2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
33 #include <asm/div64.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 static inline int32_t mul_fp(int32_t x
, int32_t y
)
60 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
63 static inline int32_t div_fp(s64 x
, s64 y
)
65 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
68 static inline int ceiling_fp(int32_t x
)
73 mask
= (1 << FRAC_BITS
) - 1;
79 static inline int32_t percent_fp(int percent
)
81 return div_fp(percent
, 100);
84 static inline u64
mul_ext_fp(u64 x
, u64 y
)
86 return (x
* y
) >> EXT_FRAC_BITS
;
89 static inline u64
div_ext_fp(u64 x
, u64 y
)
91 return div64_u64(x
<< EXT_FRAC_BITS
, y
);
94 static inline int32_t percent_ext_fp(int percent
)
96 return div_ext_fp(percent
, 100);
100 * struct sample - Store performance sample
101 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
102 * performance during last sample period
103 * @busy_scaled: Scaled busy value which is used to calculate next
104 * P state. This can be different than core_avg_perf
105 * to account for cpu idle period
106 * @aperf: Difference of actual performance frequency clock count
107 * read from APERF MSR between last and current sample
108 * @mperf: Difference of maximum performance frequency clock count
109 * read from MPERF MSR between last and current sample
110 * @tsc: Difference of time stamp counter between last and
112 * @time: Current time from scheduler
114 * This structure is used in the cpudata structure to store performance sample
115 * data for choosing next P State.
118 int32_t core_avg_perf
;
127 * struct pstate_data - Store P state data
128 * @current_pstate: Current requested P state
129 * @min_pstate: Min P state possible for this platform
130 * @max_pstate: Max P state possible for this platform
131 * @max_pstate_physical:This is physical Max P state for a processor
132 * This can be higher than the max_pstate which can
133 * be limited by platform thermal design power limits
134 * @scaling: Scaling factor to convert frequency to cpufreq
136 * @turbo_pstate: Max Turbo P state possible for this platform
137 * @max_freq: @max_pstate frequency in cpufreq units
138 * @turbo_freq: @turbo_pstate frequency in cpufreq units
140 * Stores the per cpu model P state limits and current P state.
146 int max_pstate_physical
;
149 unsigned int max_freq
;
150 unsigned int turbo_freq
;
154 * struct vid_data - Stores voltage information data
155 * @min: VID data for this platform corresponding to
157 * @max: VID data corresponding to the highest P State.
158 * @turbo: VID data for turbo P state
159 * @ratio: Ratio of (vid max - vid min) /
160 * (max P state - Min P State)
162 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163 * This data is used in Atom platforms, where in addition to target P state,
164 * the voltage data needs to be specified to select next P State.
174 * struct global_params - Global parameters, mostly tunable via sysfs.
175 * @no_turbo: Whether or not to use turbo P-states.
176 * @turbo_disabled: Whethet or not turbo P-states are available at all,
177 * based on the MSR_IA32_MISC_ENABLE value and whether or
178 * not the maximum reported turbo P-state is different from
179 * the maximum reported non-turbo one.
180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
185 struct global_params
{
193 * struct cpudata - Per CPU instance data storage
194 * @cpu: CPU number for this instance data
195 * @policy: CPUFreq policy value
196 * @update_util: CPUFreq utility callback information
197 * @update_util_set: CPUFreq utility callback is set
198 * @iowait_boost: iowait-related boost fraction
199 * @last_update: Time of the last update.
200 * @pstate: Stores P state limits for this CPU
201 * @vid: Stores VID limits for this CPU
202 * @last_sample_time: Last Sample time
203 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
204 * This shift is a multiplier to mperf delta to
205 * calculate CPU busy.
206 * @prev_aperf: Last APERF value read from APERF MSR
207 * @prev_mperf: Last MPERF value read from MPERF MSR
208 * @prev_tsc: Last timestamp counter (TSC) value
209 * @prev_cummulative_iowait: IO Wait time difference from last and
211 * @sample: Storage for storing last Sample data
212 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
213 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
214 * @acpi_perf_data: Stores ACPI perf information read from _PSS
215 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
216 * @epp_powersave: Last saved HWP energy performance preference
217 * (EPP) or energy performance bias (EPB),
218 * when policy switched to performance
219 * @epp_policy: Last saved policy used to set EPP/EPB
220 * @epp_default: Power on default HWP energy performance
222 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
224 * @hwp_req_cached: Cached value of the last HWP Request MSR
225 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
226 * @last_io_update: Last time when IO wake flag was set
227 * @sched_flags: Store scheduler flags for possible cross CPU update
228 * @hwp_boost_min: Last HWP boosted min performance
230 * This structure stores per CPU instance data for all CPUs.
236 struct update_util_data update_util
;
237 bool update_util_set
;
239 struct pstate_data pstate
;
243 u64 last_sample_time
;
244 u64 aperf_mperf_shift
;
248 u64 prev_cummulative_iowait
;
249 struct sample sample
;
250 int32_t min_perf_ratio
;
251 int32_t max_perf_ratio
;
253 struct acpi_processor_performance acpi_perf_data
;
254 bool valid_pss_table
;
256 unsigned int iowait_boost
;
264 unsigned int sched_flags
;
268 static struct cpudata
**all_cpu_data
;
271 * struct pstate_funcs - Per CPU model specific callbacks
272 * @get_max: Callback to get maximum non turbo effective P state
273 * @get_max_physical: Callback to get maximum non turbo physical P state
274 * @get_min: Callback to get minimum P state
275 * @get_turbo: Callback to get turbo P state
276 * @get_scaling: Callback to get frequency scaling factor
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
283 struct pstate_funcs
{
284 int (*get_max
)(void);
285 int (*get_max_physical
)(void);
286 int (*get_min
)(void);
287 int (*get_turbo
)(void);
288 int (*get_scaling
)(void);
289 int (*get_aperf_mperf_shift
)(void);
290 u64 (*get_val
)(struct cpudata
*, int pstate
);
291 void (*get_vid
)(struct cpudata
*);
294 static struct pstate_funcs pstate_funcs __read_mostly
;
296 static int hwp_active __read_mostly
;
297 static int hwp_mode_bdw __read_mostly
;
298 static bool per_cpu_limits __read_mostly
;
299 static bool hwp_boost __read_mostly
;
301 static struct cpufreq_driver
*intel_pstate_driver __read_mostly
;
304 static bool acpi_ppc
;
307 static struct global_params global
;
309 static DEFINE_MUTEX(intel_pstate_driver_lock
);
310 static DEFINE_MUTEX(intel_pstate_limits_lock
);
314 static bool intel_pstate_acpi_pm_profile_server(void)
316 if (acpi_gbl_FADT
.preferred_profile
== PM_ENTERPRISE_SERVER
||
317 acpi_gbl_FADT
.preferred_profile
== PM_PERFORMANCE_SERVER
)
323 static bool intel_pstate_get_ppc_enable_status(void)
325 if (intel_pstate_acpi_pm_profile_server())
331 #ifdef CONFIG_ACPI_CPPC_LIB
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct
*work
)
336 sched_set_itmt_support();
339 static DECLARE_WORK(sched_itmt_work
, intel_pstste_sched_itmt_work_fn
);
341 static void intel_pstate_set_itmt_prio(int cpu
)
343 struct cppc_perf_caps cppc_perf
;
344 static u32 max_highest_perf
= 0, min_highest_perf
= U32_MAX
;
347 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
352 * The priorities can be set regardless of whether or not
353 * sched_set_itmt_support(true) has been called and it is valid to
354 * update them at any time after it has been called.
356 sched_set_itmt_core_prio(cppc_perf
.highest_perf
, cpu
);
358 if (max_highest_perf
<= min_highest_perf
) {
359 if (cppc_perf
.highest_perf
> max_highest_perf
)
360 max_highest_perf
= cppc_perf
.highest_perf
;
362 if (cppc_perf
.highest_perf
< min_highest_perf
)
363 min_highest_perf
= cppc_perf
.highest_perf
;
365 if (max_highest_perf
> min_highest_perf
) {
367 * This code can be run during CPU online under the
368 * CPU hotplug locks, so sched_set_itmt_support()
369 * cannot be called from here. Queue up a work item
372 schedule_work(&sched_itmt_work
);
377 static void intel_pstate_set_itmt_prio(int cpu
)
382 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
389 intel_pstate_set_itmt_prio(policy
->cpu
);
393 if (!intel_pstate_get_ppc_enable_status())
396 cpu
= all_cpu_data
[policy
->cpu
];
398 ret
= acpi_processor_register_performance(&cpu
->acpi_perf_data
,
404 * Check if the control value in _PSS is for PERF_CTL MSR, which should
405 * guarantee that the states returned by it map to the states in our
408 if (cpu
->acpi_perf_data
.control_register
.space_id
!=
409 ACPI_ADR_SPACE_FIXED_HARDWARE
)
413 * If there is only one entry _PSS, simply ignore _PSS and continue as
414 * usual without taking _PSS into account
416 if (cpu
->acpi_perf_data
.state_count
< 2)
419 pr_debug("CPU%u - ACPI _PSS perf data\n", policy
->cpu
);
420 for (i
= 0; i
< cpu
->acpi_perf_data
.state_count
; i
++) {
421 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
422 (i
== cpu
->acpi_perf_data
.state
? '*' : ' '), i
,
423 (u32
) cpu
->acpi_perf_data
.states
[i
].core_frequency
,
424 (u32
) cpu
->acpi_perf_data
.states
[i
].power
,
425 (u32
) cpu
->acpi_perf_data
.states
[i
].control
);
429 * The _PSS table doesn't contain whole turbo frequency range.
430 * This just contains +1 MHZ above the max non turbo frequency,
431 * with control value corresponding to max turbo ratio. But
432 * when cpufreq set policy is called, it will call with this
433 * max frequency, which will cause a reduced performance as
434 * this driver uses real max turbo frequency as the max
435 * frequency. So correct this frequency in _PSS table to
436 * correct max turbo frequency based on the turbo state.
437 * Also need to convert to MHz as _PSS freq is in MHz.
439 if (!global
.turbo_disabled
)
440 cpu
->acpi_perf_data
.states
[0].core_frequency
=
441 policy
->cpuinfo
.max_freq
/ 1000;
442 cpu
->valid_pss_table
= true;
443 pr_debug("_PPC limits will be enforced\n");
448 cpu
->valid_pss_table
= false;
449 acpi_processor_unregister_performance(policy
->cpu
);
452 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
456 cpu
= all_cpu_data
[policy
->cpu
];
457 if (!cpu
->valid_pss_table
)
460 acpi_processor_unregister_performance(policy
->cpu
);
463 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
467 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
471 static inline bool intel_pstate_acpi_pm_profile_server(void)
477 static inline void update_turbo_state(void)
482 cpu
= all_cpu_data
[0];
483 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
484 global
.turbo_disabled
=
485 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
486 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
489 static int min_perf_pct_min(void)
491 struct cpudata
*cpu
= all_cpu_data
[0];
492 int turbo_pstate
= cpu
->pstate
.turbo_pstate
;
494 return turbo_pstate
?
495 (cpu
->pstate
.min_pstate
* 100 / turbo_pstate
) : 0;
498 static s16
intel_pstate_get_epb(struct cpudata
*cpu_data
)
503 if (!static_cpu_has(X86_FEATURE_EPB
))
506 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
510 return (s16
)(epb
& 0x0f);
513 static s16
intel_pstate_get_epp(struct cpudata
*cpu_data
, u64 hwp_req_data
)
517 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
519 * When hwp_req_data is 0, means that caller didn't read
520 * MSR_HWP_REQUEST, so need to read and get EPP.
523 epp
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
,
528 epp
= (hwp_req_data
>> 24) & 0xff;
530 /* When there is no EPP present, HWP uses EPB settings */
531 epp
= intel_pstate_get_epb(cpu_data
);
537 static int intel_pstate_set_epb(int cpu
, s16 pref
)
542 if (!static_cpu_has(X86_FEATURE_EPB
))
545 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
549 epb
= (epb
& ~0x0f) | pref
;
550 wrmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, epb
);
556 * EPP/EPB display strings corresponding to EPP index in the
557 * energy_perf_strings[]
559 *-------------------------------------
562 * 2 balance_performance
566 static const char * const energy_perf_strings
[] = {
569 "balance_performance",
574 static const unsigned int epp_values
[] = {
576 HWP_EPP_BALANCE_PERFORMANCE
,
577 HWP_EPP_BALANCE_POWERSAVE
,
581 static int intel_pstate_get_energy_pref_index(struct cpudata
*cpu_data
)
586 epp
= intel_pstate_get_epp(cpu_data
, 0);
590 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
591 if (epp
== HWP_EPP_PERFORMANCE
)
593 if (epp
<= HWP_EPP_BALANCE_PERFORMANCE
)
595 if (epp
<= HWP_EPP_BALANCE_POWERSAVE
)
599 } else if (static_cpu_has(X86_FEATURE_EPB
)) {
602 * 0x00-0x03 : Performance
603 * 0x04-0x07 : Balance performance
604 * 0x08-0x0B : Balance power
606 * The EPB is a 4 bit value, but our ranges restrict the
607 * value which can be set. Here only using top two bits
610 index
= (epp
>> 2) + 1;
616 static int intel_pstate_set_energy_pref_index(struct cpudata
*cpu_data
,
623 epp
= cpu_data
->epp_default
;
625 mutex_lock(&intel_pstate_limits_lock
);
627 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
630 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, &value
);
634 value
&= ~GENMASK_ULL(31, 24);
637 epp
= epp_values
[pref_index
- 1];
639 value
|= (u64
)epp
<< 24;
640 ret
= wrmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, value
);
643 epp
= (pref_index
- 1) << 2;
644 ret
= intel_pstate_set_epb(cpu_data
->cpu
, epp
);
647 mutex_unlock(&intel_pstate_limits_lock
);
652 static ssize_t
show_energy_performance_available_preferences(
653 struct cpufreq_policy
*policy
, char *buf
)
658 while (energy_perf_strings
[i
] != NULL
)
659 ret
+= sprintf(&buf
[ret
], "%s ", energy_perf_strings
[i
++]);
661 ret
+= sprintf(&buf
[ret
], "\n");
666 cpufreq_freq_attr_ro(energy_performance_available_preferences
);
668 static ssize_t
store_energy_performance_preference(
669 struct cpufreq_policy
*policy
, const char *buf
, size_t count
)
671 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
672 char str_preference
[21];
675 ret
= sscanf(buf
, "%20s", str_preference
);
679 ret
= match_string(energy_perf_strings
, -1, str_preference
);
683 intel_pstate_set_energy_pref_index(cpu_data
, ret
);
687 static ssize_t
show_energy_performance_preference(
688 struct cpufreq_policy
*policy
, char *buf
)
690 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
693 preference
= intel_pstate_get_energy_pref_index(cpu_data
);
697 return sprintf(buf
, "%s\n", energy_perf_strings
[preference
]);
700 cpufreq_freq_attr_rw(energy_performance_preference
);
702 static struct freq_attr
*hwp_cpufreq_attrs
[] = {
703 &energy_performance_preference
,
704 &energy_performance_available_preferences
,
708 static void intel_pstate_get_hwp_max(unsigned int cpu
, int *phy_max
,
713 rdmsrl_on_cpu(cpu
, MSR_HWP_CAPABILITIES
, &cap
);
714 WRITE_ONCE(all_cpu_data
[cpu
]->hwp_cap_cached
, cap
);
716 *current_max
= HWP_GUARANTEED_PERF(cap
);
718 *current_max
= HWP_HIGHEST_PERF(cap
);
720 *phy_max
= HWP_HIGHEST_PERF(cap
);
723 static void intel_pstate_hwp_set(unsigned int cpu
)
725 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
730 max
= cpu_data
->max_perf_ratio
;
731 min
= cpu_data
->min_perf_ratio
;
733 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
)
736 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
738 value
&= ~HWP_MIN_PERF(~0L);
739 value
|= HWP_MIN_PERF(min
);
741 value
&= ~HWP_MAX_PERF(~0L);
742 value
|= HWP_MAX_PERF(max
);
744 if (cpu_data
->epp_policy
== cpu_data
->policy
)
747 cpu_data
->epp_policy
= cpu_data
->policy
;
749 if (cpu_data
->epp_saved
>= 0) {
750 epp
= cpu_data
->epp_saved
;
751 cpu_data
->epp_saved
= -EINVAL
;
755 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
756 epp
= intel_pstate_get_epp(cpu_data
, value
);
757 cpu_data
->epp_powersave
= epp
;
758 /* If EPP read was failed, then don't try to write */
764 /* skip setting EPP, when saved value is invalid */
765 if (cpu_data
->epp_powersave
< 0)
769 * No need to restore EPP when it is not zero. This
771 * - Policy is not changed
772 * - user has manually changed
773 * - Error reading EPB
775 epp
= intel_pstate_get_epp(cpu_data
, value
);
779 epp
= cpu_data
->epp_powersave
;
782 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
783 value
&= ~GENMASK_ULL(31, 24);
784 value
|= (u64
)epp
<< 24;
786 intel_pstate_set_epb(cpu
, epp
);
789 WRITE_ONCE(cpu_data
->hwp_req_cached
, value
);
790 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
793 static int intel_pstate_hwp_save_state(struct cpufreq_policy
*policy
)
795 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
800 cpu_data
->epp_saved
= intel_pstate_get_epp(cpu_data
, 0);
805 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
);
807 static int intel_pstate_resume(struct cpufreq_policy
*policy
)
812 mutex_lock(&intel_pstate_limits_lock
);
814 if (policy
->cpu
== 0)
815 intel_pstate_hwp_enable(all_cpu_data
[policy
->cpu
]);
817 all_cpu_data
[policy
->cpu
]->epp_policy
= 0;
818 intel_pstate_hwp_set(policy
->cpu
);
820 mutex_unlock(&intel_pstate_limits_lock
);
825 static void intel_pstate_update_policies(void)
829 for_each_possible_cpu(cpu
)
830 cpufreq_update_policy(cpu
);
833 /************************** sysfs begin ************************/
834 #define show_one(file_name, object) \
835 static ssize_t show_##file_name \
836 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
838 return sprintf(buf, "%u\n", global.object); \
841 static ssize_t
intel_pstate_show_status(char *buf
);
842 static int intel_pstate_update_status(const char *buf
, size_t size
);
844 static ssize_t
show_status(struct kobject
*kobj
,
845 struct kobj_attribute
*attr
, char *buf
)
849 mutex_lock(&intel_pstate_driver_lock
);
850 ret
= intel_pstate_show_status(buf
);
851 mutex_unlock(&intel_pstate_driver_lock
);
856 static ssize_t
store_status(struct kobject
*a
, struct kobj_attribute
*b
,
857 const char *buf
, size_t count
)
859 char *p
= memchr(buf
, '\n', count
);
862 mutex_lock(&intel_pstate_driver_lock
);
863 ret
= intel_pstate_update_status(buf
, p
? p
- buf
: count
);
864 mutex_unlock(&intel_pstate_driver_lock
);
866 return ret
< 0 ? ret
: count
;
869 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
870 struct kobj_attribute
*attr
, char *buf
)
873 int total
, no_turbo
, turbo_pct
;
876 mutex_lock(&intel_pstate_driver_lock
);
878 if (!intel_pstate_driver
) {
879 mutex_unlock(&intel_pstate_driver_lock
);
883 cpu
= all_cpu_data
[0];
885 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
886 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
887 turbo_fp
= div_fp(no_turbo
, total
);
888 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
890 mutex_unlock(&intel_pstate_driver_lock
);
892 return sprintf(buf
, "%u\n", turbo_pct
);
895 static ssize_t
show_num_pstates(struct kobject
*kobj
,
896 struct kobj_attribute
*attr
, char *buf
)
901 mutex_lock(&intel_pstate_driver_lock
);
903 if (!intel_pstate_driver
) {
904 mutex_unlock(&intel_pstate_driver_lock
);
908 cpu
= all_cpu_data
[0];
909 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
911 mutex_unlock(&intel_pstate_driver_lock
);
913 return sprintf(buf
, "%u\n", total
);
916 static ssize_t
show_no_turbo(struct kobject
*kobj
,
917 struct kobj_attribute
*attr
, char *buf
)
921 mutex_lock(&intel_pstate_driver_lock
);
923 if (!intel_pstate_driver
) {
924 mutex_unlock(&intel_pstate_driver_lock
);
928 update_turbo_state();
929 if (global
.turbo_disabled
)
930 ret
= sprintf(buf
, "%u\n", global
.turbo_disabled
);
932 ret
= sprintf(buf
, "%u\n", global
.no_turbo
);
934 mutex_unlock(&intel_pstate_driver_lock
);
939 static ssize_t
store_no_turbo(struct kobject
*a
, struct kobj_attribute
*b
,
940 const char *buf
, size_t count
)
945 ret
= sscanf(buf
, "%u", &input
);
949 mutex_lock(&intel_pstate_driver_lock
);
951 if (!intel_pstate_driver
) {
952 mutex_unlock(&intel_pstate_driver_lock
);
956 mutex_lock(&intel_pstate_limits_lock
);
958 update_turbo_state();
959 if (global
.turbo_disabled
) {
960 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
961 mutex_unlock(&intel_pstate_limits_lock
);
962 mutex_unlock(&intel_pstate_driver_lock
);
966 global
.no_turbo
= clamp_t(int, input
, 0, 1);
968 if (global
.no_turbo
) {
969 struct cpudata
*cpu
= all_cpu_data
[0];
970 int pct
= cpu
->pstate
.max_pstate
* 100 / cpu
->pstate
.turbo_pstate
;
972 /* Squash the global minimum into the permitted range. */
973 if (global
.min_perf_pct
> pct
)
974 global
.min_perf_pct
= pct
;
977 mutex_unlock(&intel_pstate_limits_lock
);
979 intel_pstate_update_policies();
981 mutex_unlock(&intel_pstate_driver_lock
);
986 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct kobj_attribute
*b
,
987 const char *buf
, size_t count
)
992 ret
= sscanf(buf
, "%u", &input
);
996 mutex_lock(&intel_pstate_driver_lock
);
998 if (!intel_pstate_driver
) {
999 mutex_unlock(&intel_pstate_driver_lock
);
1003 mutex_lock(&intel_pstate_limits_lock
);
1005 global
.max_perf_pct
= clamp_t(int, input
, global
.min_perf_pct
, 100);
1007 mutex_unlock(&intel_pstate_limits_lock
);
1009 intel_pstate_update_policies();
1011 mutex_unlock(&intel_pstate_driver_lock
);
1016 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct kobj_attribute
*b
,
1017 const char *buf
, size_t count
)
1022 ret
= sscanf(buf
, "%u", &input
);
1026 mutex_lock(&intel_pstate_driver_lock
);
1028 if (!intel_pstate_driver
) {
1029 mutex_unlock(&intel_pstate_driver_lock
);
1033 mutex_lock(&intel_pstate_limits_lock
);
1035 global
.min_perf_pct
= clamp_t(int, input
,
1036 min_perf_pct_min(), global
.max_perf_pct
);
1038 mutex_unlock(&intel_pstate_limits_lock
);
1040 intel_pstate_update_policies();
1042 mutex_unlock(&intel_pstate_driver_lock
);
1047 static ssize_t
show_hwp_dynamic_boost(struct kobject
*kobj
,
1048 struct kobj_attribute
*attr
, char *buf
)
1050 return sprintf(buf
, "%u\n", hwp_boost
);
1053 static ssize_t
store_hwp_dynamic_boost(struct kobject
*a
,
1054 struct kobj_attribute
*b
,
1055 const char *buf
, size_t count
)
1060 ret
= kstrtouint(buf
, 10, &input
);
1064 mutex_lock(&intel_pstate_driver_lock
);
1065 hwp_boost
= !!input
;
1066 intel_pstate_update_policies();
1067 mutex_unlock(&intel_pstate_driver_lock
);
1072 show_one(max_perf_pct
, max_perf_pct
);
1073 show_one(min_perf_pct
, min_perf_pct
);
1075 define_one_global_rw(status
);
1076 define_one_global_rw(no_turbo
);
1077 define_one_global_rw(max_perf_pct
);
1078 define_one_global_rw(min_perf_pct
);
1079 define_one_global_ro(turbo_pct
);
1080 define_one_global_ro(num_pstates
);
1081 define_one_global_rw(hwp_dynamic_boost
);
1083 static struct attribute
*intel_pstate_attributes
[] = {
1091 static const struct attribute_group intel_pstate_attr_group
= {
1092 .attrs
= intel_pstate_attributes
,
1095 static void __init
intel_pstate_sysfs_expose_params(void)
1097 struct kobject
*intel_pstate_kobject
;
1100 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
1101 &cpu_subsys
.dev_root
->kobj
);
1102 if (WARN_ON(!intel_pstate_kobject
))
1105 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
1110 * If per cpu limits are enforced there are no global limits, so
1111 * return without creating max/min_perf_pct attributes
1116 rc
= sysfs_create_file(intel_pstate_kobject
, &max_perf_pct
.attr
);
1119 rc
= sysfs_create_file(intel_pstate_kobject
, &min_perf_pct
.attr
);
1123 rc
= sysfs_create_file(intel_pstate_kobject
,
1124 &hwp_dynamic_boost
.attr
);
1128 /************************** sysfs end ************************/
1130 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
1132 /* First disable HWP notification interrupt as we don't process them */
1133 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY
))
1134 wrmsrl_on_cpu(cpudata
->cpu
, MSR_HWP_INTERRUPT
, 0x00);
1136 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
1137 cpudata
->epp_policy
= 0;
1138 if (cpudata
->epp_default
== -EINVAL
)
1139 cpudata
->epp_default
= intel_pstate_get_epp(cpudata
, 0);
1142 #define MSR_IA32_POWER_CTL_BIT_EE 19
1144 /* Disable energy efficiency optimization */
1145 static void intel_pstate_disable_ee(int cpu
)
1150 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, &power_ctl
);
1154 if (!(power_ctl
& BIT(MSR_IA32_POWER_CTL_BIT_EE
))) {
1155 pr_info("Disabling energy efficiency optimization\n");
1156 power_ctl
|= BIT(MSR_IA32_POWER_CTL_BIT_EE
);
1157 wrmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, power_ctl
);
1161 static int atom_get_min_pstate(void)
1165 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1166 return (value
>> 8) & 0x7F;
1169 static int atom_get_max_pstate(void)
1173 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1174 return (value
>> 16) & 0x7F;
1177 static int atom_get_turbo_pstate(void)
1181 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS
, value
);
1182 return value
& 0x7F;
1185 static u64
atom_get_val(struct cpudata
*cpudata
, int pstate
)
1191 val
= (u64
)pstate
<< 8;
1192 if (global
.no_turbo
&& !global
.turbo_disabled
)
1193 val
|= (u64
)1 << 32;
1195 vid_fp
= cpudata
->vid
.min
+ mul_fp(
1196 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
1197 cpudata
->vid
.ratio
);
1199 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
1200 vid
= ceiling_fp(vid_fp
);
1202 if (pstate
> cpudata
->pstate
.max_pstate
)
1203 vid
= cpudata
->vid
.turbo
;
1208 static int silvermont_get_scaling(void)
1212 /* Defined in Table 35-6 from SDM (Sept 2015) */
1213 static int silvermont_freq_table
[] = {
1214 83300, 100000, 133300, 116700, 80000};
1216 rdmsrl(MSR_FSB_FREQ
, value
);
1220 return silvermont_freq_table
[i
];
1223 static int airmont_get_scaling(void)
1227 /* Defined in Table 35-10 from SDM (Sept 2015) */
1228 static int airmont_freq_table
[] = {
1229 83300, 100000, 133300, 116700, 80000,
1230 93300, 90000, 88900, 87500};
1232 rdmsrl(MSR_FSB_FREQ
, value
);
1236 return airmont_freq_table
[i
];
1239 static void atom_get_vid(struct cpudata
*cpudata
)
1243 rdmsrl(MSR_ATOM_CORE_VIDS
, value
);
1244 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
1245 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
1246 cpudata
->vid
.ratio
= div_fp(
1247 cpudata
->vid
.max
- cpudata
->vid
.min
,
1248 int_tofp(cpudata
->pstate
.max_pstate
-
1249 cpudata
->pstate
.min_pstate
));
1251 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS
, value
);
1252 cpudata
->vid
.turbo
= value
& 0x7f;
1255 static int core_get_min_pstate(void)
1259 rdmsrl(MSR_PLATFORM_INFO
, value
);
1260 return (value
>> 40) & 0xFF;
1263 static int core_get_max_pstate_physical(void)
1267 rdmsrl(MSR_PLATFORM_INFO
, value
);
1268 return (value
>> 8) & 0xFF;
1271 static int core_get_tdp_ratio(u64 plat_info
)
1273 /* Check how many TDP levels present */
1274 if (plat_info
& 0x600000000) {
1280 /* Get the TDP level (0, 1, 2) to get ratios */
1281 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
1285 /* TDP MSR are continuous starting at 0x648 */
1286 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ (tdp_ctrl
& 0x03);
1287 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
1291 /* For level 1 and 2, bits[23:16] contain the ratio */
1292 if (tdp_ctrl
& 0x03)
1295 tdp_ratio
&= 0xff; /* ratios are only 8 bits long */
1296 pr_debug("tdp_ratio %x\n", (int)tdp_ratio
);
1298 return (int)tdp_ratio
;
1304 static int core_get_max_pstate(void)
1312 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
1313 max_pstate
= (plat_info
>> 8) & 0xFF;
1315 tdp_ratio
= core_get_tdp_ratio(plat_info
);
1320 /* Turbo activation ratio is not used on HWP platforms */
1324 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
1328 /* Do some sanity checking for safety */
1329 tar_levels
= tar
& 0xff;
1330 if (tdp_ratio
- 1 == tar_levels
) {
1331 max_pstate
= tar_levels
;
1332 pr_debug("max_pstate=TAC %x\n", max_pstate
);
1339 static int core_get_turbo_pstate(void)
1344 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1345 nont
= core_get_max_pstate();
1346 ret
= (value
) & 255;
1352 static inline int core_get_scaling(void)
1357 static u64
core_get_val(struct cpudata
*cpudata
, int pstate
)
1361 val
= (u64
)pstate
<< 8;
1362 if (global
.no_turbo
&& !global
.turbo_disabled
)
1363 val
|= (u64
)1 << 32;
1368 static int knl_get_aperf_mperf_shift(void)
1373 static int knl_get_turbo_pstate(void)
1378 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1379 nont
= core_get_max_pstate();
1380 ret
= (((value
) >> 8) & 0xFF);
1386 static int intel_pstate_get_base_pstate(struct cpudata
*cpu
)
1388 return global
.no_turbo
|| global
.turbo_disabled
?
1389 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1392 static void intel_pstate_set_pstate(struct cpudata
*cpu
, int pstate
)
1394 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1395 cpu
->pstate
.current_pstate
= pstate
;
1397 * Generally, there is no guarantee that this code will always run on
1398 * the CPU being updated, so force the register update to run on the
1401 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
1402 pstate_funcs
.get_val(cpu
, pstate
));
1405 static void intel_pstate_set_min_pstate(struct cpudata
*cpu
)
1407 intel_pstate_set_pstate(cpu
, cpu
->pstate
.min_pstate
);
1410 static void intel_pstate_max_within_limits(struct cpudata
*cpu
)
1414 update_turbo_state();
1415 pstate
= intel_pstate_get_base_pstate(cpu
);
1416 pstate
= max(cpu
->pstate
.min_pstate
, cpu
->max_perf_ratio
);
1417 intel_pstate_set_pstate(cpu
, pstate
);
1420 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
1422 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
1423 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
1424 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
1425 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
1426 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
1427 cpu
->pstate
.max_freq
= cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
;
1429 if (hwp_active
&& !hwp_mode_bdw
) {
1430 unsigned int phy_max
, current_max
;
1432 intel_pstate_get_hwp_max(cpu
->cpu
, &phy_max
, ¤t_max
);
1433 cpu
->pstate
.turbo_freq
= phy_max
* cpu
->pstate
.scaling
;
1435 cpu
->pstate
.turbo_freq
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1438 if (pstate_funcs
.get_aperf_mperf_shift
)
1439 cpu
->aperf_mperf_shift
= pstate_funcs
.get_aperf_mperf_shift();
1441 if (pstate_funcs
.get_vid
)
1442 pstate_funcs
.get_vid(cpu
);
1444 intel_pstate_set_min_pstate(cpu
);
1448 * Long hold time will keep high perf limits for long time,
1449 * which negatively impacts perf/watt for some workloads,
1450 * like specpower. 3ms is based on experiements on some
1453 static int hwp_boost_hold_time_ns
= 3 * NSEC_PER_MSEC
;
1455 static inline void intel_pstate_hwp_boost_up(struct cpudata
*cpu
)
1457 u64 hwp_req
= READ_ONCE(cpu
->hwp_req_cached
);
1458 u32 max_limit
= (hwp_req
& 0xff00) >> 8;
1459 u32 min_limit
= (hwp_req
& 0xff);
1463 * Cases to consider (User changes via sysfs or boot time):
1464 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1466 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1467 * Should result in one level boost only for P0.
1468 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1469 * Should result in two level boost:
1470 * (min + p1)/2 and P1.
1471 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1472 * Should result in three level boost:
1473 * (min + p1)/2, P1 and P0.
1476 /* If max and min are equal or already at max, nothing to boost */
1477 if (max_limit
== min_limit
|| cpu
->hwp_boost_min
>= max_limit
)
1480 if (!cpu
->hwp_boost_min
)
1481 cpu
->hwp_boost_min
= min_limit
;
1483 /* level at half way mark between min and guranteed */
1484 boost_level1
= (HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
) + min_limit
) >> 1;
1486 if (cpu
->hwp_boost_min
< boost_level1
)
1487 cpu
->hwp_boost_min
= boost_level1
;
1488 else if (cpu
->hwp_boost_min
< HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
))
1489 cpu
->hwp_boost_min
= HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
);
1490 else if (cpu
->hwp_boost_min
== HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
) &&
1491 max_limit
!= HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
))
1492 cpu
->hwp_boost_min
= max_limit
;
1496 hwp_req
= (hwp_req
& ~GENMASK_ULL(7, 0)) | cpu
->hwp_boost_min
;
1497 wrmsrl(MSR_HWP_REQUEST
, hwp_req
);
1498 cpu
->last_update
= cpu
->sample
.time
;
1501 static inline void intel_pstate_hwp_boost_down(struct cpudata
*cpu
)
1503 if (cpu
->hwp_boost_min
) {
1506 /* Check if we are idle for hold time to boost down */
1507 expired
= time_after64(cpu
->sample
.time
, cpu
->last_update
+
1508 hwp_boost_hold_time_ns
);
1510 wrmsrl(MSR_HWP_REQUEST
, cpu
->hwp_req_cached
);
1511 cpu
->hwp_boost_min
= 0;
1514 cpu
->last_update
= cpu
->sample
.time
;
1517 static inline void intel_pstate_update_util_hwp_local(struct cpudata
*cpu
,
1520 cpu
->sample
.time
= time
;
1522 if (cpu
->sched_flags
& SCHED_CPUFREQ_IOWAIT
) {
1525 cpu
->sched_flags
= 0;
1527 * Set iowait_boost flag and update time. Since IO WAIT flag
1528 * is set all the time, we can't just conclude that there is
1529 * some IO bound activity is scheduled on this CPU with just
1530 * one occurrence. If we receive at least two in two
1531 * consecutive ticks, then we treat as boost candidate.
1533 if (time_before64(time
, cpu
->last_io_update
+ 2 * TICK_NSEC
))
1536 cpu
->last_io_update
= time
;
1539 intel_pstate_hwp_boost_up(cpu
);
1542 intel_pstate_hwp_boost_down(cpu
);
1546 static inline void intel_pstate_update_util_hwp(struct update_util_data
*data
,
1547 u64 time
, unsigned int flags
)
1549 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1551 cpu
->sched_flags
|= flags
;
1553 if (smp_processor_id() == cpu
->cpu
)
1554 intel_pstate_update_util_hwp_local(cpu
, time
);
1557 static inline void intel_pstate_calc_avg_perf(struct cpudata
*cpu
)
1559 struct sample
*sample
= &cpu
->sample
;
1561 sample
->core_avg_perf
= div_ext_fp(sample
->aperf
, sample
->mperf
);
1564 static inline bool intel_pstate_sample(struct cpudata
*cpu
, u64 time
)
1567 unsigned long flags
;
1570 local_irq_save(flags
);
1571 rdmsrl(MSR_IA32_APERF
, aperf
);
1572 rdmsrl(MSR_IA32_MPERF
, mperf
);
1574 if (cpu
->prev_mperf
== mperf
|| cpu
->prev_tsc
== tsc
) {
1575 local_irq_restore(flags
);
1578 local_irq_restore(flags
);
1580 cpu
->last_sample_time
= cpu
->sample
.time
;
1581 cpu
->sample
.time
= time
;
1582 cpu
->sample
.aperf
= aperf
;
1583 cpu
->sample
.mperf
= mperf
;
1584 cpu
->sample
.tsc
= tsc
;
1585 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
1586 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
1587 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
1589 cpu
->prev_aperf
= aperf
;
1590 cpu
->prev_mperf
= mperf
;
1591 cpu
->prev_tsc
= tsc
;
1593 * First time this function is invoked in a given cycle, all of the
1594 * previous sample data fields are equal to zero or stale and they must
1595 * be populated with meaningful numbers for things to work, so assume
1596 * that sample.time will always be reset before setting the utilization
1597 * update hook and make the caller skip the sample then.
1599 if (cpu
->last_sample_time
) {
1600 intel_pstate_calc_avg_perf(cpu
);
1606 static inline int32_t get_avg_frequency(struct cpudata
*cpu
)
1608 return mul_ext_fp(cpu
->sample
.core_avg_perf
, cpu_khz
);
1611 static inline int32_t get_avg_pstate(struct cpudata
*cpu
)
1613 return mul_ext_fp(cpu
->pstate
.max_pstate_physical
,
1614 cpu
->sample
.core_avg_perf
);
1617 static inline int32_t get_target_pstate(struct cpudata
*cpu
)
1619 struct sample
*sample
= &cpu
->sample
;
1620 int32_t busy_frac
, boost
;
1621 int target
, avg_pstate
;
1623 busy_frac
= div_fp(sample
->mperf
<< cpu
->aperf_mperf_shift
,
1626 boost
= cpu
->iowait_boost
;
1627 cpu
->iowait_boost
>>= 1;
1629 if (busy_frac
< boost
)
1632 sample
->busy_scaled
= busy_frac
* 100;
1634 target
= global
.no_turbo
|| global
.turbo_disabled
?
1635 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1636 target
+= target
>> 2;
1637 target
= mul_fp(target
, busy_frac
);
1638 if (target
< cpu
->pstate
.min_pstate
)
1639 target
= cpu
->pstate
.min_pstate
;
1642 * If the average P-state during the previous cycle was higher than the
1643 * current target, add 50% of the difference to the target to reduce
1644 * possible performance oscillations and offset possible performance
1645 * loss related to moving the workload from one CPU to another within
1648 avg_pstate
= get_avg_pstate(cpu
);
1649 if (avg_pstate
> target
)
1650 target
+= (avg_pstate
- target
) >> 1;
1655 static int intel_pstate_prepare_request(struct cpudata
*cpu
, int pstate
)
1657 int max_pstate
= intel_pstate_get_base_pstate(cpu
);
1660 min_pstate
= max(cpu
->pstate
.min_pstate
, cpu
->min_perf_ratio
);
1661 max_pstate
= max(min_pstate
, cpu
->max_perf_ratio
);
1662 return clamp_t(int, pstate
, min_pstate
, max_pstate
);
1665 static void intel_pstate_update_pstate(struct cpudata
*cpu
, int pstate
)
1667 if (pstate
== cpu
->pstate
.current_pstate
)
1670 cpu
->pstate
.current_pstate
= pstate
;
1671 wrmsrl(MSR_IA32_PERF_CTL
, pstate_funcs
.get_val(cpu
, pstate
));
1674 static void intel_pstate_adjust_pstate(struct cpudata
*cpu
)
1676 int from
= cpu
->pstate
.current_pstate
;
1677 struct sample
*sample
;
1680 update_turbo_state();
1682 target_pstate
= get_target_pstate(cpu
);
1683 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
1684 trace_cpu_frequency(target_pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1685 intel_pstate_update_pstate(cpu
, target_pstate
);
1687 sample
= &cpu
->sample
;
1688 trace_pstate_sample(mul_ext_fp(100, sample
->core_avg_perf
),
1689 fp_toint(sample
->busy_scaled
),
1691 cpu
->pstate
.current_pstate
,
1695 get_avg_frequency(cpu
),
1696 fp_toint(cpu
->iowait_boost
* 100));
1699 static void intel_pstate_update_util(struct update_util_data
*data
, u64 time
,
1702 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1705 /* Don't allow remote callbacks */
1706 if (smp_processor_id() != cpu
->cpu
)
1709 if (flags
& SCHED_CPUFREQ_IOWAIT
) {
1710 cpu
->iowait_boost
= int_tofp(1);
1711 cpu
->last_update
= time
;
1713 * The last time the busy was 100% so P-state was max anyway
1714 * so avoid overhead of computation.
1716 if (fp_toint(cpu
->sample
.busy_scaled
) == 100)
1720 } else if (cpu
->iowait_boost
) {
1721 /* Clear iowait_boost if the CPU may have been idle. */
1722 delta_ns
= time
- cpu
->last_update
;
1723 if (delta_ns
> TICK_NSEC
)
1724 cpu
->iowait_boost
= 0;
1726 cpu
->last_update
= time
;
1727 delta_ns
= time
- cpu
->sample
.time
;
1728 if ((s64
)delta_ns
< INTEL_PSTATE_SAMPLING_INTERVAL
)
1732 if (intel_pstate_sample(cpu
, time
))
1733 intel_pstate_adjust_pstate(cpu
);
1736 static struct pstate_funcs core_funcs
= {
1737 .get_max
= core_get_max_pstate
,
1738 .get_max_physical
= core_get_max_pstate_physical
,
1739 .get_min
= core_get_min_pstate
,
1740 .get_turbo
= core_get_turbo_pstate
,
1741 .get_scaling
= core_get_scaling
,
1742 .get_val
= core_get_val
,
1745 static const struct pstate_funcs silvermont_funcs
= {
1746 .get_max
= atom_get_max_pstate
,
1747 .get_max_physical
= atom_get_max_pstate
,
1748 .get_min
= atom_get_min_pstate
,
1749 .get_turbo
= atom_get_turbo_pstate
,
1750 .get_val
= atom_get_val
,
1751 .get_scaling
= silvermont_get_scaling
,
1752 .get_vid
= atom_get_vid
,
1755 static const struct pstate_funcs airmont_funcs
= {
1756 .get_max
= atom_get_max_pstate
,
1757 .get_max_physical
= atom_get_max_pstate
,
1758 .get_min
= atom_get_min_pstate
,
1759 .get_turbo
= atom_get_turbo_pstate
,
1760 .get_val
= atom_get_val
,
1761 .get_scaling
= airmont_get_scaling
,
1762 .get_vid
= atom_get_vid
,
1765 static const struct pstate_funcs knl_funcs
= {
1766 .get_max
= core_get_max_pstate
,
1767 .get_max_physical
= core_get_max_pstate_physical
,
1768 .get_min
= core_get_min_pstate
,
1769 .get_turbo
= knl_get_turbo_pstate
,
1770 .get_aperf_mperf_shift
= knl_get_aperf_mperf_shift
,
1771 .get_scaling
= core_get_scaling
,
1772 .get_val
= core_get_val
,
1775 #define ICPU(model, policy) \
1776 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1777 (unsigned long)&policy }
1779 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
1780 ICPU(INTEL_FAM6_SANDYBRIDGE
, core_funcs
),
1781 ICPU(INTEL_FAM6_SANDYBRIDGE_X
, core_funcs
),
1782 ICPU(INTEL_FAM6_ATOM_SILVERMONT
, silvermont_funcs
),
1783 ICPU(INTEL_FAM6_IVYBRIDGE
, core_funcs
),
1784 ICPU(INTEL_FAM6_HASWELL_CORE
, core_funcs
),
1785 ICPU(INTEL_FAM6_BROADWELL_CORE
, core_funcs
),
1786 ICPU(INTEL_FAM6_IVYBRIDGE_X
, core_funcs
),
1787 ICPU(INTEL_FAM6_HASWELL_X
, core_funcs
),
1788 ICPU(INTEL_FAM6_HASWELL_ULT
, core_funcs
),
1789 ICPU(INTEL_FAM6_HASWELL_GT3E
, core_funcs
),
1790 ICPU(INTEL_FAM6_BROADWELL_GT3E
, core_funcs
),
1791 ICPU(INTEL_FAM6_ATOM_AIRMONT
, airmont_funcs
),
1792 ICPU(INTEL_FAM6_SKYLAKE_MOBILE
, core_funcs
),
1793 ICPU(INTEL_FAM6_BROADWELL_X
, core_funcs
),
1794 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP
, core_funcs
),
1795 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_funcs
),
1796 ICPU(INTEL_FAM6_XEON_PHI_KNL
, knl_funcs
),
1797 ICPU(INTEL_FAM6_XEON_PHI_KNM
, knl_funcs
),
1798 ICPU(INTEL_FAM6_ATOM_GOLDMONT
, core_funcs
),
1799 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS
, core_funcs
),
1800 ICPU(INTEL_FAM6_SKYLAKE_X
, core_funcs
),
1803 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
1805 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] __initconst
= {
1806 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_funcs
),
1807 ICPU(INTEL_FAM6_BROADWELL_X
, core_funcs
),
1808 ICPU(INTEL_FAM6_SKYLAKE_X
, core_funcs
),
1812 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids
[] = {
1813 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP
, core_funcs
),
1817 static const struct x86_cpu_id intel_pstate_hwp_boost_ids
[] = {
1818 ICPU(INTEL_FAM6_SKYLAKE_X
, core_funcs
),
1819 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP
, core_funcs
),
1823 static int intel_pstate_init_cpu(unsigned int cpunum
)
1825 struct cpudata
*cpu
;
1827 cpu
= all_cpu_data
[cpunum
];
1830 cpu
= kzalloc(sizeof(*cpu
), GFP_KERNEL
);
1834 all_cpu_data
[cpunum
] = cpu
;
1836 cpu
->epp_default
= -EINVAL
;
1837 cpu
->epp_powersave
= -EINVAL
;
1838 cpu
->epp_saved
= -EINVAL
;
1841 cpu
= all_cpu_data
[cpunum
];
1846 const struct x86_cpu_id
*id
;
1848 id
= x86_match_cpu(intel_pstate_cpu_ee_disable_ids
);
1850 intel_pstate_disable_ee(cpunum
);
1852 intel_pstate_hwp_enable(cpu
);
1854 id
= x86_match_cpu(intel_pstate_hwp_boost_ids
);
1855 if (id
&& intel_pstate_acpi_pm_profile_server())
1859 intel_pstate_get_cpu_pstates(cpu
);
1861 pr_debug("controlling: cpu %d\n", cpunum
);
1866 static void intel_pstate_set_update_util_hook(unsigned int cpu_num
)
1868 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1870 if (hwp_active
&& !hwp_boost
)
1873 if (cpu
->update_util_set
)
1876 /* Prevent intel_pstate_update_util() from using stale data. */
1877 cpu
->sample
.time
= 0;
1878 cpufreq_add_update_util_hook(cpu_num
, &cpu
->update_util
,
1880 intel_pstate_update_util_hwp
:
1881 intel_pstate_update_util
));
1882 cpu
->update_util_set
= true;
1885 static void intel_pstate_clear_update_util_hook(unsigned int cpu
)
1887 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
1889 if (!cpu_data
->update_util_set
)
1892 cpufreq_remove_update_util_hook(cpu
);
1893 cpu_data
->update_util_set
= false;
1894 synchronize_sched();
1897 static int intel_pstate_get_max_freq(struct cpudata
*cpu
)
1899 return global
.turbo_disabled
|| global
.no_turbo
?
1900 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
1903 static void intel_pstate_update_perf_limits(struct cpufreq_policy
*policy
,
1904 struct cpudata
*cpu
)
1906 int max_freq
= intel_pstate_get_max_freq(cpu
);
1907 int32_t max_policy_perf
, min_policy_perf
;
1908 int max_state
, turbo_max
;
1911 * HWP needs some special consideration, because on BDX the
1912 * HWP_REQUEST uses abstract value to represent performance
1913 * rather than pure ratios.
1916 intel_pstate_get_hwp_max(cpu
->cpu
, &turbo_max
, &max_state
);
1918 max_state
= intel_pstate_get_base_pstate(cpu
);
1919 turbo_max
= cpu
->pstate
.turbo_pstate
;
1922 max_policy_perf
= max_state
* policy
->max
/ max_freq
;
1923 if (policy
->max
== policy
->min
) {
1924 min_policy_perf
= max_policy_perf
;
1926 min_policy_perf
= max_state
* policy
->min
/ max_freq
;
1927 min_policy_perf
= clamp_t(int32_t, min_policy_perf
,
1928 0, max_policy_perf
);
1931 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1932 policy
->cpu
, max_state
,
1933 min_policy_perf
, max_policy_perf
);
1935 /* Normalize user input to [min_perf, max_perf] */
1936 if (per_cpu_limits
) {
1937 cpu
->min_perf_ratio
= min_policy_perf
;
1938 cpu
->max_perf_ratio
= max_policy_perf
;
1940 int32_t global_min
, global_max
;
1942 /* Global limits are in percent of the maximum turbo P-state. */
1943 global_max
= DIV_ROUND_UP(turbo_max
* global
.max_perf_pct
, 100);
1944 global_min
= DIV_ROUND_UP(turbo_max
* global
.min_perf_pct
, 100);
1945 global_min
= clamp_t(int32_t, global_min
, 0, global_max
);
1947 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy
->cpu
,
1948 global_min
, global_max
);
1950 cpu
->min_perf_ratio
= max(min_policy_perf
, global_min
);
1951 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
, max_policy_perf
);
1952 cpu
->max_perf_ratio
= min(max_policy_perf
, global_max
);
1953 cpu
->max_perf_ratio
= max(min_policy_perf
, cpu
->max_perf_ratio
);
1955 /* Make sure min_perf <= max_perf */
1956 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
,
1957 cpu
->max_perf_ratio
);
1960 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy
->cpu
,
1961 cpu
->max_perf_ratio
,
1962 cpu
->min_perf_ratio
);
1965 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
1967 struct cpudata
*cpu
;
1969 if (!policy
->cpuinfo
.max_freq
)
1972 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1973 policy
->cpuinfo
.max_freq
, policy
->max
);
1975 cpu
= all_cpu_data
[policy
->cpu
];
1976 cpu
->policy
= policy
->policy
;
1978 mutex_lock(&intel_pstate_limits_lock
);
1980 intel_pstate_update_perf_limits(policy
, cpu
);
1982 if (cpu
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
1984 * NOHZ_FULL CPUs need this as the governor callback may not
1985 * be invoked on them.
1987 intel_pstate_clear_update_util_hook(policy
->cpu
);
1988 intel_pstate_max_within_limits(cpu
);
1990 intel_pstate_set_update_util_hook(policy
->cpu
);
1995 * When hwp_boost was active before and dynamically it
1996 * was turned off, in that case we need to clear the
2000 intel_pstate_clear_update_util_hook(policy
->cpu
);
2001 intel_pstate_hwp_set(policy
->cpu
);
2004 mutex_unlock(&intel_pstate_limits_lock
);
2009 static void intel_pstate_adjust_policy_max(struct cpufreq_policy
*policy
,
2010 struct cpudata
*cpu
)
2013 cpu
->pstate
.max_pstate_physical
> cpu
->pstate
.max_pstate
&&
2014 policy
->max
< policy
->cpuinfo
.max_freq
&&
2015 policy
->max
> cpu
->pstate
.max_freq
) {
2016 pr_debug("policy->max > max non turbo frequency\n");
2017 policy
->max
= policy
->cpuinfo
.max_freq
;
2021 static int intel_pstate_verify_policy(struct cpufreq_policy
*policy
)
2023 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2025 update_turbo_state();
2026 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
,
2027 intel_pstate_get_max_freq(cpu
));
2029 if (policy
->policy
!= CPUFREQ_POLICY_POWERSAVE
&&
2030 policy
->policy
!= CPUFREQ_POLICY_PERFORMANCE
)
2033 intel_pstate_adjust_policy_max(policy
, cpu
);
2038 static void intel_cpufreq_stop_cpu(struct cpufreq_policy
*policy
)
2040 intel_pstate_set_min_pstate(all_cpu_data
[policy
->cpu
]);
2043 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
2045 pr_debug("CPU %d exiting\n", policy
->cpu
);
2047 intel_pstate_clear_update_util_hook(policy
->cpu
);
2049 intel_pstate_hwp_save_state(policy
);
2051 intel_cpufreq_stop_cpu(policy
);
2054 static int intel_pstate_cpu_exit(struct cpufreq_policy
*policy
)
2056 intel_pstate_exit_perf_limits(policy
);
2058 policy
->fast_switch_possible
= false;
2063 static int __intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2065 struct cpudata
*cpu
;
2068 rc
= intel_pstate_init_cpu(policy
->cpu
);
2072 cpu
= all_cpu_data
[policy
->cpu
];
2074 cpu
->max_perf_ratio
= 0xFF;
2075 cpu
->min_perf_ratio
= 0;
2077 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2078 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
2080 /* cpuinfo and default policy values */
2081 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2082 update_turbo_state();
2083 policy
->cpuinfo
.max_freq
= global
.turbo_disabled
?
2084 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
2085 policy
->cpuinfo
.max_freq
*= cpu
->pstate
.scaling
;
2088 unsigned int max_freq
;
2090 max_freq
= global
.turbo_disabled
?
2091 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
2092 if (max_freq
< policy
->cpuinfo
.max_freq
)
2093 policy
->cpuinfo
.max_freq
= max_freq
;
2096 intel_pstate_init_acpi_perf_limits(policy
);
2098 policy
->fast_switch_possible
= true;
2103 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2105 int ret
= __intel_pstate_cpu_init(policy
);
2110 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
))
2111 policy
->policy
= CPUFREQ_POLICY_PERFORMANCE
;
2113 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
2118 static struct cpufreq_driver intel_pstate
= {
2119 .flags
= CPUFREQ_CONST_LOOPS
,
2120 .verify
= intel_pstate_verify_policy
,
2121 .setpolicy
= intel_pstate_set_policy
,
2122 .suspend
= intel_pstate_hwp_save_state
,
2123 .resume
= intel_pstate_resume
,
2124 .init
= intel_pstate_cpu_init
,
2125 .exit
= intel_pstate_cpu_exit
,
2126 .stop_cpu
= intel_pstate_stop_cpu
,
2127 .name
= "intel_pstate",
2130 static int intel_cpufreq_verify_policy(struct cpufreq_policy
*policy
)
2132 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2134 update_turbo_state();
2135 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
,
2136 intel_pstate_get_max_freq(cpu
));
2138 intel_pstate_adjust_policy_max(policy
, cpu
);
2140 intel_pstate_update_perf_limits(policy
, cpu
);
2145 /* Use of trace in passive mode:
2147 * In passive mode the trace core_busy field (also known as the
2148 * performance field, and lablelled as such on the graphs; also known as
2149 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2150 * driver call was via the normal or fast switch path. Various graphs
2151 * output from the intel_pstate_tracer.py utility that include core_busy
2152 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2153 * so we use 10 to indicate the the normal path through the driver, and
2154 * 90 to indicate the fast switch path through the driver.
2155 * The scaled_busy field is not used, and is set to 0.
2158 #define INTEL_PSTATE_TRACE_TARGET 10
2159 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2161 static void intel_cpufreq_trace(struct cpudata
*cpu
, unsigned int trace_type
, int old_pstate
)
2163 struct sample
*sample
;
2165 if (!trace_pstate_sample_enabled())
2168 if (!intel_pstate_sample(cpu
, ktime_get()))
2171 sample
= &cpu
->sample
;
2172 trace_pstate_sample(trace_type
,
2175 cpu
->pstate
.current_pstate
,
2179 get_avg_frequency(cpu
),
2180 fp_toint(cpu
->iowait_boost
* 100));
2183 static int intel_cpufreq_target(struct cpufreq_policy
*policy
,
2184 unsigned int target_freq
,
2185 unsigned int relation
)
2187 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2188 struct cpufreq_freqs freqs
;
2189 int target_pstate
, old_pstate
;
2191 update_turbo_state();
2193 freqs
.old
= policy
->cur
;
2194 freqs
.new = target_freq
;
2196 cpufreq_freq_transition_begin(policy
, &freqs
);
2198 case CPUFREQ_RELATION_L
:
2199 target_pstate
= DIV_ROUND_UP(freqs
.new, cpu
->pstate
.scaling
);
2201 case CPUFREQ_RELATION_H
:
2202 target_pstate
= freqs
.new / cpu
->pstate
.scaling
;
2205 target_pstate
= DIV_ROUND_CLOSEST(freqs
.new, cpu
->pstate
.scaling
);
2208 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2209 old_pstate
= cpu
->pstate
.current_pstate
;
2210 if (target_pstate
!= cpu
->pstate
.current_pstate
) {
2211 cpu
->pstate
.current_pstate
= target_pstate
;
2212 wrmsrl_on_cpu(policy
->cpu
, MSR_IA32_PERF_CTL
,
2213 pstate_funcs
.get_val(cpu
, target_pstate
));
2215 freqs
.new = target_pstate
* cpu
->pstate
.scaling
;
2216 intel_cpufreq_trace(cpu
, INTEL_PSTATE_TRACE_TARGET
, old_pstate
);
2217 cpufreq_freq_transition_end(policy
, &freqs
, false);
2222 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy
*policy
,
2223 unsigned int target_freq
)
2225 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2226 int target_pstate
, old_pstate
;
2228 update_turbo_state();
2230 target_pstate
= DIV_ROUND_UP(target_freq
, cpu
->pstate
.scaling
);
2231 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2232 old_pstate
= cpu
->pstate
.current_pstate
;
2233 intel_pstate_update_pstate(cpu
, target_pstate
);
2234 intel_cpufreq_trace(cpu
, INTEL_PSTATE_TRACE_FAST_SWITCH
, old_pstate
);
2235 return target_pstate
* cpu
->pstate
.scaling
;
2238 static int intel_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
2240 int ret
= __intel_pstate_cpu_init(policy
);
2245 policy
->cpuinfo
.transition_latency
= INTEL_CPUFREQ_TRANSITION_LATENCY
;
2246 policy
->transition_delay_us
= INTEL_CPUFREQ_TRANSITION_DELAY
;
2247 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2248 policy
->cur
= policy
->cpuinfo
.min_freq
;
2253 static struct cpufreq_driver intel_cpufreq
= {
2254 .flags
= CPUFREQ_CONST_LOOPS
,
2255 .verify
= intel_cpufreq_verify_policy
,
2256 .target
= intel_cpufreq_target
,
2257 .fast_switch
= intel_cpufreq_fast_switch
,
2258 .init
= intel_cpufreq_cpu_init
,
2259 .exit
= intel_pstate_cpu_exit
,
2260 .stop_cpu
= intel_cpufreq_stop_cpu
,
2261 .name
= "intel_cpufreq",
2264 static struct cpufreq_driver
*default_driver
= &intel_pstate
;
2266 static void intel_pstate_driver_cleanup(void)
2271 for_each_online_cpu(cpu
) {
2272 if (all_cpu_data
[cpu
]) {
2273 if (intel_pstate_driver
== &intel_pstate
)
2274 intel_pstate_clear_update_util_hook(cpu
);
2276 kfree(all_cpu_data
[cpu
]);
2277 all_cpu_data
[cpu
] = NULL
;
2281 intel_pstate_driver
= NULL
;
2284 static int intel_pstate_register_driver(struct cpufreq_driver
*driver
)
2288 memset(&global
, 0, sizeof(global
));
2289 global
.max_perf_pct
= 100;
2291 intel_pstate_driver
= driver
;
2292 ret
= cpufreq_register_driver(intel_pstate_driver
);
2294 intel_pstate_driver_cleanup();
2298 global
.min_perf_pct
= min_perf_pct_min();
2303 static int intel_pstate_unregister_driver(void)
2308 cpufreq_unregister_driver(intel_pstate_driver
);
2309 intel_pstate_driver_cleanup();
2314 static ssize_t
intel_pstate_show_status(char *buf
)
2316 if (!intel_pstate_driver
)
2317 return sprintf(buf
, "off\n");
2319 return sprintf(buf
, "%s\n", intel_pstate_driver
== &intel_pstate
?
2320 "active" : "passive");
2323 static int intel_pstate_update_status(const char *buf
, size_t size
)
2327 if (size
== 3 && !strncmp(buf
, "off", size
))
2328 return intel_pstate_driver
?
2329 intel_pstate_unregister_driver() : -EINVAL
;
2331 if (size
== 6 && !strncmp(buf
, "active", size
)) {
2332 if (intel_pstate_driver
) {
2333 if (intel_pstate_driver
== &intel_pstate
)
2336 ret
= intel_pstate_unregister_driver();
2341 return intel_pstate_register_driver(&intel_pstate
);
2344 if (size
== 7 && !strncmp(buf
, "passive", size
)) {
2345 if (intel_pstate_driver
) {
2346 if (intel_pstate_driver
== &intel_cpufreq
)
2349 ret
= intel_pstate_unregister_driver();
2354 return intel_pstate_register_driver(&intel_cpufreq
);
2360 static int no_load __initdata
;
2361 static int no_hwp __initdata
;
2362 static int hwp_only __initdata
;
2363 static unsigned int force_load __initdata
;
2365 static int __init
intel_pstate_msrs_not_valid(void)
2367 if (!pstate_funcs
.get_max() ||
2368 !pstate_funcs
.get_min() ||
2369 !pstate_funcs
.get_turbo())
2375 static void __init
copy_cpu_funcs(struct pstate_funcs
*funcs
)
2377 pstate_funcs
.get_max
= funcs
->get_max
;
2378 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
2379 pstate_funcs
.get_min
= funcs
->get_min
;
2380 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
2381 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
2382 pstate_funcs
.get_val
= funcs
->get_val
;
2383 pstate_funcs
.get_vid
= funcs
->get_vid
;
2384 pstate_funcs
.get_aperf_mperf_shift
= funcs
->get_aperf_mperf_shift
;
2389 static bool __init
intel_pstate_no_acpi_pss(void)
2393 for_each_possible_cpu(i
) {
2395 union acpi_object
*pss
;
2396 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
2397 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2402 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
2403 if (ACPI_FAILURE(status
))
2406 pss
= buffer
.pointer
;
2407 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
2418 static bool __init
intel_pstate_no_acpi_pcch(void)
2423 status
= acpi_get_handle(NULL
, "\\_SB", &handle
);
2424 if (ACPI_FAILURE(status
))
2427 return !acpi_has_method(handle
, "PCCH");
2430 static bool __init
intel_pstate_has_acpi_ppc(void)
2434 for_each_possible_cpu(i
) {
2435 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2439 if (acpi_has_method(pr
->handle
, "_PPC"))
2450 /* Hardware vendor-specific info that has its own power management modes */
2451 static struct acpi_platform_list plat_info
[] __initdata
= {
2452 {"HP ", "ProLiant", 0, ACPI_SIG_FADT
, all_versions
, 0, PSS
},
2453 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2454 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2455 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2456 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2457 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2458 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2459 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2460 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2461 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2462 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2463 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2464 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2465 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2466 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2470 static bool __init
intel_pstate_platform_pwr_mgmt_exists(void)
2472 const struct x86_cpu_id
*id
;
2476 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
2478 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
2479 if ( misc_pwr
& (1 << 8))
2483 idx
= acpi_match_platform_list(plat_info
);
2487 switch (plat_info
[idx
].data
) {
2489 if (!intel_pstate_no_acpi_pss())
2492 return intel_pstate_no_acpi_pcch();
2494 return intel_pstate_has_acpi_ppc() && !force_load
;
2500 static void intel_pstate_request_control_from_smm(void)
2503 * It may be unsafe to request P-states control from SMM if _PPC support
2504 * has not been enabled.
2507 acpi_processor_pstate_control();
2509 #else /* CONFIG_ACPI not enabled */
2510 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2511 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2512 static inline void intel_pstate_request_control_from_smm(void) {}
2513 #endif /* CONFIG_ACPI */
2515 #define INTEL_PSTATE_HWP_BROADWELL 0x01
2517 #define ICPU_HWP(model, hwp_mode) \
2518 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2520 static const struct x86_cpu_id hwp_support_ids
[] __initconst
= {
2521 ICPU_HWP(INTEL_FAM6_BROADWELL_X
, INTEL_PSTATE_HWP_BROADWELL
),
2522 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D
, INTEL_PSTATE_HWP_BROADWELL
),
2523 ICPU_HWP(X86_MODEL_ANY
, 0),
2527 static int __init
intel_pstate_init(void)
2529 const struct x86_cpu_id
*id
;
2535 id
= x86_match_cpu(hwp_support_ids
);
2537 copy_cpu_funcs(&core_funcs
);
2540 hwp_mode_bdw
= id
->driver_data
;
2541 intel_pstate
.attr
= hwp_cpufreq_attrs
;
2542 goto hwp_cpu_matched
;
2545 id
= x86_match_cpu(intel_pstate_cpu_ids
);
2549 copy_cpu_funcs((struct pstate_funcs
*)id
->driver_data
);
2552 if (intel_pstate_msrs_not_valid())
2557 * The Intel pstate driver will be ignored if the platform
2558 * firmware has its own power management modes.
2560 if (intel_pstate_platform_pwr_mgmt_exists())
2563 if (!hwp_active
&& hwp_only
)
2566 pr_info("Intel P-state driver initializing\n");
2568 all_cpu_data
= vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2572 intel_pstate_request_control_from_smm();
2574 intel_pstate_sysfs_expose_params();
2576 mutex_lock(&intel_pstate_driver_lock
);
2577 rc
= intel_pstate_register_driver(default_driver
);
2578 mutex_unlock(&intel_pstate_driver_lock
);
2583 pr_info("HWP enabled\n");
2587 device_initcall(intel_pstate_init
);
2589 static int __init
intel_pstate_setup(char *str
)
2594 if (!strcmp(str
, "disable")) {
2596 } else if (!strcmp(str
, "passive")) {
2597 pr_info("Passive mode enabled\n");
2598 default_driver
= &intel_cpufreq
;
2601 if (!strcmp(str
, "no_hwp")) {
2602 pr_info("HWP disabled\n");
2605 if (!strcmp(str
, "force"))
2607 if (!strcmp(str
, "hwp_only"))
2609 if (!strcmp(str
, "per_cpu_perf_limits"))
2610 per_cpu_limits
= true;
2613 if (!strcmp(str
, "support_acpi_ppc"))
2619 early_param("intel_pstate", intel_pstate_setup
);
2621 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2622 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2623 MODULE_LICENSE("GPL");