Linux 4.19.133
[linux/fpc-iii.git] / drivers / cpufreq / ia64-acpi-cpufreq.c
blobdd5440d3372d21528f0df5715fcc03e656863b1f
1 /*
2 * This file provides the ACPI based P-state support. This
3 * module works with generic cpufreq infrastructure. Most of
4 * the code is based on i386 version
5 * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
7 * Copyright (C) 2005 Intel Corp
8 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <asm/io.h>
21 #include <linux/uaccess.h>
22 #include <asm/pal.h>
24 #include <linux/acpi.h>
25 #include <acpi/processor.h>
27 MODULE_AUTHOR("Venkatesh Pallipadi");
28 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
29 MODULE_LICENSE("GPL");
32 struct cpufreq_acpi_io {
33 struct acpi_processor_performance acpi_data;
34 unsigned int resume;
37 struct cpufreq_acpi_req {
38 unsigned int cpu;
39 unsigned int state;
42 static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
44 static struct cpufreq_driver acpi_cpufreq_driver;
47 static int
48 processor_set_pstate (
49 u32 value)
51 s64 retval;
53 pr_debug("processor_set_pstate\n");
55 retval = ia64_pal_set_pstate((u64)value);
57 if (retval) {
58 pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n",
59 value, retval);
60 return -ENODEV;
62 return (int)retval;
66 static int
67 processor_get_pstate (
68 u32 *value)
70 u64 pstate_index = 0;
71 s64 retval;
73 pr_debug("processor_get_pstate\n");
75 retval = ia64_pal_get_pstate(&pstate_index,
76 PAL_GET_PSTATE_TYPE_INSTANT);
77 *value = (u32) pstate_index;
79 if (retval)
80 pr_debug("Failed to get current freq with "
81 "error 0x%lx, idx 0x%x\n", retval, *value);
83 return (int)retval;
87 /* To be used only after data->acpi_data is initialized */
88 static unsigned
89 extract_clock (
90 struct cpufreq_acpi_io *data,
91 unsigned value)
93 unsigned long i;
95 pr_debug("extract_clock\n");
97 for (i = 0; i < data->acpi_data.state_count; i++) {
98 if (value == data->acpi_data.states[i].status)
99 return data->acpi_data.states[i].core_frequency;
101 return data->acpi_data.states[i-1].core_frequency;
105 static long
106 processor_get_freq (
107 void *arg)
109 struct cpufreq_acpi_req *req = arg;
110 unsigned int cpu = req->cpu;
111 struct cpufreq_acpi_io *data = acpi_io_data[cpu];
112 u32 value;
113 int ret;
115 pr_debug("processor_get_freq\n");
116 if (smp_processor_id() != cpu)
117 return -EAGAIN;
119 /* processor_get_pstate gets the instantaneous frequency */
120 ret = processor_get_pstate(&value);
121 if (ret) {
122 pr_warn("get performance failed with error %d\n", ret);
123 return ret;
125 return 1000 * extract_clock(data, value);
129 static long
130 processor_set_freq (
131 void *arg)
133 struct cpufreq_acpi_req *req = arg;
134 unsigned int cpu = req->cpu;
135 struct cpufreq_acpi_io *data = acpi_io_data[cpu];
136 int ret, state = req->state;
137 u32 value;
139 pr_debug("processor_set_freq\n");
140 if (smp_processor_id() != cpu)
141 return -EAGAIN;
143 if (state == data->acpi_data.state) {
144 if (unlikely(data->resume)) {
145 pr_debug("Called after resume, resetting to P%d\n", state);
146 data->resume = 0;
147 } else {
148 pr_debug("Already at target state (P%d)\n", state);
149 return 0;
153 pr_debug("Transitioning from P%d to P%d\n",
154 data->acpi_data.state, state);
157 * First we write the target state's 'control' value to the
158 * control_register.
160 value = (u32) data->acpi_data.states[state].control;
162 pr_debug("Transitioning to state: 0x%08x\n", value);
164 ret = processor_set_pstate(value);
165 if (ret) {
166 pr_warn("Transition failed with error %d\n", ret);
167 return -ENODEV;
170 data->acpi_data.state = state;
171 return 0;
175 static unsigned int
176 acpi_cpufreq_get (
177 unsigned int cpu)
179 struct cpufreq_acpi_req req;
180 long ret;
182 req.cpu = cpu;
183 ret = work_on_cpu(cpu, processor_get_freq, &req);
185 return ret > 0 ? (unsigned int) ret : 0;
189 static int
190 acpi_cpufreq_target (
191 struct cpufreq_policy *policy,
192 unsigned int index)
194 struct cpufreq_acpi_req req;
196 req.cpu = policy->cpu;
197 req.state = index;
199 return work_on_cpu(req.cpu, processor_set_freq, &req);
202 static int
203 acpi_cpufreq_cpu_init (
204 struct cpufreq_policy *policy)
206 unsigned int i;
207 unsigned int cpu = policy->cpu;
208 struct cpufreq_acpi_io *data;
209 unsigned int result = 0;
210 struct cpufreq_frequency_table *freq_table;
212 pr_debug("acpi_cpufreq_cpu_init\n");
214 data = kzalloc(sizeof(*data), GFP_KERNEL);
215 if (!data)
216 return (-ENOMEM);
218 acpi_io_data[cpu] = data;
220 result = acpi_processor_register_performance(&data->acpi_data, cpu);
222 if (result)
223 goto err_free;
225 /* capability check */
226 if (data->acpi_data.state_count <= 1) {
227 pr_debug("No P-States\n");
228 result = -ENODEV;
229 goto err_unreg;
232 if ((data->acpi_data.control_register.space_id !=
233 ACPI_ADR_SPACE_FIXED_HARDWARE) ||
234 (data->acpi_data.status_register.space_id !=
235 ACPI_ADR_SPACE_FIXED_HARDWARE)) {
236 pr_debug("Unsupported address space [%d, %d]\n",
237 (u32) (data->acpi_data.control_register.space_id),
238 (u32) (data->acpi_data.status_register.space_id));
239 result = -ENODEV;
240 goto err_unreg;
243 /* alloc freq_table */
244 freq_table = kcalloc(data->acpi_data.state_count + 1,
245 sizeof(*freq_table),
246 GFP_KERNEL);
247 if (!freq_table) {
248 result = -ENOMEM;
249 goto err_unreg;
252 /* detect transition latency */
253 policy->cpuinfo.transition_latency = 0;
254 for (i=0; i<data->acpi_data.state_count; i++) {
255 if ((data->acpi_data.states[i].transition_latency * 1000) >
256 policy->cpuinfo.transition_latency) {
257 policy->cpuinfo.transition_latency =
258 data->acpi_data.states[i].transition_latency * 1000;
262 /* table init */
263 for (i = 0; i <= data->acpi_data.state_count; i++)
265 if (i < data->acpi_data.state_count) {
266 freq_table[i].frequency =
267 data->acpi_data.states[i].core_frequency * 1000;
268 } else {
269 freq_table[i].frequency = CPUFREQ_TABLE_END;
273 policy->freq_table = freq_table;
275 /* notify BIOS that we exist */
276 acpi_processor_notify_smm(THIS_MODULE);
278 pr_info("CPU%u - ACPI performance management activated\n", cpu);
280 for (i = 0; i < data->acpi_data.state_count; i++)
281 pr_debug(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
282 (i == data->acpi_data.state?'*':' '), i,
283 (u32) data->acpi_data.states[i].core_frequency,
284 (u32) data->acpi_data.states[i].power,
285 (u32) data->acpi_data.states[i].transition_latency,
286 (u32) data->acpi_data.states[i].bus_master_latency,
287 (u32) data->acpi_data.states[i].status,
288 (u32) data->acpi_data.states[i].control);
290 /* the first call to ->target() should result in us actually
291 * writing something to the appropriate registers. */
292 data->resume = 1;
294 return (result);
296 err_unreg:
297 acpi_processor_unregister_performance(cpu);
298 err_free:
299 kfree(data);
300 acpi_io_data[cpu] = NULL;
302 return (result);
306 static int
307 acpi_cpufreq_cpu_exit (
308 struct cpufreq_policy *policy)
310 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
312 pr_debug("acpi_cpufreq_cpu_exit\n");
314 if (data) {
315 acpi_io_data[policy->cpu] = NULL;
316 acpi_processor_unregister_performance(policy->cpu);
317 kfree(policy->freq_table);
318 kfree(data);
321 return (0);
325 static struct cpufreq_driver acpi_cpufreq_driver = {
326 .verify = cpufreq_generic_frequency_table_verify,
327 .target_index = acpi_cpufreq_target,
328 .get = acpi_cpufreq_get,
329 .init = acpi_cpufreq_cpu_init,
330 .exit = acpi_cpufreq_cpu_exit,
331 .name = "acpi-cpufreq",
332 .attr = cpufreq_generic_attr,
336 static int __init
337 acpi_cpufreq_init (void)
339 pr_debug("acpi_cpufreq_init\n");
341 return cpufreq_register_driver(&acpi_cpufreq_driver);
345 static void __exit
346 acpi_cpufreq_exit (void)
348 pr_debug("acpi_cpufreq_exit\n");
350 cpufreq_unregister_driver(&acpi_cpufreq_driver);
351 return;
355 late_initcall(acpi_cpufreq_init);
356 module_exit(acpi_cpufreq_exit);