
->lo_offset
& dio_align
) &&
196 mapping
->a_ops
->direct_IO
&&
205 if (lo
->use_dio
== use_dio
)
208 /* flush dirty pages before changing direct IO */
212 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
213 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
214 * will get updated by ioctl(LOOP_GET_STATUS)
216 blk_mq_freeze_queue(lo
->lo_queue
);
217 lo
->use_dio
= use_dio
;
219 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
220 lo
->lo_flags
|= LO_FLAGS_DIRECT_IO
;
222 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
223 lo
->lo_flags
&= ~LO_FLAGS_DIRECT_IO
;
225 blk_mq_unfreeze_queue(lo
->lo_queue
);
229 figure_loop_size(struct loop_device
*lo
, loff_t offset
, loff_t sizelimit
)
231 loff_t size
= get_size(offset
, sizelimit
, lo
->lo_backing_file
);
232 sector_t x
= (sector_t
)size
;
233 struct block_device
*bdev
= lo
->lo_device
;
235 if (unlikely((loff_t
)x
!= size
))
237 if (lo
->lo_offset
!= offset
)
238 lo
->lo_offset
= offset
;
239 if (lo
->lo_sizelimit
!= sizelimit
)
240 lo
->lo_sizelimit
= sizelimit
;
241 set_capacity(lo
->lo_disk
, x
);
242 bd_set_size(bdev
, (loff_t
)get_capacity(bdev
->bd_disk
) << 9);
243 /* let user-space know about the new size */
244 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
249 lo_do_transfer(struct loop_device
*lo
, int cmd
,
250 struct page
*rpage
, unsigned roffs
,
251 struct page
*lpage
, unsigned loffs
,
252 int size
, sector_t rblock
)
256 ret
= lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
260 printk_ratelimited(KERN_ERR
261 "loop: Transfer error at byte offset %llu, length %i.\n",
262 (unsigned long long)rblock
<< 9, size
);
266 static int lo_write_bvec(struct file
*file
, struct bio_vec
*bvec
, loff_t
*ppos
)
271 iov_iter_bvec(&i
, ITER_BVEC
| WRITE
, bvec
, 1, bvec
->bv_len
);
273 file_start_write(file
);
274 bw
= vfs_iter_write(file
, &i
, ppos
, 0);
275 file_end_write(file
);
277 if (likely(bw
== bvec
->bv_len
))
280 printk_ratelimited(KERN_ERR
281 "loop: Write error at byte offset %llu, length %i.\n",
282 (unsigned long long)*ppos
, bvec
->bv_len
);
288 static int lo_write_simple(struct loop_device
*lo
, struct request
*rq
,
292 struct req_iterator iter
;
295 rq_for_each_segment(bvec
, rq
, iter
) {
296 ret
= lo_write_bvec(lo
->lo_backing_file
, &bvec
, &pos
);
306 * This is the slow, transforming version that needs to double buffer the
307 * data as it cannot do the transformations in place without having direct
308 * access to the destination pages of the backing file.
310 static int lo_write_transfer(struct loop_device
*lo
, struct request
*rq
,
313 struct bio_vec bvec
, b
;
314 struct req_iterator iter
;
318 page
= alloc_page(GFP_NOIO
);
322 rq_for_each_segment(bvec
, rq
, iter
) {
323 ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
.bv_page
,
324 bvec
.bv_offset
, bvec
.bv_len
, pos
>> 9);
330 b
.bv_len
= bvec
.bv_len
;
331 ret
= lo_write_bvec(lo
->lo_backing_file
, &b
, &pos
);
340 static int lo_read_simple(struct loop_device
*lo
, struct request
*rq
,
344 struct req_iterator iter
;
348 rq_for_each_segment(bvec
, rq
, iter
) {
349 iov_iter_bvec(&i
, ITER_BVEC
, &bvec
, 1, bvec
.bv_len
);
350 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
354 flush_dcache_page(bvec
.bv_page
);
356 if (len
!= bvec
.bv_len
) {
359 __rq_for_each_bio(bio
, rq
)
369 static int lo_read_transfer(struct loop_device
*lo
, struct request
*rq
,
372 struct bio_vec bvec
, b
;
373 struct req_iterator iter
;
379 page
= alloc_page(GFP_NOIO
);
383 rq_for_each_segment(bvec
, rq
, iter
) {
388 b
.bv_len
= bvec
.bv_len
;
390 iov_iter_bvec(&i
, ITER_BVEC
, &b
, 1, b
.bv_len
);
391 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
397 ret
= lo_do_transfer(lo
, READ
, page
, 0, bvec
.bv_page
,
398 bvec
.bv_offset
, len
, offset
>> 9);
402 flush_dcache_page(bvec
.bv_page
);
404 if (len
!= bvec
.bv_len
) {
407 __rq_for_each_bio(bio
, rq
)
419 static int lo_fallocate(struct loop_device
*lo
, struct request
*rq
, loff_t pos
,
423 * We use fallocate to manipulate the space mappings used by the image
424 * a.k.a. discard/zerorange. However we do not support this if
425 * encryption is enabled, because it may give an attacker useful
428 struct file
*file
= lo
->lo_backing_file
;
429 struct request_queue
*q
= lo
->lo_queue
;
432 mode
|= FALLOC_FL_KEEP_SIZE
;
434 if (!blk_queue_discard(q
)) {
439 ret
= file
->f_op
->fallocate(file
, mode
, pos
, blk_rq_bytes(rq
));
440 if (unlikely(ret
&& ret
!= -EINVAL
&& ret
!= -EOPNOTSUPP
))
446 static int lo_req_flush(struct loop_device
*lo
, struct request
*rq
)
448 struct file
*file
= lo
->lo_backing_file
;
449 int ret
= vfs_fsync(file
, 0);
450 if (unlikely(ret
&& ret
!= -EINVAL
))
456 static void lo_complete_rq(struct request
*rq
)
458 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
459 blk_status_t ret
= BLK_STS_OK
;
461 if (!cmd
->use_aio
|| cmd
->ret
< 0 || cmd
->ret
== blk_rq_bytes(rq
) ||
462 req_op(rq
) != REQ_OP_READ
) {
469 * Short READ - if we got some data, advance our request and
470 * retry it. If we got no data, end the rest with EIO.
473 blk_update_request(rq
, BLK_STS_OK
, cmd
->ret
);
475 blk_mq_requeue_request(rq
, true);
478 struct bio
*bio
= rq
->bio
;
487 blk_mq_end_request(rq
, ret
);
491 static void lo_rw_aio_do_completion(struct loop_cmd
*cmd
)
493 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
495 if (!atomic_dec_and_test(&cmd
->ref
))
499 blk_mq_complete_request(rq
);
502 static void lo_rw_aio_complete(struct kiocb
*iocb
, long ret
, long ret2
)
504 struct loop_cmd
*cmd
= container_of(iocb
, struct loop_cmd
, iocb
);
509 lo_rw_aio_do_completion(cmd
);
512 static int lo_rw_aio(struct loop_device
*lo
, struct loop_cmd
*cmd
,
515 struct iov_iter iter
;
516 struct bio_vec
*bvec
;
517 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
518 struct bio
*bio
= rq
->bio
;
519 struct file
*file
= lo
->lo_backing_file
;
524 if (rq
->bio
!= rq
->biotail
) {
525 struct req_iterator iter
;
528 __rq_for_each_bio(bio
, rq
)
529 segments
+= bio_segments(bio
);
530 bvec
= kmalloc_array(segments
, sizeof(struct bio_vec
),
537 * The bios of the request may be started from the middle of
538 * the 'bvec' because of bio splitting, so we can't directly
539 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
540 * API will take care of all details for us.
542 rq_for_each_segment(tmp
, rq
, iter
) {
550 * Same here, this bio may be started from the middle of the
551 * 'bvec' because of bio splitting, so offset from the bvec
552 * must be passed to iov iterator
554 offset
= bio
->bi_iter
.bi_bvec_done
;
555 bvec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
556 segments
= bio_segments(bio
);
558 atomic_set(&cmd
->ref
, 2);
560 iov_iter_bvec(&iter
, ITER_BVEC
| rw
, bvec
,
561 segments
, blk_rq_bytes(rq
));
562 iter
.iov_offset
= offset
;
564 cmd
->iocb
.ki_pos
= pos
;
565 cmd
->iocb
.ki_filp
= file
;
566 cmd
->iocb
.ki_complete
= lo_rw_aio_complete
;
567 cmd
->iocb
.ki_flags
= IOCB_DIRECT
;
568 cmd
->iocb
.ki_ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
570 kthread_associate_blkcg(cmd
->css
);
573 ret
= call_write_iter(file
, &cmd
->iocb
, &iter
);
575 ret
= call_read_iter(file
, &cmd
->iocb
, &iter
);
577 lo_rw_aio_do_completion(cmd
);
578 kthread_associate_blkcg(NULL
);
580 if (ret
!= -EIOCBQUEUED
)
581 cmd
->iocb
.ki_complete(&cmd
->iocb
, ret
, 0);
585 static int do_req_filebacked(struct loop_device
*lo
, struct request
*rq
)
587 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
588 loff_t pos
= ((loff_t
) blk_rq_pos(rq
) << 9) + lo
->lo_offset
;
591 * lo_write_simple and lo_read_simple should have been covered
592 * by io submit style function like lo_rw_aio(), one blocker
593 * is that lo_read_simple() need to call flush_dcache_page after
594 * the page is written from kernel, and it isn't easy to handle
595 * this in io submit style function which submits all segments
596 * of the req at one time. And direct read IO doesn't need to
597 * run flush_dcache_page().
599 switch (req_op(rq
)) {
601 return lo_req_flush(lo
, rq
);
602 case REQ_OP_WRITE_ZEROES
:
604 * If the caller doesn't want deallocation, call zeroout to
605 * write zeroes the range. Otherwise, punch them out.
607 return lo_fallocate(lo
, rq
, pos
,
608 (rq
->cmd_flags
& REQ_NOUNMAP
) ?
609 FALLOC_FL_ZERO_RANGE
:
610 FALLOC_FL_PUNCH_HOLE
);
612 return lo_fallocate(lo
, rq
, pos
, FALLOC_FL_PUNCH_HOLE
);
615 return lo_write_transfer(lo
, rq
, pos
);
616 else if (cmd
->use_aio
)
617 return lo_rw_aio(lo
, cmd
, pos
, WRITE
);
619 return lo_write_simple(lo
, rq
, pos
);
622 return lo_read_transfer(lo
, rq
, pos
);
623 else if (cmd
->use_aio
)
624 return lo_rw_aio(lo
, cmd
, pos
, READ
);
626 return lo_read_simple(lo
, rq
, pos
);
634 static inline void loop_update_dio(struct loop_device
*lo
)
636 __loop_update_dio(lo
, io_is_direct(lo
->lo_backing_file
) |
640 static void loop_reread_partitions(struct loop_device
*lo
,
641 struct block_device
*bdev
)
645 rc
= blkdev_reread_part(bdev
);
647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 __func__
, lo
->lo_number
, lo
->lo_file_name
, rc
);
651 static inline int is_loop_device(struct file
*file
)
653 struct inode
*i
= file
->f_mapping
->host
;
655 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
658 static int loop_validate_file(struct file
*file
, struct block_device
*bdev
)
660 struct inode
*inode
= file
->f_mapping
->host
;
661 struct file
*f
= file
;
663 /* Avoid recursion */
664 while (is_loop_device(f
)) {
665 struct loop_device
*l
;
667 if (f
->f_mapping
->host
->i_bdev
== bdev
)
670 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
671 if (l
->lo_state
!= Lo_bound
) {
674 f
= l
->lo_backing_file
;
676 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
682 * loop_change_fd switched the backing store of a loopback device to
683 * a new file. This is useful for operating system installers to free up
684 * the original file and in High Availability environments to switch to
685 * an alternative location for the content in case of server meltdown.
686 * This can only work if the loop device is used read-only, and if the
687 * new backing store is the same size and type as the old backing store.
689 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
692 struct file
*file
= NULL
, *old_file
;
696 error
= mutex_lock_killable(&loop_ctl_mutex
);
700 if (lo
->lo_state
!= Lo_bound
)
703 /* the loop device has to be read-only */
705 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
713 error
= loop_validate_file(file
, bdev
);
717 old_file
= lo
->lo_backing_file
;
721 /* size of the new backing store needs to be the same */
722 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
726 blk_mq_freeze_queue(lo
->lo_queue
);
727 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
728 lo
->lo_backing_file
= file
;
729 lo
->old_gfp_mask
= mapping_gfp_mask(file
->f_mapping
);
730 mapping_set_gfp_mask(file
->f_mapping
,
731 lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
733 blk_mq_unfreeze_queue(lo
->lo_queue
);
734 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
735 mutex_unlock(&loop_ctl_mutex
);
737 * We must drop file reference outside of loop_ctl_mutex as dropping
738 * the file ref can take bd_mutex which creates circular locking
743 loop_reread_partitions(lo
, bdev
);
747 mutex_unlock(&loop_ctl_mutex
);
753 /* loop sysfs attributes */
755 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
756 ssize_t (*callback
)(struct loop_device
*, char *))
758 struct gendisk
*disk
= dev_to_disk(dev
);
759 struct loop_device
*lo
= disk
->private_data
;
761 return callback(lo
, page
);
764 #define LOOP_ATTR_RO(_name) \
765 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
766 static ssize_t loop_attr_do_show_##_name(struct device *d, \
767 struct device_attribute *attr, char *b) \
769 return loop_attr_show(d, b, loop_attr_##_name##_show); \
771 static struct device_attribute loop_attr_##_name = \
772 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
774 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
779 spin_lock_irq(&lo
->lo_lock
);
780 if (lo
->lo_backing_file
)
781 p
= file_path(lo
->lo_backing_file
, buf
, PAGE_SIZE
- 1);
782 spin_unlock_irq(&lo
->lo_lock
);
784 if (IS_ERR_OR_NULL(p
))
788 memmove(buf
, p
, ret
);
796 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
798 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
801 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
803 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
806 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
808 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
810 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
813 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
815 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
817 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
820 static ssize_t
loop_attr_dio_show(struct loop_device
*lo
, char *buf
)
822 int dio
= (lo
->lo_flags
& LO_FLAGS_DIRECT_IO
);
824 return sprintf(buf
, "%s\n", dio
? "1" : "0");
827 LOOP_ATTR_RO(backing_file
);
828 LOOP_ATTR_RO(offset
);
829 LOOP_ATTR_RO(sizelimit
);
830 LOOP_ATTR_RO(autoclear
);
831 LOOP_ATTR_RO(partscan
);
834 static struct attribute
*loop_attrs
[] = {
835 &loop_attr_backing_file
.attr
,
836 &loop_attr_offset
.attr
,
837 &loop_attr_sizelimit
.attr
,
838 &loop_attr_autoclear
.attr
,
839 &loop_attr_partscan
.attr
,
844 static struct attribute_group loop_attribute_group
= {
849 static void loop_sysfs_init(struct loop_device
*lo
)
851 lo
->sysfs_inited
= !sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
852 &loop_attribute_group
);
855 static void loop_sysfs_exit(struct loop_device
*lo
)
857 if (lo
->sysfs_inited
)
858 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
859 &loop_attribute_group
);
862 static void loop_config_discard(struct loop_device
*lo
)
864 struct file
*file
= lo
->lo_backing_file
;
865 struct inode
*inode
= file
->f_mapping
->host
;
866 struct request_queue
*q
= lo
->lo_queue
;
869 * If the backing device is a block device, mirror its zeroing
870 * capability. Set the discard sectors to the block device's zeroing
871 * capabilities because loop discards result in blkdev_issue_zeroout(),
872 * not blkdev_issue_discard(). This maintains consistent behavior with
873 * file-backed loop devices: discarded regions read back as zero.
875 if (S_ISBLK(inode
->i_mode
) && !lo
->lo_encrypt_key_size
) {
876 struct request_queue
*backingq
;
878 backingq
= bdev_get_queue(inode
->i_bdev
);
879 blk_queue_max_discard_sectors(q
,
880 backingq
->limits
.max_write_zeroes_sectors
);
882 blk_queue_max_write_zeroes_sectors(q
,
883 backingq
->limits
.max_write_zeroes_sectors
);
886 * We use punch hole to reclaim the free space used by the
887 * image a.k.a. discard. However we do not support discard if
888 * encryption is enabled, because it may give an attacker
889 * useful information.
891 } else if (!file
->f_op
->fallocate
|| lo
->lo_encrypt_key_size
) {
892 q
->limits
.discard_granularity
= 0;
893 q
->limits
.discard_alignment
= 0;
894 blk_queue_max_discard_sectors(q
, 0);
895 blk_queue_max_write_zeroes_sectors(q
, 0);
898 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
899 q
->limits
.discard_alignment
= 0;
901 blk_queue_max_discard_sectors(q
, UINT_MAX
>> 9);
902 blk_queue_max_write_zeroes_sectors(q
, UINT_MAX
>> 9);
905 if (q
->limits
.max_write_zeroes_sectors
)
906 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, q
);
908 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, q
);
911 static void loop_unprepare_queue(struct loop_device
*lo
)
913 kthread_flush_worker(&lo
->worker
);
914 kthread_stop(lo
->worker_task
);
917 static int loop_kthread_worker_fn(void *worker_ptr
)
919 current
->flags
|= PF_LESS_THROTTLE
| PF_MEMALLOC_NOIO
;
920 return kthread_worker_fn(worker_ptr
);
923 static int loop_prepare_queue(struct loop_device
*lo
)
925 kthread_init_worker(&lo
->worker
);
926 lo
->worker_task
= kthread_run(loop_kthread_worker_fn
,
927 &lo
->worker
, "loop%d", lo
->lo_number
);
928 if (IS_ERR(lo
->worker_task
))
930 set_user_nice(lo
->worker_task
, MIN_NICE
);
934 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
935 struct block_device
*bdev
, unsigned int arg
)
939 struct address_space
*mapping
;
945 /* This is safe, since we have a reference from open(). */
946 __module_get(THIS_MODULE
);
953 error
= mutex_lock_killable(&loop_ctl_mutex
);
958 if (lo
->lo_state
!= Lo_unbound
)
961 error
= loop_validate_file(file
, bdev
);
965 mapping
= file
->f_mapping
;
966 inode
= mapping
->host
;
968 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
969 !file
->f_op
->write_iter
)
970 lo_flags
|= LO_FLAGS_READ_ONLY
;
973 size
= get_loop_size(lo
, file
);
974 if ((loff_t
)(sector_t
)size
!= size
)
976 error
= loop_prepare_queue(lo
);
982 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
985 lo
->lo_device
= bdev
;
986 lo
->lo_flags
= lo_flags
;
987 lo
->lo_backing_file
= file
;
990 lo
->lo_sizelimit
= 0;
991 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
992 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
994 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
995 blk_queue_write_cache(lo
->lo_queue
, true, false);
998 set_capacity(lo
->lo_disk
, size
);
999 bd_set_size(bdev
, size
<< 9);
1000 loop_sysfs_init(lo
);
1001 /* let user-space know about the new size */
1002 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1004 set_blocksize(bdev
, S_ISBLK(inode
->i_mode
) ?
1005 block_size(inode
->i_bdev
) : PAGE_SIZE
);
1007 lo
->lo_state
= Lo_bound
;
1009 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1010 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
;
1012 /* Grab the block_device to prevent its destruction after we
1013 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1016 mutex_unlock(&loop_ctl_mutex
);
1018 loop_reread_partitions(lo
, bdev
);
1022 mutex_unlock(&loop_ctl_mutex
);
1026 /* This is safe: open() is still holding a reference. */
1027 module_put(THIS_MODULE
);
1032 loop_release_xfer(struct loop_device
*lo
)
1035 struct loop_func_table
*xfer
= lo
->lo_encryption
;
1039 err
= xfer
->release(lo
);
1040 lo
->transfer
= NULL
;
1041 lo
->lo_encryption
= NULL
;
1042 module_put(xfer
->owner
);
1048 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
1049 const struct loop_info64
*i
)
1054 struct module
*owner
= xfer
->owner
;
1056 if (!try_module_get(owner
))
1059 err
= xfer
->init(lo
, i
);
1063 lo
->lo_encryption
= xfer
;
1068 static int __loop_clr_fd(struct loop_device
*lo
, bool release
)
1070 struct file
*filp
= NULL
;
1071 gfp_t gfp
= lo
->old_gfp_mask
;
1072 struct block_device
*bdev
= lo
->lo_device
;
1074 bool partscan
= false;
1077 mutex_lock(&loop_ctl_mutex
);
1078 if (WARN_ON_ONCE(lo
->lo_state
!= Lo_rundown
)) {
1083 filp
= lo
->lo_backing_file
;
1089 /* freeze request queue during the transition */
1090 blk_mq_freeze_queue(lo
->lo_queue
);
1092 spin_lock_irq(&lo
->lo_lock
);
1093 lo
->lo_backing_file
= NULL
;
1094 spin_unlock_irq(&lo
->lo_lock
);
1096 loop_release_xfer(lo
);
1097 lo
->transfer
= NULL
;
1099 lo
->lo_device
= NULL
;
1100 lo
->lo_encryption
= NULL
;
1102 lo
->lo_sizelimit
= 0;
1103 lo
->lo_encrypt_key_size
= 0;
1104 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1105 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1106 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1107 blk_queue_logical_block_size(lo
->lo_queue
, 512);
1108 blk_queue_physical_block_size(lo
->lo_queue
, 512);
1109 blk_queue_io_min(lo
->lo_queue
, 512);
1112 invalidate_bdev(bdev
);
1113 bdev
->bd_inode
->i_mapping
->wb_err
= 0;
1115 set_capacity(lo
->lo_disk
, 0);
1116 loop_sysfs_exit(lo
);
1118 bd_set_size(bdev
, 0);
1119 /* let user-space know about this change */
1120 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1122 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1123 /* This is safe: open() is still holding a reference. */
1124 module_put(THIS_MODULE
);
1125 blk_mq_unfreeze_queue(lo
->lo_queue
);
1127 partscan
= lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
;
1128 lo_number
= lo
->lo_number
;
1129 loop_unprepare_queue(lo
);
1131 mutex_unlock(&loop_ctl_mutex
);
1134 * bd_mutex has been held already in release path, so don't
1135 * acquire it if this function is called in such case.
1137 * If the reread partition isn't from release path, lo_refcnt
1138 * must be at least one and it can only become zero when the
1139 * current holder is released.
1142 err
= __blkdev_reread_part(bdev
);
1144 err
= blkdev_reread_part(bdev
);
1146 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1147 __func__
, lo_number
, err
);
1148 /* Device is gone, no point in returning error */
1153 * lo->lo_state is set to Lo_unbound here after above partscan has
1156 * There cannot be anybody else entering __loop_clr_fd() as
1157 * lo->lo_backing_file is already cleared and Lo_rundown state
1158 * protects us from all the other places trying to change the 'lo'
1161 mutex_lock(&loop_ctl_mutex
);
1164 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1165 lo
->lo_state
= Lo_unbound
;
1166 mutex_unlock(&loop_ctl_mutex
);
1169 * Need not hold loop_ctl_mutex to fput backing file.
1170 * Calling fput holding loop_ctl_mutex triggers a circular
1171 * lock dependency possibility warning as fput can take
1172 * bd_mutex which is usually taken before loop_ctl_mutex.
1179 static int loop_clr_fd(struct loop_device
*lo
)
1183 err
= mutex_lock_killable(&loop_ctl_mutex
);
1186 if (lo
->lo_state
!= Lo_bound
) {
1187 mutex_unlock(&loop_ctl_mutex
);
1191 * If we've explicitly asked to tear down the loop device,
1192 * and it has an elevated reference count, set it for auto-teardown when
1193 * the last reference goes away. This stops $!~#$@ udev from
1194 * preventing teardown because it decided that it needs to run blkid on
1195 * the loopback device whenever they appear. xfstests is notorious for
1196 * failing tests because blkid via udev races with a losetup
1197 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1198 * command to fail with EBUSY.
1200 if (atomic_read(&lo
->lo_refcnt
) > 1) {
1201 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1202 mutex_unlock(&loop_ctl_mutex
);
1205 lo
->lo_state
= Lo_rundown
;
1206 mutex_unlock(&loop_ctl_mutex
);
1208 return __loop_clr_fd(lo
, false);
1212 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1215 struct loop_func_table
*xfer
;
1216 kuid_t uid
= current_uid();
1217 struct block_device
*bdev
;
1218 bool partscan
= false;
1220 err
= mutex_lock_killable(&loop_ctl_mutex
);
1223 if (lo
->lo_encrypt_key_size
&&
1224 !uid_eq(lo
->lo_key_owner
, uid
) &&
1225 !capable(CAP_SYS_ADMIN
)) {
1229 if (lo
->lo_state
!= Lo_bound
) {
1233 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
) {
1238 if (lo
->lo_offset
!= info
->lo_offset
||
1239 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1240 sync_blockdev(lo
->lo_device
);
1241 invalidate_bdev(lo
->lo_device
);
1244 /* I/O need to be drained during transfer transition */
1245 blk_mq_freeze_queue(lo
->lo_queue
);
1247 err
= loop_release_xfer(lo
);
1251 if (info
->lo_encrypt_type
) {
1252 unsigned int type
= info
->lo_encrypt_type
;
1254 if (type
>= MAX_LO_CRYPT
) {
1258 xfer
= xfer_funcs
[type
];
1266 err
= loop_init_xfer(lo
, xfer
, info
);
1270 if (lo
->lo_offset
!= info
->lo_offset
||
1271 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1272 /* kill_bdev should have truncated all the pages */
1273 if (lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1275 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1276 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1277 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1280 if (figure_loop_size(lo
, info
->lo_offset
, info
->lo_sizelimit
)) {
1286 loop_config_discard(lo
);
1288 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1289 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1290 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1291 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1295 lo
->transfer
= xfer
->transfer
;
1296 lo
->ioctl
= xfer
->ioctl
;
1298 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1299 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1300 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1302 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1303 lo
->lo_init
[0] = info
->lo_init
[0];
1304 lo
->lo_init
[1] = info
->lo_init
[1];
1305 if (info
->lo_encrypt_key_size
) {
1306 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1307 info
->lo_encrypt_key_size
);
1308 lo
->lo_key_owner
= uid
;
1311 /* update dio if lo_offset or transfer is changed */
1312 __loop_update_dio(lo
, lo
->use_dio
);
1315 blk_mq_unfreeze_queue(lo
->lo_queue
);
1317 if (!err
&& (info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1318 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1319 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1320 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1321 bdev
= lo
->lo_device
;
1325 mutex_unlock(&loop_ctl_mutex
);
1327 loop_reread_partitions(lo
, bdev
);
1333 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1339 ret
= mutex_lock_killable(&loop_ctl_mutex
);
1342 if (lo
->lo_state
!= Lo_bound
) {
1343 mutex_unlock(&loop_ctl_mutex
);
1347 memset(info
, 0, sizeof(*info
));
1348 info
->lo_number
= lo
->lo_number
;
1349 info
->lo_offset
= lo
->lo_offset
;
1350 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1351 info
->lo_flags
= lo
->lo_flags
;
1352 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1353 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1354 info
->lo_encrypt_type
=
1355 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1356 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1357 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1358 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1359 lo
->lo_encrypt_key_size
);
1362 /* Drop loop_ctl_mutex while we call into the filesystem. */
1363 path
= lo
->lo_backing_file
->f_path
;
1365 mutex_unlock(&loop_ctl_mutex
);
1366 ret
= vfs_getattr(&path
, &stat
, STATX_INO
, AT_STATX_SYNC_AS_STAT
);
1368 info
->lo_device
= huge_encode_dev(stat
.dev
);
1369 info
->lo_inode
= stat
.ino
;
1370 info
->lo_rdevice
= huge_encode_dev(stat
.rdev
);
1377 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1379 memset(info64
, 0, sizeof(*info64
));
1380 info64
->lo_number
= info
->lo_number
;
1381 info64
->lo_device
= info
->lo_device
;
1382 info64
->lo_inode
= info
->lo_inode
;
1383 info64
->lo_rdevice
= info
->lo_rdevice
;
1384 info64
->lo_offset
= info
->lo_offset
;
1385 info64
->lo_sizelimit
= 0;
1386 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1387 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1388 info64
->lo_flags
= info
->lo_flags
;
1389 info64
->lo_init
[0] = info
->lo_init
[0];
1390 info64
->lo_init
[1] = info
->lo_init
[1];
1391 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1392 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1394 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1395 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1399 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1401 memset(info
, 0, sizeof(*info
));
1402 info
->lo_number
= info64
->lo_number
;
1403 info
->lo_device
= info64
->lo_device
;
1404 info
->lo_inode
= info64
->lo_inode
;
1405 info
->lo_rdevice
= info64
->lo_rdevice
;
1406 info
->lo_offset
= info64
->lo_offset
;
1407 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1408 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1409 info
->lo_flags
= info64
->lo_flags
;
1410 info
->lo_init
[0] = info64
->lo_init
[0];
1411 info
->lo_init
[1] = info64
->lo_init
[1];
1412 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1413 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1415 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1416 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1418 /* error in case values were truncated */
1419 if (info
->lo_device
!= info64
->lo_device
||
1420 info
->lo_rdevice
!= info64
->lo_rdevice
||
1421 info
->lo_inode
!= info64
->lo_inode
||
1422 info
->lo_offset
!= info64
->lo_offset
)
1429 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1431 struct loop_info info
;
1432 struct loop_info64 info64
;
1434 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1436 loop_info64_from_old(&info
, &info64
);
1437 return loop_set_status(lo
, &info64
);
1441 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1443 struct loop_info64 info64
;
1445 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1447 return loop_set_status(lo
, &info64
);
1451 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1452 struct loop_info info
;
1453 struct loop_info64 info64
;
1458 err
= loop_get_status(lo
, &info64
);
1460 err
= loop_info64_to_old(&info64
, &info
);
1461 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1468 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1469 struct loop_info64 info64
;
1474 err
= loop_get_status(lo
, &info64
);
1475 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1481 static int loop_set_capacity(struct loop_device
*lo
)
1483 if (unlikely(lo
->lo_state
!= Lo_bound
))
1486 return figure_loop_size(lo
, lo
->lo_offset
, lo
->lo_sizelimit
);
1489 static int loop_set_dio(struct loop_device
*lo
, unsigned long arg
)
1492 if (lo
->lo_state
!= Lo_bound
)
1495 __loop_update_dio(lo
, !!arg
);
1496 if (lo
->use_dio
== !!arg
)
1503 static int loop_set_block_size(struct loop_device
*lo
, unsigned long arg
)
1507 if (lo
->lo_state
!= Lo_bound
)
1510 if (arg
< 512 || arg
> PAGE_SIZE
|| !is_power_of_2(arg
))
1513 if (lo
->lo_queue
->limits
.logical_block_size
!= arg
) {
1514 sync_blockdev(lo
->lo_device
);
1515 invalidate_bdev(lo
->lo_device
);
1518 blk_mq_freeze_queue(lo
->lo_queue
);
1520 /* invalidate_bdev should have truncated all the pages */
1521 if (lo
->lo_queue
->limits
.logical_block_size
!= arg
&&
1522 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
) {
1524 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1525 __func__
, lo
->lo_number
, lo
->lo_file_name
,
1526 lo
->lo_device
->bd_inode
->i_mapping
->nrpages
);
1530 blk_queue_logical_block_size(lo
->lo_queue
, arg
);
1531 blk_queue_physical_block_size(lo
->lo_queue
, arg
);
1532 blk_queue_io_min(lo
->lo_queue
, arg
);
1533 loop_update_dio(lo
);
1535 blk_mq_unfreeze_queue(lo
->lo_queue
);
1540 static int lo_simple_ioctl(struct loop_device
*lo
, unsigned int cmd
,
1545 err
= mutex_lock_killable(&loop_ctl_mutex
);
1549 case LOOP_SET_CAPACITY
:
1550 err
= loop_set_capacity(lo
);
1552 case LOOP_SET_DIRECT_IO
:
1553 err
= loop_set_dio(lo
, arg
);
1555 case LOOP_SET_BLOCK_SIZE
:
1556 err
= loop_set_block_size(lo
, arg
);
1559 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1561 mutex_unlock(&loop_ctl_mutex
);
1565 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1566 unsigned int cmd
, unsigned long arg
)
1568 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1573 return loop_set_fd(lo
, mode
, bdev
, arg
);
1574 case LOOP_CHANGE_FD
:
1575 return loop_change_fd(lo
, bdev
, arg
);
1577 return loop_clr_fd(lo
);
1578 case LOOP_SET_STATUS
:
1580 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1581 err
= loop_set_status_old(lo
,
1582 (struct loop_info __user
*)arg
);
1585 case LOOP_GET_STATUS
:
1586 return loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1587 case LOOP_SET_STATUS64
:
1589 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
)) {
1590 err
= loop_set_status64(lo
,
1591 (struct loop_info64 __user
*) arg
);
1594 case LOOP_GET_STATUS64
:
1595 return loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1596 case LOOP_SET_CAPACITY
:
1597 case LOOP_SET_DIRECT_IO
:
1598 case LOOP_SET_BLOCK_SIZE
:
1599 if (!(mode
& FMODE_WRITE
) && !capable(CAP_SYS_ADMIN
))
1603 err
= lo_simple_ioctl(lo
, cmd
, arg
);
1610 #ifdef CONFIG_COMPAT
1611 struct compat_loop_info
{
1612 compat_int_t lo_number
; /* ioctl r/o */
1613 compat_dev_t lo_device
; /* ioctl r/o */
1614 compat_ulong_t lo_inode
; /* ioctl r/o */
1615 compat_dev_t lo_rdevice
; /* ioctl r/o */
1616 compat_int_t lo_offset
;
1617 compat_int_t lo_encrypt_type
;
1618 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1619 compat_int_t lo_flags
; /* ioctl r/o */
1620 char lo_name
[LO_NAME_SIZE
];
1621 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1622 compat_ulong_t lo_init
[2];
1627 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1628 * - noinlined to reduce stack space usage in main part of driver
1631 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1632 struct loop_info64
*info64
)
1634 struct compat_loop_info info
;
1636 if (copy_from_user(&info
, arg
, sizeof(info
)))
1639 memset(info64
, 0, sizeof(*info64
));
1640 info64
->lo_number
= info
.lo_number
;
1641 info64
->lo_device
= info
.lo_device
;
1642 info64
->lo_inode
= info
.lo_inode
;
1643 info64
->lo_rdevice
= info
.lo_rdevice
;
1644 info64
->lo_offset
= info
.lo_offset
;
1645 info64
->lo_sizelimit
= 0;
1646 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1647 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1648 info64
->lo_flags
= info
.lo_flags
;
1649 info64
->lo_init
[0] = info
.lo_init
[0];
1650 info64
->lo_init
[1] = info
.lo_init
[1];
1651 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1652 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1654 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1655 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1660 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1661 * - noinlined to reduce stack space usage in main part of driver
1664 loop_info64_to_compat(const struct loop_info64
*info64
,
1665 struct compat_loop_info __user
*arg
)
1667 struct compat_loop_info info
;
1669 memset(&info
, 0, sizeof(info
));
1670 info
.lo_number
= info64
->lo_number
;
1671 info
.lo_device
= info64
->lo_device
;
1672 info
.lo_inode
= info64
->lo_inode
;
1673 info
.lo_rdevice
= info64
->lo_rdevice
;
1674 info
.lo_offset
= info64
->lo_offset
;
1675 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1676 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1677 info
.lo_flags
= info64
->lo_flags
;
1678 info
.lo_init
[0] = info64
->lo_init
[0];
1679 info
.lo_init
[1] = info64
->lo_init
[1];
1680 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1681 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1683 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1684 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1686 /* error in case values were truncated */
1687 if (info
.lo_device
!= info64
->lo_device
||
1688 info
.lo_rdevice
!= info64
->lo_rdevice
||
1689 info
.lo_inode
!= info64
->lo_inode
||
1690 info
.lo_offset
!= info64
->lo_offset
||
1691 info
.lo_init
[0] != info64
->lo_init
[0] ||
1692 info
.lo_init
[1] != info64
->lo_init
[1])
1695 if (copy_to_user(arg
, &info
, sizeof(info
)))
1701 loop_set_status_compat(struct loop_device
*lo
,
1702 const struct compat_loop_info __user
*arg
)
1704 struct loop_info64 info64
;
1707 ret
= loop_info64_from_compat(arg
, &info64
);
1710 return loop_set_status(lo
, &info64
);
1714 loop_get_status_compat(struct loop_device
*lo
,
1715 struct compat_loop_info __user
*arg
)
1717 struct loop_info64 info64
;
1722 err
= loop_get_status(lo
, &info64
);
1724 err
= loop_info64_to_compat(&info64
, arg
);
1728 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1729 unsigned int cmd
, unsigned long arg
)
1731 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1735 case LOOP_SET_STATUS
:
1736 err
= loop_set_status_compat(lo
,
1737 (const struct compat_loop_info __user
*)arg
);
1739 case LOOP_GET_STATUS
:
1740 err
= loop_get_status_compat(lo
,
1741 (struct compat_loop_info __user
*)arg
);
1743 case LOOP_SET_CAPACITY
:
1745 case LOOP_GET_STATUS64
:
1746 case LOOP_SET_STATUS64
:
1747 arg
= (unsigned long) compat_ptr(arg
);
1750 case LOOP_CHANGE_FD
:
1751 case LOOP_SET_BLOCK_SIZE
:
1752 case LOOP_SET_DIRECT_IO
:
1753 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1763 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1765 struct loop_device
*lo
;
1768 err
= mutex_lock_killable(&loop_ctl_mutex
);
1771 lo
= bdev
->bd_disk
->private_data
;
1777 atomic_inc(&lo
->lo_refcnt
);
1779 mutex_unlock(&loop_ctl_mutex
);
1783 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1785 struct loop_device
*lo
;
1787 mutex_lock(&loop_ctl_mutex
);
1788 lo
= disk
->private_data
;
1789 if (atomic_dec_return(&lo
->lo_refcnt
))
1792 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1793 if (lo
->lo_state
!= Lo_bound
)
1795 lo
->lo_state
= Lo_rundown
;
1796 mutex_unlock(&loop_ctl_mutex
);
1798 * In autoclear mode, stop the loop thread
1799 * and remove configuration after last close.
1801 __loop_clr_fd(lo
, true);
1803 } else if (lo
->lo_state
== Lo_bound
) {
1805 * Otherwise keep thread (if running) and config,
1806 * but flush possible ongoing bios in thread.
1808 blk_mq_freeze_queue(lo
->lo_queue
);
1809 blk_mq_unfreeze_queue(lo
->lo_queue
);
1813 mutex_unlock(&loop_ctl_mutex
);
1816 static const struct block_device_operations lo_fops
= {
1817 .owner
= THIS_MODULE
,
1819 .release
= lo_release
,
1821 #ifdef CONFIG_COMPAT
1822 .compat_ioctl
= lo_compat_ioctl
,
1827 * And now the modules code and kernel interface.
1829 static int max_loop
;
1830 module_param(max_loop
, int, 0444);
1831 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1832 module_param(max_part
, int, 0444);
1833 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1834 MODULE_LICENSE("GPL");
1835 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1837 int loop_register_transfer(struct loop_func_table
*funcs
)
1839 unsigned int n
= funcs
->number
;
1841 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1843 xfer_funcs
[n
] = funcs
;
1847 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1849 struct loop_device
*lo
= ptr
;
1850 struct loop_func_table
*xfer
= data
;
1852 mutex_lock(&loop_ctl_mutex
);
1853 if (lo
->lo_encryption
== xfer
)
1854 loop_release_xfer(lo
);
1855 mutex_unlock(&loop_ctl_mutex
);
1859 int loop_unregister_transfer(int number
)
1861 unsigned int n
= number
;
1862 struct loop_func_table
*xfer
;
1864 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1867 xfer_funcs
[n
] = NULL
;
1868 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1872 EXPORT_SYMBOL(loop_register_transfer
);
1873 EXPORT_SYMBOL(loop_unregister_transfer
);
1875 static blk_status_t
loop_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1876 const struct blk_mq_queue_data
*bd
)
1878 struct request
*rq
= bd
->rq
;
1879 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1880 struct loop_device
*lo
= rq
->q
->queuedata
;
1882 blk_mq_start_request(rq
);
1884 if (lo
->lo_state
!= Lo_bound
)
1885 return BLK_STS_IOERR
;
1887 switch (req_op(rq
)) {
1889 case REQ_OP_DISCARD
:
1890 case REQ_OP_WRITE_ZEROES
:
1891 cmd
->use_aio
= false;
1894 cmd
->use_aio
= lo
->use_dio
;
1898 /* always use the first bio's css */
1899 #ifdef CONFIG_BLK_CGROUP
1900 if (cmd
->use_aio
&& rq
->bio
&& rq
->bio
->bi_css
) {
1901 cmd
->css
= rq
->bio
->bi_css
;
1906 kthread_queue_work(&lo
->worker
, &cmd
->work
);
1911 static void loop_handle_cmd(struct loop_cmd
*cmd
)
1913 struct request
*rq
= blk_mq_rq_from_pdu(cmd
);
1914 const bool write
= op_is_write(req_op(rq
));
1915 struct loop_device
*lo
= rq
->q
->queuedata
;
1918 if (write
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)) {
1923 ret
= do_req_filebacked(lo
, rq
);
1925 /* complete non-aio request */
1926 if (!cmd
->use_aio
|| ret
) {
1927 cmd
->ret
= ret
? -EIO
: 0;
1928 blk_mq_complete_request(rq
);
1932 static void loop_queue_work(struct kthread_work
*work
)
1934 struct loop_cmd
*cmd
=
1935 container_of(work
, struct loop_cmd
, work
);
1937 loop_handle_cmd(cmd
);
1940 static int loop_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1941 unsigned int hctx_idx
, unsigned int numa_node
)
1943 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1945 kthread_init_work(&cmd
->work
, loop_queue_work
);
1949 static const struct blk_mq_ops loop_mq_ops
= {
1950 .queue_rq
= loop_queue_rq
,
1951 .init_request
= loop_init_request
,
1952 .complete
= lo_complete_rq
,
1955 static int loop_add(struct loop_device
**l
, int i
)
1957 struct loop_device
*lo
;
1958 struct gendisk
*disk
;
1962 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1966 lo
->lo_state
= Lo_unbound
;
1968 /* allocate id, if @id >= 0, we're requesting that specific id */
1970 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
1974 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
1981 lo
->tag_set
.ops
= &loop_mq_ops
;
1982 lo
->tag_set
.nr_hw_queues
= 1;
1983 lo
->tag_set
.queue_depth
= 128;
1984 lo
->tag_set
.numa_node
= NUMA_NO_NODE
;
1985 lo
->tag_set
.cmd_size
= sizeof(struct loop_cmd
);
1986 lo
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
1987 lo
->tag_set
.driver_data
= lo
;
1989 err
= blk_mq_alloc_tag_set(&lo
->tag_set
);
1993 lo
->lo_queue
= blk_mq_init_queue(&lo
->tag_set
);
1994 if (IS_ERR_OR_NULL(lo
->lo_queue
)) {
1995 err
= PTR_ERR(lo
->lo_queue
);
1996 goto out_cleanup_tags
;
1998 lo
->lo_queue
->queuedata
= lo
;
2000 blk_queue_max_hw_sectors(lo
->lo_queue
, BLK_DEF_MAX_SECTORS
);
2003 * By default, we do buffer IO, so it doesn't make sense to enable
2004 * merge because the I/O submitted to backing file is handled page by
2005 * page. For directio mode, merge does help to dispatch bigger request
2006 * to underlayer disk. We will enable merge once directio is enabled.
2008 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
2011 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
2013 goto out_free_queue
;
2016 * Disable partition scanning by default. The in-kernel partition
2017 * scanning can be requested individually per-device during its
2018 * setup. Userspace can always add and remove partitions from all
2019 * devices. The needed partition minors are allocated from the
2020 * extended minor space, the main loop device numbers will continue
2021 * to match the loop minors, regardless of the number of partitions
2024 * If max_part is given, partition scanning is globally enabled for
2025 * all loop devices. The minors for the main loop devices will be
2026 * multiples of max_part.
2028 * Note: Global-for-all-devices, set-only-at-init, read-only module
2029 * parameteters like 'max_loop' and 'max_part' make things needlessly
2030 * complicated, are too static, inflexible and may surprise
2031 * userspace tools. Parameters like this in general should be avoided.
2034 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
2035 disk
->flags
|= GENHD_FL_EXT_DEVT
;
2036 atomic_set(&lo
->lo_refcnt
, 0);
2038 spin_lock_init(&lo
->lo_lock
);
2039 disk
->major
= LOOP_MAJOR
;
2040 disk
->first_minor
= i
<< part_shift
;
2041 disk
->fops
= &lo_fops
;
2042 disk
->private_data
= lo
;
2043 disk
->queue
= lo
->lo_queue
;
2044 sprintf(disk
->disk_name
, "loop%d", i
);
2047 return lo
->lo_number
;
2050 blk_cleanup_queue(lo
->lo_queue
);
2052 blk_mq_free_tag_set(&lo
->tag_set
);
2054 idr_remove(&loop_index_idr
, i
);
2061 static void loop_remove(struct loop_device
*lo
)
2063 del_gendisk(lo
->lo_disk
);
2064 blk_cleanup_queue(lo
->lo_queue
);
2065 blk_mq_free_tag_set(&lo
->tag_set
);
2066 put_disk(lo
->lo_disk
);
2070 static int find_free_cb(int id
, void *ptr
, void *data
)
2072 struct loop_device
*lo
= ptr
;
2073 struct loop_device
**l
= data
;
2075 if (lo
->lo_state
== Lo_unbound
) {
2082 static int loop_lookup(struct loop_device
**l
, int i
)
2084 struct loop_device
*lo
;
2090 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
2093 ret
= lo
->lo_number
;
2098 /* lookup and return a specific i */
2099 lo
= idr_find(&loop_index_idr
, i
);
2102 ret
= lo
->lo_number
;
2108 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
2110 struct loop_device
*lo
;
2111 struct kobject
*kobj
;
2114 mutex_lock(&loop_ctl_mutex
);
2115 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
2117 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
2121 kobj
= get_disk_and_module(lo
->lo_disk
);
2122 mutex_unlock(&loop_ctl_mutex
);
2128 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
2131 struct loop_device
*lo
;
2134 ret
= mutex_lock_killable(&loop_ctl_mutex
);
2141 ret
= loop_lookup(&lo
, parm
);
2146 ret
= loop_add(&lo
, parm
);
2148 case LOOP_CTL_REMOVE
:
2149 ret
= loop_lookup(&lo
, parm
);
2152 if (lo
->lo_state
!= Lo_unbound
) {
2156 if (atomic_read(&lo
->lo_refcnt
) > 0) {
2160 lo
->lo_disk
->private_data
= NULL
;
2161 idr_remove(&loop_index_idr
, lo
->lo_number
);
2164 case LOOP_CTL_GET_FREE
:
2165 ret
= loop_lookup(&lo
, -1);
2168 ret
= loop_add(&lo
, -1);
2170 mutex_unlock(&loop_ctl_mutex
);
2175 static const struct file_operations loop_ctl_fops
= {
2176 .open
= nonseekable_open
,
2177 .unlocked_ioctl
= loop_control_ioctl
,
2178 .compat_ioctl
= loop_control_ioctl
,
2179 .owner
= THIS_MODULE
,
2180 .llseek
= noop_llseek
,
2183 static struct miscdevice loop_misc
= {
2184 .minor
= LOOP_CTRL_MINOR
,
2185 .name
= "loop-control",
2186 .fops
= &loop_ctl_fops
,
2189 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
2190 MODULE_ALIAS("devname:loop-control");
2192 static int __init
loop_init(void)
2195 unsigned long range
;
2196 struct loop_device
*lo
;
2201 part_shift
= fls(max_part
);
2204 * Adjust max_part according to part_shift as it is exported
2205 * to user space so that user can decide correct minor number
2206 * if [s]he want to create more devices.
2208 * Note that -1 is required because partition 0 is reserved
2209 * for the whole disk.
2211 max_part
= (1UL << part_shift
) - 1;
2214 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
2219 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
2225 * If max_loop is specified, create that many devices upfront.
2226 * This also becomes a hard limit. If max_loop is not specified,
2227 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2228 * init time. Loop devices can be requested on-demand with the
2229 * /dev/loop-control interface, or be instantiated by accessing
2230 * a 'dead' device node.
2234 range
= max_loop
<< part_shift
;
2236 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
2237 range
= 1UL << MINORBITS
;
2240 err
= misc_register(&loop_misc
);
2245 if (register_blkdev(LOOP_MAJOR
, "loop")) {
2250 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
2251 THIS_MODULE
, loop_probe
, NULL
, NULL
);
2253 /* pre-create number of devices given by config or max_loop */
2254 mutex_lock(&loop_ctl_mutex
);
2255 for (i
= 0; i
< nr
; i
++)
2257 mutex_unlock(&loop_ctl_mutex
);
2259 printk(KERN_INFO
"loop: module loaded\n");
2263 misc_deregister(&loop_misc
);
2268 static int loop_exit_cb(int id
, void *ptr
, void *data
)
2270 struct loop_device
*lo
= ptr
;
2276 static void __exit
loop_exit(void)
2278 unsigned long range
;
2280 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
2282 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
2283 idr_destroy(&loop_index_idr
);
2285 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
2286 unregister_blkdev(LOOP_MAJOR
, "loop");
2288 misc_deregister(&loop_misc
);
2291 module_init(loop_init
);
2292 module_exit(loop_exit
);
2295 static int __init
max_loop_setup(char *str
)
2297 max_loop
= simple_strtol(str
, NULL
, 0);
2301 __setup("max_loop=", max_loop_setup
);