Linux 4.19.133
[linux/fpc-iii.git] / drivers / char / random.c
blobd5f970d039bbac1a7fdb81a78e3b17c72f161c95
1 /*
2 * random.c -- A strong random number generator
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
46 * (now, with legal B.S. out of the way.....)
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
55 * Theory of operation
56 * ===================
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
101 * Exported interfaces ---- output
102 * ===============================
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
107 * void get_random_bytes(void *buf, int nbytes);
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
125 * Exported interfaces ---- input
126 * ==============================
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
162 * Ensuring unpredictability at system startup
163 * ============================================
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
173 * sequence:
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
181 * else
182 * touch $random_seed
183 * fi
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
194 * touch $random_seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
210 * the system.
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
223 * Acknowledgements:
224 * =================
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
279 /* #define ADD_INTERRUPT_BENCH */
282 * Configuration information
284 #define INPUT_POOL_SHIFT 12
285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT 10
287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE 512
289 #define EXTRACT_SIZE 10
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
308 static int random_read_wakeup_bits = 64;
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Modeling and Computer
329 * Simulation 4:254-266)
331 * Thanks to Colin Plumb for suggesting this.
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
362 static struct poolinfo {
363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
373 #if 0
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
399 #endif
403 * Static global variables
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
409 static DEFINE_SPINLOCK(random_ready_list_lock);
410 static LIST_HEAD(random_ready_list);
412 struct crng_state {
413 __u32 state[16];
414 unsigned long init_time;
415 spinlock_t lock;
418 struct crng_state primary_crng = {
419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
423 * crng_init = 0 --> Uninitialized
424 * 1 --> Initialized
425 * 2 --> Initialized from input_pool
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
430 static int crng_init = 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt = 0;
433 static unsigned long crng_global_init_time = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng,
436 __u8 out[CHACHA20_BLOCK_SIZE]);
437 static void _crng_backtrack_protect(struct crng_state *crng,
438 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
439 static void process_random_ready_list(void);
440 static void _get_random_bytes(void *buf, int nbytes);
442 static struct ratelimit_state unseeded_warning =
443 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
444 static struct ratelimit_state urandom_warning =
445 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
447 static int ratelimit_disable __read_mostly;
449 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
450 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
452 /**********************************************************************
454 * OS independent entropy store. Here are the functions which handle
455 * storing entropy in an entropy pool.
457 **********************************************************************/
459 struct entropy_store;
460 struct entropy_store {
461 /* read-only data: */
462 const struct poolinfo *poolinfo;
463 __u32 *pool;
464 const char *name;
465 struct entropy_store *pull;
466 struct work_struct push_work;
468 /* read-write data: */
469 unsigned long last_pulled;
470 spinlock_t lock;
471 unsigned short add_ptr;
472 unsigned short input_rotate;
473 int entropy_count;
474 int entropy_total;
475 unsigned int initialized:1;
476 unsigned int last_data_init:1;
477 __u8 last_data[EXTRACT_SIZE];
480 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
481 size_t nbytes, int min, int rsvd);
482 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
483 size_t nbytes, int fips);
485 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
486 static void push_to_pool(struct work_struct *work);
487 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
488 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
490 static struct entropy_store input_pool = {
491 .poolinfo = &poolinfo_table[0],
492 .name = "input",
493 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
494 .pool = input_pool_data
497 static struct entropy_store blocking_pool = {
498 .poolinfo = &poolinfo_table[1],
499 .name = "blocking",
500 .pull = &input_pool,
501 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
502 .pool = blocking_pool_data,
503 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
504 push_to_pool),
507 static __u32 const twist_table[8] = {
508 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
512 * This function adds bytes into the entropy "pool". It does not
513 * update the entropy estimate. The caller should call
514 * credit_entropy_bits if this is appropriate.
516 * The pool is stirred with a primitive polynomial of the appropriate
517 * degree, and then twisted. We twist by three bits at a time because
518 * it's cheap to do so and helps slightly in the expected case where
519 * the entropy is concentrated in the low-order bits.
521 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
522 int nbytes)
524 unsigned long i, tap1, tap2, tap3, tap4, tap5;
525 int input_rotate;
526 int wordmask = r->poolinfo->poolwords - 1;
527 const char *bytes = in;
528 __u32 w;
530 tap1 = r->poolinfo->tap1;
531 tap2 = r->poolinfo->tap2;
532 tap3 = r->poolinfo->tap3;
533 tap4 = r->poolinfo->tap4;
534 tap5 = r->poolinfo->tap5;
536 input_rotate = r->input_rotate;
537 i = r->add_ptr;
539 /* mix one byte at a time to simplify size handling and churn faster */
540 while (nbytes--) {
541 w = rol32(*bytes++, input_rotate);
542 i = (i - 1) & wordmask;
544 /* XOR in the various taps */
545 w ^= r->pool[i];
546 w ^= r->pool[(i + tap1) & wordmask];
547 w ^= r->pool[(i + tap2) & wordmask];
548 w ^= r->pool[(i + tap3) & wordmask];
549 w ^= r->pool[(i + tap4) & wordmask];
550 w ^= r->pool[(i + tap5) & wordmask];
552 /* Mix the result back in with a twist */
553 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
556 * Normally, we add 7 bits of rotation to the pool.
557 * At the beginning of the pool, add an extra 7 bits
558 * rotation, so that successive passes spread the
559 * input bits across the pool evenly.
561 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
564 r->input_rotate = input_rotate;
565 r->add_ptr = i;
568 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
569 int nbytes)
571 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
572 _mix_pool_bytes(r, in, nbytes);
575 static void mix_pool_bytes(struct entropy_store *r, const void *in,
576 int nbytes)
578 unsigned long flags;
580 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
581 spin_lock_irqsave(&r->lock, flags);
582 _mix_pool_bytes(r, in, nbytes);
583 spin_unlock_irqrestore(&r->lock, flags);
586 struct fast_pool {
587 __u32 pool[4];
588 unsigned long last;
589 unsigned short reg_idx;
590 unsigned char count;
594 * This is a fast mixing routine used by the interrupt randomness
595 * collector. It's hardcoded for an 128 bit pool and assumes that any
596 * locks that might be needed are taken by the caller.
598 static void fast_mix(struct fast_pool *f)
600 __u32 a = f->pool[0], b = f->pool[1];
601 __u32 c = f->pool[2], d = f->pool[3];
603 a += b; c += d;
604 b = rol32(b, 6); d = rol32(d, 27);
605 d ^= a; b ^= c;
607 a += b; c += d;
608 b = rol32(b, 16); d = rol32(d, 14);
609 d ^= a; b ^= c;
611 a += b; c += d;
612 b = rol32(b, 6); d = rol32(d, 27);
613 d ^= a; b ^= c;
615 a += b; c += d;
616 b = rol32(b, 16); d = rol32(d, 14);
617 d ^= a; b ^= c;
619 f->pool[0] = a; f->pool[1] = b;
620 f->pool[2] = c; f->pool[3] = d;
621 f->count++;
624 static void process_random_ready_list(void)
626 unsigned long flags;
627 struct random_ready_callback *rdy, *tmp;
629 spin_lock_irqsave(&random_ready_list_lock, flags);
630 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
631 struct module *owner = rdy->owner;
633 list_del_init(&rdy->list);
634 rdy->func(rdy);
635 module_put(owner);
637 spin_unlock_irqrestore(&random_ready_list_lock, flags);
641 * Credit (or debit) the entropy store with n bits of entropy.
642 * Use credit_entropy_bits_safe() if the value comes from userspace
643 * or otherwise should be checked for extreme values.
645 static void credit_entropy_bits(struct entropy_store *r, int nbits)
647 int entropy_count, orig;
648 const int pool_size = r->poolinfo->poolfracbits;
649 int nfrac = nbits << ENTROPY_SHIFT;
651 if (!nbits)
652 return;
654 retry:
655 entropy_count = orig = READ_ONCE(r->entropy_count);
656 if (nfrac < 0) {
657 /* Debit */
658 entropy_count += nfrac;
659 } else {
661 * Credit: we have to account for the possibility of
662 * overwriting already present entropy. Even in the
663 * ideal case of pure Shannon entropy, new contributions
664 * approach the full value asymptotically:
666 * entropy <- entropy + (pool_size - entropy) *
667 * (1 - exp(-add_entropy/pool_size))
669 * For add_entropy <= pool_size/2 then
670 * (1 - exp(-add_entropy/pool_size)) >=
671 * (add_entropy/pool_size)*0.7869...
672 * so we can approximate the exponential with
673 * 3/4*add_entropy/pool_size and still be on the
674 * safe side by adding at most pool_size/2 at a time.
676 * The use of pool_size-2 in the while statement is to
677 * prevent rounding artifacts from making the loop
678 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 * turns no matter how large nbits is.
681 int pnfrac = nfrac;
682 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
683 /* The +2 corresponds to the /4 in the denominator */
685 do {
686 unsigned int anfrac = min(pnfrac, pool_size/2);
687 unsigned int add =
688 ((pool_size - entropy_count)*anfrac*3) >> s;
690 entropy_count += add;
691 pnfrac -= anfrac;
692 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
695 if (unlikely(entropy_count < 0)) {
696 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 r->name, entropy_count);
698 WARN_ON(1);
699 entropy_count = 0;
700 } else if (entropy_count > pool_size)
701 entropy_count = pool_size;
702 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
703 goto retry;
705 r->entropy_total += nbits;
706 if (!r->initialized && r->entropy_total > 128) {
707 r->initialized = 1;
708 r->entropy_total = 0;
711 trace_credit_entropy_bits(r->name, nbits,
712 entropy_count >> ENTROPY_SHIFT,
713 r->entropy_total, _RET_IP_);
715 if (r == &input_pool) {
716 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
718 if (crng_init < 2 && entropy_bits >= 128) {
719 crng_reseed(&primary_crng, r);
720 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
723 /* should we wake readers? */
724 if (entropy_bits >= random_read_wakeup_bits &&
725 wq_has_sleeper(&random_read_wait)) {
726 wake_up_interruptible(&random_read_wait);
727 kill_fasync(&fasync, SIGIO, POLL_IN);
729 /* If the input pool is getting full, send some
730 * entropy to the blocking pool until it is 75% full.
732 if (entropy_bits > random_write_wakeup_bits &&
733 r->initialized &&
734 r->entropy_total >= 2*random_read_wakeup_bits) {
735 struct entropy_store *other = &blocking_pool;
737 if (other->entropy_count <=
738 3 * other->poolinfo->poolfracbits / 4) {
739 schedule_work(&other->push_work);
740 r->entropy_total = 0;
746 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
748 const int nbits_max = r->poolinfo->poolwords * 32;
750 if (nbits < 0)
751 return -EINVAL;
753 /* Cap the value to avoid overflows */
754 nbits = min(nbits, nbits_max);
756 credit_entropy_bits(r, nbits);
757 return 0;
760 /*********************************************************************
762 * CRNG using CHACHA20
764 *********************************************************************/
766 #define CRNG_RESEED_INTERVAL (300*HZ)
768 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
770 #ifdef CONFIG_NUMA
772 * Hack to deal with crazy userspace progams when they are all trying
773 * to access /dev/urandom in parallel. The programs are almost
774 * certainly doing something terribly wrong, but we'll work around
775 * their brain damage.
777 static struct crng_state **crng_node_pool __read_mostly;
778 #endif
780 static void invalidate_batched_entropy(void);
781 static void numa_crng_init(void);
783 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
784 static int __init parse_trust_cpu(char *arg)
786 return kstrtobool(arg, &trust_cpu);
788 early_param("random.trust_cpu", parse_trust_cpu);
790 static void crng_initialize(struct crng_state *crng)
792 int i;
793 int arch_init = 1;
794 unsigned long rv;
796 memcpy(&crng->state[0], "expand 32-byte k", 16);
797 if (crng == &primary_crng)
798 _extract_entropy(&input_pool, &crng->state[4],
799 sizeof(__u32) * 12, 0);
800 else
801 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
802 for (i = 4; i < 16; i++) {
803 if (!arch_get_random_seed_long(&rv) &&
804 !arch_get_random_long(&rv)) {
805 rv = random_get_entropy();
806 arch_init = 0;
808 crng->state[i] ^= rv;
810 if (trust_cpu && arch_init && crng == &primary_crng) {
811 invalidate_batched_entropy();
812 numa_crng_init();
813 crng_init = 2;
814 pr_notice("random: crng done (trusting CPU's manufacturer)\n");
816 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
819 #ifdef CONFIG_NUMA
820 static void do_numa_crng_init(struct work_struct *work)
822 int i;
823 struct crng_state *crng;
824 struct crng_state **pool;
826 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
827 for_each_online_node(i) {
828 crng = kmalloc_node(sizeof(struct crng_state),
829 GFP_KERNEL | __GFP_NOFAIL, i);
830 spin_lock_init(&crng->lock);
831 crng_initialize(crng);
832 pool[i] = crng;
834 mb();
835 if (cmpxchg(&crng_node_pool, NULL, pool)) {
836 for_each_node(i)
837 kfree(pool[i]);
838 kfree(pool);
842 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
844 static void numa_crng_init(void)
846 schedule_work(&numa_crng_init_work);
848 #else
849 static void numa_crng_init(void) {}
850 #endif
853 * crng_fast_load() can be called by code in the interrupt service
854 * path. So we can't afford to dilly-dally.
856 static int crng_fast_load(const char *cp, size_t len)
858 unsigned long flags;
859 char *p;
861 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
862 return 0;
863 if (crng_init != 0) {
864 spin_unlock_irqrestore(&primary_crng.lock, flags);
865 return 0;
867 p = (unsigned char *) &primary_crng.state[4];
868 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
869 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
870 cp++; crng_init_cnt++; len--;
872 spin_unlock_irqrestore(&primary_crng.lock, flags);
873 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
874 invalidate_batched_entropy();
875 crng_init = 1;
876 wake_up_interruptible(&crng_init_wait);
877 pr_notice("random: fast init done\n");
879 return 1;
883 * crng_slow_load() is called by add_device_randomness, which has two
884 * attributes. (1) We can't trust the buffer passed to it is
885 * guaranteed to be unpredictable (so it might not have any entropy at
886 * all), and (2) it doesn't have the performance constraints of
887 * crng_fast_load().
889 * So we do something more comprehensive which is guaranteed to touch
890 * all of the primary_crng's state, and which uses a LFSR with a
891 * period of 255 as part of the mixing algorithm. Finally, we do
892 * *not* advance crng_init_cnt since buffer we may get may be something
893 * like a fixed DMI table (for example), which might very well be
894 * unique to the machine, but is otherwise unvarying.
896 static int crng_slow_load(const char *cp, size_t len)
898 unsigned long flags;
899 static unsigned char lfsr = 1;
900 unsigned char tmp;
901 unsigned i, max = CHACHA20_KEY_SIZE;
902 const char * src_buf = cp;
903 char * dest_buf = (char *) &primary_crng.state[4];
905 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
906 return 0;
907 if (crng_init != 0) {
908 spin_unlock_irqrestore(&primary_crng.lock, flags);
909 return 0;
911 if (len > max)
912 max = len;
914 for (i = 0; i < max ; i++) {
915 tmp = lfsr;
916 lfsr >>= 1;
917 if (tmp & 1)
918 lfsr ^= 0xE1;
919 tmp = dest_buf[i % CHACHA20_KEY_SIZE];
920 dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
921 lfsr += (tmp << 3) | (tmp >> 5);
923 spin_unlock_irqrestore(&primary_crng.lock, flags);
924 return 1;
927 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
929 unsigned long flags;
930 int i, num;
931 union {
932 __u8 block[CHACHA20_BLOCK_SIZE];
933 __u32 key[8];
934 } buf;
936 if (r) {
937 num = extract_entropy(r, &buf, 32, 16, 0);
938 if (num == 0)
939 return;
940 } else {
941 _extract_crng(&primary_crng, buf.block);
942 _crng_backtrack_protect(&primary_crng, buf.block,
943 CHACHA20_KEY_SIZE);
945 spin_lock_irqsave(&crng->lock, flags);
946 for (i = 0; i < 8; i++) {
947 unsigned long rv;
948 if (!arch_get_random_seed_long(&rv) &&
949 !arch_get_random_long(&rv))
950 rv = random_get_entropy();
951 crng->state[i+4] ^= buf.key[i] ^ rv;
953 memzero_explicit(&buf, sizeof(buf));
954 crng->init_time = jiffies;
955 spin_unlock_irqrestore(&crng->lock, flags);
956 if (crng == &primary_crng && crng_init < 2) {
957 invalidate_batched_entropy();
958 numa_crng_init();
959 crng_init = 2;
960 process_random_ready_list();
961 wake_up_interruptible(&crng_init_wait);
962 pr_notice("random: crng init done\n");
963 if (unseeded_warning.missed) {
964 pr_notice("random: %d get_random_xx warning(s) missed "
965 "due to ratelimiting\n",
966 unseeded_warning.missed);
967 unseeded_warning.missed = 0;
969 if (urandom_warning.missed) {
970 pr_notice("random: %d urandom warning(s) missed "
971 "due to ratelimiting\n",
972 urandom_warning.missed);
973 urandom_warning.missed = 0;
978 static void _extract_crng(struct crng_state *crng,
979 __u8 out[CHACHA20_BLOCK_SIZE])
981 unsigned long v, flags;
983 if (crng_ready() &&
984 (time_after(crng_global_init_time, crng->init_time) ||
985 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
986 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
987 spin_lock_irqsave(&crng->lock, flags);
988 if (arch_get_random_long(&v))
989 crng->state[14] ^= v;
990 chacha20_block(&crng->state[0], out);
991 if (crng->state[12] == 0)
992 crng->state[13]++;
993 spin_unlock_irqrestore(&crng->lock, flags);
996 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
998 struct crng_state *crng = NULL;
1000 #ifdef CONFIG_NUMA
1001 if (crng_node_pool)
1002 crng = crng_node_pool[numa_node_id()];
1003 if (crng == NULL)
1004 #endif
1005 crng = &primary_crng;
1006 _extract_crng(crng, out);
1010 * Use the leftover bytes from the CRNG block output (if there is
1011 * enough) to mutate the CRNG key to provide backtracking protection.
1013 static void _crng_backtrack_protect(struct crng_state *crng,
1014 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
1016 unsigned long flags;
1017 __u32 *s, *d;
1018 int i;
1020 used = round_up(used, sizeof(__u32));
1021 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1022 extract_crng(tmp);
1023 used = 0;
1025 spin_lock_irqsave(&crng->lock, flags);
1026 s = (__u32 *) &tmp[used];
1027 d = &crng->state[4];
1028 for (i=0; i < 8; i++)
1029 *d++ ^= *s++;
1030 spin_unlock_irqrestore(&crng->lock, flags);
1033 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
1035 struct crng_state *crng = NULL;
1037 #ifdef CONFIG_NUMA
1038 if (crng_node_pool)
1039 crng = crng_node_pool[numa_node_id()];
1040 if (crng == NULL)
1041 #endif
1042 crng = &primary_crng;
1043 _crng_backtrack_protect(crng, tmp, used);
1046 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1048 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1049 __u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
1050 int large_request = (nbytes > 256);
1052 while (nbytes) {
1053 if (large_request && need_resched()) {
1054 if (signal_pending(current)) {
1055 if (ret == 0)
1056 ret = -ERESTARTSYS;
1057 break;
1059 schedule();
1062 extract_crng(tmp);
1063 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1064 if (copy_to_user(buf, tmp, i)) {
1065 ret = -EFAULT;
1066 break;
1069 nbytes -= i;
1070 buf += i;
1071 ret += i;
1073 crng_backtrack_protect(tmp, i);
1075 /* Wipe data just written to memory */
1076 memzero_explicit(tmp, sizeof(tmp));
1078 return ret;
1082 /*********************************************************************
1084 * Entropy input management
1086 *********************************************************************/
1088 /* There is one of these per entropy source */
1089 struct timer_rand_state {
1090 cycles_t last_time;
1091 long last_delta, last_delta2;
1094 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1097 * Add device- or boot-specific data to the input pool to help
1098 * initialize it.
1100 * None of this adds any entropy; it is meant to avoid the problem of
1101 * the entropy pool having similar initial state across largely
1102 * identical devices.
1104 void add_device_randomness(const void *buf, unsigned int size)
1106 unsigned long time = random_get_entropy() ^ jiffies;
1107 unsigned long flags;
1109 if (!crng_ready() && size)
1110 crng_slow_load(buf, size);
1112 trace_add_device_randomness(size, _RET_IP_);
1113 spin_lock_irqsave(&input_pool.lock, flags);
1114 _mix_pool_bytes(&input_pool, buf, size);
1115 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1116 spin_unlock_irqrestore(&input_pool.lock, flags);
1118 EXPORT_SYMBOL(add_device_randomness);
1120 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1123 * This function adds entropy to the entropy "pool" by using timing
1124 * delays. It uses the timer_rand_state structure to make an estimate
1125 * of how many bits of entropy this call has added to the pool.
1127 * The number "num" is also added to the pool - it should somehow describe
1128 * the type of event which just happened. This is currently 0-255 for
1129 * keyboard scan codes, and 256 upwards for interrupts.
1132 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1134 struct entropy_store *r;
1135 struct {
1136 long jiffies;
1137 unsigned cycles;
1138 unsigned num;
1139 } sample;
1140 long delta, delta2, delta3;
1142 sample.jiffies = jiffies;
1143 sample.cycles = random_get_entropy();
1144 sample.num = num;
1145 r = &input_pool;
1146 mix_pool_bytes(r, &sample, sizeof(sample));
1149 * Calculate number of bits of randomness we probably added.
1150 * We take into account the first, second and third-order deltas
1151 * in order to make our estimate.
1153 delta = sample.jiffies - state->last_time;
1154 state->last_time = sample.jiffies;
1156 delta2 = delta - state->last_delta;
1157 state->last_delta = delta;
1159 delta3 = delta2 - state->last_delta2;
1160 state->last_delta2 = delta2;
1162 if (delta < 0)
1163 delta = -delta;
1164 if (delta2 < 0)
1165 delta2 = -delta2;
1166 if (delta3 < 0)
1167 delta3 = -delta3;
1168 if (delta > delta2)
1169 delta = delta2;
1170 if (delta > delta3)
1171 delta = delta3;
1174 * delta is now minimum absolute delta.
1175 * Round down by 1 bit on general principles,
1176 * and limit entropy entimate to 12 bits.
1178 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1181 void add_input_randomness(unsigned int type, unsigned int code,
1182 unsigned int value)
1184 static unsigned char last_value;
1186 /* ignore autorepeat and the like */
1187 if (value == last_value)
1188 return;
1190 last_value = value;
1191 add_timer_randomness(&input_timer_state,
1192 (type << 4) ^ code ^ (code >> 4) ^ value);
1193 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1195 EXPORT_SYMBOL_GPL(add_input_randomness);
1197 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1199 #ifdef ADD_INTERRUPT_BENCH
1200 static unsigned long avg_cycles, avg_deviation;
1202 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1203 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1205 static void add_interrupt_bench(cycles_t start)
1207 long delta = random_get_entropy() - start;
1209 /* Use a weighted moving average */
1210 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1211 avg_cycles += delta;
1212 /* And average deviation */
1213 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1214 avg_deviation += delta;
1216 #else
1217 #define add_interrupt_bench(x)
1218 #endif
1220 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1222 __u32 *ptr = (__u32 *) regs;
1223 unsigned int idx;
1225 if (regs == NULL)
1226 return 0;
1227 idx = READ_ONCE(f->reg_idx);
1228 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1229 idx = 0;
1230 ptr += idx++;
1231 WRITE_ONCE(f->reg_idx, idx);
1232 return *ptr;
1235 void add_interrupt_randomness(int irq, int irq_flags)
1237 struct entropy_store *r;
1238 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1239 struct pt_regs *regs = get_irq_regs();
1240 unsigned long now = jiffies;
1241 cycles_t cycles = random_get_entropy();
1242 __u32 c_high, j_high;
1243 __u64 ip;
1244 unsigned long seed;
1245 int credit = 0;
1247 if (cycles == 0)
1248 cycles = get_reg(fast_pool, regs);
1249 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1250 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1251 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1252 fast_pool->pool[1] ^= now ^ c_high;
1253 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1254 fast_pool->pool[2] ^= ip;
1255 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1256 get_reg(fast_pool, regs);
1258 fast_mix(fast_pool);
1259 add_interrupt_bench(cycles);
1261 if (unlikely(crng_init == 0)) {
1262 if ((fast_pool->count >= 64) &&
1263 crng_fast_load((char *) fast_pool->pool,
1264 sizeof(fast_pool->pool))) {
1265 fast_pool->count = 0;
1266 fast_pool->last = now;
1268 return;
1271 if ((fast_pool->count < 64) &&
1272 !time_after(now, fast_pool->last + HZ))
1273 return;
1275 r = &input_pool;
1276 if (!spin_trylock(&r->lock))
1277 return;
1279 fast_pool->last = now;
1280 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1283 * If we have architectural seed generator, produce a seed and
1284 * add it to the pool. For the sake of paranoia don't let the
1285 * architectural seed generator dominate the input from the
1286 * interrupt noise.
1288 if (arch_get_random_seed_long(&seed)) {
1289 __mix_pool_bytes(r, &seed, sizeof(seed));
1290 credit = 1;
1292 spin_unlock(&r->lock);
1294 fast_pool->count = 0;
1296 /* award one bit for the contents of the fast pool */
1297 credit_entropy_bits(r, credit + 1);
1299 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1301 #ifdef CONFIG_BLOCK
1302 void add_disk_randomness(struct gendisk *disk)
1304 if (!disk || !disk->random)
1305 return;
1306 /* first major is 1, so we get >= 0x200 here */
1307 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1308 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1310 EXPORT_SYMBOL_GPL(add_disk_randomness);
1311 #endif
1313 /*********************************************************************
1315 * Entropy extraction routines
1317 *********************************************************************/
1320 * This utility inline function is responsible for transferring entropy
1321 * from the primary pool to the secondary extraction pool. We make
1322 * sure we pull enough for a 'catastrophic reseed'.
1324 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1325 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1327 if (!r->pull ||
1328 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1329 r->entropy_count > r->poolinfo->poolfracbits)
1330 return;
1332 _xfer_secondary_pool(r, nbytes);
1335 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1337 __u32 tmp[OUTPUT_POOL_WORDS];
1339 int bytes = nbytes;
1341 /* pull at least as much as a wakeup */
1342 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1343 /* but never more than the buffer size */
1344 bytes = min_t(int, bytes, sizeof(tmp));
1346 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1347 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1348 bytes = extract_entropy(r->pull, tmp, bytes,
1349 random_read_wakeup_bits / 8, 0);
1350 mix_pool_bytes(r, tmp, bytes);
1351 credit_entropy_bits(r, bytes*8);
1355 * Used as a workqueue function so that when the input pool is getting
1356 * full, we can "spill over" some entropy to the output pools. That
1357 * way the output pools can store some of the excess entropy instead
1358 * of letting it go to waste.
1360 static void push_to_pool(struct work_struct *work)
1362 struct entropy_store *r = container_of(work, struct entropy_store,
1363 push_work);
1364 BUG_ON(!r);
1365 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1366 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1367 r->pull->entropy_count >> ENTROPY_SHIFT);
1371 * This function decides how many bytes to actually take from the
1372 * given pool, and also debits the entropy count accordingly.
1374 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1375 int reserved)
1377 int entropy_count, orig, have_bytes;
1378 size_t ibytes, nfrac;
1380 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1382 /* Can we pull enough? */
1383 retry:
1384 entropy_count = orig = READ_ONCE(r->entropy_count);
1385 ibytes = nbytes;
1386 /* never pull more than available */
1387 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1389 if ((have_bytes -= reserved) < 0)
1390 have_bytes = 0;
1391 ibytes = min_t(size_t, ibytes, have_bytes);
1392 if (ibytes < min)
1393 ibytes = 0;
1395 if (unlikely(entropy_count < 0)) {
1396 pr_warn("random: negative entropy count: pool %s count %d\n",
1397 r->name, entropy_count);
1398 WARN_ON(1);
1399 entropy_count = 0;
1401 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1402 if ((size_t) entropy_count > nfrac)
1403 entropy_count -= nfrac;
1404 else
1405 entropy_count = 0;
1407 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1408 goto retry;
1410 trace_debit_entropy(r->name, 8 * ibytes);
1411 if (ibytes &&
1412 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1413 wake_up_interruptible(&random_write_wait);
1414 kill_fasync(&fasync, SIGIO, POLL_OUT);
1417 return ibytes;
1421 * This function does the actual extraction for extract_entropy and
1422 * extract_entropy_user.
1424 * Note: we assume that .poolwords is a multiple of 16 words.
1426 static void extract_buf(struct entropy_store *r, __u8 *out)
1428 int i;
1429 union {
1430 __u32 w[5];
1431 unsigned long l[LONGS(20)];
1432 } hash;
1433 __u32 workspace[SHA_WORKSPACE_WORDS];
1434 unsigned long flags;
1437 * If we have an architectural hardware random number
1438 * generator, use it for SHA's initial vector
1440 sha_init(hash.w);
1441 for (i = 0; i < LONGS(20); i++) {
1442 unsigned long v;
1443 if (!arch_get_random_long(&v))
1444 break;
1445 hash.l[i] = v;
1448 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1449 spin_lock_irqsave(&r->lock, flags);
1450 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1451 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1454 * We mix the hash back into the pool to prevent backtracking
1455 * attacks (where the attacker knows the state of the pool
1456 * plus the current outputs, and attempts to find previous
1457 * ouputs), unless the hash function can be inverted. By
1458 * mixing at least a SHA1 worth of hash data back, we make
1459 * brute-forcing the feedback as hard as brute-forcing the
1460 * hash.
1462 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1463 spin_unlock_irqrestore(&r->lock, flags);
1465 memzero_explicit(workspace, sizeof(workspace));
1468 * In case the hash function has some recognizable output
1469 * pattern, we fold it in half. Thus, we always feed back
1470 * twice as much data as we output.
1472 hash.w[0] ^= hash.w[3];
1473 hash.w[1] ^= hash.w[4];
1474 hash.w[2] ^= rol32(hash.w[2], 16);
1476 memcpy(out, &hash, EXTRACT_SIZE);
1477 memzero_explicit(&hash, sizeof(hash));
1480 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1481 size_t nbytes, int fips)
1483 ssize_t ret = 0, i;
1484 __u8 tmp[EXTRACT_SIZE];
1485 unsigned long flags;
1487 while (nbytes) {
1488 extract_buf(r, tmp);
1490 if (fips) {
1491 spin_lock_irqsave(&r->lock, flags);
1492 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1493 panic("Hardware RNG duplicated output!\n");
1494 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1495 spin_unlock_irqrestore(&r->lock, flags);
1497 i = min_t(int, nbytes, EXTRACT_SIZE);
1498 memcpy(buf, tmp, i);
1499 nbytes -= i;
1500 buf += i;
1501 ret += i;
1504 /* Wipe data just returned from memory */
1505 memzero_explicit(tmp, sizeof(tmp));
1507 return ret;
1511 * This function extracts randomness from the "entropy pool", and
1512 * returns it in a buffer.
1514 * The min parameter specifies the minimum amount we can pull before
1515 * failing to avoid races that defeat catastrophic reseeding while the
1516 * reserved parameter indicates how much entropy we must leave in the
1517 * pool after each pull to avoid starving other readers.
1519 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1520 size_t nbytes, int min, int reserved)
1522 __u8 tmp[EXTRACT_SIZE];
1523 unsigned long flags;
1525 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1526 if (fips_enabled) {
1527 spin_lock_irqsave(&r->lock, flags);
1528 if (!r->last_data_init) {
1529 r->last_data_init = 1;
1530 spin_unlock_irqrestore(&r->lock, flags);
1531 trace_extract_entropy(r->name, EXTRACT_SIZE,
1532 ENTROPY_BITS(r), _RET_IP_);
1533 xfer_secondary_pool(r, EXTRACT_SIZE);
1534 extract_buf(r, tmp);
1535 spin_lock_irqsave(&r->lock, flags);
1536 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1538 spin_unlock_irqrestore(&r->lock, flags);
1541 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1542 xfer_secondary_pool(r, nbytes);
1543 nbytes = account(r, nbytes, min, reserved);
1545 return _extract_entropy(r, buf, nbytes, fips_enabled);
1549 * This function extracts randomness from the "entropy pool", and
1550 * returns it in a userspace buffer.
1552 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1553 size_t nbytes)
1555 ssize_t ret = 0, i;
1556 __u8 tmp[EXTRACT_SIZE];
1557 int large_request = (nbytes > 256);
1559 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1560 xfer_secondary_pool(r, nbytes);
1561 nbytes = account(r, nbytes, 0, 0);
1563 while (nbytes) {
1564 if (large_request && need_resched()) {
1565 if (signal_pending(current)) {
1566 if (ret == 0)
1567 ret = -ERESTARTSYS;
1568 break;
1570 schedule();
1573 extract_buf(r, tmp);
1574 i = min_t(int, nbytes, EXTRACT_SIZE);
1575 if (copy_to_user(buf, tmp, i)) {
1576 ret = -EFAULT;
1577 break;
1580 nbytes -= i;
1581 buf += i;
1582 ret += i;
1585 /* Wipe data just returned from memory */
1586 memzero_explicit(tmp, sizeof(tmp));
1588 return ret;
1591 #define warn_unseeded_randomness(previous) \
1592 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1594 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1595 void **previous)
1597 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1598 const bool print_once = false;
1599 #else
1600 static bool print_once __read_mostly;
1601 #endif
1603 if (print_once ||
1604 crng_ready() ||
1605 (previous && (caller == READ_ONCE(*previous))))
1606 return;
1607 WRITE_ONCE(*previous, caller);
1608 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1609 print_once = true;
1610 #endif
1611 if (__ratelimit(&unseeded_warning))
1612 pr_notice("random: %s called from %pS with crng_init=%d\n",
1613 func_name, caller, crng_init);
1617 * This function is the exported kernel interface. It returns some
1618 * number of good random numbers, suitable for key generation, seeding
1619 * TCP sequence numbers, etc. It does not rely on the hardware random
1620 * number generator. For random bytes direct from the hardware RNG
1621 * (when available), use get_random_bytes_arch(). In order to ensure
1622 * that the randomness provided by this function is okay, the function
1623 * wait_for_random_bytes() should be called and return 0 at least once
1624 * at any point prior.
1626 static void _get_random_bytes(void *buf, int nbytes)
1628 __u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
1630 trace_get_random_bytes(nbytes, _RET_IP_);
1632 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1633 extract_crng(buf);
1634 buf += CHACHA20_BLOCK_SIZE;
1635 nbytes -= CHACHA20_BLOCK_SIZE;
1638 if (nbytes > 0) {
1639 extract_crng(tmp);
1640 memcpy(buf, tmp, nbytes);
1641 crng_backtrack_protect(tmp, nbytes);
1642 } else
1643 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1644 memzero_explicit(tmp, sizeof(tmp));
1647 void get_random_bytes(void *buf, int nbytes)
1649 static void *previous;
1651 warn_unseeded_randomness(&previous);
1652 _get_random_bytes(buf, nbytes);
1654 EXPORT_SYMBOL(get_random_bytes);
1658 * Each time the timer fires, we expect that we got an unpredictable
1659 * jump in the cycle counter. Even if the timer is running on another
1660 * CPU, the timer activity will be touching the stack of the CPU that is
1661 * generating entropy..
1663 * Note that we don't re-arm the timer in the timer itself - we are
1664 * happy to be scheduled away, since that just makes the load more
1665 * complex, but we do not want the timer to keep ticking unless the
1666 * entropy loop is running.
1668 * So the re-arming always happens in the entropy loop itself.
1670 static void entropy_timer(struct timer_list *t)
1672 credit_entropy_bits(&input_pool, 1);
1676 * If we have an actual cycle counter, see if we can
1677 * generate enough entropy with timing noise
1679 static void try_to_generate_entropy(void)
1681 struct {
1682 unsigned long now;
1683 struct timer_list timer;
1684 } stack;
1686 stack.now = random_get_entropy();
1688 /* Slow counter - or none. Don't even bother */
1689 if (stack.now == random_get_entropy())
1690 return;
1692 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1693 while (!crng_ready()) {
1694 if (!timer_pending(&stack.timer))
1695 mod_timer(&stack.timer, jiffies+1);
1696 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1697 schedule();
1698 stack.now = random_get_entropy();
1701 del_timer_sync(&stack.timer);
1702 destroy_timer_on_stack(&stack.timer);
1703 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1707 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1708 * cryptographically secure random numbers. This applies to: the /dev/urandom
1709 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1710 * family of functions. Using any of these functions without first calling
1711 * this function forfeits the guarantee of security.
1713 * Returns: 0 if the urandom pool has been seeded.
1714 * -ERESTARTSYS if the function was interrupted by a signal.
1716 int wait_for_random_bytes(void)
1718 if (likely(crng_ready()))
1719 return 0;
1721 do {
1722 int ret;
1723 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1724 if (ret)
1725 return ret > 0 ? 0 : ret;
1727 try_to_generate_entropy();
1728 } while (!crng_ready());
1730 return 0;
1732 EXPORT_SYMBOL(wait_for_random_bytes);
1735 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1736 * to supply cryptographically secure random numbers. This applies to: the
1737 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1738 * ,u64,int,long} family of functions.
1740 * Returns: true if the urandom pool has been seeded.
1741 * false if the urandom pool has not been seeded.
1743 bool rng_is_initialized(void)
1745 return crng_ready();
1747 EXPORT_SYMBOL(rng_is_initialized);
1750 * Add a callback function that will be invoked when the nonblocking
1751 * pool is initialised.
1753 * returns: 0 if callback is successfully added
1754 * -EALREADY if pool is already initialised (callback not called)
1755 * -ENOENT if module for callback is not alive
1757 int add_random_ready_callback(struct random_ready_callback *rdy)
1759 struct module *owner;
1760 unsigned long flags;
1761 int err = -EALREADY;
1763 if (crng_ready())
1764 return err;
1766 owner = rdy->owner;
1767 if (!try_module_get(owner))
1768 return -ENOENT;
1770 spin_lock_irqsave(&random_ready_list_lock, flags);
1771 if (crng_ready())
1772 goto out;
1774 owner = NULL;
1776 list_add(&rdy->list, &random_ready_list);
1777 err = 0;
1779 out:
1780 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1782 module_put(owner);
1784 return err;
1786 EXPORT_SYMBOL(add_random_ready_callback);
1789 * Delete a previously registered readiness callback function.
1791 void del_random_ready_callback(struct random_ready_callback *rdy)
1793 unsigned long flags;
1794 struct module *owner = NULL;
1796 spin_lock_irqsave(&random_ready_list_lock, flags);
1797 if (!list_empty(&rdy->list)) {
1798 list_del_init(&rdy->list);
1799 owner = rdy->owner;
1801 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1803 module_put(owner);
1805 EXPORT_SYMBOL(del_random_ready_callback);
1808 * This function will use the architecture-specific hardware random
1809 * number generator if it is available. The arch-specific hw RNG will
1810 * almost certainly be faster than what we can do in software, but it
1811 * is impossible to verify that it is implemented securely (as
1812 * opposed, to, say, the AES encryption of a sequence number using a
1813 * key known by the NSA). So it's useful if we need the speed, but
1814 * only if we're willing to trust the hardware manufacturer not to
1815 * have put in a back door.
1817 * Return number of bytes filled in.
1819 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1821 int left = nbytes;
1822 char *p = buf;
1824 trace_get_random_bytes_arch(left, _RET_IP_);
1825 while (left) {
1826 unsigned long v;
1827 int chunk = min_t(int, left, sizeof(unsigned long));
1829 if (!arch_get_random_long(&v))
1830 break;
1832 memcpy(p, &v, chunk);
1833 p += chunk;
1834 left -= chunk;
1837 return nbytes - left;
1839 EXPORT_SYMBOL(get_random_bytes_arch);
1842 * init_std_data - initialize pool with system data
1844 * @r: pool to initialize
1846 * This function clears the pool's entropy count and mixes some system
1847 * data into the pool to prepare it for use. The pool is not cleared
1848 * as that can only decrease the entropy in the pool.
1850 static void init_std_data(struct entropy_store *r)
1852 int i;
1853 ktime_t now = ktime_get_real();
1854 unsigned long rv;
1856 r->last_pulled = jiffies;
1857 mix_pool_bytes(r, &now, sizeof(now));
1858 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1859 if (!arch_get_random_seed_long(&rv) &&
1860 !arch_get_random_long(&rv))
1861 rv = random_get_entropy();
1862 mix_pool_bytes(r, &rv, sizeof(rv));
1864 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1868 * Note that setup_arch() may call add_device_randomness()
1869 * long before we get here. This allows seeding of the pools
1870 * with some platform dependent data very early in the boot
1871 * process. But it limits our options here. We must use
1872 * statically allocated structures that already have all
1873 * initializations complete at compile time. We should also
1874 * take care not to overwrite the precious per platform data
1875 * we were given.
1877 static int rand_initialize(void)
1879 init_std_data(&input_pool);
1880 init_std_data(&blocking_pool);
1881 crng_initialize(&primary_crng);
1882 crng_global_init_time = jiffies;
1883 if (ratelimit_disable) {
1884 urandom_warning.interval = 0;
1885 unseeded_warning.interval = 0;
1887 return 0;
1889 early_initcall(rand_initialize);
1891 #ifdef CONFIG_BLOCK
1892 void rand_initialize_disk(struct gendisk *disk)
1894 struct timer_rand_state *state;
1897 * If kzalloc returns null, we just won't use that entropy
1898 * source.
1900 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1901 if (state) {
1902 state->last_time = INITIAL_JIFFIES;
1903 disk->random = state;
1906 #endif
1908 static ssize_t
1909 _random_read(int nonblock, char __user *buf, size_t nbytes)
1911 ssize_t n;
1913 if (nbytes == 0)
1914 return 0;
1916 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1917 while (1) {
1918 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1919 if (n < 0)
1920 return n;
1921 trace_random_read(n*8, (nbytes-n)*8,
1922 ENTROPY_BITS(&blocking_pool),
1923 ENTROPY_BITS(&input_pool));
1924 if (n > 0)
1925 return n;
1927 /* Pool is (near) empty. Maybe wait and retry. */
1928 if (nonblock)
1929 return -EAGAIN;
1931 wait_event_interruptible(random_read_wait,
1932 ENTROPY_BITS(&input_pool) >=
1933 random_read_wakeup_bits);
1934 if (signal_pending(current))
1935 return -ERESTARTSYS;
1939 static ssize_t
1940 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1942 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1945 static ssize_t
1946 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1948 unsigned long flags;
1949 static int maxwarn = 10;
1950 int ret;
1952 if (!crng_ready() && maxwarn > 0) {
1953 maxwarn--;
1954 if (__ratelimit(&urandom_warning))
1955 printk(KERN_NOTICE "random: %s: uninitialized "
1956 "urandom read (%zd bytes read)\n",
1957 current->comm, nbytes);
1958 spin_lock_irqsave(&primary_crng.lock, flags);
1959 crng_init_cnt = 0;
1960 spin_unlock_irqrestore(&primary_crng.lock, flags);
1962 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1963 ret = extract_crng_user(buf, nbytes);
1964 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1965 return ret;
1968 static __poll_t
1969 random_poll(struct file *file, poll_table * wait)
1971 __poll_t mask;
1973 poll_wait(file, &random_read_wait, wait);
1974 poll_wait(file, &random_write_wait, wait);
1975 mask = 0;
1976 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1977 mask |= EPOLLIN | EPOLLRDNORM;
1978 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1979 mask |= EPOLLOUT | EPOLLWRNORM;
1980 return mask;
1983 static int
1984 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1986 size_t bytes;
1987 __u32 t, buf[16];
1988 const char __user *p = buffer;
1990 while (count > 0) {
1991 int b, i = 0;
1993 bytes = min(count, sizeof(buf));
1994 if (copy_from_user(&buf, p, bytes))
1995 return -EFAULT;
1997 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1998 if (!arch_get_random_int(&t))
1999 break;
2000 buf[i] ^= t;
2003 count -= bytes;
2004 p += bytes;
2006 mix_pool_bytes(r, buf, bytes);
2007 cond_resched();
2010 return 0;
2013 static ssize_t random_write(struct file *file, const char __user *buffer,
2014 size_t count, loff_t *ppos)
2016 size_t ret;
2018 ret = write_pool(&input_pool, buffer, count);
2019 if (ret)
2020 return ret;
2022 return (ssize_t)count;
2025 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2027 int size, ent_count;
2028 int __user *p = (int __user *)arg;
2029 int retval;
2031 switch (cmd) {
2032 case RNDGETENTCNT:
2033 /* inherently racy, no point locking */
2034 ent_count = ENTROPY_BITS(&input_pool);
2035 if (put_user(ent_count, p))
2036 return -EFAULT;
2037 return 0;
2038 case RNDADDTOENTCNT:
2039 if (!capable(CAP_SYS_ADMIN))
2040 return -EPERM;
2041 if (get_user(ent_count, p))
2042 return -EFAULT;
2043 return credit_entropy_bits_safe(&input_pool, ent_count);
2044 case RNDADDENTROPY:
2045 if (!capable(CAP_SYS_ADMIN))
2046 return -EPERM;
2047 if (get_user(ent_count, p++))
2048 return -EFAULT;
2049 if (ent_count < 0)
2050 return -EINVAL;
2051 if (get_user(size, p++))
2052 return -EFAULT;
2053 retval = write_pool(&input_pool, (const char __user *)p,
2054 size);
2055 if (retval < 0)
2056 return retval;
2057 return credit_entropy_bits_safe(&input_pool, ent_count);
2058 case RNDZAPENTCNT:
2059 case RNDCLEARPOOL:
2061 * Clear the entropy pool counters. We no longer clear
2062 * the entropy pool, as that's silly.
2064 if (!capable(CAP_SYS_ADMIN))
2065 return -EPERM;
2066 input_pool.entropy_count = 0;
2067 blocking_pool.entropy_count = 0;
2068 return 0;
2069 case RNDRESEEDCRNG:
2070 if (!capable(CAP_SYS_ADMIN))
2071 return -EPERM;
2072 if (crng_init < 2)
2073 return -ENODATA;
2074 crng_reseed(&primary_crng, NULL);
2075 crng_global_init_time = jiffies - 1;
2076 return 0;
2077 default:
2078 return -EINVAL;
2082 static int random_fasync(int fd, struct file *filp, int on)
2084 return fasync_helper(fd, filp, on, &fasync);
2087 const struct file_operations random_fops = {
2088 .read = random_read,
2089 .write = random_write,
2090 .poll = random_poll,
2091 .unlocked_ioctl = random_ioctl,
2092 .fasync = random_fasync,
2093 .llseek = noop_llseek,
2096 const struct file_operations urandom_fops = {
2097 .read = urandom_read,
2098 .write = random_write,
2099 .unlocked_ioctl = random_ioctl,
2100 .fasync = random_fasync,
2101 .llseek = noop_llseek,
2104 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2105 unsigned int, flags)
2107 int ret;
2109 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2110 return -EINVAL;
2112 if (count > INT_MAX)
2113 count = INT_MAX;
2115 if (flags & GRND_RANDOM)
2116 return _random_read(flags & GRND_NONBLOCK, buf, count);
2118 if (!crng_ready()) {
2119 if (flags & GRND_NONBLOCK)
2120 return -EAGAIN;
2121 ret = wait_for_random_bytes();
2122 if (unlikely(ret))
2123 return ret;
2125 return urandom_read(NULL, buf, count, NULL);
2128 /********************************************************************
2130 * Sysctl interface
2132 ********************************************************************/
2134 #ifdef CONFIG_SYSCTL
2136 #include <linux/sysctl.h>
2138 static int min_read_thresh = 8, min_write_thresh;
2139 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2140 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2141 static int random_min_urandom_seed = 60;
2142 static char sysctl_bootid[16];
2145 * This function is used to return both the bootid UUID, and random
2146 * UUID. The difference is in whether table->data is NULL; if it is,
2147 * then a new UUID is generated and returned to the user.
2149 * If the user accesses this via the proc interface, the UUID will be
2150 * returned as an ASCII string in the standard UUID format; if via the
2151 * sysctl system call, as 16 bytes of binary data.
2153 static int proc_do_uuid(struct ctl_table *table, int write,
2154 void __user *buffer, size_t *lenp, loff_t *ppos)
2156 struct ctl_table fake_table;
2157 unsigned char buf[64], tmp_uuid[16], *uuid;
2159 uuid = table->data;
2160 if (!uuid) {
2161 uuid = tmp_uuid;
2162 generate_random_uuid(uuid);
2163 } else {
2164 static DEFINE_SPINLOCK(bootid_spinlock);
2166 spin_lock(&bootid_spinlock);
2167 if (!uuid[8])
2168 generate_random_uuid(uuid);
2169 spin_unlock(&bootid_spinlock);
2172 sprintf(buf, "%pU", uuid);
2174 fake_table.data = buf;
2175 fake_table.maxlen = sizeof(buf);
2177 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2181 * Return entropy available scaled to integral bits
2183 static int proc_do_entropy(struct ctl_table *table, int write,
2184 void __user *buffer, size_t *lenp, loff_t *ppos)
2186 struct ctl_table fake_table;
2187 int entropy_count;
2189 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2191 fake_table.data = &entropy_count;
2192 fake_table.maxlen = sizeof(entropy_count);
2194 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2197 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2198 extern struct ctl_table random_table[];
2199 struct ctl_table random_table[] = {
2201 .procname = "poolsize",
2202 .data = &sysctl_poolsize,
2203 .maxlen = sizeof(int),
2204 .mode = 0444,
2205 .proc_handler = proc_dointvec,
2208 .procname = "entropy_avail",
2209 .maxlen = sizeof(int),
2210 .mode = 0444,
2211 .proc_handler = proc_do_entropy,
2212 .data = &input_pool.entropy_count,
2215 .procname = "read_wakeup_threshold",
2216 .data = &random_read_wakeup_bits,
2217 .maxlen = sizeof(int),
2218 .mode = 0644,
2219 .proc_handler = proc_dointvec_minmax,
2220 .extra1 = &min_read_thresh,
2221 .extra2 = &max_read_thresh,
2224 .procname = "write_wakeup_threshold",
2225 .data = &random_write_wakeup_bits,
2226 .maxlen = sizeof(int),
2227 .mode = 0644,
2228 .proc_handler = proc_dointvec_minmax,
2229 .extra1 = &min_write_thresh,
2230 .extra2 = &max_write_thresh,
2233 .procname = "urandom_min_reseed_secs",
2234 .data = &random_min_urandom_seed,
2235 .maxlen = sizeof(int),
2236 .mode = 0644,
2237 .proc_handler = proc_dointvec,
2240 .procname = "boot_id",
2241 .data = &sysctl_bootid,
2242 .maxlen = 16,
2243 .mode = 0444,
2244 .proc_handler = proc_do_uuid,
2247 .procname = "uuid",
2248 .maxlen = 16,
2249 .mode = 0444,
2250 .proc_handler = proc_do_uuid,
2252 #ifdef ADD_INTERRUPT_BENCH
2254 .procname = "add_interrupt_avg_cycles",
2255 .data = &avg_cycles,
2256 .maxlen = sizeof(avg_cycles),
2257 .mode = 0444,
2258 .proc_handler = proc_doulongvec_minmax,
2261 .procname = "add_interrupt_avg_deviation",
2262 .data = &avg_deviation,
2263 .maxlen = sizeof(avg_deviation),
2264 .mode = 0444,
2265 .proc_handler = proc_doulongvec_minmax,
2267 #endif
2270 #endif /* CONFIG_SYSCTL */
2272 struct batched_entropy {
2273 union {
2274 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2275 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2277 unsigned int position;
2278 spinlock_t batch_lock;
2282 * Get a random word for internal kernel use only. The quality of the random
2283 * number is good as /dev/urandom, but there is no backtrack protection, with
2284 * the goal of being quite fast and not depleting entropy. In order to ensure
2285 * that the randomness provided by this function is okay, the function
2286 * wait_for_random_bytes() should be called and return 0 at least once at any
2287 * point prior.
2289 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2290 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2293 u64 get_random_u64(void)
2295 u64 ret;
2296 unsigned long flags;
2297 struct batched_entropy *batch;
2298 static void *previous;
2300 warn_unseeded_randomness(&previous);
2302 batch = raw_cpu_ptr(&batched_entropy_u64);
2303 spin_lock_irqsave(&batch->batch_lock, flags);
2304 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2305 extract_crng((u8 *)batch->entropy_u64);
2306 batch->position = 0;
2308 ret = batch->entropy_u64[batch->position++];
2309 spin_unlock_irqrestore(&batch->batch_lock, flags);
2310 return ret;
2312 EXPORT_SYMBOL(get_random_u64);
2314 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2315 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2317 u32 get_random_u32(void)
2319 u32 ret;
2320 unsigned long flags;
2321 struct batched_entropy *batch;
2322 static void *previous;
2324 warn_unseeded_randomness(&previous);
2326 batch = raw_cpu_ptr(&batched_entropy_u32);
2327 spin_lock_irqsave(&batch->batch_lock, flags);
2328 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2329 extract_crng((u8 *)batch->entropy_u32);
2330 batch->position = 0;
2332 ret = batch->entropy_u32[batch->position++];
2333 spin_unlock_irqrestore(&batch->batch_lock, flags);
2334 return ret;
2336 EXPORT_SYMBOL(get_random_u32);
2338 /* It's important to invalidate all potential batched entropy that might
2339 * be stored before the crng is initialized, which we can do lazily by
2340 * simply resetting the counter to zero so that it's re-extracted on the
2341 * next usage. */
2342 static void invalidate_batched_entropy(void)
2344 int cpu;
2345 unsigned long flags;
2347 for_each_possible_cpu (cpu) {
2348 struct batched_entropy *batched_entropy;
2350 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2351 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2352 batched_entropy->position = 0;
2353 spin_unlock(&batched_entropy->batch_lock);
2355 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2356 spin_lock(&batched_entropy->batch_lock);
2357 batched_entropy->position = 0;
2358 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2363 * randomize_page - Generate a random, page aligned address
2364 * @start: The smallest acceptable address the caller will take.
2365 * @range: The size of the area, starting at @start, within which the
2366 * random address must fall.
2368 * If @start + @range would overflow, @range is capped.
2370 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2371 * @start was already page aligned. We now align it regardless.
2373 * Return: A page aligned address within [start, start + range). On error,
2374 * @start is returned.
2376 unsigned long
2377 randomize_page(unsigned long start, unsigned long range)
2379 if (!PAGE_ALIGNED(start)) {
2380 range -= PAGE_ALIGN(start) - start;
2381 start = PAGE_ALIGN(start);
2384 if (start > ULONG_MAX - range)
2385 range = ULONG_MAX - start;
2387 range >>= PAGE_SHIFT;
2389 if (range == 0)
2390 return start;
2392 return start + (get_random_long() % range << PAGE_SHIFT);
2395 /* Interface for in-kernel drivers of true hardware RNGs.
2396 * Those devices may produce endless random bits and will be throttled
2397 * when our pool is full.
2399 void add_hwgenerator_randomness(const char *buffer, size_t count,
2400 size_t entropy)
2402 struct entropy_store *poolp = &input_pool;
2404 if (unlikely(crng_init == 0)) {
2405 crng_fast_load(buffer, count);
2406 return;
2409 /* Suspend writing if we're above the trickle threshold.
2410 * We'll be woken up again once below random_write_wakeup_thresh,
2411 * or when the calling thread is about to terminate.
2413 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2414 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2415 mix_pool_bytes(poolp, buffer, count);
2416 credit_entropy_bits(poolp, entropy);
2418 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);