2 * random.c -- A strong random number generator
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
46 * (now, with legal B.S. out of the way.....)
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
101 * Exported interfaces ---- output
102 * ===============================
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
107 * void get_random_bytes(void *buf, int nbytes);
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
125 * Exported interfaces ---- input
126 * ==============================
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
162 * Ensuring unpredictability at system startup
163 * ============================================
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
273 #include <asm/irq_regs.h>
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
279 /* #define ADD_INTERRUPT_BENCH */
282 * Configuration information
284 #define INPUT_POOL_SHIFT 12
285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT 10
287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE 512
289 #define EXTRACT_SIZE 10
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
308 static int random_read_wakeup_bits
= 64;
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
315 static int random_write_wakeup_bits
= 28 * OUTPUT_POOL_WORDS
;
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Modeling and Computer
329 * Simulation 4:254-266)
331 * Thanks to Colin Plumb for suggesting this.
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
362 static struct poolinfo
{
363 int poolbitshift
, poolwords
, poolbytes
, poolbits
, poolfracbits
;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1
, tap2
, tap3
, tap4
, tap5
;
366 } poolinfo_table
[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
403 * Static global variables
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
407 static struct fasync_struct
*fasync
;
409 static DEFINE_SPINLOCK(random_ready_list_lock
);
410 static LIST_HEAD(random_ready_list
);
414 unsigned long init_time
;
418 struct crng_state primary_crng
= {
419 .lock
= __SPIN_LOCK_UNLOCKED(primary_crng
.lock
),
423 * crng_init = 0 --> Uninitialized
425 * 2 --> Initialized from input_pool
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
430 static int crng_init
= 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt
= 0;
433 static unsigned long crng_global_init_time
= 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435 static void _extract_crng(struct crng_state
*crng
,
436 __u8 out
[CHACHA20_BLOCK_SIZE
]);
437 static void _crng_backtrack_protect(struct crng_state
*crng
,
438 __u8 tmp
[CHACHA20_BLOCK_SIZE
], int used
);
439 static void process_random_ready_list(void);
440 static void _get_random_bytes(void *buf
, int nbytes
);
442 static struct ratelimit_state unseeded_warning
=
443 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ
, 3);
444 static struct ratelimit_state urandom_warning
=
445 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ
, 3);
447 static int ratelimit_disable __read_mostly
;
449 module_param_named(ratelimit_disable
, ratelimit_disable
, int, 0644);
450 MODULE_PARM_DESC(ratelimit_disable
, "Disable random ratelimit suppression");
452 /**********************************************************************
454 * OS independent entropy store. Here are the functions which handle
455 * storing entropy in an entropy pool.
457 **********************************************************************/
459 struct entropy_store
;
460 struct entropy_store
{
461 /* read-only data: */
462 const struct poolinfo
*poolinfo
;
465 struct entropy_store
*pull
;
466 struct work_struct push_work
;
468 /* read-write data: */
469 unsigned long last_pulled
;
471 unsigned short add_ptr
;
472 unsigned short input_rotate
;
475 unsigned int initialized
:1;
476 unsigned int last_data_init
:1;
477 __u8 last_data
[EXTRACT_SIZE
];
480 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
481 size_t nbytes
, int min
, int rsvd
);
482 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
483 size_t nbytes
, int fips
);
485 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
);
486 static void push_to_pool(struct work_struct
*work
);
487 static __u32 input_pool_data
[INPUT_POOL_WORDS
] __latent_entropy
;
488 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
] __latent_entropy
;
490 static struct entropy_store input_pool
= {
491 .poolinfo
= &poolinfo_table
[0],
493 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
494 .pool
= input_pool_data
497 static struct entropy_store blocking_pool
= {
498 .poolinfo
= &poolinfo_table
[1],
501 .lock
= __SPIN_LOCK_UNLOCKED(blocking_pool
.lock
),
502 .pool
= blocking_pool_data
,
503 .push_work
= __WORK_INITIALIZER(blocking_pool
.push_work
,
507 static __u32
const twist_table
[8] = {
508 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
512 * This function adds bytes into the entropy "pool". It does not
513 * update the entropy estimate. The caller should call
514 * credit_entropy_bits if this is appropriate.
516 * The pool is stirred with a primitive polynomial of the appropriate
517 * degree, and then twisted. We twist by three bits at a time because
518 * it's cheap to do so and helps slightly in the expected case where
519 * the entropy is concentrated in the low-order bits.
521 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
524 unsigned long i
, tap1
, tap2
, tap3
, tap4
, tap5
;
526 int wordmask
= r
->poolinfo
->poolwords
- 1;
527 const char *bytes
= in
;
530 tap1
= r
->poolinfo
->tap1
;
531 tap2
= r
->poolinfo
->tap2
;
532 tap3
= r
->poolinfo
->tap3
;
533 tap4
= r
->poolinfo
->tap4
;
534 tap5
= r
->poolinfo
->tap5
;
536 input_rotate
= r
->input_rotate
;
539 /* mix one byte at a time to simplify size handling and churn faster */
541 w
= rol32(*bytes
++, input_rotate
);
542 i
= (i
- 1) & wordmask
;
544 /* XOR in the various taps */
546 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
547 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
548 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
549 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
550 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
552 /* Mix the result back in with a twist */
553 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
556 * Normally, we add 7 bits of rotation to the pool.
557 * At the beginning of the pool, add an extra 7 bits
558 * rotation, so that successive passes spread the
559 * input bits across the pool evenly.
561 input_rotate
= (input_rotate
+ (i
? 7 : 14)) & 31;
564 r
->input_rotate
= input_rotate
;
568 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
571 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
572 _mix_pool_bytes(r
, in
, nbytes
);
575 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
580 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
581 spin_lock_irqsave(&r
->lock
, flags
);
582 _mix_pool_bytes(r
, in
, nbytes
);
583 spin_unlock_irqrestore(&r
->lock
, flags
);
589 unsigned short reg_idx
;
594 * This is a fast mixing routine used by the interrupt randomness
595 * collector. It's hardcoded for an 128 bit pool and assumes that any
596 * locks that might be needed are taken by the caller.
598 static void fast_mix(struct fast_pool
*f
)
600 __u32 a
= f
->pool
[0], b
= f
->pool
[1];
601 __u32 c
= f
->pool
[2], d
= f
->pool
[3];
604 b
= rol32(b
, 6); d
= rol32(d
, 27);
608 b
= rol32(b
, 16); d
= rol32(d
, 14);
612 b
= rol32(b
, 6); d
= rol32(d
, 27);
616 b
= rol32(b
, 16); d
= rol32(d
, 14);
619 f
->pool
[0] = a
; f
->pool
[1] = b
;
620 f
->pool
[2] = c
; f
->pool
[3] = d
;
624 static void process_random_ready_list(void)
627 struct random_ready_callback
*rdy
, *tmp
;
629 spin_lock_irqsave(&random_ready_list_lock
, flags
);
630 list_for_each_entry_safe(rdy
, tmp
, &random_ready_list
, list
) {
631 struct module
*owner
= rdy
->owner
;
633 list_del_init(&rdy
->list
);
637 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
641 * Credit (or debit) the entropy store with n bits of entropy.
642 * Use credit_entropy_bits_safe() if the value comes from userspace
643 * or otherwise should be checked for extreme values.
645 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
647 int entropy_count
, orig
;
648 const int pool_size
= r
->poolinfo
->poolfracbits
;
649 int nfrac
= nbits
<< ENTROPY_SHIFT
;
655 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
658 entropy_count
+= nfrac
;
661 * Credit: we have to account for the possibility of
662 * overwriting already present entropy. Even in the
663 * ideal case of pure Shannon entropy, new contributions
664 * approach the full value asymptotically:
666 * entropy <- entropy + (pool_size - entropy) *
667 * (1 - exp(-add_entropy/pool_size))
669 * For add_entropy <= pool_size/2 then
670 * (1 - exp(-add_entropy/pool_size)) >=
671 * (add_entropy/pool_size)*0.7869...
672 * so we can approximate the exponential with
673 * 3/4*add_entropy/pool_size and still be on the
674 * safe side by adding at most pool_size/2 at a time.
676 * The use of pool_size-2 in the while statement is to
677 * prevent rounding artifacts from making the loop
678 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 * turns no matter how large nbits is.
682 const int s
= r
->poolinfo
->poolbitshift
+ ENTROPY_SHIFT
+ 2;
683 /* The +2 corresponds to the /4 in the denominator */
686 unsigned int anfrac
= min(pnfrac
, pool_size
/2);
688 ((pool_size
- entropy_count
)*anfrac
*3) >> s
;
690 entropy_count
+= add
;
692 } while (unlikely(entropy_count
< pool_size
-2 && pnfrac
));
695 if (unlikely(entropy_count
< 0)) {
696 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 r
->name
, entropy_count
);
700 } else if (entropy_count
> pool_size
)
701 entropy_count
= pool_size
;
702 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
705 r
->entropy_total
+= nbits
;
706 if (!r
->initialized
&& r
->entropy_total
> 128) {
708 r
->entropy_total
= 0;
711 trace_credit_entropy_bits(r
->name
, nbits
,
712 entropy_count
>> ENTROPY_SHIFT
,
713 r
->entropy_total
, _RET_IP_
);
715 if (r
== &input_pool
) {
716 int entropy_bits
= entropy_count
>> ENTROPY_SHIFT
;
718 if (crng_init
< 2 && entropy_bits
>= 128) {
719 crng_reseed(&primary_crng
, r
);
720 entropy_bits
= r
->entropy_count
>> ENTROPY_SHIFT
;
723 /* should we wake readers? */
724 if (entropy_bits
>= random_read_wakeup_bits
&&
725 wq_has_sleeper(&random_read_wait
)) {
726 wake_up_interruptible(&random_read_wait
);
727 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
729 /* If the input pool is getting full, send some
730 * entropy to the blocking pool until it is 75% full.
732 if (entropy_bits
> random_write_wakeup_bits
&&
734 r
->entropy_total
>= 2*random_read_wakeup_bits
) {
735 struct entropy_store
*other
= &blocking_pool
;
737 if (other
->entropy_count
<=
738 3 * other
->poolinfo
->poolfracbits
/ 4) {
739 schedule_work(&other
->push_work
);
740 r
->entropy_total
= 0;
746 static int credit_entropy_bits_safe(struct entropy_store
*r
, int nbits
)
748 const int nbits_max
= r
->poolinfo
->poolwords
* 32;
753 /* Cap the value to avoid overflows */
754 nbits
= min(nbits
, nbits_max
);
756 credit_entropy_bits(r
, nbits
);
760 /*********************************************************************
762 * CRNG using CHACHA20
764 *********************************************************************/
766 #define CRNG_RESEED_INTERVAL (300*HZ)
768 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait
);
772 * Hack to deal with crazy userspace progams when they are all trying
773 * to access /dev/urandom in parallel. The programs are almost
774 * certainly doing something terribly wrong, but we'll work around
775 * their brain damage.
777 static struct crng_state
**crng_node_pool __read_mostly
;
780 static void invalidate_batched_entropy(void);
781 static void numa_crng_init(void);
783 static bool trust_cpu __ro_after_init
= IS_ENABLED(CONFIG_RANDOM_TRUST_CPU
);
784 static int __init
parse_trust_cpu(char *arg
)
786 return kstrtobool(arg
, &trust_cpu
);
788 early_param("random.trust_cpu", parse_trust_cpu
);
790 static void crng_initialize(struct crng_state
*crng
)
796 memcpy(&crng
->state
[0], "expand 32-byte k", 16);
797 if (crng
== &primary_crng
)
798 _extract_entropy(&input_pool
, &crng
->state
[4],
799 sizeof(__u32
) * 12, 0);
801 _get_random_bytes(&crng
->state
[4], sizeof(__u32
) * 12);
802 for (i
= 4; i
< 16; i
++) {
803 if (!arch_get_random_seed_long(&rv
) &&
804 !arch_get_random_long(&rv
)) {
805 rv
= random_get_entropy();
808 crng
->state
[i
] ^= rv
;
810 if (trust_cpu
&& arch_init
&& crng
== &primary_crng
) {
811 invalidate_batched_entropy();
814 pr_notice("random: crng done (trusting CPU's manufacturer)\n");
816 crng
->init_time
= jiffies
- CRNG_RESEED_INTERVAL
- 1;
820 static void do_numa_crng_init(struct work_struct
*work
)
823 struct crng_state
*crng
;
824 struct crng_state
**pool
;
826 pool
= kcalloc(nr_node_ids
, sizeof(*pool
), GFP_KERNEL
|__GFP_NOFAIL
);
827 for_each_online_node(i
) {
828 crng
= kmalloc_node(sizeof(struct crng_state
),
829 GFP_KERNEL
| __GFP_NOFAIL
, i
);
830 spin_lock_init(&crng
->lock
);
831 crng_initialize(crng
);
835 if (cmpxchg(&crng_node_pool
, NULL
, pool
)) {
842 static DECLARE_WORK(numa_crng_init_work
, do_numa_crng_init
);
844 static void numa_crng_init(void)
846 schedule_work(&numa_crng_init_work
);
849 static void numa_crng_init(void) {}
853 * crng_fast_load() can be called by code in the interrupt service
854 * path. So we can't afford to dilly-dally.
856 static int crng_fast_load(const char *cp
, size_t len
)
861 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
863 if (crng_init
!= 0) {
864 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
867 p
= (unsigned char *) &primary_crng
.state
[4];
868 while (len
> 0 && crng_init_cnt
< CRNG_INIT_CNT_THRESH
) {
869 p
[crng_init_cnt
% CHACHA20_KEY_SIZE
] ^= *cp
;
870 cp
++; crng_init_cnt
++; len
--;
872 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
873 if (crng_init_cnt
>= CRNG_INIT_CNT_THRESH
) {
874 invalidate_batched_entropy();
876 wake_up_interruptible(&crng_init_wait
);
877 pr_notice("random: fast init done\n");
883 * crng_slow_load() is called by add_device_randomness, which has two
884 * attributes. (1) We can't trust the buffer passed to it is
885 * guaranteed to be unpredictable (so it might not have any entropy at
886 * all), and (2) it doesn't have the performance constraints of
889 * So we do something more comprehensive which is guaranteed to touch
890 * all of the primary_crng's state, and which uses a LFSR with a
891 * period of 255 as part of the mixing algorithm. Finally, we do
892 * *not* advance crng_init_cnt since buffer we may get may be something
893 * like a fixed DMI table (for example), which might very well be
894 * unique to the machine, but is otherwise unvarying.
896 static int crng_slow_load(const char *cp
, size_t len
)
899 static unsigned char lfsr
= 1;
901 unsigned i
, max
= CHACHA20_KEY_SIZE
;
902 const char * src_buf
= cp
;
903 char * dest_buf
= (char *) &primary_crng
.state
[4];
905 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
907 if (crng_init
!= 0) {
908 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
914 for (i
= 0; i
< max
; i
++) {
919 tmp
= dest_buf
[i
% CHACHA20_KEY_SIZE
];
920 dest_buf
[i
% CHACHA20_KEY_SIZE
] ^= src_buf
[i
% len
] ^ lfsr
;
921 lfsr
+= (tmp
<< 3) | (tmp
>> 5);
923 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
927 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
)
932 __u8 block
[CHACHA20_BLOCK_SIZE
];
937 num
= extract_entropy(r
, &buf
, 32, 16, 0);
941 _extract_crng(&primary_crng
, buf
.block
);
942 _crng_backtrack_protect(&primary_crng
, buf
.block
,
945 spin_lock_irqsave(&crng
->lock
, flags
);
946 for (i
= 0; i
< 8; i
++) {
948 if (!arch_get_random_seed_long(&rv
) &&
949 !arch_get_random_long(&rv
))
950 rv
= random_get_entropy();
951 crng
->state
[i
+4] ^= buf
.key
[i
] ^ rv
;
953 memzero_explicit(&buf
, sizeof(buf
));
954 crng
->init_time
= jiffies
;
955 spin_unlock_irqrestore(&crng
->lock
, flags
);
956 if (crng
== &primary_crng
&& crng_init
< 2) {
957 invalidate_batched_entropy();
960 process_random_ready_list();
961 wake_up_interruptible(&crng_init_wait
);
962 pr_notice("random: crng init done\n");
963 if (unseeded_warning
.missed
) {
964 pr_notice("random: %d get_random_xx warning(s) missed "
965 "due to ratelimiting\n",
966 unseeded_warning
.missed
);
967 unseeded_warning
.missed
= 0;
969 if (urandom_warning
.missed
) {
970 pr_notice("random: %d urandom warning(s) missed "
971 "due to ratelimiting\n",
972 urandom_warning
.missed
);
973 urandom_warning
.missed
= 0;
978 static void _extract_crng(struct crng_state
*crng
,
979 __u8 out
[CHACHA20_BLOCK_SIZE
])
981 unsigned long v
, flags
;
984 (time_after(crng_global_init_time
, crng
->init_time
) ||
985 time_after(jiffies
, crng
->init_time
+ CRNG_RESEED_INTERVAL
)))
986 crng_reseed(crng
, crng
== &primary_crng
? &input_pool
: NULL
);
987 spin_lock_irqsave(&crng
->lock
, flags
);
988 if (arch_get_random_long(&v
))
989 crng
->state
[14] ^= v
;
990 chacha20_block(&crng
->state
[0], out
);
991 if (crng
->state
[12] == 0)
993 spin_unlock_irqrestore(&crng
->lock
, flags
);
996 static void extract_crng(__u8 out
[CHACHA20_BLOCK_SIZE
])
998 struct crng_state
*crng
= NULL
;
1002 crng
= crng_node_pool
[numa_node_id()];
1005 crng
= &primary_crng
;
1006 _extract_crng(crng
, out
);
1010 * Use the leftover bytes from the CRNG block output (if there is
1011 * enough) to mutate the CRNG key to provide backtracking protection.
1013 static void _crng_backtrack_protect(struct crng_state
*crng
,
1014 __u8 tmp
[CHACHA20_BLOCK_SIZE
], int used
)
1016 unsigned long flags
;
1020 used
= round_up(used
, sizeof(__u32
));
1021 if (used
+ CHACHA20_KEY_SIZE
> CHACHA20_BLOCK_SIZE
) {
1025 spin_lock_irqsave(&crng
->lock
, flags
);
1026 s
= (__u32
*) &tmp
[used
];
1027 d
= &crng
->state
[4];
1028 for (i
=0; i
< 8; i
++)
1030 spin_unlock_irqrestore(&crng
->lock
, flags
);
1033 static void crng_backtrack_protect(__u8 tmp
[CHACHA20_BLOCK_SIZE
], int used
)
1035 struct crng_state
*crng
= NULL
;
1039 crng
= crng_node_pool
[numa_node_id()];
1042 crng
= &primary_crng
;
1043 _crng_backtrack_protect(crng
, tmp
, used
);
1046 static ssize_t
extract_crng_user(void __user
*buf
, size_t nbytes
)
1048 ssize_t ret
= 0, i
= CHACHA20_BLOCK_SIZE
;
1049 __u8 tmp
[CHACHA20_BLOCK_SIZE
] __aligned(4);
1050 int large_request
= (nbytes
> 256);
1053 if (large_request
&& need_resched()) {
1054 if (signal_pending(current
)) {
1063 i
= min_t(int, nbytes
, CHACHA20_BLOCK_SIZE
);
1064 if (copy_to_user(buf
, tmp
, i
)) {
1073 crng_backtrack_protect(tmp
, i
);
1075 /* Wipe data just written to memory */
1076 memzero_explicit(tmp
, sizeof(tmp
));
1082 /*********************************************************************
1084 * Entropy input management
1086 *********************************************************************/
1088 /* There is one of these per entropy source */
1089 struct timer_rand_state
{
1091 long last_delta
, last_delta2
;
1094 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1097 * Add device- or boot-specific data to the input pool to help
1100 * None of this adds any entropy; it is meant to avoid the problem of
1101 * the entropy pool having similar initial state across largely
1102 * identical devices.
1104 void add_device_randomness(const void *buf
, unsigned int size
)
1106 unsigned long time
= random_get_entropy() ^ jiffies
;
1107 unsigned long flags
;
1109 if (!crng_ready() && size
)
1110 crng_slow_load(buf
, size
);
1112 trace_add_device_randomness(size
, _RET_IP_
);
1113 spin_lock_irqsave(&input_pool
.lock
, flags
);
1114 _mix_pool_bytes(&input_pool
, buf
, size
);
1115 _mix_pool_bytes(&input_pool
, &time
, sizeof(time
));
1116 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
1118 EXPORT_SYMBOL(add_device_randomness
);
1120 static struct timer_rand_state input_timer_state
= INIT_TIMER_RAND_STATE
;
1123 * This function adds entropy to the entropy "pool" by using timing
1124 * delays. It uses the timer_rand_state structure to make an estimate
1125 * of how many bits of entropy this call has added to the pool.
1127 * The number "num" is also added to the pool - it should somehow describe
1128 * the type of event which just happened. This is currently 0-255 for
1129 * keyboard scan codes, and 256 upwards for interrupts.
1132 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
1134 struct entropy_store
*r
;
1140 long delta
, delta2
, delta3
;
1142 sample
.jiffies
= jiffies
;
1143 sample
.cycles
= random_get_entropy();
1146 mix_pool_bytes(r
, &sample
, sizeof(sample
));
1149 * Calculate number of bits of randomness we probably added.
1150 * We take into account the first, second and third-order deltas
1151 * in order to make our estimate.
1153 delta
= sample
.jiffies
- state
->last_time
;
1154 state
->last_time
= sample
.jiffies
;
1156 delta2
= delta
- state
->last_delta
;
1157 state
->last_delta
= delta
;
1159 delta3
= delta2
- state
->last_delta2
;
1160 state
->last_delta2
= delta2
;
1174 * delta is now minimum absolute delta.
1175 * Round down by 1 bit on general principles,
1176 * and limit entropy entimate to 12 bits.
1178 credit_entropy_bits(r
, min_t(int, fls(delta
>>1), 11));
1181 void add_input_randomness(unsigned int type
, unsigned int code
,
1184 static unsigned char last_value
;
1186 /* ignore autorepeat and the like */
1187 if (value
== last_value
)
1191 add_timer_randomness(&input_timer_state
,
1192 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
1193 trace_add_input_randomness(ENTROPY_BITS(&input_pool
));
1195 EXPORT_SYMBOL_GPL(add_input_randomness
);
1197 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
1199 #ifdef ADD_INTERRUPT_BENCH
1200 static unsigned long avg_cycles
, avg_deviation
;
1202 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1203 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1205 static void add_interrupt_bench(cycles_t start
)
1207 long delta
= random_get_entropy() - start
;
1209 /* Use a weighted moving average */
1210 delta
= delta
- ((avg_cycles
+ FIXED_1_2
) >> AVG_SHIFT
);
1211 avg_cycles
+= delta
;
1212 /* And average deviation */
1213 delta
= abs(delta
) - ((avg_deviation
+ FIXED_1_2
) >> AVG_SHIFT
);
1214 avg_deviation
+= delta
;
1217 #define add_interrupt_bench(x)
1220 static __u32
get_reg(struct fast_pool
*f
, struct pt_regs
*regs
)
1222 __u32
*ptr
= (__u32
*) regs
;
1227 idx
= READ_ONCE(f
->reg_idx
);
1228 if (idx
>= sizeof(struct pt_regs
) / sizeof(__u32
))
1231 WRITE_ONCE(f
->reg_idx
, idx
);
1235 void add_interrupt_randomness(int irq
, int irq_flags
)
1237 struct entropy_store
*r
;
1238 struct fast_pool
*fast_pool
= this_cpu_ptr(&irq_randomness
);
1239 struct pt_regs
*regs
= get_irq_regs();
1240 unsigned long now
= jiffies
;
1241 cycles_t cycles
= random_get_entropy();
1242 __u32 c_high
, j_high
;
1248 cycles
= get_reg(fast_pool
, regs
);
1249 c_high
= (sizeof(cycles
) > 4) ? cycles
>> 32 : 0;
1250 j_high
= (sizeof(now
) > 4) ? now
>> 32 : 0;
1251 fast_pool
->pool
[0] ^= cycles
^ j_high
^ irq
;
1252 fast_pool
->pool
[1] ^= now
^ c_high
;
1253 ip
= regs
? instruction_pointer(regs
) : _RET_IP_
;
1254 fast_pool
->pool
[2] ^= ip
;
1255 fast_pool
->pool
[3] ^= (sizeof(ip
) > 4) ? ip
>> 32 :
1256 get_reg(fast_pool
, regs
);
1258 fast_mix(fast_pool
);
1259 add_interrupt_bench(cycles
);
1261 if (unlikely(crng_init
== 0)) {
1262 if ((fast_pool
->count
>= 64) &&
1263 crng_fast_load((char *) fast_pool
->pool
,
1264 sizeof(fast_pool
->pool
))) {
1265 fast_pool
->count
= 0;
1266 fast_pool
->last
= now
;
1271 if ((fast_pool
->count
< 64) &&
1272 !time_after(now
, fast_pool
->last
+ HZ
))
1276 if (!spin_trylock(&r
->lock
))
1279 fast_pool
->last
= now
;
1280 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
));
1283 * If we have architectural seed generator, produce a seed and
1284 * add it to the pool. For the sake of paranoia don't let the
1285 * architectural seed generator dominate the input from the
1288 if (arch_get_random_seed_long(&seed
)) {
1289 __mix_pool_bytes(r
, &seed
, sizeof(seed
));
1292 spin_unlock(&r
->lock
);
1294 fast_pool
->count
= 0;
1296 /* award one bit for the contents of the fast pool */
1297 credit_entropy_bits(r
, credit
+ 1);
1299 EXPORT_SYMBOL_GPL(add_interrupt_randomness
);
1302 void add_disk_randomness(struct gendisk
*disk
)
1304 if (!disk
|| !disk
->random
)
1306 /* first major is 1, so we get >= 0x200 here */
1307 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
1308 trace_add_disk_randomness(disk_devt(disk
), ENTROPY_BITS(&input_pool
));
1310 EXPORT_SYMBOL_GPL(add_disk_randomness
);
1313 /*********************************************************************
1315 * Entropy extraction routines
1317 *********************************************************************/
1320 * This utility inline function is responsible for transferring entropy
1321 * from the primary pool to the secondary extraction pool. We make
1322 * sure we pull enough for a 'catastrophic reseed'.
1324 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
);
1325 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1328 r
->entropy_count
>= (nbytes
<< (ENTROPY_SHIFT
+ 3)) ||
1329 r
->entropy_count
> r
->poolinfo
->poolfracbits
)
1332 _xfer_secondary_pool(r
, nbytes
);
1335 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1337 __u32 tmp
[OUTPUT_POOL_WORDS
];
1341 /* pull at least as much as a wakeup */
1342 bytes
= max_t(int, bytes
, random_read_wakeup_bits
/ 8);
1343 /* but never more than the buffer size */
1344 bytes
= min_t(int, bytes
, sizeof(tmp
));
1346 trace_xfer_secondary_pool(r
->name
, bytes
* 8, nbytes
* 8,
1347 ENTROPY_BITS(r
), ENTROPY_BITS(r
->pull
));
1348 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
1349 random_read_wakeup_bits
/ 8, 0);
1350 mix_pool_bytes(r
, tmp
, bytes
);
1351 credit_entropy_bits(r
, bytes
*8);
1355 * Used as a workqueue function so that when the input pool is getting
1356 * full, we can "spill over" some entropy to the output pools. That
1357 * way the output pools can store some of the excess entropy instead
1358 * of letting it go to waste.
1360 static void push_to_pool(struct work_struct
*work
)
1362 struct entropy_store
*r
= container_of(work
, struct entropy_store
,
1365 _xfer_secondary_pool(r
, random_read_wakeup_bits
/8);
1366 trace_push_to_pool(r
->name
, r
->entropy_count
>> ENTROPY_SHIFT
,
1367 r
->pull
->entropy_count
>> ENTROPY_SHIFT
);
1371 * This function decides how many bytes to actually take from the
1372 * given pool, and also debits the entropy count accordingly.
1374 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
1377 int entropy_count
, orig
, have_bytes
;
1378 size_t ibytes
, nfrac
;
1380 BUG_ON(r
->entropy_count
> r
->poolinfo
->poolfracbits
);
1382 /* Can we pull enough? */
1384 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
1386 /* never pull more than available */
1387 have_bytes
= entropy_count
>> (ENTROPY_SHIFT
+ 3);
1389 if ((have_bytes
-= reserved
) < 0)
1391 ibytes
= min_t(size_t, ibytes
, have_bytes
);
1395 if (unlikely(entropy_count
< 0)) {
1396 pr_warn("random: negative entropy count: pool %s count %d\n",
1397 r
->name
, entropy_count
);
1401 nfrac
= ibytes
<< (ENTROPY_SHIFT
+ 3);
1402 if ((size_t) entropy_count
> nfrac
)
1403 entropy_count
-= nfrac
;
1407 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
1410 trace_debit_entropy(r
->name
, 8 * ibytes
);
1412 (r
->entropy_count
>> ENTROPY_SHIFT
) < random_write_wakeup_bits
) {
1413 wake_up_interruptible(&random_write_wait
);
1414 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
1421 * This function does the actual extraction for extract_entropy and
1422 * extract_entropy_user.
1424 * Note: we assume that .poolwords is a multiple of 16 words.
1426 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
1431 unsigned long l
[LONGS(20)];
1433 __u32 workspace
[SHA_WORKSPACE_WORDS
];
1434 unsigned long flags
;
1437 * If we have an architectural hardware random number
1438 * generator, use it for SHA's initial vector
1441 for (i
= 0; i
< LONGS(20); i
++) {
1443 if (!arch_get_random_long(&v
))
1448 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1449 spin_lock_irqsave(&r
->lock
, flags
);
1450 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
1451 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
1454 * We mix the hash back into the pool to prevent backtracking
1455 * attacks (where the attacker knows the state of the pool
1456 * plus the current outputs, and attempts to find previous
1457 * ouputs), unless the hash function can be inverted. By
1458 * mixing at least a SHA1 worth of hash data back, we make
1459 * brute-forcing the feedback as hard as brute-forcing the
1462 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
));
1463 spin_unlock_irqrestore(&r
->lock
, flags
);
1465 memzero_explicit(workspace
, sizeof(workspace
));
1468 * In case the hash function has some recognizable output
1469 * pattern, we fold it in half. Thus, we always feed back
1470 * twice as much data as we output.
1472 hash
.w
[0] ^= hash
.w
[3];
1473 hash
.w
[1] ^= hash
.w
[4];
1474 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
1476 memcpy(out
, &hash
, EXTRACT_SIZE
);
1477 memzero_explicit(&hash
, sizeof(hash
));
1480 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
1481 size_t nbytes
, int fips
)
1484 __u8 tmp
[EXTRACT_SIZE
];
1485 unsigned long flags
;
1488 extract_buf(r
, tmp
);
1491 spin_lock_irqsave(&r
->lock
, flags
);
1492 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
1493 panic("Hardware RNG duplicated output!\n");
1494 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1495 spin_unlock_irqrestore(&r
->lock
, flags
);
1497 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1498 memcpy(buf
, tmp
, i
);
1504 /* Wipe data just returned from memory */
1505 memzero_explicit(tmp
, sizeof(tmp
));
1511 * This function extracts randomness from the "entropy pool", and
1512 * returns it in a buffer.
1514 * The min parameter specifies the minimum amount we can pull before
1515 * failing to avoid races that defeat catastrophic reseeding while the
1516 * reserved parameter indicates how much entropy we must leave in the
1517 * pool after each pull to avoid starving other readers.
1519 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
1520 size_t nbytes
, int min
, int reserved
)
1522 __u8 tmp
[EXTRACT_SIZE
];
1523 unsigned long flags
;
1525 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1527 spin_lock_irqsave(&r
->lock
, flags
);
1528 if (!r
->last_data_init
) {
1529 r
->last_data_init
= 1;
1530 spin_unlock_irqrestore(&r
->lock
, flags
);
1531 trace_extract_entropy(r
->name
, EXTRACT_SIZE
,
1532 ENTROPY_BITS(r
), _RET_IP_
);
1533 xfer_secondary_pool(r
, EXTRACT_SIZE
);
1534 extract_buf(r
, tmp
);
1535 spin_lock_irqsave(&r
->lock
, flags
);
1536 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1538 spin_unlock_irqrestore(&r
->lock
, flags
);
1541 trace_extract_entropy(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1542 xfer_secondary_pool(r
, nbytes
);
1543 nbytes
= account(r
, nbytes
, min
, reserved
);
1545 return _extract_entropy(r
, buf
, nbytes
, fips_enabled
);
1549 * This function extracts randomness from the "entropy pool", and
1550 * returns it in a userspace buffer.
1552 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
1556 __u8 tmp
[EXTRACT_SIZE
];
1557 int large_request
= (nbytes
> 256);
1559 trace_extract_entropy_user(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1560 xfer_secondary_pool(r
, nbytes
);
1561 nbytes
= account(r
, nbytes
, 0, 0);
1564 if (large_request
&& need_resched()) {
1565 if (signal_pending(current
)) {
1573 extract_buf(r
, tmp
);
1574 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1575 if (copy_to_user(buf
, tmp
, i
)) {
1585 /* Wipe data just returned from memory */
1586 memzero_explicit(tmp
, sizeof(tmp
));
1591 #define warn_unseeded_randomness(previous) \
1592 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1594 static void _warn_unseeded_randomness(const char *func_name
, void *caller
,
1597 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1598 const bool print_once
= false;
1600 static bool print_once __read_mostly
;
1605 (previous
&& (caller
== READ_ONCE(*previous
))))
1607 WRITE_ONCE(*previous
, caller
);
1608 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1611 if (__ratelimit(&unseeded_warning
))
1612 pr_notice("random: %s called from %pS with crng_init=%d\n",
1613 func_name
, caller
, crng_init
);
1617 * This function is the exported kernel interface. It returns some
1618 * number of good random numbers, suitable for key generation, seeding
1619 * TCP sequence numbers, etc. It does not rely on the hardware random
1620 * number generator. For random bytes direct from the hardware RNG
1621 * (when available), use get_random_bytes_arch(). In order to ensure
1622 * that the randomness provided by this function is okay, the function
1623 * wait_for_random_bytes() should be called and return 0 at least once
1624 * at any point prior.
1626 static void _get_random_bytes(void *buf
, int nbytes
)
1628 __u8 tmp
[CHACHA20_BLOCK_SIZE
] __aligned(4);
1630 trace_get_random_bytes(nbytes
, _RET_IP_
);
1632 while (nbytes
>= CHACHA20_BLOCK_SIZE
) {
1634 buf
+= CHACHA20_BLOCK_SIZE
;
1635 nbytes
-= CHACHA20_BLOCK_SIZE
;
1640 memcpy(buf
, tmp
, nbytes
);
1641 crng_backtrack_protect(tmp
, nbytes
);
1643 crng_backtrack_protect(tmp
, CHACHA20_BLOCK_SIZE
);
1644 memzero_explicit(tmp
, sizeof(tmp
));
1647 void get_random_bytes(void *buf
, int nbytes
)
1649 static void *previous
;
1651 warn_unseeded_randomness(&previous
);
1652 _get_random_bytes(buf
, nbytes
);
1654 EXPORT_SYMBOL(get_random_bytes
);
1658 * Each time the timer fires, we expect that we got an unpredictable
1659 * jump in the cycle counter. Even if the timer is running on another
1660 * CPU, the timer activity will be touching the stack of the CPU that is
1661 * generating entropy..
1663 * Note that we don't re-arm the timer in the timer itself - we are
1664 * happy to be scheduled away, since that just makes the load more
1665 * complex, but we do not want the timer to keep ticking unless the
1666 * entropy loop is running.
1668 * So the re-arming always happens in the entropy loop itself.
1670 static void entropy_timer(struct timer_list
*t
)
1672 credit_entropy_bits(&input_pool
, 1);
1676 * If we have an actual cycle counter, see if we can
1677 * generate enough entropy with timing noise
1679 static void try_to_generate_entropy(void)
1683 struct timer_list timer
;
1686 stack
.now
= random_get_entropy();
1688 /* Slow counter - or none. Don't even bother */
1689 if (stack
.now
== random_get_entropy())
1692 timer_setup_on_stack(&stack
.timer
, entropy_timer
, 0);
1693 while (!crng_ready()) {
1694 if (!timer_pending(&stack
.timer
))
1695 mod_timer(&stack
.timer
, jiffies
+1);
1696 mix_pool_bytes(&input_pool
, &stack
.now
, sizeof(stack
.now
));
1698 stack
.now
= random_get_entropy();
1701 del_timer_sync(&stack
.timer
);
1702 destroy_timer_on_stack(&stack
.timer
);
1703 mix_pool_bytes(&input_pool
, &stack
.now
, sizeof(stack
.now
));
1707 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1708 * cryptographically secure random numbers. This applies to: the /dev/urandom
1709 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1710 * family of functions. Using any of these functions without first calling
1711 * this function forfeits the guarantee of security.
1713 * Returns: 0 if the urandom pool has been seeded.
1714 * -ERESTARTSYS if the function was interrupted by a signal.
1716 int wait_for_random_bytes(void)
1718 if (likely(crng_ready()))
1723 ret
= wait_event_interruptible_timeout(crng_init_wait
, crng_ready(), HZ
);
1725 return ret
> 0 ? 0 : ret
;
1727 try_to_generate_entropy();
1728 } while (!crng_ready());
1732 EXPORT_SYMBOL(wait_for_random_bytes
);
1735 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1736 * to supply cryptographically secure random numbers. This applies to: the
1737 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1738 * ,u64,int,long} family of functions.
1740 * Returns: true if the urandom pool has been seeded.
1741 * false if the urandom pool has not been seeded.
1743 bool rng_is_initialized(void)
1745 return crng_ready();
1747 EXPORT_SYMBOL(rng_is_initialized
);
1750 * Add a callback function that will be invoked when the nonblocking
1751 * pool is initialised.
1753 * returns: 0 if callback is successfully added
1754 * -EALREADY if pool is already initialised (callback not called)
1755 * -ENOENT if module for callback is not alive
1757 int add_random_ready_callback(struct random_ready_callback
*rdy
)
1759 struct module
*owner
;
1760 unsigned long flags
;
1761 int err
= -EALREADY
;
1767 if (!try_module_get(owner
))
1770 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1776 list_add(&rdy
->list
, &random_ready_list
);
1780 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1786 EXPORT_SYMBOL(add_random_ready_callback
);
1789 * Delete a previously registered readiness callback function.
1791 void del_random_ready_callback(struct random_ready_callback
*rdy
)
1793 unsigned long flags
;
1794 struct module
*owner
= NULL
;
1796 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1797 if (!list_empty(&rdy
->list
)) {
1798 list_del_init(&rdy
->list
);
1801 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1805 EXPORT_SYMBOL(del_random_ready_callback
);
1808 * This function will use the architecture-specific hardware random
1809 * number generator if it is available. The arch-specific hw RNG will
1810 * almost certainly be faster than what we can do in software, but it
1811 * is impossible to verify that it is implemented securely (as
1812 * opposed, to, say, the AES encryption of a sequence number using a
1813 * key known by the NSA). So it's useful if we need the speed, but
1814 * only if we're willing to trust the hardware manufacturer not to
1815 * have put in a back door.
1817 * Return number of bytes filled in.
1819 int __must_check
get_random_bytes_arch(void *buf
, int nbytes
)
1824 trace_get_random_bytes_arch(left
, _RET_IP_
);
1827 int chunk
= min_t(int, left
, sizeof(unsigned long));
1829 if (!arch_get_random_long(&v
))
1832 memcpy(p
, &v
, chunk
);
1837 return nbytes
- left
;
1839 EXPORT_SYMBOL(get_random_bytes_arch
);
1842 * init_std_data - initialize pool with system data
1844 * @r: pool to initialize
1846 * This function clears the pool's entropy count and mixes some system
1847 * data into the pool to prepare it for use. The pool is not cleared
1848 * as that can only decrease the entropy in the pool.
1850 static void init_std_data(struct entropy_store
*r
)
1853 ktime_t now
= ktime_get_real();
1856 r
->last_pulled
= jiffies
;
1857 mix_pool_bytes(r
, &now
, sizeof(now
));
1858 for (i
= r
->poolinfo
->poolbytes
; i
> 0; i
-= sizeof(rv
)) {
1859 if (!arch_get_random_seed_long(&rv
) &&
1860 !arch_get_random_long(&rv
))
1861 rv
= random_get_entropy();
1862 mix_pool_bytes(r
, &rv
, sizeof(rv
));
1864 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())));
1868 * Note that setup_arch() may call add_device_randomness()
1869 * long before we get here. This allows seeding of the pools
1870 * with some platform dependent data very early in the boot
1871 * process. But it limits our options here. We must use
1872 * statically allocated structures that already have all
1873 * initializations complete at compile time. We should also
1874 * take care not to overwrite the precious per platform data
1877 static int rand_initialize(void)
1879 init_std_data(&input_pool
);
1880 init_std_data(&blocking_pool
);
1881 crng_initialize(&primary_crng
);
1882 crng_global_init_time
= jiffies
;
1883 if (ratelimit_disable
) {
1884 urandom_warning
.interval
= 0;
1885 unseeded_warning
.interval
= 0;
1889 early_initcall(rand_initialize
);
1892 void rand_initialize_disk(struct gendisk
*disk
)
1894 struct timer_rand_state
*state
;
1897 * If kzalloc returns null, we just won't use that entropy
1900 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1902 state
->last_time
= INITIAL_JIFFIES
;
1903 disk
->random
= state
;
1909 _random_read(int nonblock
, char __user
*buf
, size_t nbytes
)
1916 nbytes
= min_t(size_t, nbytes
, SEC_XFER_SIZE
);
1918 n
= extract_entropy_user(&blocking_pool
, buf
, nbytes
);
1921 trace_random_read(n
*8, (nbytes
-n
)*8,
1922 ENTROPY_BITS(&blocking_pool
),
1923 ENTROPY_BITS(&input_pool
));
1927 /* Pool is (near) empty. Maybe wait and retry. */
1931 wait_event_interruptible(random_read_wait
,
1932 ENTROPY_BITS(&input_pool
) >=
1933 random_read_wakeup_bits
);
1934 if (signal_pending(current
))
1935 return -ERESTARTSYS
;
1940 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1942 return _random_read(file
->f_flags
& O_NONBLOCK
, buf
, nbytes
);
1946 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1948 unsigned long flags
;
1949 static int maxwarn
= 10;
1952 if (!crng_ready() && maxwarn
> 0) {
1954 if (__ratelimit(&urandom_warning
))
1955 printk(KERN_NOTICE
"random: %s: uninitialized "
1956 "urandom read (%zd bytes read)\n",
1957 current
->comm
, nbytes
);
1958 spin_lock_irqsave(&primary_crng
.lock
, flags
);
1960 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
1962 nbytes
= min_t(size_t, nbytes
, INT_MAX
>> (ENTROPY_SHIFT
+ 3));
1963 ret
= extract_crng_user(buf
, nbytes
);
1964 trace_urandom_read(8 * nbytes
, 0, ENTROPY_BITS(&input_pool
));
1969 random_poll(struct file
*file
, poll_table
* wait
)
1973 poll_wait(file
, &random_read_wait
, wait
);
1974 poll_wait(file
, &random_write_wait
, wait
);
1976 if (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
)
1977 mask
|= EPOLLIN
| EPOLLRDNORM
;
1978 if (ENTROPY_BITS(&input_pool
) < random_write_wakeup_bits
)
1979 mask
|= EPOLLOUT
| EPOLLWRNORM
;
1984 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
1988 const char __user
*p
= buffer
;
1993 bytes
= min(count
, sizeof(buf
));
1994 if (copy_from_user(&buf
, p
, bytes
))
1997 for (b
= bytes
; b
> 0 ; b
-= sizeof(__u32
), i
++) {
1998 if (!arch_get_random_int(&t
))
2006 mix_pool_bytes(r
, buf
, bytes
);
2013 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
2014 size_t count
, loff_t
*ppos
)
2018 ret
= write_pool(&input_pool
, buffer
, count
);
2022 return (ssize_t
)count
;
2025 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
2027 int size
, ent_count
;
2028 int __user
*p
= (int __user
*)arg
;
2033 /* inherently racy, no point locking */
2034 ent_count
= ENTROPY_BITS(&input_pool
);
2035 if (put_user(ent_count
, p
))
2038 case RNDADDTOENTCNT
:
2039 if (!capable(CAP_SYS_ADMIN
))
2041 if (get_user(ent_count
, p
))
2043 return credit_entropy_bits_safe(&input_pool
, ent_count
);
2045 if (!capable(CAP_SYS_ADMIN
))
2047 if (get_user(ent_count
, p
++))
2051 if (get_user(size
, p
++))
2053 retval
= write_pool(&input_pool
, (const char __user
*)p
,
2057 return credit_entropy_bits_safe(&input_pool
, ent_count
);
2061 * Clear the entropy pool counters. We no longer clear
2062 * the entropy pool, as that's silly.
2064 if (!capable(CAP_SYS_ADMIN
))
2066 input_pool
.entropy_count
= 0;
2067 blocking_pool
.entropy_count
= 0;
2070 if (!capable(CAP_SYS_ADMIN
))
2074 crng_reseed(&primary_crng
, NULL
);
2075 crng_global_init_time
= jiffies
- 1;
2082 static int random_fasync(int fd
, struct file
*filp
, int on
)
2084 return fasync_helper(fd
, filp
, on
, &fasync
);
2087 const struct file_operations random_fops
= {
2088 .read
= random_read
,
2089 .write
= random_write
,
2090 .poll
= random_poll
,
2091 .unlocked_ioctl
= random_ioctl
,
2092 .fasync
= random_fasync
,
2093 .llseek
= noop_llseek
,
2096 const struct file_operations urandom_fops
= {
2097 .read
= urandom_read
,
2098 .write
= random_write
,
2099 .unlocked_ioctl
= random_ioctl
,
2100 .fasync
= random_fasync
,
2101 .llseek
= noop_llseek
,
2104 SYSCALL_DEFINE3(getrandom
, char __user
*, buf
, size_t, count
,
2105 unsigned int, flags
)
2109 if (flags
& ~(GRND_NONBLOCK
|GRND_RANDOM
))
2112 if (count
> INT_MAX
)
2115 if (flags
& GRND_RANDOM
)
2116 return _random_read(flags
& GRND_NONBLOCK
, buf
, count
);
2118 if (!crng_ready()) {
2119 if (flags
& GRND_NONBLOCK
)
2121 ret
= wait_for_random_bytes();
2125 return urandom_read(NULL
, buf
, count
, NULL
);
2128 /********************************************************************
2132 ********************************************************************/
2134 #ifdef CONFIG_SYSCTL
2136 #include <linux/sysctl.h>
2138 static int min_read_thresh
= 8, min_write_thresh
;
2139 static int max_read_thresh
= OUTPUT_POOL_WORDS
* 32;
2140 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
2141 static int random_min_urandom_seed
= 60;
2142 static char sysctl_bootid
[16];
2145 * This function is used to return both the bootid UUID, and random
2146 * UUID. The difference is in whether table->data is NULL; if it is,
2147 * then a new UUID is generated and returned to the user.
2149 * If the user accesses this via the proc interface, the UUID will be
2150 * returned as an ASCII string in the standard UUID format; if via the
2151 * sysctl system call, as 16 bytes of binary data.
2153 static int proc_do_uuid(struct ctl_table
*table
, int write
,
2154 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2156 struct ctl_table fake_table
;
2157 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
2162 generate_random_uuid(uuid
);
2164 static DEFINE_SPINLOCK(bootid_spinlock
);
2166 spin_lock(&bootid_spinlock
);
2168 generate_random_uuid(uuid
);
2169 spin_unlock(&bootid_spinlock
);
2172 sprintf(buf
, "%pU", uuid
);
2174 fake_table
.data
= buf
;
2175 fake_table
.maxlen
= sizeof(buf
);
2177 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
2181 * Return entropy available scaled to integral bits
2183 static int proc_do_entropy(struct ctl_table
*table
, int write
,
2184 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2186 struct ctl_table fake_table
;
2189 entropy_count
= *(int *)table
->data
>> ENTROPY_SHIFT
;
2191 fake_table
.data
= &entropy_count
;
2192 fake_table
.maxlen
= sizeof(entropy_count
);
2194 return proc_dointvec(&fake_table
, write
, buffer
, lenp
, ppos
);
2197 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
2198 extern struct ctl_table random_table
[];
2199 struct ctl_table random_table
[] = {
2201 .procname
= "poolsize",
2202 .data
= &sysctl_poolsize
,
2203 .maxlen
= sizeof(int),
2205 .proc_handler
= proc_dointvec
,
2208 .procname
= "entropy_avail",
2209 .maxlen
= sizeof(int),
2211 .proc_handler
= proc_do_entropy
,
2212 .data
= &input_pool
.entropy_count
,
2215 .procname
= "read_wakeup_threshold",
2216 .data
= &random_read_wakeup_bits
,
2217 .maxlen
= sizeof(int),
2219 .proc_handler
= proc_dointvec_minmax
,
2220 .extra1
= &min_read_thresh
,
2221 .extra2
= &max_read_thresh
,
2224 .procname
= "write_wakeup_threshold",
2225 .data
= &random_write_wakeup_bits
,
2226 .maxlen
= sizeof(int),
2228 .proc_handler
= proc_dointvec_minmax
,
2229 .extra1
= &min_write_thresh
,
2230 .extra2
= &max_write_thresh
,
2233 .procname
= "urandom_min_reseed_secs",
2234 .data
= &random_min_urandom_seed
,
2235 .maxlen
= sizeof(int),
2237 .proc_handler
= proc_dointvec
,
2240 .procname
= "boot_id",
2241 .data
= &sysctl_bootid
,
2244 .proc_handler
= proc_do_uuid
,
2250 .proc_handler
= proc_do_uuid
,
2252 #ifdef ADD_INTERRUPT_BENCH
2254 .procname
= "add_interrupt_avg_cycles",
2255 .data
= &avg_cycles
,
2256 .maxlen
= sizeof(avg_cycles
),
2258 .proc_handler
= proc_doulongvec_minmax
,
2261 .procname
= "add_interrupt_avg_deviation",
2262 .data
= &avg_deviation
,
2263 .maxlen
= sizeof(avg_deviation
),
2265 .proc_handler
= proc_doulongvec_minmax
,
2270 #endif /* CONFIG_SYSCTL */
2272 struct batched_entropy
{
2274 u64 entropy_u64
[CHACHA20_BLOCK_SIZE
/ sizeof(u64
)];
2275 u32 entropy_u32
[CHACHA20_BLOCK_SIZE
/ sizeof(u32
)];
2277 unsigned int position
;
2278 spinlock_t batch_lock
;
2282 * Get a random word for internal kernel use only. The quality of the random
2283 * number is good as /dev/urandom, but there is no backtrack protection, with
2284 * the goal of being quite fast and not depleting entropy. In order to ensure
2285 * that the randomness provided by this function is okay, the function
2286 * wait_for_random_bytes() should be called and return 0 at least once at any
2289 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u64
) = {
2290 .batch_lock
= __SPIN_LOCK_UNLOCKED(batched_entropy_u64
.lock
),
2293 u64
get_random_u64(void)
2296 unsigned long flags
;
2297 struct batched_entropy
*batch
;
2298 static void *previous
;
2300 warn_unseeded_randomness(&previous
);
2302 batch
= raw_cpu_ptr(&batched_entropy_u64
);
2303 spin_lock_irqsave(&batch
->batch_lock
, flags
);
2304 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u64
) == 0) {
2305 extract_crng((u8
*)batch
->entropy_u64
);
2306 batch
->position
= 0;
2308 ret
= batch
->entropy_u64
[batch
->position
++];
2309 spin_unlock_irqrestore(&batch
->batch_lock
, flags
);
2312 EXPORT_SYMBOL(get_random_u64
);
2314 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u32
) = {
2315 .batch_lock
= __SPIN_LOCK_UNLOCKED(batched_entropy_u32
.lock
),
2317 u32
get_random_u32(void)
2320 unsigned long flags
;
2321 struct batched_entropy
*batch
;
2322 static void *previous
;
2324 warn_unseeded_randomness(&previous
);
2326 batch
= raw_cpu_ptr(&batched_entropy_u32
);
2327 spin_lock_irqsave(&batch
->batch_lock
, flags
);
2328 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u32
) == 0) {
2329 extract_crng((u8
*)batch
->entropy_u32
);
2330 batch
->position
= 0;
2332 ret
= batch
->entropy_u32
[batch
->position
++];
2333 spin_unlock_irqrestore(&batch
->batch_lock
, flags
);
2336 EXPORT_SYMBOL(get_random_u32
);
2338 /* It's important to invalidate all potential batched entropy that might
2339 * be stored before the crng is initialized, which we can do lazily by
2340 * simply resetting the counter to zero so that it's re-extracted on the
2342 static void invalidate_batched_entropy(void)
2345 unsigned long flags
;
2347 for_each_possible_cpu (cpu
) {
2348 struct batched_entropy
*batched_entropy
;
2350 batched_entropy
= per_cpu_ptr(&batched_entropy_u32
, cpu
);
2351 spin_lock_irqsave(&batched_entropy
->batch_lock
, flags
);
2352 batched_entropy
->position
= 0;
2353 spin_unlock(&batched_entropy
->batch_lock
);
2355 batched_entropy
= per_cpu_ptr(&batched_entropy_u64
, cpu
);
2356 spin_lock(&batched_entropy
->batch_lock
);
2357 batched_entropy
->position
= 0;
2358 spin_unlock_irqrestore(&batched_entropy
->batch_lock
, flags
);
2363 * randomize_page - Generate a random, page aligned address
2364 * @start: The smallest acceptable address the caller will take.
2365 * @range: The size of the area, starting at @start, within which the
2366 * random address must fall.
2368 * If @start + @range would overflow, @range is capped.
2370 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2371 * @start was already page aligned. We now align it regardless.
2373 * Return: A page aligned address within [start, start + range). On error,
2374 * @start is returned.
2377 randomize_page(unsigned long start
, unsigned long range
)
2379 if (!PAGE_ALIGNED(start
)) {
2380 range
-= PAGE_ALIGN(start
) - start
;
2381 start
= PAGE_ALIGN(start
);
2384 if (start
> ULONG_MAX
- range
)
2385 range
= ULONG_MAX
- start
;
2387 range
>>= PAGE_SHIFT
;
2392 return start
+ (get_random_long() % range
<< PAGE_SHIFT
);
2395 /* Interface for in-kernel drivers of true hardware RNGs.
2396 * Those devices may produce endless random bits and will be throttled
2397 * when our pool is full.
2399 void add_hwgenerator_randomness(const char *buffer
, size_t count
,
2402 struct entropy_store
*poolp
= &input_pool
;
2404 if (unlikely(crng_init
== 0)) {
2405 crng_fast_load(buffer
, count
);
2409 /* Suspend writing if we're above the trickle threshold.
2410 * We'll be woken up again once below random_write_wakeup_thresh,
2411 * or when the calling thread is about to terminate.
2413 wait_event_interruptible(random_write_wait
, kthread_should_stop() ||
2414 ENTROPY_BITS(&input_pool
) <= random_write_wakeup_bits
);
2415 mix_pool_bytes(poolp
, buffer
, count
);
2416 credit_entropy_bits(poolp
, entropy
);
2418 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness
);