Linux 4.19.133
[linux/fpc-iii.git] / drivers / cpufreq / cppc_cpufreq.c
blob30f3021497304a5abc9868e54df2c41d17b093e3
1 /*
2 * CPPC (Collaborative Processor Performance Control) driver for
3 * interfacing with the CPUfreq layer and governors. See
4 * cppc_acpi.c for CPPC specific methods.
6 * (C) Copyright 2014, 2015 Linaro Ltd.
7 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
15 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/dmi.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
26 #include <asm/unaligned.h>
28 #include <acpi/cppc_acpi.h>
30 /* Minimum struct length needed for the DMI processor entry we want */
31 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
33 /* Offest in the DMI processor structure for the max frequency */
34 #define DMI_PROCESSOR_MAX_SPEED 0x14
37 * These structs contain information parsed from per CPU
38 * ACPI _CPC structures.
39 * e.g. For each CPU the highest, lowest supported
40 * performance capabilities, desired performance level
41 * requested etc.
43 static struct cppc_cpudata **all_cpu_data;
45 /* Callback function used to retrieve the max frequency from DMI */
46 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
48 const u8 *dmi_data = (const u8 *)dm;
49 u16 *mhz = (u16 *)private;
51 if (dm->type == DMI_ENTRY_PROCESSOR &&
52 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
53 u16 val = (u16)get_unaligned((const u16 *)
54 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
55 *mhz = val > *mhz ? val : *mhz;
59 /* Look up the max frequency in DMI */
60 static u64 cppc_get_dmi_max_khz(void)
62 u16 mhz = 0;
64 dmi_walk(cppc_find_dmi_mhz, &mhz);
67 * Real stupid fallback value, just in case there is no
68 * actual value set.
70 mhz = mhz ? mhz : 1;
72 return (1000 * mhz);
76 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
77 * use them to convert perf to freq and vice versa
79 * If the perf/freq point lies between Nominal and Lowest, we can treat
80 * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
81 * and extrapolate the rest
82 * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
84 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
85 unsigned int perf)
87 static u64 max_khz;
88 struct cppc_perf_caps *caps = &cpu->perf_caps;
89 u64 mul, div;
91 if (caps->lowest_freq && caps->nominal_freq) {
92 if (perf >= caps->nominal_perf) {
93 mul = caps->nominal_freq;
94 div = caps->nominal_perf;
95 } else {
96 mul = caps->nominal_freq - caps->lowest_freq;
97 div = caps->nominal_perf - caps->lowest_perf;
99 } else {
100 if (!max_khz)
101 max_khz = cppc_get_dmi_max_khz();
102 mul = max_khz;
103 div = cpu->perf_caps.highest_perf;
105 return (u64)perf * mul / div;
108 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
109 unsigned int freq)
111 static u64 max_khz;
112 struct cppc_perf_caps *caps = &cpu->perf_caps;
113 u64 mul, div;
115 if (caps->lowest_freq && caps->nominal_freq) {
116 if (freq >= caps->nominal_freq) {
117 mul = caps->nominal_perf;
118 div = caps->nominal_freq;
119 } else {
120 mul = caps->lowest_perf;
121 div = caps->lowest_freq;
123 } else {
124 if (!max_khz)
125 max_khz = cppc_get_dmi_max_khz();
126 mul = cpu->perf_caps.highest_perf;
127 div = max_khz;
130 return (u64)freq * mul / div;
133 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
134 unsigned int target_freq,
135 unsigned int relation)
137 struct cppc_cpudata *cpu;
138 struct cpufreq_freqs freqs;
139 u32 desired_perf;
140 int ret = 0;
142 cpu = all_cpu_data[policy->cpu];
144 desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
145 /* Return if it is exactly the same perf */
146 if (desired_perf == cpu->perf_ctrls.desired_perf)
147 return ret;
149 cpu->perf_ctrls.desired_perf = desired_perf;
150 freqs.old = policy->cur;
151 freqs.new = target_freq;
153 cpufreq_freq_transition_begin(policy, &freqs);
154 ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
155 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
157 if (ret)
158 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
159 cpu->cpu, ret);
161 return ret;
164 static int cppc_verify_policy(struct cpufreq_policy *policy)
166 cpufreq_verify_within_cpu_limits(policy);
167 return 0;
170 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
172 int cpu_num = policy->cpu;
173 struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
174 int ret;
176 cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
178 ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
179 if (ret)
180 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
181 cpu->perf_caps.lowest_perf, cpu_num, ret);
185 * The PCC subspace describes the rate at which platform can accept commands
186 * on the shared PCC channel (including READs which do not count towards freq
187 * trasition requests), so ideally we need to use the PCC values as a fallback
188 * if we don't have a platform specific transition_delay_us
190 #ifdef CONFIG_ARM64
191 #include <asm/cputype.h>
193 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
195 unsigned long implementor = read_cpuid_implementor();
196 unsigned long part_num = read_cpuid_part_number();
197 unsigned int delay_us = 0;
199 switch (implementor) {
200 case ARM_CPU_IMP_QCOM:
201 switch (part_num) {
202 case QCOM_CPU_PART_FALKOR_V1:
203 case QCOM_CPU_PART_FALKOR:
204 delay_us = 10000;
205 break;
206 default:
207 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
208 break;
210 break;
211 default:
212 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
213 break;
216 return delay_us;
219 #else
221 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
223 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
225 #endif
227 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
229 struct cppc_cpudata *cpu;
230 unsigned int cpu_num = policy->cpu;
231 int ret = 0;
233 cpu = all_cpu_data[policy->cpu];
235 cpu->cpu = cpu_num;
236 ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
238 if (ret) {
239 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
240 cpu_num, ret);
241 return ret;
244 /* Convert the lowest and nominal freq from MHz to KHz */
245 cpu->perf_caps.lowest_freq *= 1000;
246 cpu->perf_caps.nominal_freq *= 1000;
249 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
250 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
252 policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
253 policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
256 * Set cpuinfo.min_freq to Lowest to make the full range of performance
257 * available if userspace wants to use any perf between lowest & lowest
258 * nonlinear perf
260 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
261 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
263 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
264 policy->shared_type = cpu->shared_type;
266 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
267 int i;
269 cpumask_copy(policy->cpus, cpu->shared_cpu_map);
271 for_each_cpu(i, policy->cpus) {
272 if (unlikely(i == policy->cpu))
273 continue;
275 memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
276 sizeof(cpu->perf_caps));
278 } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
279 /* Support only SW_ANY for now. */
280 pr_debug("Unsupported CPU co-ord type\n");
281 return -EFAULT;
284 cpu->cur_policy = policy;
286 /* Set policy->cur to max now. The governors will adjust later. */
287 policy->cur = cppc_cpufreq_perf_to_khz(cpu,
288 cpu->perf_caps.highest_perf);
289 cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
291 ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
292 if (ret)
293 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
294 cpu->perf_caps.highest_perf, cpu_num, ret);
296 return ret;
299 static inline u64 get_delta(u64 t1, u64 t0)
301 if (t1 > t0 || t0 > ~(u32)0)
302 return t1 - t0;
304 return (u32)t1 - (u32)t0;
307 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
308 struct cppc_perf_fb_ctrs fb_ctrs_t0,
309 struct cppc_perf_fb_ctrs fb_ctrs_t1)
311 u64 delta_reference, delta_delivered;
312 u64 reference_perf, delivered_perf;
314 reference_perf = fb_ctrs_t0.reference_perf;
316 delta_reference = get_delta(fb_ctrs_t1.reference,
317 fb_ctrs_t0.reference);
318 delta_delivered = get_delta(fb_ctrs_t1.delivered,
319 fb_ctrs_t0.delivered);
321 /* Check to avoid divide-by zero */
322 if (delta_reference || delta_delivered)
323 delivered_perf = (reference_perf * delta_delivered) /
324 delta_reference;
325 else
326 delivered_perf = cpu->perf_ctrls.desired_perf;
328 return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
331 static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
333 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
334 struct cppc_cpudata *cpu = all_cpu_data[cpunum];
335 int ret;
337 ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
338 if (ret)
339 return ret;
341 udelay(2); /* 2usec delay between sampling */
343 ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
344 if (ret)
345 return ret;
347 return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
350 static struct cpufreq_driver cppc_cpufreq_driver = {
351 .flags = CPUFREQ_CONST_LOOPS,
352 .verify = cppc_verify_policy,
353 .target = cppc_cpufreq_set_target,
354 .get = cppc_cpufreq_get_rate,
355 .init = cppc_cpufreq_cpu_init,
356 .stop_cpu = cppc_cpufreq_stop_cpu,
357 .name = "cppc_cpufreq",
360 static int __init cppc_cpufreq_init(void)
362 int i, ret = 0;
363 struct cppc_cpudata *cpu;
365 if (acpi_disabled)
366 return -ENODEV;
368 all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
369 GFP_KERNEL);
370 if (!all_cpu_data)
371 return -ENOMEM;
373 for_each_possible_cpu(i) {
374 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
375 if (!all_cpu_data[i])
376 goto out;
378 cpu = all_cpu_data[i];
379 if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
380 goto out;
383 ret = acpi_get_psd_map(all_cpu_data);
384 if (ret) {
385 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
386 goto out;
389 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
390 if (ret)
391 goto out;
393 return ret;
395 out:
396 for_each_possible_cpu(i) {
397 cpu = all_cpu_data[i];
398 if (!cpu)
399 break;
400 free_cpumask_var(cpu->shared_cpu_map);
401 kfree(cpu);
404 kfree(all_cpu_data);
405 return -ENODEV;
408 static void __exit cppc_cpufreq_exit(void)
410 struct cppc_cpudata *cpu;
411 int i;
413 cpufreq_unregister_driver(&cppc_cpufreq_driver);
415 for_each_possible_cpu(i) {
416 cpu = all_cpu_data[i];
417 free_cpumask_var(cpu->shared_cpu_map);
418 kfree(cpu);
421 kfree(all_cpu_data);
424 module_exit(cppc_cpufreq_exit);
425 MODULE_AUTHOR("Ashwin Chaugule");
426 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
427 MODULE_LICENSE("GPL");
429 late_initcall(cppc_cpufreq_init);
431 static const struct acpi_device_id cppc_acpi_ids[] = {
432 {ACPI_PROCESSOR_DEVICE_HID, },
436 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);