1 // SPDX-License-Identifier: GPL-2.0
3 * R9A09G032 clock driver
5 * Copyright (C) 2018 Renesas Electronics Europe Limited
7 * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/math64.h>
17 #include <linux/of_address.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <dt-bindings/clock/r9a06g032-sysctrl.h>
23 struct r9a06g032_gate
{
24 u16 gate
, reset
, ready
, midle
,
28 /* This is used to describe a clock for instantiation */
29 struct r9a06g032_clkdesc
{
33 uint32_t source
: 8; /* source index + 1 (0 == none) */
34 /* these are used to populate the bitsel struct */
36 struct r9a06g032_gate gate
;
39 unsigned int div_min
: 10, div_max
: 10, reg
: 10;
42 /* For fixed-factor ones */
47 unsigned int frequency
;
50 uint16_t group
: 1, index
: 3;
51 u16 sel
, g1
, r1
, g2
, r2
;
56 #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
57 { .gate = _clk, .reset = _rst, \
58 .ready = _rdy, .midle = _midle, \
59 .scon = _scon, .mirack = _mirack, .mistat = _mistat }
60 #define D_GATE(_idx, _n, _src, ...) \
61 { .type = K_GATE, .index = R9A06G032_##_idx, \
62 .source = 1 + R9A06G032_##_src, .name = _n, \
63 .gate = I_GATE(__VA_ARGS__), }
64 #define D_ROOT(_idx, _n, _mul, _div) \
65 { .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
66 .div = _div, .mul = _mul }
67 #define D_FFC(_idx, _n, _src, _div) \
68 { .type = K_FFC, .index = R9A06G032_##_idx, \
69 .source = 1 + R9A06G032_##_src, .name = _n, \
70 .div = _div, .mul = 1}
71 #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
72 { .type = K_DIV, .index = R9A06G032_##_idx, \
73 .source = 1 + R9A06G032_##_src, .name = _n, \
74 .reg = _reg, .div_min = _min, .div_max = _max, \
75 .div_table = { __VA_ARGS__ } }
76 #define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
77 { .type = K_DUALGATE, .index = R9A06G032_##_idx, \
78 .source = 1 + R9A06G032_##_src, .name = _n, \
79 .dual = { .group = _g, .index = _gi, \
80 .g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
82 enum { K_GATE
= 0, K_FFC
, K_DIV
, K_BITSEL
, K_DUALGATE
};
84 /* Internal clock IDs */
85 #define R9A06G032_CLKOUT 0
86 #define R9A06G032_CLKOUT_D10 2
87 #define R9A06G032_CLKOUT_D16 3
88 #define R9A06G032_CLKOUT_D160 4
89 #define R9A06G032_CLKOUT_D1OR2 5
90 #define R9A06G032_CLKOUT_D20 6
91 #define R9A06G032_CLKOUT_D40 7
92 #define R9A06G032_CLKOUT_D5 8
93 #define R9A06G032_CLKOUT_D8 9
94 #define R9A06G032_DIV_ADC 10
95 #define R9A06G032_DIV_I2C 11
96 #define R9A06G032_DIV_NAND 12
97 #define R9A06G032_DIV_P1_PG 13
98 #define R9A06G032_DIV_P2_PG 14
99 #define R9A06G032_DIV_P3_PG 15
100 #define R9A06G032_DIV_P4_PG 16
101 #define R9A06G032_DIV_P5_PG 17
102 #define R9A06G032_DIV_P6_PG 18
103 #define R9A06G032_DIV_QSPI0 19
104 #define R9A06G032_DIV_QSPI1 20
105 #define R9A06G032_DIV_REF_SYNC 21
106 #define R9A06G032_DIV_SDIO0 22
107 #define R9A06G032_DIV_SDIO1 23
108 #define R9A06G032_DIV_SWITCH 24
109 #define R9A06G032_DIV_UART 25
110 #define R9A06G032_DIV_MOTOR 64
111 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78
112 #define R9A06G032_CLK_ECAT100_D4 79
113 #define R9A06G032_CLK_HSR100_D2 80
114 #define R9A06G032_CLK_REF_SYNC_D4 81
115 #define R9A06G032_CLK_REF_SYNC_D8 82
116 #define R9A06G032_CLK_SERCOS100_D2 83
117 #define R9A06G032_DIV_CA7 84
119 #define R9A06G032_UART_GROUP_012 154
120 #define R9A06G032_UART_GROUP_34567 155
122 #define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1)
124 static const struct r9a06g032_clkdesc r9a06g032_clocks
[] __initconst
= {
125 D_ROOT(CLKOUT
, "clkout", 25, 1),
126 D_ROOT(CLK_PLL_USB
, "clk_pll_usb", 12, 10),
127 D_FFC(CLKOUT_D10
, "clkout_d10", CLKOUT
, 10),
128 D_FFC(CLKOUT_D16
, "clkout_d16", CLKOUT
, 16),
129 D_FFC(CLKOUT_D160
, "clkout_d160", CLKOUT
, 160),
130 D_DIV(CLKOUT_D1OR2
, "clkout_d1or2", CLKOUT
, 0, 1, 2),
131 D_FFC(CLKOUT_D20
, "clkout_d20", CLKOUT
, 20),
132 D_FFC(CLKOUT_D40
, "clkout_d40", CLKOUT
, 40),
133 D_FFC(CLKOUT_D5
, "clkout_d5", CLKOUT
, 5),
134 D_FFC(CLKOUT_D8
, "clkout_d8", CLKOUT
, 8),
135 D_DIV(DIV_ADC
, "div_adc", CLKOUT
, 77, 50, 250),
136 D_DIV(DIV_I2C
, "div_i2c", CLKOUT
, 78, 12, 16),
137 D_DIV(DIV_NAND
, "div_nand", CLKOUT
, 82, 12, 32),
138 D_DIV(DIV_P1_PG
, "div_p1_pg", CLKOUT
, 68, 12, 200),
139 D_DIV(DIV_P2_PG
, "div_p2_pg", CLKOUT
, 62, 12, 128),
140 D_DIV(DIV_P3_PG
, "div_p3_pg", CLKOUT
, 64, 8, 128),
141 D_DIV(DIV_P4_PG
, "div_p4_pg", CLKOUT
, 66, 8, 128),
142 D_DIV(DIV_P5_PG
, "div_p5_pg", CLKOUT
, 71, 10, 40),
143 D_DIV(DIV_P6_PG
, "div_p6_pg", CLKOUT
, 18, 12, 64),
144 D_DIV(DIV_QSPI0
, "div_qspi0", CLKOUT
, 73, 3, 7),
145 D_DIV(DIV_QSPI1
, "div_qspi1", CLKOUT
, 25, 3, 7),
146 D_DIV(DIV_REF_SYNC
, "div_ref_sync", CLKOUT
, 56, 2, 16, 2, 4, 8, 16),
147 D_DIV(DIV_SDIO0
, "div_sdio0", CLKOUT
, 74, 20, 128),
148 D_DIV(DIV_SDIO1
, "div_sdio1", CLKOUT
, 75, 20, 128),
149 D_DIV(DIV_SWITCH
, "div_switch", CLKOUT
, 37, 5, 40),
150 D_DIV(DIV_UART
, "div_uart", CLKOUT
, 79, 12, 128),
151 D_GATE(CLK_25_PG4
, "clk_25_pg4", CLKOUT_D40
, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
152 D_GATE(CLK_25_PG5
, "clk_25_pg5", CLKOUT_D40
, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
153 D_GATE(CLK_25_PG6
, "clk_25_pg6", CLKOUT_D40
, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
154 D_GATE(CLK_25_PG7
, "clk_25_pg7", CLKOUT_D40
, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
155 D_GATE(CLK_25_PG8
, "clk_25_pg8", CLKOUT_D40
, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
156 D_GATE(CLK_ADC
, "clk_adc", DIV_ADC
, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
157 D_GATE(CLK_ECAT100
, "clk_ecat100", CLKOUT_D10
, 0x405, 0, 0, 0, 0, 0, 0),
158 D_GATE(CLK_HSR100
, "clk_hsr100", CLKOUT_D10
, 0x483, 0, 0, 0, 0, 0, 0),
159 D_GATE(CLK_I2C0
, "clk_i2c0", DIV_I2C
, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
160 D_GATE(CLK_I2C1
, "clk_i2c1", DIV_I2C
, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
161 D_GATE(CLK_MII_REF
, "clk_mii_ref", CLKOUT_D40
, 0x342, 0, 0, 0, 0, 0, 0),
162 D_GATE(CLK_NAND
, "clk_nand", DIV_NAND
, 0x284, 0x285, 0, 0, 0, 0, 0),
163 D_GATE(CLK_NOUSBP2_PG6
, "clk_nousbp2_pg6", DIV_P2_PG
, 0x774, 0x775, 0, 0, 0, 0, 0),
164 D_GATE(CLK_P1_PG2
, "clk_p1_pg2", DIV_P1_PG
, 0x862, 0x863, 0, 0, 0, 0, 0),
165 D_GATE(CLK_P1_PG3
, "clk_p1_pg3", DIV_P1_PG
, 0x864, 0x865, 0, 0, 0, 0, 0),
166 D_GATE(CLK_P1_PG4
, "clk_p1_pg4", DIV_P1_PG
, 0x866, 0x867, 0, 0, 0, 0, 0),
167 D_GATE(CLK_P4_PG3
, "clk_p4_pg3", DIV_P4_PG
, 0x824, 0x825, 0, 0, 0, 0, 0),
168 D_GATE(CLK_P4_PG4
, "clk_p4_pg4", DIV_P4_PG
, 0x826, 0x827, 0, 0, 0, 0, 0),
169 D_GATE(CLK_P6_PG1
, "clk_p6_pg1", DIV_P6_PG
, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
170 D_GATE(CLK_P6_PG2
, "clk_p6_pg2", DIV_P6_PG
, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
171 D_GATE(CLK_P6_PG3
, "clk_p6_pg3", DIV_P6_PG
, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
172 D_GATE(CLK_P6_PG4
, "clk_p6_pg4", DIV_P6_PG
, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
173 D_GATE(CLK_QSPI0
, "clk_qspi0", DIV_QSPI0
, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
174 D_GATE(CLK_QSPI1
, "clk_qspi1", DIV_QSPI1
, 0x484, 0x485, 0, 0, 0, 0, 0),
175 D_GATE(CLK_RGMII_REF
, "clk_rgmii_ref", CLKOUT_D8
, 0x340, 0, 0, 0, 0, 0, 0),
176 D_GATE(CLK_RMII_REF
, "clk_rmii_ref", CLKOUT_D20
, 0x341, 0, 0, 0, 0, 0, 0),
177 D_GATE(CLK_SDIO0
, "clk_sdio0", DIV_SDIO0
, 0x64, 0, 0, 0, 0, 0, 0),
178 D_GATE(CLK_SDIO1
, "clk_sdio1", DIV_SDIO1
, 0x644, 0, 0, 0, 0, 0, 0),
179 D_GATE(CLK_SERCOS100
, "clk_sercos100", CLKOUT_D10
, 0x425, 0, 0, 0, 0, 0, 0),
180 D_GATE(CLK_SLCD
, "clk_slcd", DIV_P1_PG
, 0x860, 0x861, 0, 0, 0, 0, 0),
181 D_GATE(CLK_SPI0
, "clk_spi0", DIV_P3_PG
, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
182 D_GATE(CLK_SPI1
, "clk_spi1", DIV_P3_PG
, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
183 D_GATE(CLK_SPI2
, "clk_spi2", DIV_P3_PG
, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
184 D_GATE(CLK_SPI3
, "clk_spi3", DIV_P3_PG
, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
185 D_GATE(CLK_SPI4
, "clk_spi4", DIV_P4_PG
, 0x820, 0x821, 0, 0, 0, 0, 0),
186 D_GATE(CLK_SPI5
, "clk_spi5", DIV_P4_PG
, 0x822, 0x823, 0, 0, 0, 0, 0),
187 D_GATE(CLK_SWITCH
, "clk_switch", DIV_SWITCH
, 0x982, 0x983, 0, 0, 0, 0, 0),
188 D_DIV(DIV_MOTOR
, "div_motor", CLKOUT_D5
, 84, 2, 8),
189 D_GATE(HCLK_ECAT125
, "hclk_ecat125", CLKOUT_D8
, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
190 D_GATE(HCLK_PINCONFIG
, "hclk_pinconfig", CLKOUT_D40
, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
191 D_GATE(HCLK_SERCOS
, "hclk_sercos", CLKOUT_D10
, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
192 D_GATE(HCLK_SGPIO2
, "hclk_sgpio2", DIV_P5_PG
, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
193 D_GATE(HCLK_SGPIO3
, "hclk_sgpio3", DIV_P5_PG
, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
194 D_GATE(HCLK_SGPIO4
, "hclk_sgpio4", DIV_P5_PG
, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
195 D_GATE(HCLK_TIMER0
, "hclk_timer0", CLKOUT_D40
, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
196 D_GATE(HCLK_TIMER1
, "hclk_timer1", CLKOUT_D40
, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
197 D_GATE(HCLK_USBF
, "hclk_usbf", CLKOUT_D8
, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
198 D_GATE(HCLK_USBH
, "hclk_usbh", CLKOUT_D8
, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
199 D_GATE(HCLK_USBPM
, "hclk_usbpm", CLKOUT_D8
, 0xe5, 0, 0, 0, 0, 0, 0),
200 D_GATE(CLK_48_PG_F
, "clk_48_pg_f", CLK_48
, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
201 D_GATE(CLK_48_PG4
, "clk_48_pg4", CLK_48
, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
202 D_FFC(CLK_DDRPHY_PLLCLK_D4
, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK
, 4),
203 D_FFC(CLK_ECAT100_D4
, "clk_ecat100_d4", CLK_ECAT100
, 4),
204 D_FFC(CLK_HSR100_D2
, "clk_hsr100_d2", CLK_HSR100
, 2),
205 D_FFC(CLK_REF_SYNC_D4
, "clk_ref_sync_d4", CLK_REF_SYNC
, 4),
206 D_FFC(CLK_REF_SYNC_D8
, "clk_ref_sync_d8", CLK_REF_SYNC
, 8),
207 D_FFC(CLK_SERCOS100_D2
, "clk_sercos100_d2", CLK_SERCOS100
, 2),
208 D_DIV(DIV_CA7
, "div_ca7", CLK_REF_SYNC
, 57, 1, 4, 1, 2, 4),
209 D_GATE(HCLK_CAN0
, "hclk_can0", CLK_48
, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
210 D_GATE(HCLK_CAN1
, "hclk_can1", CLK_48
, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
211 D_GATE(HCLK_DELTASIGMA
, "hclk_deltasigma", DIV_MOTOR
, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
212 D_GATE(HCLK_PWMPTO
, "hclk_pwmpto", DIV_MOTOR
, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
213 D_GATE(HCLK_RSV
, "hclk_rsv", CLK_48
, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
214 D_GATE(HCLK_SGPIO0
, "hclk_sgpio0", DIV_MOTOR
, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
215 D_GATE(HCLK_SGPIO1
, "hclk_sgpio1", DIV_MOTOR
, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
216 D_DIV(RTOS_MDC
, "rtos_mdc", CLK_REF_SYNC
, 100, 80, 640, 80, 160, 320, 640),
217 D_GATE(CLK_CM3
, "clk_cm3", CLK_REF_SYNC_D4
, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
218 D_GATE(CLK_DDRC
, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4
, 0x323, 0x324, 0, 0, 0, 0, 0),
219 D_GATE(CLK_ECAT25
, "clk_ecat25", CLK_ECAT100_D4
, 0x403, 0x404, 0, 0, 0, 0, 0),
220 D_GATE(CLK_HSR50
, "clk_hsr50", CLK_HSR100_D2
, 0x484, 0x485, 0, 0, 0, 0, 0),
221 D_GATE(CLK_HW_RTOS
, "clk_hw_rtos", CLK_REF_SYNC_D4
, 0xc60, 0xc61, 0, 0, 0, 0, 0),
222 D_GATE(CLK_SERCOS50
, "clk_sercos50", CLK_SERCOS100_D2
, 0x424, 0x423, 0, 0, 0, 0, 0),
223 D_GATE(HCLK_ADC
, "hclk_adc", CLK_REF_SYNC_D8
, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
224 D_GATE(HCLK_CM3
, "hclk_cm3", CLK_REF_SYNC_D4
, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
225 D_GATE(HCLK_CRYPTO_EIP150
, "hclk_crypto_eip150", CLK_REF_SYNC_D4
, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
226 D_GATE(HCLK_CRYPTO_EIP93
, "hclk_crypto_eip93", CLK_REF_SYNC_D4
, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
227 D_GATE(HCLK_DDRC
, "hclk_ddrc", CLK_REF_SYNC_D4
, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
228 D_GATE(HCLK_DMA0
, "hclk_dma0", CLK_REF_SYNC_D4
, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
229 D_GATE(HCLK_DMA1
, "hclk_dma1", CLK_REF_SYNC_D4
, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
230 D_GATE(HCLK_GMAC0
, "hclk_gmac0", CLK_REF_SYNC_D4
, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
231 D_GATE(HCLK_GMAC1
, "hclk_gmac1", CLK_REF_SYNC_D4
, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
232 D_GATE(HCLK_GPIO0
, "hclk_gpio0", CLK_REF_SYNC_D4
, 0x212, 0x213, 0x214, 0, 0, 0, 0),
233 D_GATE(HCLK_GPIO1
, "hclk_gpio1", CLK_REF_SYNC_D4
, 0x215, 0x216, 0x217, 0, 0, 0, 0),
234 D_GATE(HCLK_GPIO2
, "hclk_gpio2", CLK_REF_SYNC_D4
, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
235 D_GATE(HCLK_HSR
, "hclk_hsr", CLK_HSR100_D2
, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
236 D_GATE(HCLK_I2C0
, "hclk_i2c0", CLK_REF_SYNC_D8
, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
237 D_GATE(HCLK_I2C1
, "hclk_i2c1", CLK_REF_SYNC_D8
, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
238 D_GATE(HCLK_LCD
, "hclk_lcd", CLK_REF_SYNC_D4
, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
239 D_GATE(HCLK_MSEBI_M
, "hclk_msebi_m", CLK_REF_SYNC_D4
, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
240 D_GATE(HCLK_MSEBI_S
, "hclk_msebi_s", CLK_REF_SYNC_D4
, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
241 D_GATE(HCLK_NAND
, "hclk_nand", CLK_REF_SYNC_D4
, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
242 D_GATE(HCLK_PG_I
, "hclk_pg_i", CLK_REF_SYNC_D4
, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
243 D_GATE(HCLK_PG19
, "hclk_pg19", CLK_REF_SYNC_D4
, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
244 D_GATE(HCLK_PG20
, "hclk_pg20", CLK_REF_SYNC_D4
, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
245 D_GATE(HCLK_PG3
, "hclk_pg3", CLK_REF_SYNC_D4
, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
246 D_GATE(HCLK_PG4
, "hclk_pg4", CLK_REF_SYNC_D4
, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
247 D_GATE(HCLK_QSPI0
, "hclk_qspi0", CLK_REF_SYNC_D4
, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
248 D_GATE(HCLK_QSPI1
, "hclk_qspi1", CLK_REF_SYNC_D4
, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
249 D_GATE(HCLK_ROM
, "hclk_rom", CLK_REF_SYNC_D4
, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
250 D_GATE(HCLK_RTC
, "hclk_rtc", CLK_REF_SYNC_D8
, 0xa00, 0, 0, 0, 0, 0, 0),
251 D_GATE(HCLK_SDIO0
, "hclk_sdio0", CLK_REF_SYNC_D4
, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
252 D_GATE(HCLK_SDIO1
, "hclk_sdio1", CLK_REF_SYNC_D4
, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
253 D_GATE(HCLK_SEMAP
, "hclk_semap", CLK_REF_SYNC_D4
, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
254 D_GATE(HCLK_SPI0
, "hclk_spi0", CLK_REF_SYNC_D4
, 0x200, 0x201, 0x202, 0, 0, 0, 0),
255 D_GATE(HCLK_SPI1
, "hclk_spi1", CLK_REF_SYNC_D4
, 0x203, 0x204, 0x205, 0, 0, 0, 0),
256 D_GATE(HCLK_SPI2
, "hclk_spi2", CLK_REF_SYNC_D4
, 0x206, 0x207, 0x208, 0, 0, 0, 0),
257 D_GATE(HCLK_SPI3
, "hclk_spi3", CLK_REF_SYNC_D4
, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
258 D_GATE(HCLK_SPI4
, "hclk_spi4", CLK_REF_SYNC_D4
, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
259 D_GATE(HCLK_SPI5
, "hclk_spi5", CLK_REF_SYNC_D4
, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
260 D_GATE(HCLK_SWITCH
, "hclk_switch", CLK_REF_SYNC_D4
, 0x980, 0, 0x981, 0, 0, 0, 0),
261 D_GATE(HCLK_SWITCH_RG
, "hclk_switch_rg", CLK_REF_SYNC_D4
, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
262 D_GATE(HCLK_UART0
, "hclk_uart0", CLK_REF_SYNC_D8
, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
263 D_GATE(HCLK_UART1
, "hclk_uart1", CLK_REF_SYNC_D8
, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
264 D_GATE(HCLK_UART2
, "hclk_uart2", CLK_REF_SYNC_D8
, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
265 D_GATE(HCLK_UART3
, "hclk_uart3", CLK_REF_SYNC_D4
, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
266 D_GATE(HCLK_UART4
, "hclk_uart4", CLK_REF_SYNC_D4
, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
267 D_GATE(HCLK_UART5
, "hclk_uart5", CLK_REF_SYNC_D4
, 0x220, 0x221, 0x222, 0, 0, 0, 0),
268 D_GATE(HCLK_UART6
, "hclk_uart6", CLK_REF_SYNC_D4
, 0x223, 0x224, 0x225, 0, 0, 0, 0),
269 D_GATE(HCLK_UART7
, "hclk_uart7", CLK_REF_SYNC_D4
, 0x226, 0x227, 0x228, 0, 0, 0, 0),
271 * These are not hardware clocks, but are needed to handle the special
272 * case where we have a 'selector bit' that doesn't just change the
273 * parent for a clock, but also the gate it's suposed to use.
276 .index
= R9A06G032_UART_GROUP_012
,
277 .name
= "uart_group_012",
279 .source
= 1 + R9A06G032_DIV_UART
,
280 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
281 .dual
.sel
= ((0xec / 4) << 5) | 24,
285 .index
= R9A06G032_UART_GROUP_34567
,
286 .name
= "uart_group_34567",
288 .source
= 1 + R9A06G032_DIV_P2_PG
,
289 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
290 .dual
.sel
= ((0x34 / 4) << 5) | 30,
293 D_UGATE(CLK_UART0
, "clk_uart0", UART_GROUP_012
, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
294 D_UGATE(CLK_UART1
, "clk_uart1", UART_GROUP_012
, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
295 D_UGATE(CLK_UART2
, "clk_uart2", UART_GROUP_012
, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
296 D_UGATE(CLK_UART3
, "clk_uart3", UART_GROUP_34567
, 1, 0, 0x760, 0x761, 0x762, 0x763),
297 D_UGATE(CLK_UART4
, "clk_uart4", UART_GROUP_34567
, 1, 1, 0x764, 0x765, 0x766, 0x767),
298 D_UGATE(CLK_UART5
, "clk_uart5", UART_GROUP_34567
, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
299 D_UGATE(CLK_UART6
, "clk_uart6", UART_GROUP_34567
, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
300 D_UGATE(CLK_UART7
, "clk_uart7", UART_GROUP_34567
, 1, 4, 0x770, 0x771, 0x772, 0x773),
303 struct r9a06g032_priv
{
304 struct clk_onecell_data data
;
305 spinlock_t lock
; /* protects concurent access to gates */
309 /* register/bit pairs are encoded as an uint16_t */
311 clk_rdesc_set(struct r9a06g032_priv
*clocks
,
312 u16 one
, unsigned int on
)
314 u32 __iomem
*reg
= clocks
->reg
+ (4 * (one
>> 5));
315 u32 val
= readl(reg
);
317 val
= (val
& ~(1U << (one
& 0x1f))) | ((!!on
) << (one
& 0x1f));
322 clk_rdesc_get(struct r9a06g032_priv
*clocks
,
325 u32 __iomem
*reg
= clocks
->reg
+ (4 * (one
>> 5));
326 u32 val
= readl(reg
);
328 return !!(val
& (1U << (one
& 0x1f)));
332 * This implements the R9A09G032 clock gate 'driver'. We cannot use the system's
333 * clock gate framework as the gates on the R9A09G032 have a special enabling
334 * sequence, therefore we use this little proxy.
336 struct r9a06g032_clk_gate
{
338 struct r9a06g032_priv
*clocks
;
341 struct r9a06g032_gate gate
;
344 #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
347 r9a06g032_clk_gate_set(struct r9a06g032_priv
*clocks
,
348 struct r9a06g032_gate
*g
, int on
)
354 spin_lock_irqsave(&clocks
->lock
, flags
);
355 clk_rdesc_set(clocks
, g
->gate
, on
);
356 /* De-assert reset */
358 clk_rdesc_set(clocks
, g
->reset
, 1);
359 spin_unlock_irqrestore(&clocks
->lock
, flags
);
361 /* Hardware manual recommends 5us delay after enabling clock & reset */
364 /* If the peripheral is memory mapped (i.e. an AXI slave), there is an
365 * associated SLVRDY bit in the System Controller that needs to be set
366 * so that the FlexWAY bus fabric passes on the read/write requests.
368 if (g
->ready
|| g
->midle
) {
369 spin_lock_irqsave(&clocks
->lock
, flags
);
371 clk_rdesc_set(clocks
, g
->ready
, on
);
372 /* Clear 'Master Idle Request' bit */
374 clk_rdesc_set(clocks
, g
->midle
, !on
);
375 spin_unlock_irqrestore(&clocks
->lock
, flags
);
377 /* Note: We don't wait for FlexWAY Socket Connection signal */
380 static int r9a06g032_clk_gate_enable(struct clk_hw
*hw
)
382 struct r9a06g032_clk_gate
*g
= to_r9a06g032_gate(hw
);
384 r9a06g032_clk_gate_set(g
->clocks
, &g
->gate
, 1);
388 static void r9a06g032_clk_gate_disable(struct clk_hw
*hw
)
390 struct r9a06g032_clk_gate
*g
= to_r9a06g032_gate(hw
);
392 r9a06g032_clk_gate_set(g
->clocks
, &g
->gate
, 0);
395 static int r9a06g032_clk_gate_is_enabled(struct clk_hw
*hw
)
397 struct r9a06g032_clk_gate
*g
= to_r9a06g032_gate(hw
);
399 /* if clock is in reset, the gate might be on, and still not 'be' on */
400 if (g
->gate
.reset
&& !clk_rdesc_get(g
->clocks
, g
->gate
.reset
))
403 return clk_rdesc_get(g
->clocks
, g
->gate
.gate
);
406 static const struct clk_ops r9a06g032_clk_gate_ops
= {
407 .enable
= r9a06g032_clk_gate_enable
,
408 .disable
= r9a06g032_clk_gate_disable
,
409 .is_enabled
= r9a06g032_clk_gate_is_enabled
,
413 r9a06g032_register_gate(struct r9a06g032_priv
*clocks
,
414 const char *parent_name
,
415 const struct r9a06g032_clkdesc
*desc
)
418 struct r9a06g032_clk_gate
*g
;
419 struct clk_init_data init
;
421 g
= kzalloc(sizeof(*g
), GFP_KERNEL
);
425 init
.name
= desc
->name
;
426 init
.ops
= &r9a06g032_clk_gate_ops
;
427 init
.flags
= CLK_IS_BASIC
| CLK_SET_RATE_PARENT
;
428 init
.parent_names
= parent_name
? &parent_name
: NULL
;
429 init
.num_parents
= parent_name
? 1 : 0;
432 g
->index
= desc
->index
;
433 g
->gate
= desc
->gate
;
437 * important here, some clocks are already in use by the CM3, we
438 * have to assume they are not Linux's to play with and try to disable
439 * at the end of the boot!
441 if (r9a06g032_clk_gate_is_enabled(&g
->hw
)) {
442 init
.flags
|= CLK_IS_CRITICAL
;
443 pr_debug("%s was enabled, making read-only\n", desc
->name
);
446 clk
= clk_register(NULL
, &g
->hw
);
454 struct r9a06g032_clk_div
{
456 struct r9a06g032_priv
*clocks
;
461 u16 table
[8]; /* we know there are no more than 8 */
464 #define to_r9a06g032_div(_hw) \
465 container_of(_hw, struct r9a06g032_clk_div, hw)
468 r9a06g032_div_recalc_rate(struct clk_hw
*hw
,
469 unsigned long parent_rate
)
471 struct r9a06g032_clk_div
*clk
= to_r9a06g032_div(hw
);
472 u32 __iomem
*reg
= clk
->clocks
->reg
+ (4 * clk
->reg
);
473 u32 div
= readl(reg
);
477 else if (div
> clk
->max
)
479 return DIV_ROUND_UP(parent_rate
, div
);
483 * Attempts to find a value that is in range of min,max,
484 * and if a table of set dividers was specified for this
485 * register, try to find the fixed divider that is the closest
486 * to the target frequency
489 r9a06g032_div_clamp_div(struct r9a06g032_clk_div
*clk
,
490 unsigned long rate
, unsigned long prate
)
492 /* + 1 to cope with rates that have the remainder dropped */
493 u32 div
= DIV_ROUND_UP(prate
, rate
+ 1);
501 for (i
= 0; clk
->table_size
&& i
< clk
->table_size
- 1; i
++) {
502 if (div
>= clk
->table
[i
] && div
<= clk
->table
[i
+ 1]) {
503 unsigned long m
= rate
-
504 DIV_ROUND_UP(prate
, clk
->table
[i
]);
506 DIV_ROUND_UP(prate
, clk
->table
[i
+ 1]) -
509 * select the divider that generates
510 * the value closest to the ideal frequency
512 div
= p
>= m
? clk
->table
[i
] : clk
->table
[i
+ 1];
520 r9a06g032_div_round_rate(struct clk_hw
*hw
,
521 unsigned long rate
, unsigned long *prate
)
523 struct r9a06g032_clk_div
*clk
= to_r9a06g032_div(hw
);
524 u32 div
= DIV_ROUND_UP(*prate
, rate
);
526 pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__
,
527 hw
->clk
, rate
, *prate
, div
);
528 pr_devel(" min %d (%ld) max %d (%ld)\n",
529 clk
->min
, DIV_ROUND_UP(*prate
, clk
->min
),
530 clk
->max
, DIV_ROUND_UP(*prate
, clk
->max
));
532 div
= r9a06g032_div_clamp_div(clk
, rate
, *prate
);
534 * this is a hack. Currently the serial driver asks for a clock rate
535 * that is 16 times the baud rate -- and that is wildly outside the
536 * range of the UART divider, somehow there is no provision for that
537 * case of 'let the divider as is if outside range'.
538 * The serial driver *shouldn't* play with these clocks anyway, there's
539 * several uarts attached to this divider, and changing this impacts
542 if (clk
->index
== R9A06G032_DIV_UART
||
543 clk
->index
== R9A06G032_DIV_P2_PG
) {
544 pr_devel("%s div uart hack!\n", __func__
);
545 return clk_get_rate(hw
->clk
);
547 pr_devel("%s %pC %ld / %u = %ld\n", __func__
, hw
->clk
,
548 *prate
, div
, DIV_ROUND_UP(*prate
, div
));
549 return DIV_ROUND_UP(*prate
, div
);
553 r9a06g032_div_set_rate(struct clk_hw
*hw
,
554 unsigned long rate
, unsigned long parent_rate
)
556 struct r9a06g032_clk_div
*clk
= to_r9a06g032_div(hw
);
557 /* + 1 to cope with rates that have the remainder dropped */
558 u32 div
= DIV_ROUND_UP(parent_rate
, rate
+ 1);
559 u32 __iomem
*reg
= clk
->clocks
->reg
+ (4 * clk
->reg
);
561 pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__
, hw
->clk
,
562 rate
, parent_rate
, div
);
565 * Need to write the bit 31 with the divider value to
566 * latch it. Technically we should wait until it has been
568 * TODO: Find whether this callback is sleepable, in case
569 * the hardware /does/ require some sort of spinloop here.
571 writel(div
| BIT(31), reg
);
576 static const struct clk_ops r9a06g032_clk_div_ops
= {
577 .recalc_rate
= r9a06g032_div_recalc_rate
,
578 .round_rate
= r9a06g032_div_round_rate
,
579 .set_rate
= r9a06g032_div_set_rate
,
583 r9a06g032_register_div(struct r9a06g032_priv
*clocks
,
584 const char *parent_name
,
585 const struct r9a06g032_clkdesc
*desc
)
587 struct r9a06g032_clk_div
*div
;
589 struct clk_init_data init
;
592 div
= kzalloc(sizeof(*div
), GFP_KERNEL
);
596 init
.name
= desc
->name
;
597 init
.ops
= &r9a06g032_clk_div_ops
;
598 init
.flags
= CLK_IS_BASIC
| CLK_SET_RATE_PARENT
;
599 init
.parent_names
= parent_name
? &parent_name
: NULL
;
600 init
.num_parents
= parent_name
? 1 : 0;
602 div
->clocks
= clocks
;
603 div
->index
= desc
->index
;
604 div
->reg
= desc
->reg
;
605 div
->hw
.init
= &init
;
606 div
->min
= desc
->div_min
;
607 div
->max
= desc
->div_max
;
608 /* populate (optional) divider table fixed values */
609 for (i
= 0; i
< ARRAY_SIZE(div
->table
) &&
610 i
< ARRAY_SIZE(desc
->div_table
) && desc
->div_table
[i
]; i
++) {
611 div
->table
[div
->table_size
++] = desc
->div_table
[i
];
614 clk
= clk_register(NULL
, &div
->hw
);
623 * This clock provider handles the case of the R9A06G032 where you have
624 * peripherals that have two potential clock source and two gates, one for
625 * each of the clock source - the used clock source (for all sub clocks)
626 * is selected by a single bit.
627 * That single bit affects all sub-clocks, and therefore needs to change the
628 * active gate (and turn the others off) and force a recalculation of the rates.
630 * This implements two clock providers, one 'bitselect' that
631 * handles the switch between both parents, and another 'dualgate'
632 * that knows which gate to poke at, depending on the parent's bit position.
634 struct r9a06g032_clk_bitsel
{
636 struct r9a06g032_priv
*clocks
;
638 u16 selector
; /* selector register + bit */
641 #define to_clk_bitselect(_hw) \
642 container_of(_hw, struct r9a06g032_clk_bitsel, hw)
644 static u8
r9a06g032_clk_mux_get_parent(struct clk_hw
*hw
)
646 struct r9a06g032_clk_bitsel
*set
= to_clk_bitselect(hw
);
648 return clk_rdesc_get(set
->clocks
, set
->selector
);
651 static int r9a06g032_clk_mux_set_parent(struct clk_hw
*hw
, u8 index
)
653 struct r9a06g032_clk_bitsel
*set
= to_clk_bitselect(hw
);
655 /* a single bit in the register selects one of two parent clocks */
656 clk_rdesc_set(set
->clocks
, set
->selector
, !!index
);
661 static const struct clk_ops clk_bitselect_ops
= {
662 .get_parent
= r9a06g032_clk_mux_get_parent
,
663 .set_parent
= r9a06g032_clk_mux_set_parent
,
667 r9a06g032_register_bitsel(struct r9a06g032_priv
*clocks
,
668 const char *parent_name
,
669 const struct r9a06g032_clkdesc
*desc
)
672 struct r9a06g032_clk_bitsel
*g
;
673 struct clk_init_data init
;
674 const char *names
[2];
676 /* allocate the gate */
677 g
= kzalloc(sizeof(*g
), GFP_KERNEL
);
681 names
[0] = parent_name
;
682 names
[1] = "clk_pll_usb";
684 init
.name
= desc
->name
;
685 init
.ops
= &clk_bitselect_ops
;
686 init
.flags
= CLK_IS_BASIC
| CLK_SET_RATE_PARENT
;
687 init
.parent_names
= names
;
688 init
.num_parents
= 2;
691 g
->index
= desc
->index
;
692 g
->selector
= desc
->dual
.sel
;
695 clk
= clk_register(NULL
, &g
->hw
);
703 struct r9a06g032_clk_dualgate
{
705 struct r9a06g032_priv
*clocks
;
707 u16 selector
; /* selector register + bit */
708 struct r9a06g032_gate gate
[2];
711 #define to_clk_dualgate(_hw) \
712 container_of(_hw, struct r9a06g032_clk_dualgate, hw)
715 r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate
*g
, int enable
)
717 u8 sel_bit
= clk_rdesc_get(g
->clocks
, g
->selector
);
719 /* we always turn off the 'other' gate, regardless */
720 r9a06g032_clk_gate_set(g
->clocks
, &g
->gate
[!sel_bit
], 0);
721 r9a06g032_clk_gate_set(g
->clocks
, &g
->gate
[sel_bit
], enable
);
726 static int r9a06g032_clk_dualgate_enable(struct clk_hw
*hw
)
728 struct r9a06g032_clk_dualgate
*gate
= to_clk_dualgate(hw
);
730 r9a06g032_clk_dualgate_setenable(gate
, 1);
735 static void r9a06g032_clk_dualgate_disable(struct clk_hw
*hw
)
737 struct r9a06g032_clk_dualgate
*gate
= to_clk_dualgate(hw
);
739 r9a06g032_clk_dualgate_setenable(gate
, 0);
742 static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw
*hw
)
744 struct r9a06g032_clk_dualgate
*g
= to_clk_dualgate(hw
);
745 u8 sel_bit
= clk_rdesc_get(g
->clocks
, g
->selector
);
747 return clk_rdesc_get(g
->clocks
, g
->gate
[sel_bit
].gate
);
750 static const struct clk_ops r9a06g032_clk_dualgate_ops
= {
751 .enable
= r9a06g032_clk_dualgate_enable
,
752 .disable
= r9a06g032_clk_dualgate_disable
,
753 .is_enabled
= r9a06g032_clk_dualgate_is_enabled
,
757 r9a06g032_register_dualgate(struct r9a06g032_priv
*clocks
,
758 const char *parent_name
,
759 const struct r9a06g032_clkdesc
*desc
,
762 struct r9a06g032_clk_dualgate
*g
;
764 struct clk_init_data init
;
766 /* allocate the gate */
767 g
= kzalloc(sizeof(*g
), GFP_KERNEL
);
771 g
->index
= desc
->index
;
773 g
->gate
[0].gate
= desc
->dual
.g1
;
774 g
->gate
[0].reset
= desc
->dual
.r1
;
775 g
->gate
[1].gate
= desc
->dual
.g2
;
776 g
->gate
[1].reset
= desc
->dual
.r2
;
778 init
.name
= desc
->name
;
779 init
.ops
= &r9a06g032_clk_dualgate_ops
;
780 init
.flags
= CLK_IS_BASIC
| CLK_SET_RATE_PARENT
;
781 init
.parent_names
= &parent_name
;
782 init
.num_parents
= 1;
785 * important here, some clocks are already in use by the CM3, we
786 * have to assume they are not Linux's to play with and try to disable
787 * at the end of the boot!
789 if (r9a06g032_clk_dualgate_is_enabled(&g
->hw
)) {
790 init
.flags
|= CLK_IS_CRITICAL
;
791 pr_debug("%s was enabled, making read-only\n", desc
->name
);
794 clk
= clk_register(NULL
, &g
->hw
);
802 static void r9a06g032_clocks_del_clk_provider(void *data
)
804 of_clk_del_provider(data
);
807 static int __init
r9a06g032_clocks_probe(struct platform_device
*pdev
)
809 struct device
*dev
= &pdev
->dev
;
810 struct device_node
*np
= dev
->of_node
;
811 struct r9a06g032_priv
*clocks
;
815 u16 uart_group_sel
[2];
818 clocks
= devm_kzalloc(dev
, sizeof(*clocks
), GFP_KERNEL
);
819 clks
= devm_kcalloc(dev
, R9A06G032_CLOCK_COUNT
, sizeof(struct clk
*),
821 if (!clocks
|| !clks
)
824 spin_lock_init(&clocks
->lock
);
826 clocks
->data
.clks
= clks
;
827 clocks
->data
.clk_num
= R9A06G032_CLOCK_COUNT
;
829 mclk
= devm_clk_get(dev
, "mclk");
831 return PTR_ERR(mclk
);
833 clocks
->reg
= of_iomap(np
, 0);
834 if (WARN_ON(!clocks
->reg
))
836 for (i
= 0; i
< ARRAY_SIZE(r9a06g032_clocks
); ++i
) {
837 const struct r9a06g032_clkdesc
*d
= &r9a06g032_clocks
[i
];
838 const char *parent_name
= d
->source
?
839 __clk_get_name(clocks
->data
.clks
[d
->source
- 1]) :
840 __clk_get_name(mclk
);
841 struct clk
*clk
= NULL
;
845 clk
= clk_register_fixed_factor(NULL
, d
->name
,
850 clk
= r9a06g032_register_gate(clocks
, parent_name
, d
);
853 clk
= r9a06g032_register_div(clocks
, parent_name
, d
);
856 /* keep that selector register around */
857 uart_group_sel
[d
->dual
.group
] = d
->dual
.sel
;
858 clk
= r9a06g032_register_bitsel(clocks
, parent_name
, d
);
861 clk
= r9a06g032_register_dualgate(clocks
, parent_name
,
863 uart_group_sel
[d
->dual
.group
]);
866 clocks
->data
.clks
[d
->index
] = clk
;
868 error
= of_clk_add_provider(np
, of_clk_src_onecell_get
, &clocks
->data
);
872 return devm_add_action_or_reset(dev
,
873 r9a06g032_clocks_del_clk_provider
, np
);
876 static const struct of_device_id r9a06g032_match
[] = {
877 { .compatible
= "renesas,r9a06g032-sysctrl" },
881 static struct platform_driver r9a06g032_clock_driver
= {
883 .name
= "renesas,r9a06g032-sysctrl",
884 .of_match_table
= r9a06g032_match
,
888 static int __init
r9a06g032_clocks_init(void)
890 return platform_driver_probe(&r9a06g032_clock_driver
,
891 r9a06g032_clocks_probe
);
894 subsys_initcall(r9a06g032_clocks_init
);