2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/cpu_cooling.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
17 #include <linux/of_address.h>
18 #include <linux/pm_opp.h>
19 #include <linux/platform_device.h>
20 #include <linux/regulator/consumer.h>
22 #define PU_SOC_VOLTAGE_NORMAL 1250000
23 #define PU_SOC_VOLTAGE_HIGH 1275000
24 #define FREQ_1P2_GHZ 1200000000
26 static struct regulator
*arm_reg
;
27 static struct regulator
*pu_reg
;
28 static struct regulator
*soc_reg
;
30 enum IMX6_CPUFREQ_CLKS
{
36 /* MX6UL requires two more clks */
40 #define IMX6Q_CPUFREQ_CLK_NUM 5
41 #define IMX6UL_CPUFREQ_CLK_NUM 7
44 static struct clk_bulk_data clks
[] = {
49 { .id
= "pll2_pfd2_396m" },
51 { .id
= "secondary_sel" },
54 static struct device
*cpu_dev
;
55 static struct thermal_cooling_device
*cdev
;
57 static struct cpufreq_frequency_table
*freq_table
;
58 static unsigned int max_freq
;
59 static unsigned int transition_latency
;
61 static u32
*imx6_soc_volt
;
62 static u32 soc_opp_count
;
64 static int imx6q_set_target(struct cpufreq_policy
*policy
, unsigned int index
)
66 struct dev_pm_opp
*opp
;
67 unsigned long freq_hz
, volt
, volt_old
;
68 unsigned int old_freq
, new_freq
;
69 bool pll1_sys_temp_enabled
= false;
72 new_freq
= freq_table
[index
].frequency
;
73 freq_hz
= new_freq
* 1000;
74 old_freq
= clk_get_rate(clks
[ARM
].clk
) / 1000;
76 opp
= dev_pm_opp_find_freq_ceil(cpu_dev
, &freq_hz
);
78 dev_err(cpu_dev
, "failed to find OPP for %ld\n", freq_hz
);
82 volt
= dev_pm_opp_get_voltage(opp
);
85 volt_old
= regulator_get_voltage(arm_reg
);
87 dev_dbg(cpu_dev
, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
88 old_freq
/ 1000, volt_old
/ 1000,
89 new_freq
/ 1000, volt
/ 1000);
91 /* scaling up? scale voltage before frequency */
92 if (new_freq
> old_freq
) {
93 if (!IS_ERR(pu_reg
)) {
94 ret
= regulator_set_voltage_tol(pu_reg
, imx6_soc_volt
[index
], 0);
96 dev_err(cpu_dev
, "failed to scale vddpu up: %d\n", ret
);
100 ret
= regulator_set_voltage_tol(soc_reg
, imx6_soc_volt
[index
], 0);
102 dev_err(cpu_dev
, "failed to scale vddsoc up: %d\n", ret
);
105 ret
= regulator_set_voltage_tol(arm_reg
, volt
, 0);
108 "failed to scale vddarm up: %d\n", ret
);
114 * The setpoints are selected per PLL/PDF frequencies, so we need to
115 * reprogram PLL for frequency scaling. The procedure of reprogramming
117 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
118 * flow is slightly different from other i.MX6 OSC.
119 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
120 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
121 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
122 * - Disable pll2_pfd2_396m_clk
124 if (of_machine_is_compatible("fsl,imx6ul") ||
125 of_machine_is_compatible("fsl,imx6ull")) {
127 * When changing pll1_sw_clk's parent to pll1_sys_clk,
128 * CPU may run at higher than 528MHz, this will lead to
129 * the system unstable if the voltage is lower than the
130 * voltage of 528MHz, so lower the CPU frequency to one
131 * half before changing CPU frequency.
133 clk_set_rate(clks
[ARM
].clk
, (old_freq
>> 1) * 1000);
134 clk_set_parent(clks
[PLL1_SW
].clk
, clks
[PLL1_SYS
].clk
);
135 if (freq_hz
> clk_get_rate(clks
[PLL2_PFD2_396M
].clk
))
136 clk_set_parent(clks
[SECONDARY_SEL
].clk
,
139 clk_set_parent(clks
[SECONDARY_SEL
].clk
,
140 clks
[PLL2_PFD2_396M
].clk
);
141 clk_set_parent(clks
[STEP
].clk
, clks
[SECONDARY_SEL
].clk
);
142 clk_set_parent(clks
[PLL1_SW
].clk
, clks
[STEP
].clk
);
143 if (freq_hz
> clk_get_rate(clks
[PLL2_BUS
].clk
)) {
144 clk_set_rate(clks
[PLL1_SYS
].clk
, new_freq
* 1000);
145 clk_set_parent(clks
[PLL1_SW
].clk
, clks
[PLL1_SYS
].clk
);
148 clk_set_parent(clks
[STEP
].clk
, clks
[PLL2_PFD2_396M
].clk
);
149 clk_set_parent(clks
[PLL1_SW
].clk
, clks
[STEP
].clk
);
150 if (freq_hz
> clk_get_rate(clks
[PLL2_PFD2_396M
].clk
)) {
151 clk_set_rate(clks
[PLL1_SYS
].clk
, new_freq
* 1000);
152 clk_set_parent(clks
[PLL1_SW
].clk
, clks
[PLL1_SYS
].clk
);
154 /* pll1_sys needs to be enabled for divider rate change to work. */
155 pll1_sys_temp_enabled
= true;
156 clk_prepare_enable(clks
[PLL1_SYS
].clk
);
160 /* Ensure the arm clock divider is what we expect */
161 ret
= clk_set_rate(clks
[ARM
].clk
, new_freq
* 1000);
165 dev_err(cpu_dev
, "failed to set clock rate: %d\n", ret
);
166 ret1
= regulator_set_voltage_tol(arm_reg
, volt_old
, 0);
169 "failed to restore vddarm voltage: %d\n", ret1
);
173 /* PLL1 is only needed until after ARM-PODF is set. */
174 if (pll1_sys_temp_enabled
)
175 clk_disable_unprepare(clks
[PLL1_SYS
].clk
);
177 /* scaling down? scale voltage after frequency */
178 if (new_freq
< old_freq
) {
179 ret
= regulator_set_voltage_tol(arm_reg
, volt
, 0);
182 "failed to scale vddarm down: %d\n", ret
);
185 ret
= regulator_set_voltage_tol(soc_reg
, imx6_soc_volt
[index
], 0);
187 dev_warn(cpu_dev
, "failed to scale vddsoc down: %d\n", ret
);
190 if (!IS_ERR(pu_reg
)) {
191 ret
= regulator_set_voltage_tol(pu_reg
, imx6_soc_volt
[index
], 0);
193 dev_warn(cpu_dev
, "failed to scale vddpu down: %d\n", ret
);
202 static void imx6q_cpufreq_ready(struct cpufreq_policy
*policy
)
204 cdev
= of_cpufreq_cooling_register(policy
);
208 "running cpufreq without cooling device: %ld\n",
212 static int imx6q_cpufreq_init(struct cpufreq_policy
*policy
)
216 policy
->clk
= clks
[ARM
].clk
;
217 ret
= cpufreq_generic_init(policy
, freq_table
, transition_latency
);
218 policy
->suspend_freq
= max_freq
;
223 static int imx6q_cpufreq_exit(struct cpufreq_policy
*policy
)
225 cpufreq_cooling_unregister(cdev
);
230 static struct cpufreq_driver imx6q_cpufreq_driver
= {
231 .flags
= CPUFREQ_NEED_INITIAL_FREQ_CHECK
,
232 .verify
= cpufreq_generic_frequency_table_verify
,
233 .target_index
= imx6q_set_target
,
234 .get
= cpufreq_generic_get
,
235 .init
= imx6q_cpufreq_init
,
236 .exit
= imx6q_cpufreq_exit
,
237 .name
= "imx6q-cpufreq",
238 .ready
= imx6q_cpufreq_ready
,
239 .attr
= cpufreq_generic_attr
,
240 .suspend
= cpufreq_generic_suspend
,
243 #define OCOTP_CFG3 0x440
244 #define OCOTP_CFG3_SPEED_SHIFT 16
245 #define OCOTP_CFG3_SPEED_1P2GHZ 0x3
246 #define OCOTP_CFG3_SPEED_996MHZ 0x2
247 #define OCOTP_CFG3_SPEED_852MHZ 0x1
249 static void imx6q_opp_check_speed_grading(struct device
*dev
)
251 struct device_node
*np
;
255 np
= of_find_compatible_node(NULL
, NULL
, "fsl,imx6q-ocotp");
259 base
= of_iomap(np
, 0);
261 dev_err(dev
, "failed to map ocotp\n");
266 * SPEED_GRADING[1:0] defines the max speed of ARM:
267 * 2b'11: 1200000000Hz;
268 * 2b'10: 996000000Hz;
269 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
270 * 2b'00: 792000000Hz;
271 * We need to set the max speed of ARM according to fuse map.
273 val
= readl_relaxed(base
+ OCOTP_CFG3
);
274 val
>>= OCOTP_CFG3_SPEED_SHIFT
;
277 if (val
< OCOTP_CFG3_SPEED_996MHZ
)
278 if (dev_pm_opp_disable(dev
, 996000000))
279 dev_warn(dev
, "failed to disable 996MHz OPP\n");
281 if (of_machine_is_compatible("fsl,imx6q") ||
282 of_machine_is_compatible("fsl,imx6qp")) {
283 if (val
!= OCOTP_CFG3_SPEED_852MHZ
)
284 if (dev_pm_opp_disable(dev
, 852000000))
285 dev_warn(dev
, "failed to disable 852MHz OPP\n");
286 if (val
!= OCOTP_CFG3_SPEED_1P2GHZ
)
287 if (dev_pm_opp_disable(dev
, 1200000000))
288 dev_warn(dev
, "failed to disable 1.2GHz OPP\n");
295 #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2
296 #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2
297 #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3
299 static int imx6ul_opp_check_speed_grading(struct device
*dev
)
304 if (of_find_property(dev
->of_node
, "nvmem-cells", NULL
)) {
305 ret
= nvmem_cell_read_u32(dev
, "speed_grade", &val
);
309 struct device_node
*np
;
312 np
= of_find_compatible_node(NULL
, NULL
, "fsl,imx6ul-ocotp");
314 np
= of_find_compatible_node(NULL
, NULL
,
315 "fsl,imx6ull-ocotp");
319 base
= of_iomap(np
, 0);
322 dev_err(dev
, "failed to map ocotp\n");
326 val
= readl_relaxed(base
+ OCOTP_CFG3
);
331 * Speed GRADING[1:0] defines the max speed of ARM:
333 * 2b'01: 528000000Hz;
334 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
335 * 2b'11: 900000000Hz on i.MX6ULL only;
336 * We need to set the max speed of ARM according to fuse map.
338 val
>>= OCOTP_CFG3_SPEED_SHIFT
;
341 if (of_machine_is_compatible("fsl,imx6ul")) {
342 if (val
!= OCOTP_CFG3_6UL_SPEED_696MHZ
)
343 if (dev_pm_opp_disable(dev
, 696000000))
344 dev_warn(dev
, "failed to disable 696MHz OPP\n");
347 if (of_machine_is_compatible("fsl,imx6ull")) {
348 if (val
!= OCOTP_CFG3_6ULL_SPEED_792MHZ
)
349 if (dev_pm_opp_disable(dev
, 792000000))
350 dev_warn(dev
, "failed to disable 792MHz OPP\n");
352 if (val
!= OCOTP_CFG3_6ULL_SPEED_900MHZ
)
353 if (dev_pm_opp_disable(dev
, 900000000))
354 dev_warn(dev
, "failed to disable 900MHz OPP\n");
360 static int imx6q_cpufreq_probe(struct platform_device
*pdev
)
362 struct device_node
*np
;
363 struct dev_pm_opp
*opp
;
364 unsigned long min_volt
, max_volt
;
366 const struct property
*prop
;
370 cpu_dev
= get_cpu_device(0);
372 pr_err("failed to get cpu0 device\n");
376 np
= of_node_get(cpu_dev
->of_node
);
378 dev_err(cpu_dev
, "failed to find cpu0 node\n");
382 if (of_machine_is_compatible("fsl,imx6ul") ||
383 of_machine_is_compatible("fsl,imx6ull"))
384 num_clks
= IMX6UL_CPUFREQ_CLK_NUM
;
386 num_clks
= IMX6Q_CPUFREQ_CLK_NUM
;
388 ret
= clk_bulk_get(cpu_dev
, num_clks
, clks
);
392 arm_reg
= regulator_get(cpu_dev
, "arm");
393 pu_reg
= regulator_get_optional(cpu_dev
, "pu");
394 soc_reg
= regulator_get(cpu_dev
, "soc");
395 if (PTR_ERR(arm_reg
) == -EPROBE_DEFER
||
396 PTR_ERR(soc_reg
) == -EPROBE_DEFER
||
397 PTR_ERR(pu_reg
) == -EPROBE_DEFER
) {
399 dev_dbg(cpu_dev
, "regulators not ready, defer\n");
402 if (IS_ERR(arm_reg
) || IS_ERR(soc_reg
)) {
403 dev_err(cpu_dev
, "failed to get regulators\n");
408 ret
= dev_pm_opp_of_add_table(cpu_dev
);
410 dev_err(cpu_dev
, "failed to init OPP table: %d\n", ret
);
414 if (of_machine_is_compatible("fsl,imx6ul") ||
415 of_machine_is_compatible("fsl,imx6ull")) {
416 ret
= imx6ul_opp_check_speed_grading(cpu_dev
);
417 if (ret
== -EPROBE_DEFER
)
420 dev_err(cpu_dev
, "failed to read ocotp: %d\n",
425 imx6q_opp_check_speed_grading(cpu_dev
);
428 /* Because we have added the OPPs here, we must free them */
430 num
= dev_pm_opp_get_opp_count(cpu_dev
);
433 dev_err(cpu_dev
, "no OPP table is found: %d\n", ret
);
437 ret
= dev_pm_opp_init_cpufreq_table(cpu_dev
, &freq_table
);
439 dev_err(cpu_dev
, "failed to init cpufreq table: %d\n", ret
);
443 /* Make imx6_soc_volt array's size same as arm opp number */
444 imx6_soc_volt
= devm_kcalloc(cpu_dev
, num
, sizeof(*imx6_soc_volt
),
446 if (imx6_soc_volt
== NULL
) {
448 goto free_freq_table
;
451 prop
= of_find_property(np
, "fsl,soc-operating-points", NULL
);
452 if (!prop
|| !prop
->value
)
456 * Each OPP is a set of tuples consisting of frequency and
457 * voltage like <freq-kHz vol-uV>.
459 nr
= prop
->length
/ sizeof(u32
);
460 if (nr
% 2 || (nr
/ 2) < num
)
463 for (j
= 0; j
< num
; j
++) {
465 for (i
= 0; i
< nr
/ 2; i
++) {
466 unsigned long freq
= be32_to_cpup(val
++);
467 unsigned long volt
= be32_to_cpup(val
++);
468 if (freq_table
[j
].frequency
== freq
) {
469 imx6_soc_volt
[soc_opp_count
++] = volt
;
476 /* use fixed soc opp volt if no valid soc opp info found in dtb */
477 if (soc_opp_count
!= num
) {
478 dev_warn(cpu_dev
, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
479 for (j
= 0; j
< num
; j
++)
480 imx6_soc_volt
[j
] = PU_SOC_VOLTAGE_NORMAL
;
481 if (freq_table
[num
- 1].frequency
* 1000 == FREQ_1P2_GHZ
)
482 imx6_soc_volt
[num
- 1] = PU_SOC_VOLTAGE_HIGH
;
485 if (of_property_read_u32(np
, "clock-latency", &transition_latency
))
486 transition_latency
= CPUFREQ_ETERNAL
;
489 * Calculate the ramp time for max voltage change in the
490 * VDDSOC and VDDPU regulators.
492 ret
= regulator_set_voltage_time(soc_reg
, imx6_soc_volt
[0], imx6_soc_volt
[num
- 1]);
494 transition_latency
+= ret
* 1000;
495 if (!IS_ERR(pu_reg
)) {
496 ret
= regulator_set_voltage_time(pu_reg
, imx6_soc_volt
[0], imx6_soc_volt
[num
- 1]);
498 transition_latency
+= ret
* 1000;
502 * OPP is maintained in order of increasing frequency, and
503 * freq_table initialised from OPP is therefore sorted in the
506 max_freq
= freq_table
[--num
].frequency
;
507 opp
= dev_pm_opp_find_freq_exact(cpu_dev
,
508 freq_table
[0].frequency
* 1000, true);
509 min_volt
= dev_pm_opp_get_voltage(opp
);
511 opp
= dev_pm_opp_find_freq_exact(cpu_dev
, max_freq
* 1000, true);
512 max_volt
= dev_pm_opp_get_voltage(opp
);
515 ret
= regulator_set_voltage_time(arm_reg
, min_volt
, max_volt
);
517 transition_latency
+= ret
* 1000;
519 ret
= cpufreq_register_driver(&imx6q_cpufreq_driver
);
521 dev_err(cpu_dev
, "failed register driver: %d\n", ret
);
522 goto free_freq_table
;
529 dev_pm_opp_free_cpufreq_table(cpu_dev
, &freq_table
);
532 dev_pm_opp_of_remove_table(cpu_dev
);
534 if (!IS_ERR(arm_reg
))
535 regulator_put(arm_reg
);
537 regulator_put(pu_reg
);
538 if (!IS_ERR(soc_reg
))
539 regulator_put(soc_reg
);
541 clk_bulk_put(num_clks
, clks
);
548 static int imx6q_cpufreq_remove(struct platform_device
*pdev
)
550 cpufreq_unregister_driver(&imx6q_cpufreq_driver
);
551 dev_pm_opp_free_cpufreq_table(cpu_dev
, &freq_table
);
553 dev_pm_opp_of_remove_table(cpu_dev
);
554 regulator_put(arm_reg
);
556 regulator_put(pu_reg
);
557 regulator_put(soc_reg
);
559 clk_bulk_put(num_clks
, clks
);
564 static struct platform_driver imx6q_cpufreq_platdrv
= {
566 .name
= "imx6q-cpufreq",
568 .probe
= imx6q_cpufreq_probe
,
569 .remove
= imx6q_cpufreq_remove
,
571 module_platform_driver(imx6q_cpufreq_platdrv
);
573 MODULE_ALIAS("platform:imx6q-cpufreq");
574 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
575 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
576 MODULE_LICENSE("GPL");