Linux 4.19.133
[linux/fpc-iii.git] / drivers / block / rbd.c
blob1101290971699fb77059f29c5b8a3c69960aecc5
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
50 #include "rbd_types.h"
52 #define RBD_DEBUG /* Activate rbd_assert() calls */
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
60 static int atomic_inc_return_safe(atomic_t *v)
62 unsigned int counter;
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
66 return (int)counter;
68 atomic_dec(v);
70 return -EINVAL;
73 /* Decrement the counter. Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
76 int counter;
78 counter = atomic_dec_return(v);
79 if (counter >= 0)
80 return counter;
82 atomic_inc(v);
84 return -EINVAL;
87 #define RBD_DRV_NAME "rbd"
89 #define RBD_MINORS_PER_MAJOR 256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
92 #define RBD_MAX_PARENT_CHAIN_LEN 16
94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
100 #define RBD_SNAP_HEAD_NAME "-"
102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX 64
108 #define RBD_OBJ_PREFIX_LEN_MAX 64
110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
113 /* Feature bits */
115 #define RBD_FEATURE_LAYERING (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
119 #define RBD_FEATURE_OPERATIONS (1ULL<<8)
121 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
122 RBD_FEATURE_STRIPINGV2 | \
123 RBD_FEATURE_EXCLUSIVE_LOCK | \
124 RBD_FEATURE_DATA_POOL | \
125 RBD_FEATURE_OPERATIONS)
127 /* Features supported by this (client software) implementation. */
129 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
132 * An RBD device name will be "rbd#", where the "rbd" comes from
133 * RBD_DRV_NAME above, and # is a unique integer identifier.
135 #define DEV_NAME_LEN 32
138 * block device image metadata (in-memory version)
140 struct rbd_image_header {
141 /* These six fields never change for a given rbd image */
142 char *object_prefix;
143 __u8 obj_order;
144 u64 stripe_unit;
145 u64 stripe_count;
146 s64 data_pool_id;
147 u64 features; /* Might be changeable someday? */
149 /* The remaining fields need to be updated occasionally */
150 u64 image_size;
151 struct ceph_snap_context *snapc;
152 char *snap_names; /* format 1 only */
153 u64 *snap_sizes; /* format 1 only */
157 * An rbd image specification.
159 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
160 * identify an image. Each rbd_dev structure includes a pointer to
161 * an rbd_spec structure that encapsulates this identity.
163 * Each of the id's in an rbd_spec has an associated name. For a
164 * user-mapped image, the names are supplied and the id's associated
165 * with them are looked up. For a layered image, a parent image is
166 * defined by the tuple, and the names are looked up.
168 * An rbd_dev structure contains a parent_spec pointer which is
169 * non-null if the image it represents is a child in a layered
170 * image. This pointer will refer to the rbd_spec structure used
171 * by the parent rbd_dev for its own identity (i.e., the structure
172 * is shared between the parent and child).
174 * Since these structures are populated once, during the discovery
175 * phase of image construction, they are effectively immutable so
176 * we make no effort to synchronize access to them.
178 * Note that code herein does not assume the image name is known (it
179 * could be a null pointer).
181 struct rbd_spec {
182 u64 pool_id;
183 const char *pool_name;
184 const char *pool_ns; /* NULL if default, never "" */
186 const char *image_id;
187 const char *image_name;
189 u64 snap_id;
190 const char *snap_name;
192 struct kref kref;
196 * an instance of the client. multiple devices may share an rbd client.
198 struct rbd_client {
199 struct ceph_client *client;
200 struct kref kref;
201 struct list_head node;
204 struct rbd_img_request;
206 enum obj_request_type {
207 OBJ_REQUEST_NODATA = 1,
208 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
209 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
210 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
213 enum obj_operation_type {
214 OBJ_OP_READ = 1,
215 OBJ_OP_WRITE,
216 OBJ_OP_DISCARD,
220 * Writes go through the following state machine to deal with
221 * layering:
223 * need copyup
224 * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP
225 * | ^ |
226 * v \------------------------------/
227 * done
230 * RBD_OBJ_WRITE_FLAT
232 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
233 * there is a parent or not.
235 enum rbd_obj_write_state {
236 RBD_OBJ_WRITE_FLAT = 1,
237 RBD_OBJ_WRITE_GUARD,
238 RBD_OBJ_WRITE_COPYUP,
241 struct rbd_obj_request {
242 struct ceph_object_extent ex;
243 union {
244 bool tried_parent; /* for reads */
245 enum rbd_obj_write_state write_state; /* for writes */
248 struct rbd_img_request *img_request;
249 struct ceph_file_extent *img_extents;
250 u32 num_img_extents;
252 union {
253 struct ceph_bio_iter bio_pos;
254 struct {
255 struct ceph_bvec_iter bvec_pos;
256 u32 bvec_count;
257 u32 bvec_idx;
260 struct bio_vec *copyup_bvecs;
261 u32 copyup_bvec_count;
263 struct ceph_osd_request *osd_req;
265 u64 xferred; /* bytes transferred */
266 int result;
268 struct kref kref;
271 enum img_req_flags {
272 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
273 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
276 struct rbd_img_request {
277 struct rbd_device *rbd_dev;
278 enum obj_operation_type op_type;
279 enum obj_request_type data_type;
280 unsigned long flags;
281 union {
282 u64 snap_id; /* for reads */
283 struct ceph_snap_context *snapc; /* for writes */
285 union {
286 struct request *rq; /* block request */
287 struct rbd_obj_request *obj_request; /* obj req initiator */
289 spinlock_t completion_lock;
290 u64 xferred;/* aggregate bytes transferred */
291 int result; /* first nonzero obj_request result */
293 struct list_head object_extents; /* obj_req.ex structs */
294 u32 obj_request_count;
295 u32 pending_count;
297 struct kref kref;
300 #define for_each_obj_request(ireq, oreq) \
301 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
302 #define for_each_obj_request_safe(ireq, oreq, n) \
303 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
305 enum rbd_watch_state {
306 RBD_WATCH_STATE_UNREGISTERED,
307 RBD_WATCH_STATE_REGISTERED,
308 RBD_WATCH_STATE_ERROR,
311 enum rbd_lock_state {
312 RBD_LOCK_STATE_UNLOCKED,
313 RBD_LOCK_STATE_LOCKED,
314 RBD_LOCK_STATE_RELEASING,
317 /* WatchNotify::ClientId */
318 struct rbd_client_id {
319 u64 gid;
320 u64 handle;
323 struct rbd_mapping {
324 u64 size;
325 u64 features;
329 * a single device
331 struct rbd_device {
332 int dev_id; /* blkdev unique id */
334 int major; /* blkdev assigned major */
335 int minor;
336 struct gendisk *disk; /* blkdev's gendisk and rq */
338 u32 image_format; /* Either 1 or 2 */
339 struct rbd_client *rbd_client;
341 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343 spinlock_t lock; /* queue, flags, open_count */
345 struct rbd_image_header header;
346 unsigned long flags; /* possibly lock protected */
347 struct rbd_spec *spec;
348 struct rbd_options *opts;
349 char *config_info; /* add{,_single_major} string */
351 struct ceph_object_id header_oid;
352 struct ceph_object_locator header_oloc;
354 struct ceph_file_layout layout; /* used for all rbd requests */
356 struct mutex watch_mutex;
357 enum rbd_watch_state watch_state;
358 struct ceph_osd_linger_request *watch_handle;
359 u64 watch_cookie;
360 struct delayed_work watch_dwork;
362 struct rw_semaphore lock_rwsem;
363 enum rbd_lock_state lock_state;
364 char lock_cookie[32];
365 struct rbd_client_id owner_cid;
366 struct work_struct acquired_lock_work;
367 struct work_struct released_lock_work;
368 struct delayed_work lock_dwork;
369 struct work_struct unlock_work;
370 wait_queue_head_t lock_waitq;
372 struct workqueue_struct *task_wq;
374 struct rbd_spec *parent_spec;
375 u64 parent_overlap;
376 atomic_t parent_ref;
377 struct rbd_device *parent;
379 /* Block layer tags. */
380 struct blk_mq_tag_set tag_set;
382 /* protects updating the header */
383 struct rw_semaphore header_rwsem;
385 struct rbd_mapping mapping;
387 struct list_head node;
389 /* sysfs related */
390 struct device dev;
391 unsigned long open_count; /* protected by lock */
395 * Flag bits for rbd_dev->flags:
396 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
397 * by rbd_dev->lock
398 * - BLACKLISTED is protected by rbd_dev->lock_rwsem
400 enum rbd_dev_flags {
401 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
402 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
403 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
406 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
408 static LIST_HEAD(rbd_dev_list); /* devices */
409 static DEFINE_SPINLOCK(rbd_dev_list_lock);
411 static LIST_HEAD(rbd_client_list); /* clients */
412 static DEFINE_SPINLOCK(rbd_client_list_lock);
414 /* Slab caches for frequently-allocated structures */
416 static struct kmem_cache *rbd_img_request_cache;
417 static struct kmem_cache *rbd_obj_request_cache;
419 static int rbd_major;
420 static DEFINE_IDA(rbd_dev_id_ida);
422 static struct workqueue_struct *rbd_wq;
425 * single-major requires >= 0.75 version of userspace rbd utility.
427 static bool single_major = true;
428 module_param(single_major, bool, 0444);
429 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
431 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
432 size_t count);
433 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
434 size_t count);
435 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
436 size_t count);
437 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
438 size_t count);
439 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
441 static int rbd_dev_id_to_minor(int dev_id)
443 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
446 static int minor_to_rbd_dev_id(int minor)
448 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
451 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
453 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
454 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
457 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
459 bool is_lock_owner;
461 down_read(&rbd_dev->lock_rwsem);
462 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
463 up_read(&rbd_dev->lock_rwsem);
464 return is_lock_owner;
467 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
469 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
472 static BUS_ATTR(add, 0200, NULL, rbd_add);
473 static BUS_ATTR(remove, 0200, NULL, rbd_remove);
474 static BUS_ATTR(add_single_major, 0200, NULL, rbd_add_single_major);
475 static BUS_ATTR(remove_single_major, 0200, NULL, rbd_remove_single_major);
476 static BUS_ATTR(supported_features, 0444, rbd_supported_features_show, NULL);
478 static struct attribute *rbd_bus_attrs[] = {
479 &bus_attr_add.attr,
480 &bus_attr_remove.attr,
481 &bus_attr_add_single_major.attr,
482 &bus_attr_remove_single_major.attr,
483 &bus_attr_supported_features.attr,
484 NULL,
487 static umode_t rbd_bus_is_visible(struct kobject *kobj,
488 struct attribute *attr, int index)
490 if (!single_major &&
491 (attr == &bus_attr_add_single_major.attr ||
492 attr == &bus_attr_remove_single_major.attr))
493 return 0;
495 return attr->mode;
498 static const struct attribute_group rbd_bus_group = {
499 .attrs = rbd_bus_attrs,
500 .is_visible = rbd_bus_is_visible,
502 __ATTRIBUTE_GROUPS(rbd_bus);
504 static struct bus_type rbd_bus_type = {
505 .name = "rbd",
506 .bus_groups = rbd_bus_groups,
509 static void rbd_root_dev_release(struct device *dev)
513 static struct device rbd_root_dev = {
514 .init_name = "rbd",
515 .release = rbd_root_dev_release,
518 static __printf(2, 3)
519 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
521 struct va_format vaf;
522 va_list args;
524 va_start(args, fmt);
525 vaf.fmt = fmt;
526 vaf.va = &args;
528 if (!rbd_dev)
529 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
530 else if (rbd_dev->disk)
531 printk(KERN_WARNING "%s: %s: %pV\n",
532 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
533 else if (rbd_dev->spec && rbd_dev->spec->image_name)
534 printk(KERN_WARNING "%s: image %s: %pV\n",
535 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
536 else if (rbd_dev->spec && rbd_dev->spec->image_id)
537 printk(KERN_WARNING "%s: id %s: %pV\n",
538 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
539 else /* punt */
540 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
541 RBD_DRV_NAME, rbd_dev, &vaf);
542 va_end(args);
545 #ifdef RBD_DEBUG
546 #define rbd_assert(expr) \
547 if (unlikely(!(expr))) { \
548 printk(KERN_ERR "\nAssertion failure in %s() " \
549 "at line %d:\n\n" \
550 "\trbd_assert(%s);\n\n", \
551 __func__, __LINE__, #expr); \
552 BUG(); \
554 #else /* !RBD_DEBUG */
555 # define rbd_assert(expr) ((void) 0)
556 #endif /* !RBD_DEBUG */
558 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
560 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
561 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
562 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
563 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
564 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
565 u64 snap_id);
566 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
567 u8 *order, u64 *snap_size);
568 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
569 u64 *snap_features);
571 static int rbd_open(struct block_device *bdev, fmode_t mode)
573 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
574 bool removing = false;
576 spin_lock_irq(&rbd_dev->lock);
577 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
578 removing = true;
579 else
580 rbd_dev->open_count++;
581 spin_unlock_irq(&rbd_dev->lock);
582 if (removing)
583 return -ENOENT;
585 (void) get_device(&rbd_dev->dev);
587 return 0;
590 static void rbd_release(struct gendisk *disk, fmode_t mode)
592 struct rbd_device *rbd_dev = disk->private_data;
593 unsigned long open_count_before;
595 spin_lock_irq(&rbd_dev->lock);
596 open_count_before = rbd_dev->open_count--;
597 spin_unlock_irq(&rbd_dev->lock);
598 rbd_assert(open_count_before > 0);
600 put_device(&rbd_dev->dev);
603 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
605 int ro;
607 if (get_user(ro, (int __user *)arg))
608 return -EFAULT;
610 /* Snapshots can't be marked read-write */
611 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
612 return -EROFS;
614 /* Let blkdev_roset() handle it */
615 return -ENOTTY;
618 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
619 unsigned int cmd, unsigned long arg)
621 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
622 int ret;
624 switch (cmd) {
625 case BLKROSET:
626 ret = rbd_ioctl_set_ro(rbd_dev, arg);
627 break;
628 default:
629 ret = -ENOTTY;
632 return ret;
635 #ifdef CONFIG_COMPAT
636 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
637 unsigned int cmd, unsigned long arg)
639 return rbd_ioctl(bdev, mode, cmd, arg);
641 #endif /* CONFIG_COMPAT */
643 static const struct block_device_operations rbd_bd_ops = {
644 .owner = THIS_MODULE,
645 .open = rbd_open,
646 .release = rbd_release,
647 .ioctl = rbd_ioctl,
648 #ifdef CONFIG_COMPAT
649 .compat_ioctl = rbd_compat_ioctl,
650 #endif
654 * Initialize an rbd client instance. Success or not, this function
655 * consumes ceph_opts. Caller holds client_mutex.
657 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
659 struct rbd_client *rbdc;
660 int ret = -ENOMEM;
662 dout("%s:\n", __func__);
663 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
664 if (!rbdc)
665 goto out_opt;
667 kref_init(&rbdc->kref);
668 INIT_LIST_HEAD(&rbdc->node);
670 rbdc->client = ceph_create_client(ceph_opts, rbdc);
671 if (IS_ERR(rbdc->client))
672 goto out_rbdc;
673 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
675 ret = ceph_open_session(rbdc->client);
676 if (ret < 0)
677 goto out_client;
679 spin_lock(&rbd_client_list_lock);
680 list_add_tail(&rbdc->node, &rbd_client_list);
681 spin_unlock(&rbd_client_list_lock);
683 dout("%s: rbdc %p\n", __func__, rbdc);
685 return rbdc;
686 out_client:
687 ceph_destroy_client(rbdc->client);
688 out_rbdc:
689 kfree(rbdc);
690 out_opt:
691 if (ceph_opts)
692 ceph_destroy_options(ceph_opts);
693 dout("%s: error %d\n", __func__, ret);
695 return ERR_PTR(ret);
698 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
700 kref_get(&rbdc->kref);
702 return rbdc;
706 * Find a ceph client with specific addr and configuration. If
707 * found, bump its reference count.
709 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
711 struct rbd_client *client_node;
712 bool found = false;
714 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
715 return NULL;
717 spin_lock(&rbd_client_list_lock);
718 list_for_each_entry(client_node, &rbd_client_list, node) {
719 if (!ceph_compare_options(ceph_opts, client_node->client)) {
720 __rbd_get_client(client_node);
722 found = true;
723 break;
726 spin_unlock(&rbd_client_list_lock);
728 return found ? client_node : NULL;
732 * (Per device) rbd map options
734 enum {
735 Opt_queue_depth,
736 Opt_lock_timeout,
737 Opt_last_int,
738 /* int args above */
739 Opt_pool_ns,
740 Opt_last_string,
741 /* string args above */
742 Opt_read_only,
743 Opt_read_write,
744 Opt_lock_on_read,
745 Opt_exclusive,
746 Opt_notrim,
747 Opt_err
750 static match_table_t rbd_opts_tokens = {
751 {Opt_queue_depth, "queue_depth=%d"},
752 {Opt_lock_timeout, "lock_timeout=%d"},
753 /* int args above */
754 {Opt_pool_ns, "_pool_ns=%s"},
755 /* string args above */
756 {Opt_read_only, "read_only"},
757 {Opt_read_only, "ro"}, /* Alternate spelling */
758 {Opt_read_write, "read_write"},
759 {Opt_read_write, "rw"}, /* Alternate spelling */
760 {Opt_lock_on_read, "lock_on_read"},
761 {Opt_exclusive, "exclusive"},
762 {Opt_notrim, "notrim"},
763 {Opt_err, NULL}
766 struct rbd_options {
767 int queue_depth;
768 unsigned long lock_timeout;
769 bool read_only;
770 bool lock_on_read;
771 bool exclusive;
772 bool trim;
775 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
776 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
777 #define RBD_READ_ONLY_DEFAULT false
778 #define RBD_LOCK_ON_READ_DEFAULT false
779 #define RBD_EXCLUSIVE_DEFAULT false
780 #define RBD_TRIM_DEFAULT true
782 struct parse_rbd_opts_ctx {
783 struct rbd_spec *spec;
784 struct rbd_options *opts;
787 static int parse_rbd_opts_token(char *c, void *private)
789 struct parse_rbd_opts_ctx *pctx = private;
790 substring_t argstr[MAX_OPT_ARGS];
791 int token, intval, ret;
793 token = match_token(c, rbd_opts_tokens, argstr);
794 if (token < Opt_last_int) {
795 ret = match_int(&argstr[0], &intval);
796 if (ret < 0) {
797 pr_err("bad option arg (not int) at '%s'\n", c);
798 return ret;
800 dout("got int token %d val %d\n", token, intval);
801 } else if (token > Opt_last_int && token < Opt_last_string) {
802 dout("got string token %d val %s\n", token, argstr[0].from);
803 } else {
804 dout("got token %d\n", token);
807 switch (token) {
808 case Opt_queue_depth:
809 if (intval < 1) {
810 pr_err("queue_depth out of range\n");
811 return -EINVAL;
813 pctx->opts->queue_depth = intval;
814 break;
815 case Opt_lock_timeout:
816 /* 0 is "wait forever" (i.e. infinite timeout) */
817 if (intval < 0 || intval > INT_MAX / 1000) {
818 pr_err("lock_timeout out of range\n");
819 return -EINVAL;
821 pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
822 break;
823 case Opt_pool_ns:
824 kfree(pctx->spec->pool_ns);
825 pctx->spec->pool_ns = match_strdup(argstr);
826 if (!pctx->spec->pool_ns)
827 return -ENOMEM;
828 break;
829 case Opt_read_only:
830 pctx->opts->read_only = true;
831 break;
832 case Opt_read_write:
833 pctx->opts->read_only = false;
834 break;
835 case Opt_lock_on_read:
836 pctx->opts->lock_on_read = true;
837 break;
838 case Opt_exclusive:
839 pctx->opts->exclusive = true;
840 break;
841 case Opt_notrim:
842 pctx->opts->trim = false;
843 break;
844 default:
845 /* libceph prints "bad option" msg */
846 return -EINVAL;
849 return 0;
852 static char* obj_op_name(enum obj_operation_type op_type)
854 switch (op_type) {
855 case OBJ_OP_READ:
856 return "read";
857 case OBJ_OP_WRITE:
858 return "write";
859 case OBJ_OP_DISCARD:
860 return "discard";
861 default:
862 return "???";
867 * Destroy ceph client
869 * Caller must hold rbd_client_list_lock.
871 static void rbd_client_release(struct kref *kref)
873 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875 dout("%s: rbdc %p\n", __func__, rbdc);
876 spin_lock(&rbd_client_list_lock);
877 list_del(&rbdc->node);
878 spin_unlock(&rbd_client_list_lock);
880 ceph_destroy_client(rbdc->client);
881 kfree(rbdc);
885 * Drop reference to ceph client node. If it's not referenced anymore, release
886 * it.
888 static void rbd_put_client(struct rbd_client *rbdc)
890 if (rbdc)
891 kref_put(&rbdc->kref, rbd_client_release);
894 static int wait_for_latest_osdmap(struct ceph_client *client)
896 u64 newest_epoch;
897 int ret;
899 ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch);
900 if (ret)
901 return ret;
903 if (client->osdc.osdmap->epoch >= newest_epoch)
904 return 0;
906 ceph_osdc_maybe_request_map(&client->osdc);
907 return ceph_monc_wait_osdmap(&client->monc, newest_epoch,
908 client->options->mount_timeout);
912 * Get a ceph client with specific addr and configuration, if one does
913 * not exist create it. Either way, ceph_opts is consumed by this
914 * function.
916 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
918 struct rbd_client *rbdc;
919 int ret;
921 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
922 rbdc = rbd_client_find(ceph_opts);
923 if (rbdc) {
924 ceph_destroy_options(ceph_opts);
927 * Using an existing client. Make sure ->pg_pools is up to
928 * date before we look up the pool id in do_rbd_add().
930 ret = wait_for_latest_osdmap(rbdc->client);
931 if (ret) {
932 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
933 rbd_put_client(rbdc);
934 rbdc = ERR_PTR(ret);
936 } else {
937 rbdc = rbd_client_create(ceph_opts);
939 mutex_unlock(&client_mutex);
941 return rbdc;
944 static bool rbd_image_format_valid(u32 image_format)
946 return image_format == 1 || image_format == 2;
949 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
951 size_t size;
952 u32 snap_count;
954 /* The header has to start with the magic rbd header text */
955 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
956 return false;
958 /* The bio layer requires at least sector-sized I/O */
960 if (ondisk->options.order < SECTOR_SHIFT)
961 return false;
963 /* If we use u64 in a few spots we may be able to loosen this */
965 if (ondisk->options.order > 8 * sizeof (int) - 1)
966 return false;
969 * The size of a snapshot header has to fit in a size_t, and
970 * that limits the number of snapshots.
972 snap_count = le32_to_cpu(ondisk->snap_count);
973 size = SIZE_MAX - sizeof (struct ceph_snap_context);
974 if (snap_count > size / sizeof (__le64))
975 return false;
978 * Not only that, but the size of the entire the snapshot
979 * header must also be representable in a size_t.
981 size -= snap_count * sizeof (__le64);
982 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
983 return false;
985 return true;
989 * returns the size of an object in the image
991 static u32 rbd_obj_bytes(struct rbd_image_header *header)
993 return 1U << header->obj_order;
996 static void rbd_init_layout(struct rbd_device *rbd_dev)
998 if (rbd_dev->header.stripe_unit == 0 ||
999 rbd_dev->header.stripe_count == 0) {
1000 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1001 rbd_dev->header.stripe_count = 1;
1004 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1005 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1006 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1007 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1008 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1009 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1013 * Fill an rbd image header with information from the given format 1
1014 * on-disk header.
1016 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1017 struct rbd_image_header_ondisk *ondisk)
1019 struct rbd_image_header *header = &rbd_dev->header;
1020 bool first_time = header->object_prefix == NULL;
1021 struct ceph_snap_context *snapc;
1022 char *object_prefix = NULL;
1023 char *snap_names = NULL;
1024 u64 *snap_sizes = NULL;
1025 u32 snap_count;
1026 int ret = -ENOMEM;
1027 u32 i;
1029 /* Allocate this now to avoid having to handle failure below */
1031 if (first_time) {
1032 object_prefix = kstrndup(ondisk->object_prefix,
1033 sizeof(ondisk->object_prefix),
1034 GFP_KERNEL);
1035 if (!object_prefix)
1036 return -ENOMEM;
1039 /* Allocate the snapshot context and fill it in */
1041 snap_count = le32_to_cpu(ondisk->snap_count);
1042 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1043 if (!snapc)
1044 goto out_err;
1045 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1046 if (snap_count) {
1047 struct rbd_image_snap_ondisk *snaps;
1048 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1050 /* We'll keep a copy of the snapshot names... */
1052 if (snap_names_len > (u64)SIZE_MAX)
1053 goto out_2big;
1054 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1055 if (!snap_names)
1056 goto out_err;
1058 /* ...as well as the array of their sizes. */
1059 snap_sizes = kmalloc_array(snap_count,
1060 sizeof(*header->snap_sizes),
1061 GFP_KERNEL);
1062 if (!snap_sizes)
1063 goto out_err;
1066 * Copy the names, and fill in each snapshot's id
1067 * and size.
1069 * Note that rbd_dev_v1_header_info() guarantees the
1070 * ondisk buffer we're working with has
1071 * snap_names_len bytes beyond the end of the
1072 * snapshot id array, this memcpy() is safe.
1074 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1075 snaps = ondisk->snaps;
1076 for (i = 0; i < snap_count; i++) {
1077 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1078 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1082 /* We won't fail any more, fill in the header */
1084 if (first_time) {
1085 header->object_prefix = object_prefix;
1086 header->obj_order = ondisk->options.order;
1087 rbd_init_layout(rbd_dev);
1088 } else {
1089 ceph_put_snap_context(header->snapc);
1090 kfree(header->snap_names);
1091 kfree(header->snap_sizes);
1094 /* The remaining fields always get updated (when we refresh) */
1096 header->image_size = le64_to_cpu(ondisk->image_size);
1097 header->snapc = snapc;
1098 header->snap_names = snap_names;
1099 header->snap_sizes = snap_sizes;
1101 return 0;
1102 out_2big:
1103 ret = -EIO;
1104 out_err:
1105 kfree(snap_sizes);
1106 kfree(snap_names);
1107 ceph_put_snap_context(snapc);
1108 kfree(object_prefix);
1110 return ret;
1113 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1115 const char *snap_name;
1117 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1119 /* Skip over names until we find the one we are looking for */
1121 snap_name = rbd_dev->header.snap_names;
1122 while (which--)
1123 snap_name += strlen(snap_name) + 1;
1125 return kstrdup(snap_name, GFP_KERNEL);
1129 * Snapshot id comparison function for use with qsort()/bsearch().
1130 * Note that result is for snapshots in *descending* order.
1132 static int snapid_compare_reverse(const void *s1, const void *s2)
1134 u64 snap_id1 = *(u64 *)s1;
1135 u64 snap_id2 = *(u64 *)s2;
1137 if (snap_id1 < snap_id2)
1138 return 1;
1139 return snap_id1 == snap_id2 ? 0 : -1;
1143 * Search a snapshot context to see if the given snapshot id is
1144 * present.
1146 * Returns the position of the snapshot id in the array if it's found,
1147 * or BAD_SNAP_INDEX otherwise.
1149 * Note: The snapshot array is in kept sorted (by the osd) in
1150 * reverse order, highest snapshot id first.
1152 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1154 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1155 u64 *found;
1157 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1158 sizeof (snap_id), snapid_compare_reverse);
1160 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1163 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1164 u64 snap_id)
1166 u32 which;
1167 const char *snap_name;
1169 which = rbd_dev_snap_index(rbd_dev, snap_id);
1170 if (which == BAD_SNAP_INDEX)
1171 return ERR_PTR(-ENOENT);
1173 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1174 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1177 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1179 if (snap_id == CEPH_NOSNAP)
1180 return RBD_SNAP_HEAD_NAME;
1182 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1183 if (rbd_dev->image_format == 1)
1184 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1186 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1189 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1190 u64 *snap_size)
1192 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1193 if (snap_id == CEPH_NOSNAP) {
1194 *snap_size = rbd_dev->header.image_size;
1195 } else if (rbd_dev->image_format == 1) {
1196 u32 which;
1198 which = rbd_dev_snap_index(rbd_dev, snap_id);
1199 if (which == BAD_SNAP_INDEX)
1200 return -ENOENT;
1202 *snap_size = rbd_dev->header.snap_sizes[which];
1203 } else {
1204 u64 size = 0;
1205 int ret;
1207 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1208 if (ret)
1209 return ret;
1211 *snap_size = size;
1213 return 0;
1216 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1217 u64 *snap_features)
1219 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1220 if (snap_id == CEPH_NOSNAP) {
1221 *snap_features = rbd_dev->header.features;
1222 } else if (rbd_dev->image_format == 1) {
1223 *snap_features = 0; /* No features for format 1 */
1224 } else {
1225 u64 features = 0;
1226 int ret;
1228 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1229 if (ret)
1230 return ret;
1232 *snap_features = features;
1234 return 0;
1237 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1239 u64 snap_id = rbd_dev->spec->snap_id;
1240 u64 size = 0;
1241 u64 features = 0;
1242 int ret;
1244 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1245 if (ret)
1246 return ret;
1247 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1248 if (ret)
1249 return ret;
1251 rbd_dev->mapping.size = size;
1252 rbd_dev->mapping.features = features;
1254 return 0;
1257 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1259 rbd_dev->mapping.size = 0;
1260 rbd_dev->mapping.features = 0;
1263 static void zero_bvec(struct bio_vec *bv)
1265 void *buf;
1266 unsigned long flags;
1268 buf = bvec_kmap_irq(bv, &flags);
1269 memset(buf, 0, bv->bv_len);
1270 flush_dcache_page(bv->bv_page);
1271 bvec_kunmap_irq(buf, &flags);
1274 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1276 struct ceph_bio_iter it = *bio_pos;
1278 ceph_bio_iter_advance(&it, off);
1279 ceph_bio_iter_advance_step(&it, bytes, ({
1280 zero_bvec(&bv);
1281 }));
1284 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1286 struct ceph_bvec_iter it = *bvec_pos;
1288 ceph_bvec_iter_advance(&it, off);
1289 ceph_bvec_iter_advance_step(&it, bytes, ({
1290 zero_bvec(&bv);
1291 }));
1295 * Zero a range in @obj_req data buffer defined by a bio (list) or
1296 * (private) bio_vec array.
1298 * @off is relative to the start of the data buffer.
1300 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1301 u32 bytes)
1303 switch (obj_req->img_request->data_type) {
1304 case OBJ_REQUEST_BIO:
1305 zero_bios(&obj_req->bio_pos, off, bytes);
1306 break;
1307 case OBJ_REQUEST_BVECS:
1308 case OBJ_REQUEST_OWN_BVECS:
1309 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1310 break;
1311 default:
1312 rbd_assert(0);
1316 static void rbd_obj_request_destroy(struct kref *kref);
1317 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1319 rbd_assert(obj_request != NULL);
1320 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1321 kref_read(&obj_request->kref));
1322 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1325 static void rbd_img_request_get(struct rbd_img_request *img_request)
1327 dout("%s: img %p (was %d)\n", __func__, img_request,
1328 kref_read(&img_request->kref));
1329 kref_get(&img_request->kref);
1332 static void rbd_img_request_destroy(struct kref *kref);
1333 static void rbd_img_request_put(struct rbd_img_request *img_request)
1335 rbd_assert(img_request != NULL);
1336 dout("%s: img %p (was %d)\n", __func__, img_request,
1337 kref_read(&img_request->kref));
1338 kref_put(&img_request->kref, rbd_img_request_destroy);
1341 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1342 struct rbd_obj_request *obj_request)
1344 rbd_assert(obj_request->img_request == NULL);
1346 /* Image request now owns object's original reference */
1347 obj_request->img_request = img_request;
1348 img_request->obj_request_count++;
1349 img_request->pending_count++;
1350 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1353 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1354 struct rbd_obj_request *obj_request)
1356 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1357 list_del(&obj_request->ex.oe_item);
1358 rbd_assert(img_request->obj_request_count > 0);
1359 img_request->obj_request_count--;
1360 rbd_assert(obj_request->img_request == img_request);
1361 rbd_obj_request_put(obj_request);
1364 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1366 struct ceph_osd_request *osd_req = obj_request->osd_req;
1368 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1369 obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1370 obj_request->ex.oe_len, osd_req);
1371 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1375 * The default/initial value for all image request flags is 0. Each
1376 * is conditionally set to 1 at image request initialization time
1377 * and currently never change thereafter.
1379 static void img_request_layered_set(struct rbd_img_request *img_request)
1381 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1382 smp_mb();
1385 static void img_request_layered_clear(struct rbd_img_request *img_request)
1387 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1388 smp_mb();
1391 static bool img_request_layered_test(struct rbd_img_request *img_request)
1393 smp_mb();
1394 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1397 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1399 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1401 return !obj_req->ex.oe_off &&
1402 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1405 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1407 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1409 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1410 rbd_dev->layout.object_size;
1413 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1415 return ceph_file_extents_bytes(obj_req->img_extents,
1416 obj_req->num_img_extents);
1419 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1421 switch (img_req->op_type) {
1422 case OBJ_OP_READ:
1423 return false;
1424 case OBJ_OP_WRITE:
1425 case OBJ_OP_DISCARD:
1426 return true;
1427 default:
1428 BUG();
1432 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1434 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1436 struct rbd_obj_request *obj_req = osd_req->r_priv;
1438 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1439 osd_req->r_result, obj_req);
1440 rbd_assert(osd_req == obj_req->osd_req);
1442 obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1443 if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1444 obj_req->xferred = osd_req->r_result;
1445 else
1447 * Writes aren't allowed to return a data payload. In some
1448 * guarded write cases (e.g. stat + zero on an empty object)
1449 * a stat response makes it through, but we don't care.
1451 obj_req->xferred = 0;
1453 rbd_obj_handle_request(obj_req);
1456 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1458 struct ceph_osd_request *osd_req = obj_request->osd_req;
1460 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1461 osd_req->r_snapid = obj_request->img_request->snap_id;
1464 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1466 struct ceph_osd_request *osd_req = obj_request->osd_req;
1468 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1469 ktime_get_real_ts64(&osd_req->r_mtime);
1470 osd_req->r_data_offset = obj_request->ex.oe_off;
1473 static struct ceph_osd_request *
1474 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1476 struct rbd_img_request *img_req = obj_req->img_request;
1477 struct rbd_device *rbd_dev = img_req->rbd_dev;
1478 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1479 struct ceph_osd_request *req;
1480 const char *name_format = rbd_dev->image_format == 1 ?
1481 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1483 req = ceph_osdc_alloc_request(osdc,
1484 (rbd_img_is_write(img_req) ? img_req->snapc : NULL),
1485 num_ops, false, GFP_NOIO);
1486 if (!req)
1487 return NULL;
1489 req->r_callback = rbd_osd_req_callback;
1490 req->r_priv = obj_req;
1493 * Data objects may be stored in a separate pool, but always in
1494 * the same namespace in that pool as the header in its pool.
1496 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1497 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1499 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1500 rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1501 goto err_req;
1503 if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1504 goto err_req;
1506 return req;
1508 err_req:
1509 ceph_osdc_put_request(req);
1510 return NULL;
1513 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1515 ceph_osdc_put_request(osd_req);
1518 static struct rbd_obj_request *rbd_obj_request_create(void)
1520 struct rbd_obj_request *obj_request;
1522 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1523 if (!obj_request)
1524 return NULL;
1526 ceph_object_extent_init(&obj_request->ex);
1527 kref_init(&obj_request->kref);
1529 dout("%s %p\n", __func__, obj_request);
1530 return obj_request;
1533 static void rbd_obj_request_destroy(struct kref *kref)
1535 struct rbd_obj_request *obj_request;
1536 u32 i;
1538 obj_request = container_of(kref, struct rbd_obj_request, kref);
1540 dout("%s: obj %p\n", __func__, obj_request);
1542 if (obj_request->osd_req)
1543 rbd_osd_req_destroy(obj_request->osd_req);
1545 switch (obj_request->img_request->data_type) {
1546 case OBJ_REQUEST_NODATA:
1547 case OBJ_REQUEST_BIO:
1548 case OBJ_REQUEST_BVECS:
1549 break; /* Nothing to do */
1550 case OBJ_REQUEST_OWN_BVECS:
1551 kfree(obj_request->bvec_pos.bvecs);
1552 break;
1553 default:
1554 rbd_assert(0);
1557 kfree(obj_request->img_extents);
1558 if (obj_request->copyup_bvecs) {
1559 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1560 if (obj_request->copyup_bvecs[i].bv_page)
1561 __free_page(obj_request->copyup_bvecs[i].bv_page);
1563 kfree(obj_request->copyup_bvecs);
1566 kmem_cache_free(rbd_obj_request_cache, obj_request);
1569 /* It's OK to call this for a device with no parent */
1571 static void rbd_spec_put(struct rbd_spec *spec);
1572 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1574 rbd_dev_remove_parent(rbd_dev);
1575 rbd_spec_put(rbd_dev->parent_spec);
1576 rbd_dev->parent_spec = NULL;
1577 rbd_dev->parent_overlap = 0;
1581 * Parent image reference counting is used to determine when an
1582 * image's parent fields can be safely torn down--after there are no
1583 * more in-flight requests to the parent image. When the last
1584 * reference is dropped, cleaning them up is safe.
1586 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1588 int counter;
1590 if (!rbd_dev->parent_spec)
1591 return;
1593 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1594 if (counter > 0)
1595 return;
1597 /* Last reference; clean up parent data structures */
1599 if (!counter)
1600 rbd_dev_unparent(rbd_dev);
1601 else
1602 rbd_warn(rbd_dev, "parent reference underflow");
1606 * If an image has a non-zero parent overlap, get a reference to its
1607 * parent.
1609 * Returns true if the rbd device has a parent with a non-zero
1610 * overlap and a reference for it was successfully taken, or
1611 * false otherwise.
1613 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1615 int counter = 0;
1617 if (!rbd_dev->parent_spec)
1618 return false;
1620 down_read(&rbd_dev->header_rwsem);
1621 if (rbd_dev->parent_overlap)
1622 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1623 up_read(&rbd_dev->header_rwsem);
1625 if (counter < 0)
1626 rbd_warn(rbd_dev, "parent reference overflow");
1628 return counter > 0;
1632 * Caller is responsible for filling in the list of object requests
1633 * that comprises the image request, and the Linux request pointer
1634 * (if there is one).
1636 static struct rbd_img_request *rbd_img_request_create(
1637 struct rbd_device *rbd_dev,
1638 enum obj_operation_type op_type,
1639 struct ceph_snap_context *snapc)
1641 struct rbd_img_request *img_request;
1643 img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1644 if (!img_request)
1645 return NULL;
1647 img_request->rbd_dev = rbd_dev;
1648 img_request->op_type = op_type;
1649 if (!rbd_img_is_write(img_request))
1650 img_request->snap_id = rbd_dev->spec->snap_id;
1651 else
1652 img_request->snapc = snapc;
1654 if (rbd_dev_parent_get(rbd_dev))
1655 img_request_layered_set(img_request);
1657 spin_lock_init(&img_request->completion_lock);
1658 INIT_LIST_HEAD(&img_request->object_extents);
1659 kref_init(&img_request->kref);
1661 dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1662 obj_op_name(op_type), img_request);
1663 return img_request;
1666 static void rbd_img_request_destroy(struct kref *kref)
1668 struct rbd_img_request *img_request;
1669 struct rbd_obj_request *obj_request;
1670 struct rbd_obj_request *next_obj_request;
1672 img_request = container_of(kref, struct rbd_img_request, kref);
1674 dout("%s: img %p\n", __func__, img_request);
1676 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1677 rbd_img_obj_request_del(img_request, obj_request);
1678 rbd_assert(img_request->obj_request_count == 0);
1680 if (img_request_layered_test(img_request)) {
1681 img_request_layered_clear(img_request);
1682 rbd_dev_parent_put(img_request->rbd_dev);
1685 if (rbd_img_is_write(img_request))
1686 ceph_put_snap_context(img_request->snapc);
1688 kmem_cache_free(rbd_img_request_cache, img_request);
1691 static void prune_extents(struct ceph_file_extent *img_extents,
1692 u32 *num_img_extents, u64 overlap)
1694 u32 cnt = *num_img_extents;
1696 /* drop extents completely beyond the overlap */
1697 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1698 cnt--;
1700 if (cnt) {
1701 struct ceph_file_extent *ex = &img_extents[cnt - 1];
1703 /* trim final overlapping extent */
1704 if (ex->fe_off + ex->fe_len > overlap)
1705 ex->fe_len = overlap - ex->fe_off;
1708 *num_img_extents = cnt;
1712 * Determine the byte range(s) covered by either just the object extent
1713 * or the entire object in the parent image.
1715 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1716 bool entire)
1718 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1719 int ret;
1721 if (!rbd_dev->parent_overlap)
1722 return 0;
1724 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1725 entire ? 0 : obj_req->ex.oe_off,
1726 entire ? rbd_dev->layout.object_size :
1727 obj_req->ex.oe_len,
1728 &obj_req->img_extents,
1729 &obj_req->num_img_extents);
1730 if (ret)
1731 return ret;
1733 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1734 rbd_dev->parent_overlap);
1735 return 0;
1738 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1740 switch (obj_req->img_request->data_type) {
1741 case OBJ_REQUEST_BIO:
1742 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1743 &obj_req->bio_pos,
1744 obj_req->ex.oe_len);
1745 break;
1746 case OBJ_REQUEST_BVECS:
1747 case OBJ_REQUEST_OWN_BVECS:
1748 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1749 obj_req->ex.oe_len);
1750 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1751 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1752 &obj_req->bvec_pos);
1753 break;
1754 default:
1755 rbd_assert(0);
1759 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1761 obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1762 if (!obj_req->osd_req)
1763 return -ENOMEM;
1765 osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1766 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1767 rbd_osd_req_setup_data(obj_req, 0);
1769 rbd_osd_req_format_read(obj_req);
1770 return 0;
1773 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1774 unsigned int which)
1776 struct page **pages;
1779 * The response data for a STAT call consists of:
1780 * le64 length;
1781 * struct {
1782 * le32 tv_sec;
1783 * le32 tv_nsec;
1784 * } mtime;
1786 pages = ceph_alloc_page_vector(1, GFP_NOIO);
1787 if (IS_ERR(pages))
1788 return PTR_ERR(pages);
1790 osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1791 osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1792 8 + sizeof(struct ceph_timespec),
1793 0, false, true);
1794 return 0;
1797 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1798 unsigned int which)
1800 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1801 u16 opcode;
1803 osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1804 rbd_dev->layout.object_size,
1805 rbd_dev->layout.object_size);
1807 if (rbd_obj_is_entire(obj_req))
1808 opcode = CEPH_OSD_OP_WRITEFULL;
1809 else
1810 opcode = CEPH_OSD_OP_WRITE;
1812 osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1813 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1814 rbd_osd_req_setup_data(obj_req, which++);
1816 rbd_assert(which == obj_req->osd_req->r_num_ops);
1817 rbd_osd_req_format_write(obj_req);
1820 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1822 unsigned int num_osd_ops, which = 0;
1823 int ret;
1825 /* reverse map the entire object onto the parent */
1826 ret = rbd_obj_calc_img_extents(obj_req, true);
1827 if (ret)
1828 return ret;
1830 if (obj_req->num_img_extents) {
1831 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1832 num_osd_ops = 3; /* stat + setallochint + write/writefull */
1833 } else {
1834 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1835 num_osd_ops = 2; /* setallochint + write/writefull */
1838 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1839 if (!obj_req->osd_req)
1840 return -ENOMEM;
1842 if (obj_req->num_img_extents) {
1843 ret = __rbd_obj_setup_stat(obj_req, which++);
1844 if (ret)
1845 return ret;
1848 __rbd_obj_setup_write(obj_req, which);
1849 return 0;
1852 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req,
1853 unsigned int which)
1855 u16 opcode;
1857 if (rbd_obj_is_entire(obj_req)) {
1858 if (obj_req->num_img_extents) {
1859 osd_req_op_init(obj_req->osd_req, which++,
1860 CEPH_OSD_OP_CREATE, 0);
1861 opcode = CEPH_OSD_OP_TRUNCATE;
1862 } else {
1863 osd_req_op_init(obj_req->osd_req, which++,
1864 CEPH_OSD_OP_DELETE, 0);
1865 opcode = 0;
1867 } else if (rbd_obj_is_tail(obj_req)) {
1868 opcode = CEPH_OSD_OP_TRUNCATE;
1869 } else {
1870 opcode = CEPH_OSD_OP_ZERO;
1873 if (opcode)
1874 osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1875 obj_req->ex.oe_off, obj_req->ex.oe_len,
1876 0, 0);
1878 rbd_assert(which == obj_req->osd_req->r_num_ops);
1879 rbd_osd_req_format_write(obj_req);
1882 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1884 unsigned int num_osd_ops, which = 0;
1885 int ret;
1887 /* reverse map the entire object onto the parent */
1888 ret = rbd_obj_calc_img_extents(obj_req, true);
1889 if (ret)
1890 return ret;
1892 if (rbd_obj_is_entire(obj_req)) {
1893 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1894 if (obj_req->num_img_extents)
1895 num_osd_ops = 2; /* create + truncate */
1896 else
1897 num_osd_ops = 1; /* delete */
1898 } else {
1899 if (obj_req->num_img_extents) {
1900 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1901 num_osd_ops = 2; /* stat + truncate/zero */
1902 } else {
1903 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1904 num_osd_ops = 1; /* truncate/zero */
1908 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1909 if (!obj_req->osd_req)
1910 return -ENOMEM;
1912 if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) {
1913 ret = __rbd_obj_setup_stat(obj_req, which++);
1914 if (ret)
1915 return ret;
1918 __rbd_obj_setup_discard(obj_req, which);
1919 return 0;
1923 * For each object request in @img_req, allocate an OSD request, add
1924 * individual OSD ops and prepare them for submission. The number of
1925 * OSD ops depends on op_type and the overlap point (if any).
1927 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
1929 struct rbd_obj_request *obj_req;
1930 int ret;
1932 for_each_obj_request(img_req, obj_req) {
1933 switch (img_req->op_type) {
1934 case OBJ_OP_READ:
1935 ret = rbd_obj_setup_read(obj_req);
1936 break;
1937 case OBJ_OP_WRITE:
1938 ret = rbd_obj_setup_write(obj_req);
1939 break;
1940 case OBJ_OP_DISCARD:
1941 ret = rbd_obj_setup_discard(obj_req);
1942 break;
1943 default:
1944 rbd_assert(0);
1946 if (ret)
1947 return ret;
1950 return 0;
1953 union rbd_img_fill_iter {
1954 struct ceph_bio_iter bio_iter;
1955 struct ceph_bvec_iter bvec_iter;
1958 struct rbd_img_fill_ctx {
1959 enum obj_request_type pos_type;
1960 union rbd_img_fill_iter *pos;
1961 union rbd_img_fill_iter iter;
1962 ceph_object_extent_fn_t set_pos_fn;
1963 ceph_object_extent_fn_t count_fn;
1964 ceph_object_extent_fn_t copy_fn;
1967 static struct ceph_object_extent *alloc_object_extent(void *arg)
1969 struct rbd_img_request *img_req = arg;
1970 struct rbd_obj_request *obj_req;
1972 obj_req = rbd_obj_request_create();
1973 if (!obj_req)
1974 return NULL;
1976 rbd_img_obj_request_add(img_req, obj_req);
1977 return &obj_req->ex;
1981 * While su != os && sc == 1 is technically not fancy (it's the same
1982 * layout as su == os && sc == 1), we can't use the nocopy path for it
1983 * because ->set_pos_fn() should be called only once per object.
1984 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
1985 * treat su != os && sc == 1 as fancy.
1987 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
1989 return l->stripe_unit != l->object_size;
1992 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
1993 struct ceph_file_extent *img_extents,
1994 u32 num_img_extents,
1995 struct rbd_img_fill_ctx *fctx)
1997 u32 i;
1998 int ret;
2000 img_req->data_type = fctx->pos_type;
2003 * Create object requests and set each object request's starting
2004 * position in the provided bio (list) or bio_vec array.
2006 fctx->iter = *fctx->pos;
2007 for (i = 0; i < num_img_extents; i++) {
2008 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2009 img_extents[i].fe_off,
2010 img_extents[i].fe_len,
2011 &img_req->object_extents,
2012 alloc_object_extent, img_req,
2013 fctx->set_pos_fn, &fctx->iter);
2014 if (ret)
2015 return ret;
2018 return __rbd_img_fill_request(img_req);
2022 * Map a list of image extents to a list of object extents, create the
2023 * corresponding object requests (normally each to a different object,
2024 * but not always) and add them to @img_req. For each object request,
2025 * set up its data descriptor to point to the corresponding chunk(s) of
2026 * @fctx->pos data buffer.
2028 * Because ceph_file_to_extents() will merge adjacent object extents
2029 * together, each object request's data descriptor may point to multiple
2030 * different chunks of @fctx->pos data buffer.
2032 * @fctx->pos data buffer is assumed to be large enough.
2034 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2035 struct ceph_file_extent *img_extents,
2036 u32 num_img_extents,
2037 struct rbd_img_fill_ctx *fctx)
2039 struct rbd_device *rbd_dev = img_req->rbd_dev;
2040 struct rbd_obj_request *obj_req;
2041 u32 i;
2042 int ret;
2044 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2045 !rbd_layout_is_fancy(&rbd_dev->layout))
2046 return rbd_img_fill_request_nocopy(img_req, img_extents,
2047 num_img_extents, fctx);
2049 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2052 * Create object requests and determine ->bvec_count for each object
2053 * request. Note that ->bvec_count sum over all object requests may
2054 * be greater than the number of bio_vecs in the provided bio (list)
2055 * or bio_vec array because when mapped, those bio_vecs can straddle
2056 * stripe unit boundaries.
2058 fctx->iter = *fctx->pos;
2059 for (i = 0; i < num_img_extents; i++) {
2060 ret = ceph_file_to_extents(&rbd_dev->layout,
2061 img_extents[i].fe_off,
2062 img_extents[i].fe_len,
2063 &img_req->object_extents,
2064 alloc_object_extent, img_req,
2065 fctx->count_fn, &fctx->iter);
2066 if (ret)
2067 return ret;
2070 for_each_obj_request(img_req, obj_req) {
2071 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2072 sizeof(*obj_req->bvec_pos.bvecs),
2073 GFP_NOIO);
2074 if (!obj_req->bvec_pos.bvecs)
2075 return -ENOMEM;
2079 * Fill in each object request's private bio_vec array, splitting and
2080 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2082 fctx->iter = *fctx->pos;
2083 for (i = 0; i < num_img_extents; i++) {
2084 ret = ceph_iterate_extents(&rbd_dev->layout,
2085 img_extents[i].fe_off,
2086 img_extents[i].fe_len,
2087 &img_req->object_extents,
2088 fctx->copy_fn, &fctx->iter);
2089 if (ret)
2090 return ret;
2093 return __rbd_img_fill_request(img_req);
2096 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2097 u64 off, u64 len)
2099 struct ceph_file_extent ex = { off, len };
2100 union rbd_img_fill_iter dummy = {};
2101 struct rbd_img_fill_ctx fctx = {
2102 .pos_type = OBJ_REQUEST_NODATA,
2103 .pos = &dummy,
2106 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2109 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2111 struct rbd_obj_request *obj_req =
2112 container_of(ex, struct rbd_obj_request, ex);
2113 struct ceph_bio_iter *it = arg;
2115 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2116 obj_req->bio_pos = *it;
2117 ceph_bio_iter_advance(it, bytes);
2120 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2122 struct rbd_obj_request *obj_req =
2123 container_of(ex, struct rbd_obj_request, ex);
2124 struct ceph_bio_iter *it = arg;
2126 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2127 ceph_bio_iter_advance_step(it, bytes, ({
2128 obj_req->bvec_count++;
2129 }));
2133 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2135 struct rbd_obj_request *obj_req =
2136 container_of(ex, struct rbd_obj_request, ex);
2137 struct ceph_bio_iter *it = arg;
2139 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2140 ceph_bio_iter_advance_step(it, bytes, ({
2141 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2142 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2143 }));
2146 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2147 struct ceph_file_extent *img_extents,
2148 u32 num_img_extents,
2149 struct ceph_bio_iter *bio_pos)
2151 struct rbd_img_fill_ctx fctx = {
2152 .pos_type = OBJ_REQUEST_BIO,
2153 .pos = (union rbd_img_fill_iter *)bio_pos,
2154 .set_pos_fn = set_bio_pos,
2155 .count_fn = count_bio_bvecs,
2156 .copy_fn = copy_bio_bvecs,
2159 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2160 &fctx);
2163 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2164 u64 off, u64 len, struct bio *bio)
2166 struct ceph_file_extent ex = { off, len };
2167 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2169 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2172 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2174 struct rbd_obj_request *obj_req =
2175 container_of(ex, struct rbd_obj_request, ex);
2176 struct ceph_bvec_iter *it = arg;
2178 obj_req->bvec_pos = *it;
2179 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2180 ceph_bvec_iter_advance(it, bytes);
2183 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2185 struct rbd_obj_request *obj_req =
2186 container_of(ex, struct rbd_obj_request, ex);
2187 struct ceph_bvec_iter *it = arg;
2189 ceph_bvec_iter_advance_step(it, bytes, ({
2190 obj_req->bvec_count++;
2191 }));
2194 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2196 struct rbd_obj_request *obj_req =
2197 container_of(ex, struct rbd_obj_request, ex);
2198 struct ceph_bvec_iter *it = arg;
2200 ceph_bvec_iter_advance_step(it, bytes, ({
2201 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2202 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2203 }));
2206 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2207 struct ceph_file_extent *img_extents,
2208 u32 num_img_extents,
2209 struct ceph_bvec_iter *bvec_pos)
2211 struct rbd_img_fill_ctx fctx = {
2212 .pos_type = OBJ_REQUEST_BVECS,
2213 .pos = (union rbd_img_fill_iter *)bvec_pos,
2214 .set_pos_fn = set_bvec_pos,
2215 .count_fn = count_bvecs,
2216 .copy_fn = copy_bvecs,
2219 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2220 &fctx);
2223 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2224 struct ceph_file_extent *img_extents,
2225 u32 num_img_extents,
2226 struct bio_vec *bvecs)
2228 struct ceph_bvec_iter it = {
2229 .bvecs = bvecs,
2230 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2231 num_img_extents) },
2234 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2235 &it);
2238 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2240 struct rbd_obj_request *obj_request;
2242 dout("%s: img %p\n", __func__, img_request);
2244 rbd_img_request_get(img_request);
2245 for_each_obj_request(img_request, obj_request)
2246 rbd_obj_request_submit(obj_request);
2248 rbd_img_request_put(img_request);
2251 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2253 struct rbd_img_request *img_req = obj_req->img_request;
2254 struct rbd_img_request *child_img_req;
2255 int ret;
2257 child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2258 OBJ_OP_READ, NULL);
2259 if (!child_img_req)
2260 return -ENOMEM;
2262 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2263 child_img_req->obj_request = obj_req;
2265 if (!rbd_img_is_write(img_req)) {
2266 switch (img_req->data_type) {
2267 case OBJ_REQUEST_BIO:
2268 ret = __rbd_img_fill_from_bio(child_img_req,
2269 obj_req->img_extents,
2270 obj_req->num_img_extents,
2271 &obj_req->bio_pos);
2272 break;
2273 case OBJ_REQUEST_BVECS:
2274 case OBJ_REQUEST_OWN_BVECS:
2275 ret = __rbd_img_fill_from_bvecs(child_img_req,
2276 obj_req->img_extents,
2277 obj_req->num_img_extents,
2278 &obj_req->bvec_pos);
2279 break;
2280 default:
2281 rbd_assert(0);
2283 } else {
2284 ret = rbd_img_fill_from_bvecs(child_img_req,
2285 obj_req->img_extents,
2286 obj_req->num_img_extents,
2287 obj_req->copyup_bvecs);
2289 if (ret) {
2290 rbd_img_request_put(child_img_req);
2291 return ret;
2294 rbd_img_request_submit(child_img_req);
2295 return 0;
2298 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2300 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2301 int ret;
2303 if (obj_req->result == -ENOENT &&
2304 rbd_dev->parent_overlap && !obj_req->tried_parent) {
2305 /* reverse map this object extent onto the parent */
2306 ret = rbd_obj_calc_img_extents(obj_req, false);
2307 if (ret) {
2308 obj_req->result = ret;
2309 return true;
2312 if (obj_req->num_img_extents) {
2313 obj_req->tried_parent = true;
2314 ret = rbd_obj_read_from_parent(obj_req);
2315 if (ret) {
2316 obj_req->result = ret;
2317 return true;
2319 return false;
2324 * -ENOENT means a hole in the image -- zero-fill the entire
2325 * length of the request. A short read also implies zero-fill
2326 * to the end of the request. In both cases we update xferred
2327 * count to indicate the whole request was satisfied.
2329 if (obj_req->result == -ENOENT ||
2330 (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2331 rbd_assert(!obj_req->xferred || !obj_req->result);
2332 rbd_obj_zero_range(obj_req, obj_req->xferred,
2333 obj_req->ex.oe_len - obj_req->xferred);
2334 obj_req->result = 0;
2335 obj_req->xferred = obj_req->ex.oe_len;
2338 return true;
2342 * copyup_bvecs pages are never highmem pages
2344 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2346 struct ceph_bvec_iter it = {
2347 .bvecs = bvecs,
2348 .iter = { .bi_size = bytes },
2351 ceph_bvec_iter_advance_step(&it, bytes, ({
2352 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2353 bv.bv_len))
2354 return false;
2355 }));
2356 return true;
2359 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2361 unsigned int num_osd_ops = obj_req->osd_req->r_num_ops;
2362 int ret;
2364 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2365 rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2366 rbd_osd_req_destroy(obj_req->osd_req);
2369 * Create a copyup request with the same number of OSD ops as
2370 * the original request. The original request was stat + op(s),
2371 * the new copyup request will be copyup + the same op(s).
2373 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2374 if (!obj_req->osd_req)
2375 return -ENOMEM;
2377 ret = osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd",
2378 "copyup");
2379 if (ret)
2380 return ret;
2383 * Only send non-zero copyup data to save some I/O and network
2384 * bandwidth -- zero copyup data is equivalent to the object not
2385 * existing.
2387 if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2388 dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2389 bytes = 0;
2391 osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2392 obj_req->copyup_bvecs,
2393 obj_req->copyup_bvec_count,
2394 bytes);
2396 switch (obj_req->img_request->op_type) {
2397 case OBJ_OP_WRITE:
2398 __rbd_obj_setup_write(obj_req, 1);
2399 break;
2400 case OBJ_OP_DISCARD:
2401 rbd_assert(!rbd_obj_is_entire(obj_req));
2402 __rbd_obj_setup_discard(obj_req, 1);
2403 break;
2404 default:
2405 rbd_assert(0);
2408 rbd_obj_request_submit(obj_req);
2409 return 0;
2412 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2414 u32 i;
2416 rbd_assert(!obj_req->copyup_bvecs);
2417 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2418 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2419 sizeof(*obj_req->copyup_bvecs),
2420 GFP_NOIO);
2421 if (!obj_req->copyup_bvecs)
2422 return -ENOMEM;
2424 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2425 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2427 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2428 if (!obj_req->copyup_bvecs[i].bv_page)
2429 return -ENOMEM;
2431 obj_req->copyup_bvecs[i].bv_offset = 0;
2432 obj_req->copyup_bvecs[i].bv_len = len;
2433 obj_overlap -= len;
2436 rbd_assert(!obj_overlap);
2437 return 0;
2440 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2442 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2443 int ret;
2445 rbd_assert(obj_req->num_img_extents);
2446 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2447 rbd_dev->parent_overlap);
2448 if (!obj_req->num_img_extents) {
2450 * The overlap has become 0 (most likely because the
2451 * image has been flattened). Use rbd_obj_issue_copyup()
2452 * to re-submit the original write request -- the copyup
2453 * operation itself will be a no-op, since someone must
2454 * have populated the child object while we weren't
2455 * looking. Move to WRITE_FLAT state as we'll be done
2456 * with the operation once the null copyup completes.
2458 obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2459 return rbd_obj_issue_copyup(obj_req, 0);
2462 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2463 if (ret)
2464 return ret;
2466 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
2467 return rbd_obj_read_from_parent(obj_req);
2470 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2472 int ret;
2474 again:
2475 switch (obj_req->write_state) {
2476 case RBD_OBJ_WRITE_GUARD:
2477 rbd_assert(!obj_req->xferred);
2478 if (obj_req->result == -ENOENT) {
2480 * The target object doesn't exist. Read the data for
2481 * the entire target object up to the overlap point (if
2482 * any) from the parent, so we can use it for a copyup.
2484 ret = rbd_obj_handle_write_guard(obj_req);
2485 if (ret) {
2486 obj_req->result = ret;
2487 return true;
2489 return false;
2491 /* fall through */
2492 case RBD_OBJ_WRITE_FLAT:
2493 if (!obj_req->result)
2495 * There is no such thing as a successful short
2496 * write -- indicate the whole request was satisfied.
2498 obj_req->xferred = obj_req->ex.oe_len;
2499 return true;
2500 case RBD_OBJ_WRITE_COPYUP:
2501 obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2502 if (obj_req->result)
2503 goto again;
2505 rbd_assert(obj_req->xferred);
2506 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2507 if (ret) {
2508 obj_req->result = ret;
2509 obj_req->xferred = 0;
2510 return true;
2512 return false;
2513 default:
2514 BUG();
2519 * Returns true if @obj_req is completed, or false otherwise.
2521 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2523 switch (obj_req->img_request->op_type) {
2524 case OBJ_OP_READ:
2525 return rbd_obj_handle_read(obj_req);
2526 case OBJ_OP_WRITE:
2527 return rbd_obj_handle_write(obj_req);
2528 case OBJ_OP_DISCARD:
2529 if (rbd_obj_handle_write(obj_req)) {
2531 * Hide -ENOENT from delete/truncate/zero -- discarding
2532 * a non-existent object is not a problem.
2534 if (obj_req->result == -ENOENT) {
2535 obj_req->result = 0;
2536 obj_req->xferred = obj_req->ex.oe_len;
2538 return true;
2540 return false;
2541 default:
2542 BUG();
2546 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2548 struct rbd_img_request *img_req = obj_req->img_request;
2550 rbd_assert((!obj_req->result &&
2551 obj_req->xferred == obj_req->ex.oe_len) ||
2552 (obj_req->result < 0 && !obj_req->xferred));
2553 if (!obj_req->result) {
2554 img_req->xferred += obj_req->xferred;
2555 return;
2558 rbd_warn(img_req->rbd_dev,
2559 "%s at objno %llu %llu~%llu result %d xferred %llu",
2560 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2561 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2562 obj_req->xferred);
2563 if (!img_req->result) {
2564 img_req->result = obj_req->result;
2565 img_req->xferred = 0;
2569 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2571 struct rbd_obj_request *obj_req = img_req->obj_request;
2573 rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2574 rbd_assert((!img_req->result &&
2575 img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2576 (img_req->result < 0 && !img_req->xferred));
2578 obj_req->result = img_req->result;
2579 obj_req->xferred = img_req->xferred;
2580 rbd_img_request_put(img_req);
2583 static void rbd_img_end_request(struct rbd_img_request *img_req)
2585 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2586 rbd_assert((!img_req->result &&
2587 img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2588 (img_req->result < 0 && !img_req->xferred));
2590 blk_mq_end_request(img_req->rq,
2591 errno_to_blk_status(img_req->result));
2592 rbd_img_request_put(img_req);
2595 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2597 struct rbd_img_request *img_req;
2599 again:
2600 if (!__rbd_obj_handle_request(obj_req))
2601 return;
2603 img_req = obj_req->img_request;
2604 spin_lock(&img_req->completion_lock);
2605 rbd_obj_end_request(obj_req);
2606 rbd_assert(img_req->pending_count);
2607 if (--img_req->pending_count) {
2608 spin_unlock(&img_req->completion_lock);
2609 return;
2612 spin_unlock(&img_req->completion_lock);
2613 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2614 obj_req = img_req->obj_request;
2615 rbd_img_end_child_request(img_req);
2616 goto again;
2618 rbd_img_end_request(img_req);
2621 static const struct rbd_client_id rbd_empty_cid;
2623 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2624 const struct rbd_client_id *rhs)
2626 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2629 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2631 struct rbd_client_id cid;
2633 mutex_lock(&rbd_dev->watch_mutex);
2634 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2635 cid.handle = rbd_dev->watch_cookie;
2636 mutex_unlock(&rbd_dev->watch_mutex);
2637 return cid;
2641 * lock_rwsem must be held for write
2643 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2644 const struct rbd_client_id *cid)
2646 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2647 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2648 cid->gid, cid->handle);
2649 rbd_dev->owner_cid = *cid; /* struct */
2652 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2654 mutex_lock(&rbd_dev->watch_mutex);
2655 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2656 mutex_unlock(&rbd_dev->watch_mutex);
2659 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2661 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2663 strcpy(rbd_dev->lock_cookie, cookie);
2664 rbd_set_owner_cid(rbd_dev, &cid);
2665 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2669 * lock_rwsem must be held for write
2671 static int rbd_lock(struct rbd_device *rbd_dev)
2673 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2674 char cookie[32];
2675 int ret;
2677 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2678 rbd_dev->lock_cookie[0] != '\0');
2680 format_lock_cookie(rbd_dev, cookie);
2681 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2682 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2683 RBD_LOCK_TAG, "", 0);
2684 if (ret)
2685 return ret;
2687 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2688 __rbd_lock(rbd_dev, cookie);
2689 return 0;
2693 * lock_rwsem must be held for write
2695 static void rbd_unlock(struct rbd_device *rbd_dev)
2697 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2698 int ret;
2700 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2701 rbd_dev->lock_cookie[0] == '\0');
2703 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2704 RBD_LOCK_NAME, rbd_dev->lock_cookie);
2705 if (ret && ret != -ENOENT)
2706 rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2708 /* treat errors as the image is unlocked */
2709 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2710 rbd_dev->lock_cookie[0] = '\0';
2711 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2712 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2715 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2716 enum rbd_notify_op notify_op,
2717 struct page ***preply_pages,
2718 size_t *preply_len)
2720 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2721 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2722 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2723 int buf_size = sizeof(buf);
2724 void *p = buf;
2726 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2728 /* encode *LockPayload NotifyMessage (op + ClientId) */
2729 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2730 ceph_encode_32(&p, notify_op);
2731 ceph_encode_64(&p, cid.gid);
2732 ceph_encode_64(&p, cid.handle);
2734 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2735 &rbd_dev->header_oloc, buf, buf_size,
2736 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2739 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2740 enum rbd_notify_op notify_op)
2742 struct page **reply_pages;
2743 size_t reply_len;
2745 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2746 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2749 static void rbd_notify_acquired_lock(struct work_struct *work)
2751 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2752 acquired_lock_work);
2754 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2757 static void rbd_notify_released_lock(struct work_struct *work)
2759 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2760 released_lock_work);
2762 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2765 static int rbd_request_lock(struct rbd_device *rbd_dev)
2767 struct page **reply_pages;
2768 size_t reply_len;
2769 bool lock_owner_responded = false;
2770 int ret;
2772 dout("%s rbd_dev %p\n", __func__, rbd_dev);
2774 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2775 &reply_pages, &reply_len);
2776 if (ret && ret != -ETIMEDOUT) {
2777 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2778 goto out;
2781 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2782 void *p = page_address(reply_pages[0]);
2783 void *const end = p + reply_len;
2784 u32 n;
2786 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2787 while (n--) {
2788 u8 struct_v;
2789 u32 len;
2791 ceph_decode_need(&p, end, 8 + 8, e_inval);
2792 p += 8 + 8; /* skip gid and cookie */
2794 ceph_decode_32_safe(&p, end, len, e_inval);
2795 if (!len)
2796 continue;
2798 if (lock_owner_responded) {
2799 rbd_warn(rbd_dev,
2800 "duplicate lock owners detected");
2801 ret = -EIO;
2802 goto out;
2805 lock_owner_responded = true;
2806 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2807 &struct_v, &len);
2808 if (ret) {
2809 rbd_warn(rbd_dev,
2810 "failed to decode ResponseMessage: %d",
2811 ret);
2812 goto e_inval;
2815 ret = ceph_decode_32(&p);
2819 if (!lock_owner_responded) {
2820 rbd_warn(rbd_dev, "no lock owners detected");
2821 ret = -ETIMEDOUT;
2824 out:
2825 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2826 return ret;
2828 e_inval:
2829 ret = -EINVAL;
2830 goto out;
2833 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
2835 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
2837 cancel_delayed_work(&rbd_dev->lock_dwork);
2838 if (wake_all)
2839 wake_up_all(&rbd_dev->lock_waitq);
2840 else
2841 wake_up(&rbd_dev->lock_waitq);
2844 static int get_lock_owner_info(struct rbd_device *rbd_dev,
2845 struct ceph_locker **lockers, u32 *num_lockers)
2847 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2848 u8 lock_type;
2849 char *lock_tag;
2850 int ret;
2852 dout("%s rbd_dev %p\n", __func__, rbd_dev);
2854 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
2855 &rbd_dev->header_oloc, RBD_LOCK_NAME,
2856 &lock_type, &lock_tag, lockers, num_lockers);
2857 if (ret)
2858 return ret;
2860 if (*num_lockers == 0) {
2861 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
2862 goto out;
2865 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
2866 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
2867 lock_tag);
2868 ret = -EBUSY;
2869 goto out;
2872 if (lock_type == CEPH_CLS_LOCK_SHARED) {
2873 rbd_warn(rbd_dev, "shared lock type detected");
2874 ret = -EBUSY;
2875 goto out;
2878 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
2879 strlen(RBD_LOCK_COOKIE_PREFIX))) {
2880 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
2881 (*lockers)[0].id.cookie);
2882 ret = -EBUSY;
2883 goto out;
2886 out:
2887 kfree(lock_tag);
2888 return ret;
2891 static int find_watcher(struct rbd_device *rbd_dev,
2892 const struct ceph_locker *locker)
2894 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2895 struct ceph_watch_item *watchers;
2896 u32 num_watchers;
2897 u64 cookie;
2898 int i;
2899 int ret;
2901 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
2902 &rbd_dev->header_oloc, &watchers,
2903 &num_watchers);
2904 if (ret)
2905 return ret;
2907 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
2908 for (i = 0; i < num_watchers; i++) {
2909 if (!memcmp(&watchers[i].addr, &locker->info.addr,
2910 sizeof(locker->info.addr)) &&
2911 watchers[i].cookie == cookie) {
2912 struct rbd_client_id cid = {
2913 .gid = le64_to_cpu(watchers[i].name.num),
2914 .handle = cookie,
2917 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
2918 rbd_dev, cid.gid, cid.handle);
2919 rbd_set_owner_cid(rbd_dev, &cid);
2920 ret = 1;
2921 goto out;
2925 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
2926 ret = 0;
2927 out:
2928 kfree(watchers);
2929 return ret;
2933 * lock_rwsem must be held for write
2935 static int rbd_try_lock(struct rbd_device *rbd_dev)
2937 struct ceph_client *client = rbd_dev->rbd_client->client;
2938 struct ceph_locker *lockers;
2939 u32 num_lockers;
2940 int ret;
2942 for (;;) {
2943 ret = rbd_lock(rbd_dev);
2944 if (ret != -EBUSY)
2945 return ret;
2947 /* determine if the current lock holder is still alive */
2948 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
2949 if (ret)
2950 return ret;
2952 if (num_lockers == 0)
2953 goto again;
2955 ret = find_watcher(rbd_dev, lockers);
2956 if (ret) {
2957 if (ret > 0)
2958 ret = 0; /* have to request lock */
2959 goto out;
2962 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
2963 ENTITY_NAME(lockers[0].id.name));
2965 ret = ceph_monc_blacklist_add(&client->monc,
2966 &lockers[0].info.addr);
2967 if (ret) {
2968 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
2969 ENTITY_NAME(lockers[0].id.name), ret);
2970 goto out;
2973 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
2974 &rbd_dev->header_oloc, RBD_LOCK_NAME,
2975 lockers[0].id.cookie,
2976 &lockers[0].id.name);
2977 if (ret && ret != -ENOENT)
2978 goto out;
2980 again:
2981 ceph_free_lockers(lockers, num_lockers);
2984 out:
2985 ceph_free_lockers(lockers, num_lockers);
2986 return ret;
2990 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
2992 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
2993 int *pret)
2995 enum rbd_lock_state lock_state;
2997 down_read(&rbd_dev->lock_rwsem);
2998 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
2999 rbd_dev->lock_state);
3000 if (__rbd_is_lock_owner(rbd_dev)) {
3001 lock_state = rbd_dev->lock_state;
3002 up_read(&rbd_dev->lock_rwsem);
3003 return lock_state;
3006 up_read(&rbd_dev->lock_rwsem);
3007 down_write(&rbd_dev->lock_rwsem);
3008 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3009 rbd_dev->lock_state);
3010 if (!__rbd_is_lock_owner(rbd_dev)) {
3011 *pret = rbd_try_lock(rbd_dev);
3012 if (*pret)
3013 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3016 lock_state = rbd_dev->lock_state;
3017 up_write(&rbd_dev->lock_rwsem);
3018 return lock_state;
3021 static void rbd_acquire_lock(struct work_struct *work)
3023 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3024 struct rbd_device, lock_dwork);
3025 enum rbd_lock_state lock_state;
3026 int ret = 0;
3028 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3029 again:
3030 lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3031 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3032 if (lock_state == RBD_LOCK_STATE_LOCKED)
3033 wake_requests(rbd_dev, true);
3034 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3035 rbd_dev, lock_state, ret);
3036 return;
3039 ret = rbd_request_lock(rbd_dev);
3040 if (ret == -ETIMEDOUT) {
3041 goto again; /* treat this as a dead client */
3042 } else if (ret == -EROFS) {
3043 rbd_warn(rbd_dev, "peer will not release lock");
3045 * If this is rbd_add_acquire_lock(), we want to fail
3046 * immediately -- reuse BLACKLISTED flag. Otherwise we
3047 * want to block.
3049 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3050 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3051 /* wake "rbd map --exclusive" process */
3052 wake_requests(rbd_dev, false);
3054 } else if (ret < 0) {
3055 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3056 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3057 RBD_RETRY_DELAY);
3058 } else {
3060 * lock owner acked, but resend if we don't see them
3061 * release the lock
3063 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3064 rbd_dev);
3065 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3066 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3071 * lock_rwsem must be held for write
3073 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3075 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3076 rbd_dev->lock_state);
3077 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3078 return false;
3080 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3081 downgrade_write(&rbd_dev->lock_rwsem);
3083 * Ensure that all in-flight IO is flushed.
3085 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3086 * may be shared with other devices.
3088 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3089 up_read(&rbd_dev->lock_rwsem);
3091 down_write(&rbd_dev->lock_rwsem);
3092 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3093 rbd_dev->lock_state);
3094 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3095 return false;
3097 rbd_unlock(rbd_dev);
3099 * Give others a chance to grab the lock - we would re-acquire
3100 * almost immediately if we got new IO during ceph_osdc_sync()
3101 * otherwise. We need to ack our own notifications, so this
3102 * lock_dwork will be requeued from rbd_wait_state_locked()
3103 * after wake_requests() in rbd_handle_released_lock().
3105 cancel_delayed_work(&rbd_dev->lock_dwork);
3106 return true;
3109 static void rbd_release_lock_work(struct work_struct *work)
3111 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3112 unlock_work);
3114 down_write(&rbd_dev->lock_rwsem);
3115 rbd_release_lock(rbd_dev);
3116 up_write(&rbd_dev->lock_rwsem);
3119 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3120 void **p)
3122 struct rbd_client_id cid = { 0 };
3124 if (struct_v >= 2) {
3125 cid.gid = ceph_decode_64(p);
3126 cid.handle = ceph_decode_64(p);
3129 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3130 cid.handle);
3131 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3132 down_write(&rbd_dev->lock_rwsem);
3133 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3135 * we already know that the remote client is
3136 * the owner
3138 up_write(&rbd_dev->lock_rwsem);
3139 return;
3142 rbd_set_owner_cid(rbd_dev, &cid);
3143 downgrade_write(&rbd_dev->lock_rwsem);
3144 } else {
3145 down_read(&rbd_dev->lock_rwsem);
3148 if (!__rbd_is_lock_owner(rbd_dev))
3149 wake_requests(rbd_dev, false);
3150 up_read(&rbd_dev->lock_rwsem);
3153 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3154 void **p)
3156 struct rbd_client_id cid = { 0 };
3158 if (struct_v >= 2) {
3159 cid.gid = ceph_decode_64(p);
3160 cid.handle = ceph_decode_64(p);
3163 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3164 cid.handle);
3165 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3166 down_write(&rbd_dev->lock_rwsem);
3167 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3168 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3169 __func__, rbd_dev, cid.gid, cid.handle,
3170 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3171 up_write(&rbd_dev->lock_rwsem);
3172 return;
3175 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3176 downgrade_write(&rbd_dev->lock_rwsem);
3177 } else {
3178 down_read(&rbd_dev->lock_rwsem);
3181 if (!__rbd_is_lock_owner(rbd_dev))
3182 wake_requests(rbd_dev, false);
3183 up_read(&rbd_dev->lock_rwsem);
3187 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3188 * ResponseMessage is needed.
3190 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3191 void **p)
3193 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3194 struct rbd_client_id cid = { 0 };
3195 int result = 1;
3197 if (struct_v >= 2) {
3198 cid.gid = ceph_decode_64(p);
3199 cid.handle = ceph_decode_64(p);
3202 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3203 cid.handle);
3204 if (rbd_cid_equal(&cid, &my_cid))
3205 return result;
3207 down_read(&rbd_dev->lock_rwsem);
3208 if (__rbd_is_lock_owner(rbd_dev)) {
3209 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3210 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3211 goto out_unlock;
3214 * encode ResponseMessage(0) so the peer can detect
3215 * a missing owner
3217 result = 0;
3219 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3220 if (!rbd_dev->opts->exclusive) {
3221 dout("%s rbd_dev %p queueing unlock_work\n",
3222 __func__, rbd_dev);
3223 queue_work(rbd_dev->task_wq,
3224 &rbd_dev->unlock_work);
3225 } else {
3226 /* refuse to release the lock */
3227 result = -EROFS;
3232 out_unlock:
3233 up_read(&rbd_dev->lock_rwsem);
3234 return result;
3237 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3238 u64 notify_id, u64 cookie, s32 *result)
3240 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3241 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3242 int buf_size = sizeof(buf);
3243 int ret;
3245 if (result) {
3246 void *p = buf;
3248 /* encode ResponseMessage */
3249 ceph_start_encoding(&p, 1, 1,
3250 buf_size - CEPH_ENCODING_START_BLK_LEN);
3251 ceph_encode_32(&p, *result);
3252 } else {
3253 buf_size = 0;
3256 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3257 &rbd_dev->header_oloc, notify_id, cookie,
3258 buf, buf_size);
3259 if (ret)
3260 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3263 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3264 u64 cookie)
3266 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3267 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3270 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3271 u64 notify_id, u64 cookie, s32 result)
3273 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3274 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3277 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3278 u64 notifier_id, void *data, size_t data_len)
3280 struct rbd_device *rbd_dev = arg;
3281 void *p = data;
3282 void *const end = p + data_len;
3283 u8 struct_v = 0;
3284 u32 len;
3285 u32 notify_op;
3286 int ret;
3288 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3289 __func__, rbd_dev, cookie, notify_id, data_len);
3290 if (data_len) {
3291 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3292 &struct_v, &len);
3293 if (ret) {
3294 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3295 ret);
3296 return;
3299 notify_op = ceph_decode_32(&p);
3300 } else {
3301 /* legacy notification for header updates */
3302 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3303 len = 0;
3306 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3307 switch (notify_op) {
3308 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3309 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3310 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3311 break;
3312 case RBD_NOTIFY_OP_RELEASED_LOCK:
3313 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3314 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3315 break;
3316 case RBD_NOTIFY_OP_REQUEST_LOCK:
3317 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3318 if (ret <= 0)
3319 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3320 cookie, ret);
3321 else
3322 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3323 break;
3324 case RBD_NOTIFY_OP_HEADER_UPDATE:
3325 ret = rbd_dev_refresh(rbd_dev);
3326 if (ret)
3327 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3329 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3330 break;
3331 default:
3332 if (rbd_is_lock_owner(rbd_dev))
3333 rbd_acknowledge_notify_result(rbd_dev, notify_id,
3334 cookie, -EOPNOTSUPP);
3335 else
3336 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3337 break;
3341 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3343 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3345 struct rbd_device *rbd_dev = arg;
3347 rbd_warn(rbd_dev, "encountered watch error: %d", err);
3349 down_write(&rbd_dev->lock_rwsem);
3350 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3351 up_write(&rbd_dev->lock_rwsem);
3353 mutex_lock(&rbd_dev->watch_mutex);
3354 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3355 __rbd_unregister_watch(rbd_dev);
3356 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3358 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3360 mutex_unlock(&rbd_dev->watch_mutex);
3364 * watch_mutex must be locked
3366 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3368 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3369 struct ceph_osd_linger_request *handle;
3371 rbd_assert(!rbd_dev->watch_handle);
3372 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3374 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3375 &rbd_dev->header_oloc, rbd_watch_cb,
3376 rbd_watch_errcb, rbd_dev);
3377 if (IS_ERR(handle))
3378 return PTR_ERR(handle);
3380 rbd_dev->watch_handle = handle;
3381 return 0;
3385 * watch_mutex must be locked
3387 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3389 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3390 int ret;
3392 rbd_assert(rbd_dev->watch_handle);
3393 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3395 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3396 if (ret)
3397 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3399 rbd_dev->watch_handle = NULL;
3402 static int rbd_register_watch(struct rbd_device *rbd_dev)
3404 int ret;
3406 mutex_lock(&rbd_dev->watch_mutex);
3407 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3408 ret = __rbd_register_watch(rbd_dev);
3409 if (ret)
3410 goto out;
3412 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3413 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3415 out:
3416 mutex_unlock(&rbd_dev->watch_mutex);
3417 return ret;
3420 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3422 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3424 cancel_work_sync(&rbd_dev->acquired_lock_work);
3425 cancel_work_sync(&rbd_dev->released_lock_work);
3426 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3427 cancel_work_sync(&rbd_dev->unlock_work);
3431 * header_rwsem must not be held to avoid a deadlock with
3432 * rbd_dev_refresh() when flushing notifies.
3434 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3436 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3437 cancel_tasks_sync(rbd_dev);
3439 mutex_lock(&rbd_dev->watch_mutex);
3440 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3441 __rbd_unregister_watch(rbd_dev);
3442 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3443 mutex_unlock(&rbd_dev->watch_mutex);
3445 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3446 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3450 * lock_rwsem must be held for write
3452 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3454 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3455 char cookie[32];
3456 int ret;
3458 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3460 format_lock_cookie(rbd_dev, cookie);
3461 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3462 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3463 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3464 RBD_LOCK_TAG, cookie);
3465 if (ret) {
3466 if (ret != -EOPNOTSUPP)
3467 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3468 ret);
3471 * Lock cookie cannot be updated on older OSDs, so do
3472 * a manual release and queue an acquire.
3474 if (rbd_release_lock(rbd_dev))
3475 queue_delayed_work(rbd_dev->task_wq,
3476 &rbd_dev->lock_dwork, 0);
3477 } else {
3478 __rbd_lock(rbd_dev, cookie);
3482 static void rbd_reregister_watch(struct work_struct *work)
3484 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3485 struct rbd_device, watch_dwork);
3486 int ret;
3488 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3490 mutex_lock(&rbd_dev->watch_mutex);
3491 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3492 mutex_unlock(&rbd_dev->watch_mutex);
3493 return;
3496 ret = __rbd_register_watch(rbd_dev);
3497 if (ret) {
3498 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3499 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3500 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3501 wake_requests(rbd_dev, true);
3502 } else {
3503 queue_delayed_work(rbd_dev->task_wq,
3504 &rbd_dev->watch_dwork,
3505 RBD_RETRY_DELAY);
3507 mutex_unlock(&rbd_dev->watch_mutex);
3508 return;
3511 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3512 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3513 mutex_unlock(&rbd_dev->watch_mutex);
3515 down_write(&rbd_dev->lock_rwsem);
3516 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3517 rbd_reacquire_lock(rbd_dev);
3518 up_write(&rbd_dev->lock_rwsem);
3520 ret = rbd_dev_refresh(rbd_dev);
3521 if (ret)
3522 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3526 * Synchronous osd object method call. Returns the number of bytes
3527 * returned in the outbound buffer, or a negative error code.
3529 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3530 struct ceph_object_id *oid,
3531 struct ceph_object_locator *oloc,
3532 const char *method_name,
3533 const void *outbound,
3534 size_t outbound_size,
3535 void *inbound,
3536 size_t inbound_size)
3538 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3539 struct page *req_page = NULL;
3540 struct page *reply_page;
3541 int ret;
3544 * Method calls are ultimately read operations. The result
3545 * should placed into the inbound buffer provided. They
3546 * also supply outbound data--parameters for the object
3547 * method. Currently if this is present it will be a
3548 * snapshot id.
3550 if (outbound) {
3551 if (outbound_size > PAGE_SIZE)
3552 return -E2BIG;
3554 req_page = alloc_page(GFP_KERNEL);
3555 if (!req_page)
3556 return -ENOMEM;
3558 memcpy(page_address(req_page), outbound, outbound_size);
3561 reply_page = alloc_page(GFP_KERNEL);
3562 if (!reply_page) {
3563 if (req_page)
3564 __free_page(req_page);
3565 return -ENOMEM;
3568 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3569 CEPH_OSD_FLAG_READ, req_page, outbound_size,
3570 reply_page, &inbound_size);
3571 if (!ret) {
3572 memcpy(inbound, page_address(reply_page), inbound_size);
3573 ret = inbound_size;
3576 if (req_page)
3577 __free_page(req_page);
3578 __free_page(reply_page);
3579 return ret;
3583 * lock_rwsem must be held for read
3585 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3587 DEFINE_WAIT(wait);
3588 unsigned long timeout;
3589 int ret = 0;
3591 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3592 return -EBLACKLISTED;
3594 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3595 return 0;
3597 if (!may_acquire) {
3598 rbd_warn(rbd_dev, "exclusive lock required");
3599 return -EROFS;
3602 do {
3604 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3605 * and cancel_delayed_work() in wake_requests().
3607 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3608 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3609 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3610 TASK_UNINTERRUPTIBLE);
3611 up_read(&rbd_dev->lock_rwsem);
3612 timeout = schedule_timeout(ceph_timeout_jiffies(
3613 rbd_dev->opts->lock_timeout));
3614 down_read(&rbd_dev->lock_rwsem);
3615 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3616 ret = -EBLACKLISTED;
3617 break;
3619 if (!timeout) {
3620 rbd_warn(rbd_dev, "timed out waiting for lock");
3621 ret = -ETIMEDOUT;
3622 break;
3624 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3626 finish_wait(&rbd_dev->lock_waitq, &wait);
3627 return ret;
3630 static void rbd_queue_workfn(struct work_struct *work)
3632 struct request *rq = blk_mq_rq_from_pdu(work);
3633 struct rbd_device *rbd_dev = rq->q->queuedata;
3634 struct rbd_img_request *img_request;
3635 struct ceph_snap_context *snapc = NULL;
3636 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3637 u64 length = blk_rq_bytes(rq);
3638 enum obj_operation_type op_type;
3639 u64 mapping_size;
3640 bool must_be_locked;
3641 int result;
3643 switch (req_op(rq)) {
3644 case REQ_OP_DISCARD:
3645 case REQ_OP_WRITE_ZEROES:
3646 op_type = OBJ_OP_DISCARD;
3647 break;
3648 case REQ_OP_WRITE:
3649 op_type = OBJ_OP_WRITE;
3650 break;
3651 case REQ_OP_READ:
3652 op_type = OBJ_OP_READ;
3653 break;
3654 default:
3655 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3656 result = -EIO;
3657 goto err;
3660 /* Ignore/skip any zero-length requests */
3662 if (!length) {
3663 dout("%s: zero-length request\n", __func__);
3664 result = 0;
3665 goto err_rq;
3668 rbd_assert(op_type == OBJ_OP_READ ||
3669 rbd_dev->spec->snap_id == CEPH_NOSNAP);
3672 * Quit early if the mapped snapshot no longer exists. It's
3673 * still possible the snapshot will have disappeared by the
3674 * time our request arrives at the osd, but there's no sense in
3675 * sending it if we already know.
3677 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3678 dout("request for non-existent snapshot");
3679 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3680 result = -ENXIO;
3681 goto err_rq;
3684 if (offset && length > U64_MAX - offset + 1) {
3685 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3686 length);
3687 result = -EINVAL;
3688 goto err_rq; /* Shouldn't happen */
3691 blk_mq_start_request(rq);
3693 down_read(&rbd_dev->header_rwsem);
3694 mapping_size = rbd_dev->mapping.size;
3695 if (op_type != OBJ_OP_READ) {
3696 snapc = rbd_dev->header.snapc;
3697 ceph_get_snap_context(snapc);
3699 up_read(&rbd_dev->header_rwsem);
3701 if (offset + length > mapping_size) {
3702 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3703 length, mapping_size);
3704 result = -EIO;
3705 goto err_rq;
3708 must_be_locked =
3709 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3710 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3711 if (must_be_locked) {
3712 down_read(&rbd_dev->lock_rwsem);
3713 result = rbd_wait_state_locked(rbd_dev,
3714 !rbd_dev->opts->exclusive);
3715 if (result)
3716 goto err_unlock;
3719 img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3720 if (!img_request) {
3721 result = -ENOMEM;
3722 goto err_unlock;
3724 img_request->rq = rq;
3725 snapc = NULL; /* img_request consumes a ref */
3727 if (op_type == OBJ_OP_DISCARD)
3728 result = rbd_img_fill_nodata(img_request, offset, length);
3729 else
3730 result = rbd_img_fill_from_bio(img_request, offset, length,
3731 rq->bio);
3732 if (result)
3733 goto err_img_request;
3735 rbd_img_request_submit(img_request);
3736 if (must_be_locked)
3737 up_read(&rbd_dev->lock_rwsem);
3738 return;
3740 err_img_request:
3741 rbd_img_request_put(img_request);
3742 err_unlock:
3743 if (must_be_locked)
3744 up_read(&rbd_dev->lock_rwsem);
3745 err_rq:
3746 if (result)
3747 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3748 obj_op_name(op_type), length, offset, result);
3749 ceph_put_snap_context(snapc);
3750 err:
3751 blk_mq_end_request(rq, errno_to_blk_status(result));
3754 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3755 const struct blk_mq_queue_data *bd)
3757 struct request *rq = bd->rq;
3758 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3760 queue_work(rbd_wq, work);
3761 return BLK_STS_OK;
3764 static void rbd_free_disk(struct rbd_device *rbd_dev)
3766 blk_cleanup_queue(rbd_dev->disk->queue);
3767 blk_mq_free_tag_set(&rbd_dev->tag_set);
3768 put_disk(rbd_dev->disk);
3769 rbd_dev->disk = NULL;
3772 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3773 struct ceph_object_id *oid,
3774 struct ceph_object_locator *oloc,
3775 void *buf, int buf_len)
3778 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3779 struct ceph_osd_request *req;
3780 struct page **pages;
3781 int num_pages = calc_pages_for(0, buf_len);
3782 int ret;
3784 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3785 if (!req)
3786 return -ENOMEM;
3788 ceph_oid_copy(&req->r_base_oid, oid);
3789 ceph_oloc_copy(&req->r_base_oloc, oloc);
3790 req->r_flags = CEPH_OSD_FLAG_READ;
3792 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3793 if (ret)
3794 goto out_req;
3796 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3797 if (IS_ERR(pages)) {
3798 ret = PTR_ERR(pages);
3799 goto out_req;
3802 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3803 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3804 true);
3806 ceph_osdc_start_request(osdc, req, false);
3807 ret = ceph_osdc_wait_request(osdc, req);
3808 if (ret >= 0)
3809 ceph_copy_from_page_vector(pages, buf, 0, ret);
3811 out_req:
3812 ceph_osdc_put_request(req);
3813 return ret;
3817 * Read the complete header for the given rbd device. On successful
3818 * return, the rbd_dev->header field will contain up-to-date
3819 * information about the image.
3821 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3823 struct rbd_image_header_ondisk *ondisk = NULL;
3824 u32 snap_count = 0;
3825 u64 names_size = 0;
3826 u32 want_count;
3827 int ret;
3830 * The complete header will include an array of its 64-bit
3831 * snapshot ids, followed by the names of those snapshots as
3832 * a contiguous block of NUL-terminated strings. Note that
3833 * the number of snapshots could change by the time we read
3834 * it in, in which case we re-read it.
3836 do {
3837 size_t size;
3839 kfree(ondisk);
3841 size = sizeof (*ondisk);
3842 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3843 size += names_size;
3844 ondisk = kmalloc(size, GFP_KERNEL);
3845 if (!ondisk)
3846 return -ENOMEM;
3848 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
3849 &rbd_dev->header_oloc, ondisk, size);
3850 if (ret < 0)
3851 goto out;
3852 if ((size_t)ret < size) {
3853 ret = -ENXIO;
3854 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3855 size, ret);
3856 goto out;
3858 if (!rbd_dev_ondisk_valid(ondisk)) {
3859 ret = -ENXIO;
3860 rbd_warn(rbd_dev, "invalid header");
3861 goto out;
3864 names_size = le64_to_cpu(ondisk->snap_names_len);
3865 want_count = snap_count;
3866 snap_count = le32_to_cpu(ondisk->snap_count);
3867 } while (snap_count != want_count);
3869 ret = rbd_header_from_disk(rbd_dev, ondisk);
3870 out:
3871 kfree(ondisk);
3873 return ret;
3877 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3878 * has disappeared from the (just updated) snapshot context.
3880 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3882 u64 snap_id;
3884 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3885 return;
3887 snap_id = rbd_dev->spec->snap_id;
3888 if (snap_id == CEPH_NOSNAP)
3889 return;
3891 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3892 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3895 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3897 sector_t size;
3900 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3901 * try to update its size. If REMOVING is set, updating size
3902 * is just useless work since the device can't be opened.
3904 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3905 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3906 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3907 dout("setting size to %llu sectors", (unsigned long long)size);
3908 set_capacity(rbd_dev->disk, size);
3909 revalidate_disk(rbd_dev->disk);
3913 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3915 u64 mapping_size;
3916 int ret;
3918 down_write(&rbd_dev->header_rwsem);
3919 mapping_size = rbd_dev->mapping.size;
3921 ret = rbd_dev_header_info(rbd_dev);
3922 if (ret)
3923 goto out;
3926 * If there is a parent, see if it has disappeared due to the
3927 * mapped image getting flattened.
3929 if (rbd_dev->parent) {
3930 ret = rbd_dev_v2_parent_info(rbd_dev);
3931 if (ret)
3932 goto out;
3935 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3936 rbd_dev->mapping.size = rbd_dev->header.image_size;
3937 } else {
3938 /* validate mapped snapshot's EXISTS flag */
3939 rbd_exists_validate(rbd_dev);
3942 out:
3943 up_write(&rbd_dev->header_rwsem);
3944 if (!ret && mapping_size != rbd_dev->mapping.size)
3945 rbd_dev_update_size(rbd_dev);
3947 return ret;
3950 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
3951 unsigned int hctx_idx, unsigned int numa_node)
3953 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3955 INIT_WORK(work, rbd_queue_workfn);
3956 return 0;
3959 static const struct blk_mq_ops rbd_mq_ops = {
3960 .queue_rq = rbd_queue_rq,
3961 .init_request = rbd_init_request,
3964 static int rbd_init_disk(struct rbd_device *rbd_dev)
3966 struct gendisk *disk;
3967 struct request_queue *q;
3968 unsigned int objset_bytes =
3969 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
3970 int err;
3972 /* create gendisk info */
3973 disk = alloc_disk(single_major ?
3974 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3975 RBD_MINORS_PER_MAJOR);
3976 if (!disk)
3977 return -ENOMEM;
3979 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3980 rbd_dev->dev_id);
3981 disk->major = rbd_dev->major;
3982 disk->first_minor = rbd_dev->minor;
3983 if (single_major)
3984 disk->flags |= GENHD_FL_EXT_DEVT;
3985 disk->fops = &rbd_bd_ops;
3986 disk->private_data = rbd_dev;
3988 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3989 rbd_dev->tag_set.ops = &rbd_mq_ops;
3990 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3991 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3992 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3993 rbd_dev->tag_set.nr_hw_queues = 1;
3994 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3996 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3997 if (err)
3998 goto out_disk;
4000 q = blk_mq_init_queue(&rbd_dev->tag_set);
4001 if (IS_ERR(q)) {
4002 err = PTR_ERR(q);
4003 goto out_tag_set;
4006 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4007 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4009 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4010 q->limits.max_sectors = queue_max_hw_sectors(q);
4011 blk_queue_max_segments(q, USHRT_MAX);
4012 blk_queue_max_segment_size(q, UINT_MAX);
4013 blk_queue_io_min(q, objset_bytes);
4014 blk_queue_io_opt(q, objset_bytes);
4016 if (rbd_dev->opts->trim) {
4017 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4018 q->limits.discard_granularity = objset_bytes;
4019 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4020 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4023 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4024 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4027 * disk_release() expects a queue ref from add_disk() and will
4028 * put it. Hold an extra ref until add_disk() is called.
4030 WARN_ON(!blk_get_queue(q));
4031 disk->queue = q;
4032 q->queuedata = rbd_dev;
4034 rbd_dev->disk = disk;
4036 return 0;
4037 out_tag_set:
4038 blk_mq_free_tag_set(&rbd_dev->tag_set);
4039 out_disk:
4040 put_disk(disk);
4041 return err;
4045 sysfs
4048 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4050 return container_of(dev, struct rbd_device, dev);
4053 static ssize_t rbd_size_show(struct device *dev,
4054 struct device_attribute *attr, char *buf)
4056 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4058 return sprintf(buf, "%llu\n",
4059 (unsigned long long)rbd_dev->mapping.size);
4063 * Note this shows the features for whatever's mapped, which is not
4064 * necessarily the base image.
4066 static ssize_t rbd_features_show(struct device *dev,
4067 struct device_attribute *attr, char *buf)
4069 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4071 return sprintf(buf, "0x%016llx\n",
4072 (unsigned long long)rbd_dev->mapping.features);
4075 static ssize_t rbd_major_show(struct device *dev,
4076 struct device_attribute *attr, char *buf)
4078 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4080 if (rbd_dev->major)
4081 return sprintf(buf, "%d\n", rbd_dev->major);
4083 return sprintf(buf, "(none)\n");
4086 static ssize_t rbd_minor_show(struct device *dev,
4087 struct device_attribute *attr, char *buf)
4089 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4091 return sprintf(buf, "%d\n", rbd_dev->minor);
4094 static ssize_t rbd_client_addr_show(struct device *dev,
4095 struct device_attribute *attr, char *buf)
4097 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4098 struct ceph_entity_addr *client_addr =
4099 ceph_client_addr(rbd_dev->rbd_client->client);
4101 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4102 le32_to_cpu(client_addr->nonce));
4105 static ssize_t rbd_client_id_show(struct device *dev,
4106 struct device_attribute *attr, char *buf)
4108 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4110 return sprintf(buf, "client%lld\n",
4111 ceph_client_gid(rbd_dev->rbd_client->client));
4114 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4115 struct device_attribute *attr, char *buf)
4117 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4119 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4122 static ssize_t rbd_config_info_show(struct device *dev,
4123 struct device_attribute *attr, char *buf)
4125 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4127 return sprintf(buf, "%s\n", rbd_dev->config_info);
4130 static ssize_t rbd_pool_show(struct device *dev,
4131 struct device_attribute *attr, char *buf)
4133 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4135 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4138 static ssize_t rbd_pool_id_show(struct device *dev,
4139 struct device_attribute *attr, char *buf)
4141 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4143 return sprintf(buf, "%llu\n",
4144 (unsigned long long) rbd_dev->spec->pool_id);
4147 static ssize_t rbd_pool_ns_show(struct device *dev,
4148 struct device_attribute *attr, char *buf)
4150 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4152 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
4155 static ssize_t rbd_name_show(struct device *dev,
4156 struct device_attribute *attr, char *buf)
4158 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4160 if (rbd_dev->spec->image_name)
4161 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4163 return sprintf(buf, "(unknown)\n");
4166 static ssize_t rbd_image_id_show(struct device *dev,
4167 struct device_attribute *attr, char *buf)
4169 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4171 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4175 * Shows the name of the currently-mapped snapshot (or
4176 * RBD_SNAP_HEAD_NAME for the base image).
4178 static ssize_t rbd_snap_show(struct device *dev,
4179 struct device_attribute *attr,
4180 char *buf)
4182 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4184 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4187 static ssize_t rbd_snap_id_show(struct device *dev,
4188 struct device_attribute *attr, char *buf)
4190 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4192 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4196 * For a v2 image, shows the chain of parent images, separated by empty
4197 * lines. For v1 images or if there is no parent, shows "(no parent
4198 * image)".
4200 static ssize_t rbd_parent_show(struct device *dev,
4201 struct device_attribute *attr,
4202 char *buf)
4204 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4205 ssize_t count = 0;
4207 if (!rbd_dev->parent)
4208 return sprintf(buf, "(no parent image)\n");
4210 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4211 struct rbd_spec *spec = rbd_dev->parent_spec;
4213 count += sprintf(&buf[count], "%s"
4214 "pool_id %llu\npool_name %s\n"
4215 "pool_ns %s\n"
4216 "image_id %s\nimage_name %s\n"
4217 "snap_id %llu\nsnap_name %s\n"
4218 "overlap %llu\n",
4219 !count ? "" : "\n", /* first? */
4220 spec->pool_id, spec->pool_name,
4221 spec->pool_ns ?: "",
4222 spec->image_id, spec->image_name ?: "(unknown)",
4223 spec->snap_id, spec->snap_name,
4224 rbd_dev->parent_overlap);
4227 return count;
4230 static ssize_t rbd_image_refresh(struct device *dev,
4231 struct device_attribute *attr,
4232 const char *buf,
4233 size_t size)
4235 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4236 int ret;
4238 ret = rbd_dev_refresh(rbd_dev);
4239 if (ret)
4240 return ret;
4242 return size;
4245 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
4246 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
4247 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
4248 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
4249 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
4250 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
4251 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
4252 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
4253 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
4254 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
4255 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
4256 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
4257 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
4258 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
4259 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
4260 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
4261 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
4263 static struct attribute *rbd_attrs[] = {
4264 &dev_attr_size.attr,
4265 &dev_attr_features.attr,
4266 &dev_attr_major.attr,
4267 &dev_attr_minor.attr,
4268 &dev_attr_client_addr.attr,
4269 &dev_attr_client_id.attr,
4270 &dev_attr_cluster_fsid.attr,
4271 &dev_attr_config_info.attr,
4272 &dev_attr_pool.attr,
4273 &dev_attr_pool_id.attr,
4274 &dev_attr_pool_ns.attr,
4275 &dev_attr_name.attr,
4276 &dev_attr_image_id.attr,
4277 &dev_attr_current_snap.attr,
4278 &dev_attr_snap_id.attr,
4279 &dev_attr_parent.attr,
4280 &dev_attr_refresh.attr,
4281 NULL
4284 static struct attribute_group rbd_attr_group = {
4285 .attrs = rbd_attrs,
4288 static const struct attribute_group *rbd_attr_groups[] = {
4289 &rbd_attr_group,
4290 NULL
4293 static void rbd_dev_release(struct device *dev);
4295 static const struct device_type rbd_device_type = {
4296 .name = "rbd",
4297 .groups = rbd_attr_groups,
4298 .release = rbd_dev_release,
4301 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4303 kref_get(&spec->kref);
4305 return spec;
4308 static void rbd_spec_free(struct kref *kref);
4309 static void rbd_spec_put(struct rbd_spec *spec)
4311 if (spec)
4312 kref_put(&spec->kref, rbd_spec_free);
4315 static struct rbd_spec *rbd_spec_alloc(void)
4317 struct rbd_spec *spec;
4319 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4320 if (!spec)
4321 return NULL;
4323 spec->pool_id = CEPH_NOPOOL;
4324 spec->snap_id = CEPH_NOSNAP;
4325 kref_init(&spec->kref);
4327 return spec;
4330 static void rbd_spec_free(struct kref *kref)
4332 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4334 kfree(spec->pool_name);
4335 kfree(spec->pool_ns);
4336 kfree(spec->image_id);
4337 kfree(spec->image_name);
4338 kfree(spec->snap_name);
4339 kfree(spec);
4342 static void rbd_dev_free(struct rbd_device *rbd_dev)
4344 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4345 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4347 ceph_oid_destroy(&rbd_dev->header_oid);
4348 ceph_oloc_destroy(&rbd_dev->header_oloc);
4349 kfree(rbd_dev->config_info);
4351 rbd_put_client(rbd_dev->rbd_client);
4352 rbd_spec_put(rbd_dev->spec);
4353 kfree(rbd_dev->opts);
4354 kfree(rbd_dev);
4357 static void rbd_dev_release(struct device *dev)
4359 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4360 bool need_put = !!rbd_dev->opts;
4362 if (need_put) {
4363 destroy_workqueue(rbd_dev->task_wq);
4364 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4367 rbd_dev_free(rbd_dev);
4370 * This is racy, but way better than putting module outside of
4371 * the release callback. The race window is pretty small, so
4372 * doing something similar to dm (dm-builtin.c) is overkill.
4374 if (need_put)
4375 module_put(THIS_MODULE);
4378 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4379 struct rbd_spec *spec)
4381 struct rbd_device *rbd_dev;
4383 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4384 if (!rbd_dev)
4385 return NULL;
4387 spin_lock_init(&rbd_dev->lock);
4388 INIT_LIST_HEAD(&rbd_dev->node);
4389 init_rwsem(&rbd_dev->header_rwsem);
4391 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4392 ceph_oid_init(&rbd_dev->header_oid);
4393 rbd_dev->header_oloc.pool = spec->pool_id;
4394 if (spec->pool_ns) {
4395 WARN_ON(!*spec->pool_ns);
4396 rbd_dev->header_oloc.pool_ns =
4397 ceph_find_or_create_string(spec->pool_ns,
4398 strlen(spec->pool_ns));
4401 mutex_init(&rbd_dev->watch_mutex);
4402 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4403 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4405 init_rwsem(&rbd_dev->lock_rwsem);
4406 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4407 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4408 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4409 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4410 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4411 init_waitqueue_head(&rbd_dev->lock_waitq);
4413 rbd_dev->dev.bus = &rbd_bus_type;
4414 rbd_dev->dev.type = &rbd_device_type;
4415 rbd_dev->dev.parent = &rbd_root_dev;
4416 device_initialize(&rbd_dev->dev);
4418 rbd_dev->rbd_client = rbdc;
4419 rbd_dev->spec = spec;
4421 return rbd_dev;
4425 * Create a mapping rbd_dev.
4427 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4428 struct rbd_spec *spec,
4429 struct rbd_options *opts)
4431 struct rbd_device *rbd_dev;
4433 rbd_dev = __rbd_dev_create(rbdc, spec);
4434 if (!rbd_dev)
4435 return NULL;
4437 rbd_dev->opts = opts;
4439 /* get an id and fill in device name */
4440 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4441 minor_to_rbd_dev_id(1 << MINORBITS),
4442 GFP_KERNEL);
4443 if (rbd_dev->dev_id < 0)
4444 goto fail_rbd_dev;
4446 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4447 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4448 rbd_dev->name);
4449 if (!rbd_dev->task_wq)
4450 goto fail_dev_id;
4452 /* we have a ref from do_rbd_add() */
4453 __module_get(THIS_MODULE);
4455 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4456 return rbd_dev;
4458 fail_dev_id:
4459 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4460 fail_rbd_dev:
4461 rbd_dev_free(rbd_dev);
4462 return NULL;
4465 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4467 if (rbd_dev)
4468 put_device(&rbd_dev->dev);
4472 * Get the size and object order for an image snapshot, or if
4473 * snap_id is CEPH_NOSNAP, gets this information for the base
4474 * image.
4476 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4477 u8 *order, u64 *snap_size)
4479 __le64 snapid = cpu_to_le64(snap_id);
4480 int ret;
4481 struct {
4482 u8 order;
4483 __le64 size;
4484 } __attribute__ ((packed)) size_buf = { 0 };
4486 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4487 &rbd_dev->header_oloc, "get_size",
4488 &snapid, sizeof(snapid),
4489 &size_buf, sizeof(size_buf));
4490 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4491 if (ret < 0)
4492 return ret;
4493 if (ret < sizeof (size_buf))
4494 return -ERANGE;
4496 if (order) {
4497 *order = size_buf.order;
4498 dout(" order %u", (unsigned int)*order);
4500 *snap_size = le64_to_cpu(size_buf.size);
4502 dout(" snap_id 0x%016llx snap_size = %llu\n",
4503 (unsigned long long)snap_id,
4504 (unsigned long long)*snap_size);
4506 return 0;
4509 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4511 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4512 &rbd_dev->header.obj_order,
4513 &rbd_dev->header.image_size);
4516 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4518 void *reply_buf;
4519 int ret;
4520 void *p;
4522 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4523 if (!reply_buf)
4524 return -ENOMEM;
4526 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4527 &rbd_dev->header_oloc, "get_object_prefix",
4528 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4529 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4530 if (ret < 0)
4531 goto out;
4533 p = reply_buf;
4534 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4535 p + ret, NULL, GFP_NOIO);
4536 ret = 0;
4538 if (IS_ERR(rbd_dev->header.object_prefix)) {
4539 ret = PTR_ERR(rbd_dev->header.object_prefix);
4540 rbd_dev->header.object_prefix = NULL;
4541 } else {
4542 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4544 out:
4545 kfree(reply_buf);
4547 return ret;
4550 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4551 u64 *snap_features)
4553 __le64 snapid = cpu_to_le64(snap_id);
4554 struct {
4555 __le64 features;
4556 __le64 incompat;
4557 } __attribute__ ((packed)) features_buf = { 0 };
4558 u64 unsup;
4559 int ret;
4561 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4562 &rbd_dev->header_oloc, "get_features",
4563 &snapid, sizeof(snapid),
4564 &features_buf, sizeof(features_buf));
4565 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4566 if (ret < 0)
4567 return ret;
4568 if (ret < sizeof (features_buf))
4569 return -ERANGE;
4571 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4572 if (unsup) {
4573 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4574 unsup);
4575 return -ENXIO;
4578 *snap_features = le64_to_cpu(features_buf.features);
4580 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4581 (unsigned long long)snap_id,
4582 (unsigned long long)*snap_features,
4583 (unsigned long long)le64_to_cpu(features_buf.incompat));
4585 return 0;
4588 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4590 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4591 &rbd_dev->header.features);
4594 struct parent_image_info {
4595 u64 pool_id;
4596 const char *pool_ns;
4597 const char *image_id;
4598 u64 snap_id;
4600 bool has_overlap;
4601 u64 overlap;
4605 * The caller is responsible for @pii.
4607 static int decode_parent_image_spec(void **p, void *end,
4608 struct parent_image_info *pii)
4610 u8 struct_v;
4611 u32 struct_len;
4612 int ret;
4614 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
4615 &struct_v, &struct_len);
4616 if (ret)
4617 return ret;
4619 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
4620 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4621 if (IS_ERR(pii->pool_ns)) {
4622 ret = PTR_ERR(pii->pool_ns);
4623 pii->pool_ns = NULL;
4624 return ret;
4626 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4627 if (IS_ERR(pii->image_id)) {
4628 ret = PTR_ERR(pii->image_id);
4629 pii->image_id = NULL;
4630 return ret;
4632 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
4633 return 0;
4635 e_inval:
4636 return -EINVAL;
4639 static int __get_parent_info(struct rbd_device *rbd_dev,
4640 struct page *req_page,
4641 struct page *reply_page,
4642 struct parent_image_info *pii)
4644 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4645 size_t reply_len = PAGE_SIZE;
4646 void *p, *end;
4647 int ret;
4649 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4650 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
4651 req_page, sizeof(u64), reply_page, &reply_len);
4652 if (ret)
4653 return ret == -EOPNOTSUPP ? 1 : ret;
4655 p = page_address(reply_page);
4656 end = p + reply_len;
4657 ret = decode_parent_image_spec(&p, end, pii);
4658 if (ret)
4659 return ret;
4661 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4662 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
4663 req_page, sizeof(u64), reply_page, &reply_len);
4664 if (ret)
4665 return ret;
4667 p = page_address(reply_page);
4668 end = p + reply_len;
4669 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
4670 if (pii->has_overlap)
4671 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4673 return 0;
4675 e_inval:
4676 return -EINVAL;
4680 * The caller is responsible for @pii.
4682 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
4683 struct page *req_page,
4684 struct page *reply_page,
4685 struct parent_image_info *pii)
4687 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4688 size_t reply_len = PAGE_SIZE;
4689 void *p, *end;
4690 int ret;
4692 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4693 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
4694 req_page, sizeof(u64), reply_page, &reply_len);
4695 if (ret)
4696 return ret;
4698 p = page_address(reply_page);
4699 end = p + reply_len;
4700 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
4701 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4702 if (IS_ERR(pii->image_id)) {
4703 ret = PTR_ERR(pii->image_id);
4704 pii->image_id = NULL;
4705 return ret;
4707 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
4708 pii->has_overlap = true;
4709 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4711 return 0;
4713 e_inval:
4714 return -EINVAL;
4717 static int get_parent_info(struct rbd_device *rbd_dev,
4718 struct parent_image_info *pii)
4720 struct page *req_page, *reply_page;
4721 void *p;
4722 int ret;
4724 req_page = alloc_page(GFP_KERNEL);
4725 if (!req_page)
4726 return -ENOMEM;
4728 reply_page = alloc_page(GFP_KERNEL);
4729 if (!reply_page) {
4730 __free_page(req_page);
4731 return -ENOMEM;
4734 p = page_address(req_page);
4735 ceph_encode_64(&p, rbd_dev->spec->snap_id);
4736 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
4737 if (ret > 0)
4738 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
4739 pii);
4741 __free_page(req_page);
4742 __free_page(reply_page);
4743 return ret;
4746 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4748 struct rbd_spec *parent_spec;
4749 struct parent_image_info pii = { 0 };
4750 int ret;
4752 parent_spec = rbd_spec_alloc();
4753 if (!parent_spec)
4754 return -ENOMEM;
4756 ret = get_parent_info(rbd_dev, &pii);
4757 if (ret)
4758 goto out_err;
4760 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
4761 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
4762 pii.has_overlap, pii.overlap);
4764 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
4766 * Either the parent never existed, or we have
4767 * record of it but the image got flattened so it no
4768 * longer has a parent. When the parent of a
4769 * layered image disappears we immediately set the
4770 * overlap to 0. The effect of this is that all new
4771 * requests will be treated as if the image had no
4772 * parent.
4774 * If !pii.has_overlap, the parent image spec is not
4775 * applicable. It's there to avoid duplication in each
4776 * snapshot record.
4778 if (rbd_dev->parent_overlap) {
4779 rbd_dev->parent_overlap = 0;
4780 rbd_dev_parent_put(rbd_dev);
4781 pr_info("%s: clone image has been flattened\n",
4782 rbd_dev->disk->disk_name);
4785 goto out; /* No parent? No problem. */
4788 /* The ceph file layout needs to fit pool id in 32 bits */
4790 ret = -EIO;
4791 if (pii.pool_id > (u64)U32_MAX) {
4792 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4793 (unsigned long long)pii.pool_id, U32_MAX);
4794 goto out_err;
4798 * The parent won't change (except when the clone is
4799 * flattened, already handled that). So we only need to
4800 * record the parent spec we have not already done so.
4802 if (!rbd_dev->parent_spec) {
4803 parent_spec->pool_id = pii.pool_id;
4804 if (pii.pool_ns && *pii.pool_ns) {
4805 parent_spec->pool_ns = pii.pool_ns;
4806 pii.pool_ns = NULL;
4808 parent_spec->image_id = pii.image_id;
4809 pii.image_id = NULL;
4810 parent_spec->snap_id = pii.snap_id;
4812 rbd_dev->parent_spec = parent_spec;
4813 parent_spec = NULL; /* rbd_dev now owns this */
4817 * We always update the parent overlap. If it's zero we issue
4818 * a warning, as we will proceed as if there was no parent.
4820 if (!pii.overlap) {
4821 if (parent_spec) {
4822 /* refresh, careful to warn just once */
4823 if (rbd_dev->parent_overlap)
4824 rbd_warn(rbd_dev,
4825 "clone now standalone (overlap became 0)");
4826 } else {
4827 /* initial probe */
4828 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4831 rbd_dev->parent_overlap = pii.overlap;
4833 out:
4834 ret = 0;
4835 out_err:
4836 kfree(pii.pool_ns);
4837 kfree(pii.image_id);
4838 rbd_spec_put(parent_spec);
4839 return ret;
4842 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4844 struct {
4845 __le64 stripe_unit;
4846 __le64 stripe_count;
4847 } __attribute__ ((packed)) striping_info_buf = { 0 };
4848 size_t size = sizeof (striping_info_buf);
4849 void *p;
4850 int ret;
4852 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4853 &rbd_dev->header_oloc, "get_stripe_unit_count",
4854 NULL, 0, &striping_info_buf, size);
4855 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4856 if (ret < 0)
4857 return ret;
4858 if (ret < size)
4859 return -ERANGE;
4861 p = &striping_info_buf;
4862 rbd_dev->header.stripe_unit = ceph_decode_64(&p);
4863 rbd_dev->header.stripe_count = ceph_decode_64(&p);
4864 return 0;
4867 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
4869 __le64 data_pool_id;
4870 int ret;
4872 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4873 &rbd_dev->header_oloc, "get_data_pool",
4874 NULL, 0, &data_pool_id, sizeof(data_pool_id));
4875 if (ret < 0)
4876 return ret;
4877 if (ret < sizeof(data_pool_id))
4878 return -EBADMSG;
4880 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
4881 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
4882 return 0;
4885 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4887 CEPH_DEFINE_OID_ONSTACK(oid);
4888 size_t image_id_size;
4889 char *image_id;
4890 void *p;
4891 void *end;
4892 size_t size;
4893 void *reply_buf = NULL;
4894 size_t len = 0;
4895 char *image_name = NULL;
4896 int ret;
4898 rbd_assert(!rbd_dev->spec->image_name);
4900 len = strlen(rbd_dev->spec->image_id);
4901 image_id_size = sizeof (__le32) + len;
4902 image_id = kmalloc(image_id_size, GFP_KERNEL);
4903 if (!image_id)
4904 return NULL;
4906 p = image_id;
4907 end = image_id + image_id_size;
4908 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4910 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4911 reply_buf = kmalloc(size, GFP_KERNEL);
4912 if (!reply_buf)
4913 goto out;
4915 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
4916 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
4917 "dir_get_name", image_id, image_id_size,
4918 reply_buf, size);
4919 if (ret < 0)
4920 goto out;
4921 p = reply_buf;
4922 end = reply_buf + ret;
4924 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4925 if (IS_ERR(image_name))
4926 image_name = NULL;
4927 else
4928 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4929 out:
4930 kfree(reply_buf);
4931 kfree(image_id);
4933 return image_name;
4936 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4938 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4939 const char *snap_name;
4940 u32 which = 0;
4942 /* Skip over names until we find the one we are looking for */
4944 snap_name = rbd_dev->header.snap_names;
4945 while (which < snapc->num_snaps) {
4946 if (!strcmp(name, snap_name))
4947 return snapc->snaps[which];
4948 snap_name += strlen(snap_name) + 1;
4949 which++;
4951 return CEPH_NOSNAP;
4954 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4956 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4957 u32 which;
4958 bool found = false;
4959 u64 snap_id;
4961 for (which = 0; !found && which < snapc->num_snaps; which++) {
4962 const char *snap_name;
4964 snap_id = snapc->snaps[which];
4965 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4966 if (IS_ERR(snap_name)) {
4967 /* ignore no-longer existing snapshots */
4968 if (PTR_ERR(snap_name) == -ENOENT)
4969 continue;
4970 else
4971 break;
4973 found = !strcmp(name, snap_name);
4974 kfree(snap_name);
4976 return found ? snap_id : CEPH_NOSNAP;
4980 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4981 * no snapshot by that name is found, or if an error occurs.
4983 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4985 if (rbd_dev->image_format == 1)
4986 return rbd_v1_snap_id_by_name(rbd_dev, name);
4988 return rbd_v2_snap_id_by_name(rbd_dev, name);
4992 * An image being mapped will have everything but the snap id.
4994 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4996 struct rbd_spec *spec = rbd_dev->spec;
4998 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4999 rbd_assert(spec->image_id && spec->image_name);
5000 rbd_assert(spec->snap_name);
5002 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5003 u64 snap_id;
5005 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5006 if (snap_id == CEPH_NOSNAP)
5007 return -ENOENT;
5009 spec->snap_id = snap_id;
5010 } else {
5011 spec->snap_id = CEPH_NOSNAP;
5014 return 0;
5018 * A parent image will have all ids but none of the names.
5020 * All names in an rbd spec are dynamically allocated. It's OK if we
5021 * can't figure out the name for an image id.
5023 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5025 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5026 struct rbd_spec *spec = rbd_dev->spec;
5027 const char *pool_name;
5028 const char *image_name;
5029 const char *snap_name;
5030 int ret;
5032 rbd_assert(spec->pool_id != CEPH_NOPOOL);
5033 rbd_assert(spec->image_id);
5034 rbd_assert(spec->snap_id != CEPH_NOSNAP);
5036 /* Get the pool name; we have to make our own copy of this */
5038 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5039 if (!pool_name) {
5040 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5041 return -EIO;
5043 pool_name = kstrdup(pool_name, GFP_KERNEL);
5044 if (!pool_name)
5045 return -ENOMEM;
5047 /* Fetch the image name; tolerate failure here */
5049 image_name = rbd_dev_image_name(rbd_dev);
5050 if (!image_name)
5051 rbd_warn(rbd_dev, "unable to get image name");
5053 /* Fetch the snapshot name */
5055 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5056 if (IS_ERR(snap_name)) {
5057 ret = PTR_ERR(snap_name);
5058 goto out_err;
5061 spec->pool_name = pool_name;
5062 spec->image_name = image_name;
5063 spec->snap_name = snap_name;
5065 return 0;
5067 out_err:
5068 kfree(image_name);
5069 kfree(pool_name);
5070 return ret;
5073 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5075 size_t size;
5076 int ret;
5077 void *reply_buf;
5078 void *p;
5079 void *end;
5080 u64 seq;
5081 u32 snap_count;
5082 struct ceph_snap_context *snapc;
5083 u32 i;
5086 * We'll need room for the seq value (maximum snapshot id),
5087 * snapshot count, and array of that many snapshot ids.
5088 * For now we have a fixed upper limit on the number we're
5089 * prepared to receive.
5091 size = sizeof (__le64) + sizeof (__le32) +
5092 RBD_MAX_SNAP_COUNT * sizeof (__le64);
5093 reply_buf = kzalloc(size, GFP_KERNEL);
5094 if (!reply_buf)
5095 return -ENOMEM;
5097 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5098 &rbd_dev->header_oloc, "get_snapcontext",
5099 NULL, 0, reply_buf, size);
5100 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5101 if (ret < 0)
5102 goto out;
5104 p = reply_buf;
5105 end = reply_buf + ret;
5106 ret = -ERANGE;
5107 ceph_decode_64_safe(&p, end, seq, out);
5108 ceph_decode_32_safe(&p, end, snap_count, out);
5111 * Make sure the reported number of snapshot ids wouldn't go
5112 * beyond the end of our buffer. But before checking that,
5113 * make sure the computed size of the snapshot context we
5114 * allocate is representable in a size_t.
5116 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5117 / sizeof (u64)) {
5118 ret = -EINVAL;
5119 goto out;
5121 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5122 goto out;
5123 ret = 0;
5125 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5126 if (!snapc) {
5127 ret = -ENOMEM;
5128 goto out;
5130 snapc->seq = seq;
5131 for (i = 0; i < snap_count; i++)
5132 snapc->snaps[i] = ceph_decode_64(&p);
5134 ceph_put_snap_context(rbd_dev->header.snapc);
5135 rbd_dev->header.snapc = snapc;
5137 dout(" snap context seq = %llu, snap_count = %u\n",
5138 (unsigned long long)seq, (unsigned int)snap_count);
5139 out:
5140 kfree(reply_buf);
5142 return ret;
5145 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5146 u64 snap_id)
5148 size_t size;
5149 void *reply_buf;
5150 __le64 snapid;
5151 int ret;
5152 void *p;
5153 void *end;
5154 char *snap_name;
5156 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5157 reply_buf = kmalloc(size, GFP_KERNEL);
5158 if (!reply_buf)
5159 return ERR_PTR(-ENOMEM);
5161 snapid = cpu_to_le64(snap_id);
5162 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5163 &rbd_dev->header_oloc, "get_snapshot_name",
5164 &snapid, sizeof(snapid), reply_buf, size);
5165 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5166 if (ret < 0) {
5167 snap_name = ERR_PTR(ret);
5168 goto out;
5171 p = reply_buf;
5172 end = reply_buf + ret;
5173 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5174 if (IS_ERR(snap_name))
5175 goto out;
5177 dout(" snap_id 0x%016llx snap_name = %s\n",
5178 (unsigned long long)snap_id, snap_name);
5179 out:
5180 kfree(reply_buf);
5182 return snap_name;
5185 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5187 bool first_time = rbd_dev->header.object_prefix == NULL;
5188 int ret;
5190 ret = rbd_dev_v2_image_size(rbd_dev);
5191 if (ret)
5192 return ret;
5194 if (first_time) {
5195 ret = rbd_dev_v2_header_onetime(rbd_dev);
5196 if (ret)
5197 return ret;
5200 ret = rbd_dev_v2_snap_context(rbd_dev);
5201 if (ret && first_time) {
5202 kfree(rbd_dev->header.object_prefix);
5203 rbd_dev->header.object_prefix = NULL;
5206 return ret;
5209 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5211 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5213 if (rbd_dev->image_format == 1)
5214 return rbd_dev_v1_header_info(rbd_dev);
5216 return rbd_dev_v2_header_info(rbd_dev);
5220 * Skips over white space at *buf, and updates *buf to point to the
5221 * first found non-space character (if any). Returns the length of
5222 * the token (string of non-white space characters) found. Note
5223 * that *buf must be terminated with '\0'.
5225 static inline size_t next_token(const char **buf)
5228 * These are the characters that produce nonzero for
5229 * isspace() in the "C" and "POSIX" locales.
5231 const char *spaces = " \f\n\r\t\v";
5233 *buf += strspn(*buf, spaces); /* Find start of token */
5235 return strcspn(*buf, spaces); /* Return token length */
5239 * Finds the next token in *buf, dynamically allocates a buffer big
5240 * enough to hold a copy of it, and copies the token into the new
5241 * buffer. The copy is guaranteed to be terminated with '\0'. Note
5242 * that a duplicate buffer is created even for a zero-length token.
5244 * Returns a pointer to the newly-allocated duplicate, or a null
5245 * pointer if memory for the duplicate was not available. If
5246 * the lenp argument is a non-null pointer, the length of the token
5247 * (not including the '\0') is returned in *lenp.
5249 * If successful, the *buf pointer will be updated to point beyond
5250 * the end of the found token.
5252 * Note: uses GFP_KERNEL for allocation.
5254 static inline char *dup_token(const char **buf, size_t *lenp)
5256 char *dup;
5257 size_t len;
5259 len = next_token(buf);
5260 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5261 if (!dup)
5262 return NULL;
5263 *(dup + len) = '\0';
5264 *buf += len;
5266 if (lenp)
5267 *lenp = len;
5269 return dup;
5273 * Parse the options provided for an "rbd add" (i.e., rbd image
5274 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
5275 * and the data written is passed here via a NUL-terminated buffer.
5276 * Returns 0 if successful or an error code otherwise.
5278 * The information extracted from these options is recorded in
5279 * the other parameters which return dynamically-allocated
5280 * structures:
5281 * ceph_opts
5282 * The address of a pointer that will refer to a ceph options
5283 * structure. Caller must release the returned pointer using
5284 * ceph_destroy_options() when it is no longer needed.
5285 * rbd_opts
5286 * Address of an rbd options pointer. Fully initialized by
5287 * this function; caller must release with kfree().
5288 * spec
5289 * Address of an rbd image specification pointer. Fully
5290 * initialized by this function based on parsed options.
5291 * Caller must release with rbd_spec_put().
5293 * The options passed take this form:
5294 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5295 * where:
5296 * <mon_addrs>
5297 * A comma-separated list of one or more monitor addresses.
5298 * A monitor address is an ip address, optionally followed
5299 * by a port number (separated by a colon).
5300 * I.e.: ip1[:port1][,ip2[:port2]...]
5301 * <options>
5302 * A comma-separated list of ceph and/or rbd options.
5303 * <pool_name>
5304 * The name of the rados pool containing the rbd image.
5305 * <image_name>
5306 * The name of the image in that pool to map.
5307 * <snap_id>
5308 * An optional snapshot id. If provided, the mapping will
5309 * present data from the image at the time that snapshot was
5310 * created. The image head is used if no snapshot id is
5311 * provided. Snapshot mappings are always read-only.
5313 static int rbd_add_parse_args(const char *buf,
5314 struct ceph_options **ceph_opts,
5315 struct rbd_options **opts,
5316 struct rbd_spec **rbd_spec)
5318 size_t len;
5319 char *options;
5320 const char *mon_addrs;
5321 char *snap_name;
5322 size_t mon_addrs_size;
5323 struct parse_rbd_opts_ctx pctx = { 0 };
5324 struct ceph_options *copts;
5325 int ret;
5327 /* The first four tokens are required */
5329 len = next_token(&buf);
5330 if (!len) {
5331 rbd_warn(NULL, "no monitor address(es) provided");
5332 return -EINVAL;
5334 mon_addrs = buf;
5335 mon_addrs_size = len + 1;
5336 buf += len;
5338 ret = -EINVAL;
5339 options = dup_token(&buf, NULL);
5340 if (!options)
5341 return -ENOMEM;
5342 if (!*options) {
5343 rbd_warn(NULL, "no options provided");
5344 goto out_err;
5347 pctx.spec = rbd_spec_alloc();
5348 if (!pctx.spec)
5349 goto out_mem;
5351 pctx.spec->pool_name = dup_token(&buf, NULL);
5352 if (!pctx.spec->pool_name)
5353 goto out_mem;
5354 if (!*pctx.spec->pool_name) {
5355 rbd_warn(NULL, "no pool name provided");
5356 goto out_err;
5359 pctx.spec->image_name = dup_token(&buf, NULL);
5360 if (!pctx.spec->image_name)
5361 goto out_mem;
5362 if (!*pctx.spec->image_name) {
5363 rbd_warn(NULL, "no image name provided");
5364 goto out_err;
5368 * Snapshot name is optional; default is to use "-"
5369 * (indicating the head/no snapshot).
5371 len = next_token(&buf);
5372 if (!len) {
5373 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5374 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5375 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5376 ret = -ENAMETOOLONG;
5377 goto out_err;
5379 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5380 if (!snap_name)
5381 goto out_mem;
5382 *(snap_name + len) = '\0';
5383 pctx.spec->snap_name = snap_name;
5385 /* Initialize all rbd options to the defaults */
5387 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
5388 if (!pctx.opts)
5389 goto out_mem;
5391 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
5392 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5393 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5394 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5395 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5396 pctx.opts->trim = RBD_TRIM_DEFAULT;
5398 copts = ceph_parse_options(options, mon_addrs,
5399 mon_addrs + mon_addrs_size - 1,
5400 parse_rbd_opts_token, &pctx);
5401 if (IS_ERR(copts)) {
5402 ret = PTR_ERR(copts);
5403 goto out_err;
5405 kfree(options);
5407 *ceph_opts = copts;
5408 *opts = pctx.opts;
5409 *rbd_spec = pctx.spec;
5411 return 0;
5412 out_mem:
5413 ret = -ENOMEM;
5414 out_err:
5415 kfree(pctx.opts);
5416 rbd_spec_put(pctx.spec);
5417 kfree(options);
5419 return ret;
5422 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5424 down_write(&rbd_dev->lock_rwsem);
5425 if (__rbd_is_lock_owner(rbd_dev))
5426 rbd_unlock(rbd_dev);
5427 up_write(&rbd_dev->lock_rwsem);
5430 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5432 int ret;
5434 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5435 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5436 return -EINVAL;
5439 /* FIXME: "rbd map --exclusive" should be in interruptible */
5440 down_read(&rbd_dev->lock_rwsem);
5441 ret = rbd_wait_state_locked(rbd_dev, true);
5442 up_read(&rbd_dev->lock_rwsem);
5443 if (ret) {
5444 rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5445 return -EROFS;
5448 return 0;
5452 * An rbd format 2 image has a unique identifier, distinct from the
5453 * name given to it by the user. Internally, that identifier is
5454 * what's used to specify the names of objects related to the image.
5456 * A special "rbd id" object is used to map an rbd image name to its
5457 * id. If that object doesn't exist, then there is no v2 rbd image
5458 * with the supplied name.
5460 * This function will record the given rbd_dev's image_id field if
5461 * it can be determined, and in that case will return 0. If any
5462 * errors occur a negative errno will be returned and the rbd_dev's
5463 * image_id field will be unchanged (and should be NULL).
5465 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5467 int ret;
5468 size_t size;
5469 CEPH_DEFINE_OID_ONSTACK(oid);
5470 void *response;
5471 char *image_id;
5474 * When probing a parent image, the image id is already
5475 * known (and the image name likely is not). There's no
5476 * need to fetch the image id again in this case. We
5477 * do still need to set the image format though.
5479 if (rbd_dev->spec->image_id) {
5480 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5482 return 0;
5486 * First, see if the format 2 image id file exists, and if
5487 * so, get the image's persistent id from it.
5489 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5490 rbd_dev->spec->image_name);
5491 if (ret)
5492 return ret;
5494 dout("rbd id object name is %s\n", oid.name);
5496 /* Response will be an encoded string, which includes a length */
5498 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5499 response = kzalloc(size, GFP_NOIO);
5500 if (!response) {
5501 ret = -ENOMEM;
5502 goto out;
5505 /* If it doesn't exist we'll assume it's a format 1 image */
5507 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5508 "get_id", NULL, 0,
5509 response, RBD_IMAGE_ID_LEN_MAX);
5510 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5511 if (ret == -ENOENT) {
5512 image_id = kstrdup("", GFP_KERNEL);
5513 ret = image_id ? 0 : -ENOMEM;
5514 if (!ret)
5515 rbd_dev->image_format = 1;
5516 } else if (ret >= 0) {
5517 void *p = response;
5519 image_id = ceph_extract_encoded_string(&p, p + ret,
5520 NULL, GFP_NOIO);
5521 ret = PTR_ERR_OR_ZERO(image_id);
5522 if (!ret)
5523 rbd_dev->image_format = 2;
5526 if (!ret) {
5527 rbd_dev->spec->image_id = image_id;
5528 dout("image_id is %s\n", image_id);
5530 out:
5531 kfree(response);
5532 ceph_oid_destroy(&oid);
5533 return ret;
5537 * Undo whatever state changes are made by v1 or v2 header info
5538 * call.
5540 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5542 struct rbd_image_header *header;
5544 rbd_dev_parent_put(rbd_dev);
5546 /* Free dynamic fields from the header, then zero it out */
5548 header = &rbd_dev->header;
5549 ceph_put_snap_context(header->snapc);
5550 kfree(header->snap_sizes);
5551 kfree(header->snap_names);
5552 kfree(header->object_prefix);
5553 memset(header, 0, sizeof (*header));
5556 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5558 int ret;
5560 ret = rbd_dev_v2_object_prefix(rbd_dev);
5561 if (ret)
5562 goto out_err;
5565 * Get the and check features for the image. Currently the
5566 * features are assumed to never change.
5568 ret = rbd_dev_v2_features(rbd_dev);
5569 if (ret)
5570 goto out_err;
5572 /* If the image supports fancy striping, get its parameters */
5574 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5575 ret = rbd_dev_v2_striping_info(rbd_dev);
5576 if (ret < 0)
5577 goto out_err;
5580 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5581 ret = rbd_dev_v2_data_pool(rbd_dev);
5582 if (ret)
5583 goto out_err;
5586 rbd_init_layout(rbd_dev);
5587 return 0;
5589 out_err:
5590 rbd_dev->header.features = 0;
5591 kfree(rbd_dev->header.object_prefix);
5592 rbd_dev->header.object_prefix = NULL;
5593 return ret;
5597 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5598 * rbd_dev_image_probe() recursion depth, which means it's also the
5599 * length of the already discovered part of the parent chain.
5601 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5603 struct rbd_device *parent = NULL;
5604 int ret;
5606 if (!rbd_dev->parent_spec)
5607 return 0;
5609 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5610 pr_info("parent chain is too long (%d)\n", depth);
5611 ret = -EINVAL;
5612 goto out_err;
5615 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5616 if (!parent) {
5617 ret = -ENOMEM;
5618 goto out_err;
5622 * Images related by parent/child relationships always share
5623 * rbd_client and spec/parent_spec, so bump their refcounts.
5625 __rbd_get_client(rbd_dev->rbd_client);
5626 rbd_spec_get(rbd_dev->parent_spec);
5628 ret = rbd_dev_image_probe(parent, depth);
5629 if (ret < 0)
5630 goto out_err;
5632 rbd_dev->parent = parent;
5633 atomic_set(&rbd_dev->parent_ref, 1);
5634 return 0;
5636 out_err:
5637 rbd_dev_unparent(rbd_dev);
5638 rbd_dev_destroy(parent);
5639 return ret;
5642 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5644 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5645 rbd_dev_mapping_clear(rbd_dev);
5646 rbd_free_disk(rbd_dev);
5647 if (!single_major)
5648 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5652 * rbd_dev->header_rwsem must be locked for write and will be unlocked
5653 * upon return.
5655 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5657 int ret;
5659 /* Record our major and minor device numbers. */
5661 if (!single_major) {
5662 ret = register_blkdev(0, rbd_dev->name);
5663 if (ret < 0)
5664 goto err_out_unlock;
5666 rbd_dev->major = ret;
5667 rbd_dev->minor = 0;
5668 } else {
5669 rbd_dev->major = rbd_major;
5670 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5673 /* Set up the blkdev mapping. */
5675 ret = rbd_init_disk(rbd_dev);
5676 if (ret)
5677 goto err_out_blkdev;
5679 ret = rbd_dev_mapping_set(rbd_dev);
5680 if (ret)
5681 goto err_out_disk;
5683 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5684 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5686 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5687 if (ret)
5688 goto err_out_mapping;
5690 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5691 up_write(&rbd_dev->header_rwsem);
5692 return 0;
5694 err_out_mapping:
5695 rbd_dev_mapping_clear(rbd_dev);
5696 err_out_disk:
5697 rbd_free_disk(rbd_dev);
5698 err_out_blkdev:
5699 if (!single_major)
5700 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5701 err_out_unlock:
5702 up_write(&rbd_dev->header_rwsem);
5703 return ret;
5706 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5708 struct rbd_spec *spec = rbd_dev->spec;
5709 int ret;
5711 /* Record the header object name for this rbd image. */
5713 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5714 if (rbd_dev->image_format == 1)
5715 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5716 spec->image_name, RBD_SUFFIX);
5717 else
5718 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5719 RBD_HEADER_PREFIX, spec->image_id);
5721 return ret;
5724 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5726 if (rbd_dev->opts)
5727 rbd_unregister_watch(rbd_dev);
5729 rbd_dev_unprobe(rbd_dev);
5730 rbd_dev->image_format = 0;
5731 kfree(rbd_dev->spec->image_id);
5732 rbd_dev->spec->image_id = NULL;
5736 * Probe for the existence of the header object for the given rbd
5737 * device. If this image is the one being mapped (i.e., not a
5738 * parent), initiate a watch on its header object before using that
5739 * object to get detailed information about the rbd image.
5741 * On success, returns with header_rwsem held for write if called
5742 * with @depth == 0.
5744 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5746 int ret;
5749 * Get the id from the image id object. Unless there's an
5750 * error, rbd_dev->spec->image_id will be filled in with
5751 * a dynamically-allocated string, and rbd_dev->image_format
5752 * will be set to either 1 or 2.
5754 ret = rbd_dev_image_id(rbd_dev);
5755 if (ret)
5756 return ret;
5758 ret = rbd_dev_header_name(rbd_dev);
5759 if (ret)
5760 goto err_out_format;
5762 if (!depth) {
5763 ret = rbd_register_watch(rbd_dev);
5764 if (ret) {
5765 if (ret == -ENOENT)
5766 pr_info("image %s/%s%s%s does not exist\n",
5767 rbd_dev->spec->pool_name,
5768 rbd_dev->spec->pool_ns ?: "",
5769 rbd_dev->spec->pool_ns ? "/" : "",
5770 rbd_dev->spec->image_name);
5771 goto err_out_format;
5775 if (!depth)
5776 down_write(&rbd_dev->header_rwsem);
5778 ret = rbd_dev_header_info(rbd_dev);
5779 if (ret)
5780 goto err_out_probe;
5783 * If this image is the one being mapped, we have pool name and
5784 * id, image name and id, and snap name - need to fill snap id.
5785 * Otherwise this is a parent image, identified by pool, image
5786 * and snap ids - need to fill in names for those ids.
5788 if (!depth)
5789 ret = rbd_spec_fill_snap_id(rbd_dev);
5790 else
5791 ret = rbd_spec_fill_names(rbd_dev);
5792 if (ret) {
5793 if (ret == -ENOENT)
5794 pr_info("snap %s/%s%s%s@%s does not exist\n",
5795 rbd_dev->spec->pool_name,
5796 rbd_dev->spec->pool_ns ?: "",
5797 rbd_dev->spec->pool_ns ? "/" : "",
5798 rbd_dev->spec->image_name,
5799 rbd_dev->spec->snap_name);
5800 goto err_out_probe;
5803 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5804 ret = rbd_dev_v2_parent_info(rbd_dev);
5805 if (ret)
5806 goto err_out_probe;
5809 * Need to warn users if this image is the one being
5810 * mapped and has a parent.
5812 if (!depth && rbd_dev->parent_spec)
5813 rbd_warn(rbd_dev,
5814 "WARNING: kernel layering is EXPERIMENTAL!");
5817 ret = rbd_dev_probe_parent(rbd_dev, depth);
5818 if (ret)
5819 goto err_out_probe;
5821 dout("discovered format %u image, header name is %s\n",
5822 rbd_dev->image_format, rbd_dev->header_oid.name);
5823 return 0;
5825 err_out_probe:
5826 if (!depth)
5827 up_write(&rbd_dev->header_rwsem);
5828 if (!depth)
5829 rbd_unregister_watch(rbd_dev);
5830 rbd_dev_unprobe(rbd_dev);
5831 err_out_format:
5832 rbd_dev->image_format = 0;
5833 kfree(rbd_dev->spec->image_id);
5834 rbd_dev->spec->image_id = NULL;
5835 return ret;
5838 static ssize_t do_rbd_add(struct bus_type *bus,
5839 const char *buf,
5840 size_t count)
5842 struct rbd_device *rbd_dev = NULL;
5843 struct ceph_options *ceph_opts = NULL;
5844 struct rbd_options *rbd_opts = NULL;
5845 struct rbd_spec *spec = NULL;
5846 struct rbd_client *rbdc;
5847 int rc;
5849 if (!try_module_get(THIS_MODULE))
5850 return -ENODEV;
5852 /* parse add command */
5853 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5854 if (rc < 0)
5855 goto out;
5857 rbdc = rbd_get_client(ceph_opts);
5858 if (IS_ERR(rbdc)) {
5859 rc = PTR_ERR(rbdc);
5860 goto err_out_args;
5863 /* pick the pool */
5864 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
5865 if (rc < 0) {
5866 if (rc == -ENOENT)
5867 pr_info("pool %s does not exist\n", spec->pool_name);
5868 goto err_out_client;
5870 spec->pool_id = (u64)rc;
5872 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5873 if (!rbd_dev) {
5874 rc = -ENOMEM;
5875 goto err_out_client;
5877 rbdc = NULL; /* rbd_dev now owns this */
5878 spec = NULL; /* rbd_dev now owns this */
5879 rbd_opts = NULL; /* rbd_dev now owns this */
5881 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
5882 if (!rbd_dev->config_info) {
5883 rc = -ENOMEM;
5884 goto err_out_rbd_dev;
5887 rc = rbd_dev_image_probe(rbd_dev, 0);
5888 if (rc < 0)
5889 goto err_out_rbd_dev;
5891 /* If we are mapping a snapshot it must be marked read-only */
5892 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5893 rbd_dev->opts->read_only = true;
5895 rc = rbd_dev_device_setup(rbd_dev);
5896 if (rc)
5897 goto err_out_image_probe;
5899 if (rbd_dev->opts->exclusive) {
5900 rc = rbd_add_acquire_lock(rbd_dev);
5901 if (rc)
5902 goto err_out_device_setup;
5905 /* Everything's ready. Announce the disk to the world. */
5907 rc = device_add(&rbd_dev->dev);
5908 if (rc)
5909 goto err_out_image_lock;
5911 add_disk(rbd_dev->disk);
5912 /* see rbd_init_disk() */
5913 blk_put_queue(rbd_dev->disk->queue);
5915 spin_lock(&rbd_dev_list_lock);
5916 list_add_tail(&rbd_dev->node, &rbd_dev_list);
5917 spin_unlock(&rbd_dev_list_lock);
5919 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
5920 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
5921 rbd_dev->header.features);
5922 rc = count;
5923 out:
5924 module_put(THIS_MODULE);
5925 return rc;
5927 err_out_image_lock:
5928 rbd_dev_image_unlock(rbd_dev);
5929 err_out_device_setup:
5930 rbd_dev_device_release(rbd_dev);
5931 err_out_image_probe:
5932 rbd_dev_image_release(rbd_dev);
5933 err_out_rbd_dev:
5934 rbd_dev_destroy(rbd_dev);
5935 err_out_client:
5936 rbd_put_client(rbdc);
5937 err_out_args:
5938 rbd_spec_put(spec);
5939 kfree(rbd_opts);
5940 goto out;
5943 static ssize_t rbd_add(struct bus_type *bus,
5944 const char *buf,
5945 size_t count)
5947 if (single_major)
5948 return -EINVAL;
5950 return do_rbd_add(bus, buf, count);
5953 static ssize_t rbd_add_single_major(struct bus_type *bus,
5954 const char *buf,
5955 size_t count)
5957 return do_rbd_add(bus, buf, count);
5960 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5962 while (rbd_dev->parent) {
5963 struct rbd_device *first = rbd_dev;
5964 struct rbd_device *second = first->parent;
5965 struct rbd_device *third;
5968 * Follow to the parent with no grandparent and
5969 * remove it.
5971 while (second && (third = second->parent)) {
5972 first = second;
5973 second = third;
5975 rbd_assert(second);
5976 rbd_dev_image_release(second);
5977 rbd_dev_destroy(second);
5978 first->parent = NULL;
5979 first->parent_overlap = 0;
5981 rbd_assert(first->parent_spec);
5982 rbd_spec_put(first->parent_spec);
5983 first->parent_spec = NULL;
5987 static ssize_t do_rbd_remove(struct bus_type *bus,
5988 const char *buf,
5989 size_t count)
5991 struct rbd_device *rbd_dev = NULL;
5992 struct list_head *tmp;
5993 int dev_id;
5994 char opt_buf[6];
5995 bool force = false;
5996 int ret;
5998 dev_id = -1;
5999 opt_buf[0] = '\0';
6000 sscanf(buf, "%d %5s", &dev_id, opt_buf);
6001 if (dev_id < 0) {
6002 pr_err("dev_id out of range\n");
6003 return -EINVAL;
6005 if (opt_buf[0] != '\0') {
6006 if (!strcmp(opt_buf, "force")) {
6007 force = true;
6008 } else {
6009 pr_err("bad remove option at '%s'\n", opt_buf);
6010 return -EINVAL;
6014 ret = -ENOENT;
6015 spin_lock(&rbd_dev_list_lock);
6016 list_for_each(tmp, &rbd_dev_list) {
6017 rbd_dev = list_entry(tmp, struct rbd_device, node);
6018 if (rbd_dev->dev_id == dev_id) {
6019 ret = 0;
6020 break;
6023 if (!ret) {
6024 spin_lock_irq(&rbd_dev->lock);
6025 if (rbd_dev->open_count && !force)
6026 ret = -EBUSY;
6027 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6028 &rbd_dev->flags))
6029 ret = -EINPROGRESS;
6030 spin_unlock_irq(&rbd_dev->lock);
6032 spin_unlock(&rbd_dev_list_lock);
6033 if (ret)
6034 return ret;
6036 if (force) {
6038 * Prevent new IO from being queued and wait for existing
6039 * IO to complete/fail.
6041 blk_mq_freeze_queue(rbd_dev->disk->queue);
6042 blk_set_queue_dying(rbd_dev->disk->queue);
6045 del_gendisk(rbd_dev->disk);
6046 spin_lock(&rbd_dev_list_lock);
6047 list_del_init(&rbd_dev->node);
6048 spin_unlock(&rbd_dev_list_lock);
6049 device_del(&rbd_dev->dev);
6051 rbd_dev_image_unlock(rbd_dev);
6052 rbd_dev_device_release(rbd_dev);
6053 rbd_dev_image_release(rbd_dev);
6054 rbd_dev_destroy(rbd_dev);
6055 return count;
6058 static ssize_t rbd_remove(struct bus_type *bus,
6059 const char *buf,
6060 size_t count)
6062 if (single_major)
6063 return -EINVAL;
6065 return do_rbd_remove(bus, buf, count);
6068 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6069 const char *buf,
6070 size_t count)
6072 return do_rbd_remove(bus, buf, count);
6076 * create control files in sysfs
6077 * /sys/bus/rbd/...
6079 static int rbd_sysfs_init(void)
6081 int ret;
6083 ret = device_register(&rbd_root_dev);
6084 if (ret < 0)
6085 return ret;
6087 ret = bus_register(&rbd_bus_type);
6088 if (ret < 0)
6089 device_unregister(&rbd_root_dev);
6091 return ret;
6094 static void rbd_sysfs_cleanup(void)
6096 bus_unregister(&rbd_bus_type);
6097 device_unregister(&rbd_root_dev);
6100 static int rbd_slab_init(void)
6102 rbd_assert(!rbd_img_request_cache);
6103 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6104 if (!rbd_img_request_cache)
6105 return -ENOMEM;
6107 rbd_assert(!rbd_obj_request_cache);
6108 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6109 if (!rbd_obj_request_cache)
6110 goto out_err;
6112 return 0;
6114 out_err:
6115 kmem_cache_destroy(rbd_img_request_cache);
6116 rbd_img_request_cache = NULL;
6117 return -ENOMEM;
6120 static void rbd_slab_exit(void)
6122 rbd_assert(rbd_obj_request_cache);
6123 kmem_cache_destroy(rbd_obj_request_cache);
6124 rbd_obj_request_cache = NULL;
6126 rbd_assert(rbd_img_request_cache);
6127 kmem_cache_destroy(rbd_img_request_cache);
6128 rbd_img_request_cache = NULL;
6131 static int __init rbd_init(void)
6133 int rc;
6135 if (!libceph_compatible(NULL)) {
6136 rbd_warn(NULL, "libceph incompatibility (quitting)");
6137 return -EINVAL;
6140 rc = rbd_slab_init();
6141 if (rc)
6142 return rc;
6145 * The number of active work items is limited by the number of
6146 * rbd devices * queue depth, so leave @max_active at default.
6148 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6149 if (!rbd_wq) {
6150 rc = -ENOMEM;
6151 goto err_out_slab;
6154 if (single_major) {
6155 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6156 if (rbd_major < 0) {
6157 rc = rbd_major;
6158 goto err_out_wq;
6162 rc = rbd_sysfs_init();
6163 if (rc)
6164 goto err_out_blkdev;
6166 if (single_major)
6167 pr_info("loaded (major %d)\n", rbd_major);
6168 else
6169 pr_info("loaded\n");
6171 return 0;
6173 err_out_blkdev:
6174 if (single_major)
6175 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6176 err_out_wq:
6177 destroy_workqueue(rbd_wq);
6178 err_out_slab:
6179 rbd_slab_exit();
6180 return rc;
6183 static void __exit rbd_exit(void)
6185 ida_destroy(&rbd_dev_id_ida);
6186 rbd_sysfs_cleanup();
6187 if (single_major)
6188 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6189 destroy_workqueue(rbd_wq);
6190 rbd_slab_exit();
6193 module_init(rbd_init);
6194 module_exit(rbd_exit);
6196 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6197 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6198 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6199 /* following authorship retained from original osdblk.c */
6200 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6202 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6203 MODULE_LICENSE("GPL");