2 * AMCC SoC PPC4xx Crypto Driver
4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * This file implements AMCC crypto offload Linux device driver for use with
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/slab.h>
36 #include <asm/dcr-regs.h>
37 #include <asm/cacheflush.h>
38 #include <crypto/aead.h>
39 #include <crypto/aes.h>
40 #include <crypto/ctr.h>
41 #include <crypto/gcm.h>
42 #include <crypto/sha.h>
43 #include <crypto/scatterwalk.h>
44 #include <crypto/skcipher.h>
45 #include <crypto/internal/aead.h>
46 #include <crypto/internal/skcipher.h>
47 #include "crypto4xx_reg_def.h"
48 #include "crypto4xx_core.h"
49 #include "crypto4xx_sa.h"
50 #include "crypto4xx_trng.h"
52 #define PPC4XX_SEC_VERSION_STR "0.5"
55 * PPC4xx Crypto Engine Initialization Routine
57 static void crypto4xx_hw_init(struct crypto4xx_device
*dev
)
59 union ce_ring_size ring_size
;
60 union ce_ring_control ring_ctrl
;
61 union ce_part_ring_size part_ring_size
;
62 union ce_io_threshold io_threshold
;
64 union ce_pe_dma_cfg pe_dma_cfg
;
67 writel(PPC4XX_BYTE_ORDER
, dev
->ce_base
+ CRYPTO4XX_BYTE_ORDER_CFG
);
68 /* setup pe dma, include reset sg, pdr and pe, then release reset */
70 pe_dma_cfg
.bf
.bo_sgpd_en
= 1;
71 pe_dma_cfg
.bf
.bo_data_en
= 0;
72 pe_dma_cfg
.bf
.bo_sa_en
= 1;
73 pe_dma_cfg
.bf
.bo_pd_en
= 1;
74 pe_dma_cfg
.bf
.dynamic_sa_en
= 1;
75 pe_dma_cfg
.bf
.reset_sg
= 1;
76 pe_dma_cfg
.bf
.reset_pdr
= 1;
77 pe_dma_cfg
.bf
.reset_pe
= 1;
78 writel(pe_dma_cfg
.w
, dev
->ce_base
+ CRYPTO4XX_PE_DMA_CFG
);
79 /* un reset pe,sg and pdr */
80 pe_dma_cfg
.bf
.pe_mode
= 0;
81 pe_dma_cfg
.bf
.reset_sg
= 0;
82 pe_dma_cfg
.bf
.reset_pdr
= 0;
83 pe_dma_cfg
.bf
.reset_pe
= 0;
84 pe_dma_cfg
.bf
.bo_td_en
= 0;
85 writel(pe_dma_cfg
.w
, dev
->ce_base
+ CRYPTO4XX_PE_DMA_CFG
);
86 writel(dev
->pdr_pa
, dev
->ce_base
+ CRYPTO4XX_PDR_BASE
);
87 writel(dev
->pdr_pa
, dev
->ce_base
+ CRYPTO4XX_RDR_BASE
);
88 writel(PPC4XX_PRNG_CTRL_AUTO_EN
, dev
->ce_base
+ CRYPTO4XX_PRNG_CTRL
);
89 get_random_bytes(&rand_num
, sizeof(rand_num
));
90 writel(rand_num
, dev
->ce_base
+ CRYPTO4XX_PRNG_SEED_L
);
91 get_random_bytes(&rand_num
, sizeof(rand_num
));
92 writel(rand_num
, dev
->ce_base
+ CRYPTO4XX_PRNG_SEED_H
);
94 ring_size
.bf
.ring_offset
= PPC4XX_PD_SIZE
;
95 ring_size
.bf
.ring_size
= PPC4XX_NUM_PD
;
96 writel(ring_size
.w
, dev
->ce_base
+ CRYPTO4XX_RING_SIZE
);
98 writel(ring_ctrl
.w
, dev
->ce_base
+ CRYPTO4XX_RING_CTRL
);
99 device_ctrl
= readl(dev
->ce_base
+ CRYPTO4XX_DEVICE_CTRL
);
100 device_ctrl
|= PPC4XX_DC_3DES_EN
;
101 writel(device_ctrl
, dev
->ce_base
+ CRYPTO4XX_DEVICE_CTRL
);
102 writel(dev
->gdr_pa
, dev
->ce_base
+ CRYPTO4XX_GATH_RING_BASE
);
103 writel(dev
->sdr_pa
, dev
->ce_base
+ CRYPTO4XX_SCAT_RING_BASE
);
104 part_ring_size
.w
= 0;
105 part_ring_size
.bf
.sdr_size
= PPC4XX_SDR_SIZE
;
106 part_ring_size
.bf
.gdr_size
= PPC4XX_GDR_SIZE
;
107 writel(part_ring_size
.w
, dev
->ce_base
+ CRYPTO4XX_PART_RING_SIZE
);
108 writel(PPC4XX_SD_BUFFER_SIZE
, dev
->ce_base
+ CRYPTO4XX_PART_RING_CFG
);
110 io_threshold
.bf
.output_threshold
= PPC4XX_OUTPUT_THRESHOLD
;
111 io_threshold
.bf
.input_threshold
= PPC4XX_INPUT_THRESHOLD
;
112 writel(io_threshold
.w
, dev
->ce_base
+ CRYPTO4XX_IO_THRESHOLD
);
113 writel(0, dev
->ce_base
+ CRYPTO4XX_PDR_BASE_UADDR
);
114 writel(0, dev
->ce_base
+ CRYPTO4XX_RDR_BASE_UADDR
);
115 writel(0, dev
->ce_base
+ CRYPTO4XX_PKT_SRC_UADDR
);
116 writel(0, dev
->ce_base
+ CRYPTO4XX_PKT_DEST_UADDR
);
117 writel(0, dev
->ce_base
+ CRYPTO4XX_SA_UADDR
);
118 writel(0, dev
->ce_base
+ CRYPTO4XX_GATH_RING_BASE_UADDR
);
119 writel(0, dev
->ce_base
+ CRYPTO4XX_SCAT_RING_BASE_UADDR
);
120 /* un reset pe,sg and pdr */
121 pe_dma_cfg
.bf
.pe_mode
= 1;
122 pe_dma_cfg
.bf
.reset_sg
= 0;
123 pe_dma_cfg
.bf
.reset_pdr
= 0;
124 pe_dma_cfg
.bf
.reset_pe
= 0;
125 pe_dma_cfg
.bf
.bo_td_en
= 0;
126 writel(pe_dma_cfg
.w
, dev
->ce_base
+ CRYPTO4XX_PE_DMA_CFG
);
127 /*clear all pending interrupt*/
128 writel(PPC4XX_INTERRUPT_CLR
, dev
->ce_base
+ CRYPTO4XX_INT_CLR
);
129 writel(PPC4XX_INT_DESCR_CNT
, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_CNT
);
130 writel(PPC4XX_INT_DESCR_CNT
, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_CNT
);
131 writel(PPC4XX_INT_CFG
, dev
->ce_base
+ CRYPTO4XX_INT_CFG
);
133 writel(PPC4XX_INT_TIMEOUT_CNT_REVB
<< 10,
134 dev
->ce_base
+ CRYPTO4XX_INT_TIMEOUT_CNT
);
135 writel(PPC4XX_PD_DONE_INT
| PPC4XX_TMO_ERR_INT
,
136 dev
->ce_base
+ CRYPTO4XX_INT_EN
);
138 writel(PPC4XX_PD_DONE_INT
, dev
->ce_base
+ CRYPTO4XX_INT_EN
);
142 int crypto4xx_alloc_sa(struct crypto4xx_ctx
*ctx
, u32 size
)
144 ctx
->sa_in
= kcalloc(size
, 4, GFP_ATOMIC
);
145 if (ctx
->sa_in
== NULL
)
148 ctx
->sa_out
= kcalloc(size
, 4, GFP_ATOMIC
);
149 if (ctx
->sa_out
== NULL
) {
160 void crypto4xx_free_sa(struct crypto4xx_ctx
*ctx
)
170 * alloc memory for the gather ring
171 * no need to alloc buf for the ring
172 * gdr_tail, gdr_head and gdr_count are initialized by this function
174 static u32
crypto4xx_build_pdr(struct crypto4xx_device
*dev
)
177 dev
->pdr
= dma_alloc_coherent(dev
->core_dev
->device
,
178 sizeof(struct ce_pd
) * PPC4XX_NUM_PD
,
179 &dev
->pdr_pa
, GFP_ATOMIC
);
183 dev
->pdr_uinfo
= kcalloc(PPC4XX_NUM_PD
, sizeof(struct pd_uinfo
),
185 if (!dev
->pdr_uinfo
) {
186 dma_free_coherent(dev
->core_dev
->device
,
187 sizeof(struct ce_pd
) * PPC4XX_NUM_PD
,
192 memset(dev
->pdr
, 0, sizeof(struct ce_pd
) * PPC4XX_NUM_PD
);
193 dev
->shadow_sa_pool
= dma_alloc_coherent(dev
->core_dev
->device
,
194 sizeof(union shadow_sa_buf
) * PPC4XX_NUM_PD
,
195 &dev
->shadow_sa_pool_pa
,
197 if (!dev
->shadow_sa_pool
)
200 dev
->shadow_sr_pool
= dma_alloc_coherent(dev
->core_dev
->device
,
201 sizeof(struct sa_state_record
) * PPC4XX_NUM_PD
,
202 &dev
->shadow_sr_pool_pa
, GFP_ATOMIC
);
203 if (!dev
->shadow_sr_pool
)
205 for (i
= 0; i
< PPC4XX_NUM_PD
; i
++) {
206 struct ce_pd
*pd
= &dev
->pdr
[i
];
207 struct pd_uinfo
*pd_uinfo
= &dev
->pdr_uinfo
[i
];
209 pd
->sa
= dev
->shadow_sa_pool_pa
+
210 sizeof(union shadow_sa_buf
) * i
;
212 /* alloc 256 bytes which is enough for any kind of dynamic sa */
213 pd_uinfo
->sa_va
= &dev
->shadow_sa_pool
[i
].sa
;
215 /* alloc state record */
216 pd_uinfo
->sr_va
= &dev
->shadow_sr_pool
[i
];
217 pd_uinfo
->sr_pa
= dev
->shadow_sr_pool_pa
+
218 sizeof(struct sa_state_record
) * i
;
224 static void crypto4xx_destroy_pdr(struct crypto4xx_device
*dev
)
227 dma_free_coherent(dev
->core_dev
->device
,
228 sizeof(struct ce_pd
) * PPC4XX_NUM_PD
,
229 dev
->pdr
, dev
->pdr_pa
);
231 if (dev
->shadow_sa_pool
)
232 dma_free_coherent(dev
->core_dev
->device
,
233 sizeof(union shadow_sa_buf
) * PPC4XX_NUM_PD
,
234 dev
->shadow_sa_pool
, dev
->shadow_sa_pool_pa
);
236 if (dev
->shadow_sr_pool
)
237 dma_free_coherent(dev
->core_dev
->device
,
238 sizeof(struct sa_state_record
) * PPC4XX_NUM_PD
,
239 dev
->shadow_sr_pool
, dev
->shadow_sr_pool_pa
);
241 kfree(dev
->pdr_uinfo
);
244 static u32
crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device
*dev
)
249 retval
= dev
->pdr_head
;
250 tmp
= (dev
->pdr_head
+ 1) % PPC4XX_NUM_PD
;
252 if (tmp
== dev
->pdr_tail
)
253 return ERING_WAS_FULL
;
260 static u32
crypto4xx_put_pd_to_pdr(struct crypto4xx_device
*dev
, u32 idx
)
262 struct pd_uinfo
*pd_uinfo
= &dev
->pdr_uinfo
[idx
];
266 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
267 pd_uinfo
->state
= PD_ENTRY_FREE
;
269 if (dev
->pdr_tail
!= PPC4XX_LAST_PD
)
273 tail
= dev
->pdr_tail
;
274 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
280 * alloc memory for the gather ring
281 * no need to alloc buf for the ring
282 * gdr_tail, gdr_head and gdr_count are initialized by this function
284 static u32
crypto4xx_build_gdr(struct crypto4xx_device
*dev
)
286 dev
->gdr
= dma_zalloc_coherent(dev
->core_dev
->device
,
287 sizeof(struct ce_gd
) * PPC4XX_NUM_GD
,
288 &dev
->gdr_pa
, GFP_ATOMIC
);
295 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device
*dev
)
297 dma_free_coherent(dev
->core_dev
->device
,
298 sizeof(struct ce_gd
) * PPC4XX_NUM_GD
,
299 dev
->gdr
, dev
->gdr_pa
);
303 * when this function is called.
304 * preemption or interrupt must be disabled
306 static u32
crypto4xx_get_n_gd(struct crypto4xx_device
*dev
, int n
)
311 if (n
>= PPC4XX_NUM_GD
)
312 return ERING_WAS_FULL
;
314 retval
= dev
->gdr_head
;
315 tmp
= (dev
->gdr_head
+ n
) % PPC4XX_NUM_GD
;
316 if (dev
->gdr_head
> dev
->gdr_tail
) {
317 if (tmp
< dev
->gdr_head
&& tmp
>= dev
->gdr_tail
)
318 return ERING_WAS_FULL
;
319 } else if (dev
->gdr_head
< dev
->gdr_tail
) {
320 if (tmp
< dev
->gdr_head
|| tmp
>= dev
->gdr_tail
)
321 return ERING_WAS_FULL
;
328 static u32
crypto4xx_put_gd_to_gdr(struct crypto4xx_device
*dev
)
332 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
333 if (dev
->gdr_tail
== dev
->gdr_head
) {
334 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
338 if (dev
->gdr_tail
!= PPC4XX_LAST_GD
)
343 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
348 static inline struct ce_gd
*crypto4xx_get_gdp(struct crypto4xx_device
*dev
,
349 dma_addr_t
*gd_dma
, u32 idx
)
351 *gd_dma
= dev
->gdr_pa
+ sizeof(struct ce_gd
) * idx
;
353 return &dev
->gdr
[idx
];
357 * alloc memory for the scatter ring
358 * need to alloc buf for the ring
359 * sdr_tail, sdr_head and sdr_count are initialized by this function
361 static u32
crypto4xx_build_sdr(struct crypto4xx_device
*dev
)
365 /* alloc memory for scatter descriptor ring */
366 dev
->sdr
= dma_alloc_coherent(dev
->core_dev
->device
,
367 sizeof(struct ce_sd
) * PPC4XX_NUM_SD
,
368 &dev
->sdr_pa
, GFP_ATOMIC
);
372 dev
->scatter_buffer_va
=
373 dma_alloc_coherent(dev
->core_dev
->device
,
374 PPC4XX_SD_BUFFER_SIZE
* PPC4XX_NUM_SD
,
375 &dev
->scatter_buffer_pa
, GFP_ATOMIC
);
376 if (!dev
->scatter_buffer_va
)
379 for (i
= 0; i
< PPC4XX_NUM_SD
; i
++) {
380 dev
->sdr
[i
].ptr
= dev
->scatter_buffer_pa
+
381 PPC4XX_SD_BUFFER_SIZE
* i
;
387 static void crypto4xx_destroy_sdr(struct crypto4xx_device
*dev
)
390 dma_free_coherent(dev
->core_dev
->device
,
391 sizeof(struct ce_sd
) * PPC4XX_NUM_SD
,
392 dev
->sdr
, dev
->sdr_pa
);
394 if (dev
->scatter_buffer_va
)
395 dma_free_coherent(dev
->core_dev
->device
,
396 PPC4XX_SD_BUFFER_SIZE
* PPC4XX_NUM_SD
,
397 dev
->scatter_buffer_va
,
398 dev
->scatter_buffer_pa
);
402 * when this function is called.
403 * preemption or interrupt must be disabled
405 static u32
crypto4xx_get_n_sd(struct crypto4xx_device
*dev
, int n
)
410 if (n
>= PPC4XX_NUM_SD
)
411 return ERING_WAS_FULL
;
413 retval
= dev
->sdr_head
;
414 tmp
= (dev
->sdr_head
+ n
) % PPC4XX_NUM_SD
;
415 if (dev
->sdr_head
> dev
->gdr_tail
) {
416 if (tmp
< dev
->sdr_head
&& tmp
>= dev
->sdr_tail
)
417 return ERING_WAS_FULL
;
418 } else if (dev
->sdr_head
< dev
->sdr_tail
) {
419 if (tmp
< dev
->sdr_head
|| tmp
>= dev
->sdr_tail
)
420 return ERING_WAS_FULL
;
421 } /* the head = tail, or empty case is already take cared */
427 static u32
crypto4xx_put_sd_to_sdr(struct crypto4xx_device
*dev
)
431 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
432 if (dev
->sdr_tail
== dev
->sdr_head
) {
433 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
436 if (dev
->sdr_tail
!= PPC4XX_LAST_SD
)
440 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
445 static inline struct ce_sd
*crypto4xx_get_sdp(struct crypto4xx_device
*dev
,
446 dma_addr_t
*sd_dma
, u32 idx
)
448 *sd_dma
= dev
->sdr_pa
+ sizeof(struct ce_sd
) * idx
;
450 return &dev
->sdr
[idx
];
453 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device
*dev
,
455 struct pd_uinfo
*pd_uinfo
,
457 struct scatterlist
*dst
)
459 unsigned int first_sd
= pd_uinfo
->first_sd
;
460 unsigned int last_sd
;
461 unsigned int overflow
= 0;
462 unsigned int to_copy
;
463 unsigned int dst_start
= 0;
466 * Because the scatter buffers are all neatly organized in one
467 * big continuous ringbuffer; scatterwalk_map_and_copy() can
468 * be instructed to copy a range of buffers in one go.
471 last_sd
= (first_sd
+ pd_uinfo
->num_sd
);
472 if (last_sd
> PPC4XX_LAST_SD
) {
473 last_sd
= PPC4XX_LAST_SD
;
474 overflow
= last_sd
% PPC4XX_NUM_SD
;
478 void *buf
= dev
->scatter_buffer_va
+
479 first_sd
* PPC4XX_SD_BUFFER_SIZE
;
481 to_copy
= min(nbytes
, PPC4XX_SD_BUFFER_SIZE
*
482 (1 + last_sd
- first_sd
));
483 scatterwalk_map_and_copy(buf
, dst
, dst_start
, to_copy
, 1);
489 dst_start
+= to_copy
;
495 static void crypto4xx_copy_digest_to_dst(void *dst
,
496 struct pd_uinfo
*pd_uinfo
,
497 struct crypto4xx_ctx
*ctx
)
499 struct dynamic_sa_ctl
*sa
= (struct dynamic_sa_ctl
*) ctx
->sa_in
;
501 if (sa
->sa_command_0
.bf
.hash_alg
== SA_HASH_ALG_SHA1
) {
502 memcpy(dst
, pd_uinfo
->sr_va
->save_digest
,
503 SA_HASH_ALG_SHA1_DIGEST_SIZE
);
507 static void crypto4xx_ret_sg_desc(struct crypto4xx_device
*dev
,
508 struct pd_uinfo
*pd_uinfo
)
511 if (pd_uinfo
->num_gd
) {
512 for (i
= 0; i
< pd_uinfo
->num_gd
; i
++)
513 crypto4xx_put_gd_to_gdr(dev
);
514 pd_uinfo
->first_gd
= 0xffffffff;
515 pd_uinfo
->num_gd
= 0;
517 if (pd_uinfo
->num_sd
) {
518 for (i
= 0; i
< pd_uinfo
->num_sd
; i
++)
519 crypto4xx_put_sd_to_sdr(dev
);
521 pd_uinfo
->first_sd
= 0xffffffff;
522 pd_uinfo
->num_sd
= 0;
526 static void crypto4xx_cipher_done(struct crypto4xx_device
*dev
,
527 struct pd_uinfo
*pd_uinfo
,
530 struct skcipher_request
*req
;
531 struct scatterlist
*dst
;
534 req
= skcipher_request_cast(pd_uinfo
->async_req
);
536 if (pd_uinfo
->using_sd
) {
537 crypto4xx_copy_pkt_to_dst(dev
, pd
, pd_uinfo
,
538 req
->cryptlen
, req
->dst
);
540 dst
= pd_uinfo
->dest_va
;
541 addr
= dma_map_page(dev
->core_dev
->device
, sg_page(dst
),
542 dst
->offset
, dst
->length
, DMA_FROM_DEVICE
);
545 if (pd_uinfo
->sa_va
->sa_command_0
.bf
.save_iv
== SA_SAVE_IV
) {
546 struct crypto_skcipher
*skcipher
= crypto_skcipher_reqtfm(req
);
548 crypto4xx_memcpy_from_le32((u32
*)req
->iv
,
549 pd_uinfo
->sr_va
->save_iv
,
550 crypto_skcipher_ivsize(skcipher
));
553 crypto4xx_ret_sg_desc(dev
, pd_uinfo
);
555 if (pd_uinfo
->state
& PD_ENTRY_BUSY
)
556 skcipher_request_complete(req
, -EINPROGRESS
);
557 skcipher_request_complete(req
, 0);
560 static void crypto4xx_ahash_done(struct crypto4xx_device
*dev
,
561 struct pd_uinfo
*pd_uinfo
)
563 struct crypto4xx_ctx
*ctx
;
564 struct ahash_request
*ahash_req
;
566 ahash_req
= ahash_request_cast(pd_uinfo
->async_req
);
567 ctx
= crypto_tfm_ctx(ahash_req
->base
.tfm
);
569 crypto4xx_copy_digest_to_dst(ahash_req
->result
, pd_uinfo
,
570 crypto_tfm_ctx(ahash_req
->base
.tfm
));
571 crypto4xx_ret_sg_desc(dev
, pd_uinfo
);
573 if (pd_uinfo
->state
& PD_ENTRY_BUSY
)
574 ahash_request_complete(ahash_req
, -EINPROGRESS
);
575 ahash_request_complete(ahash_req
, 0);
578 static void crypto4xx_aead_done(struct crypto4xx_device
*dev
,
579 struct pd_uinfo
*pd_uinfo
,
582 struct aead_request
*aead_req
= container_of(pd_uinfo
->async_req
,
583 struct aead_request
, base
);
584 struct scatterlist
*dst
= pd_uinfo
->dest_va
;
585 size_t cp_len
= crypto_aead_authsize(
586 crypto_aead_reqtfm(aead_req
));
587 u32 icv
[AES_BLOCK_SIZE
];
590 if (pd_uinfo
->using_sd
) {
591 crypto4xx_copy_pkt_to_dst(dev
, pd
, pd_uinfo
,
592 pd
->pd_ctl_len
.bf
.pkt_len
,
595 __dma_sync_page(sg_page(dst
), dst
->offset
, dst
->length
,
599 if (pd_uinfo
->sa_va
->sa_command_0
.bf
.dir
== DIR_OUTBOUND
) {
600 /* append icv at the end */
601 crypto4xx_memcpy_from_le32(icv
, pd_uinfo
->sr_va
->save_digest
,
604 scatterwalk_map_and_copy(icv
, dst
, aead_req
->cryptlen
,
607 /* check icv at the end */
608 scatterwalk_map_and_copy(icv
, aead_req
->src
,
609 aead_req
->assoclen
+ aead_req
->cryptlen
-
612 crypto4xx_memcpy_from_le32(icv
, icv
, sizeof(icv
));
614 if (crypto_memneq(icv
, pd_uinfo
->sr_va
->save_digest
, cp_len
))
618 crypto4xx_ret_sg_desc(dev
, pd_uinfo
);
620 if (pd
->pd_ctl
.bf
.status
& 0xff) {
621 if (!__ratelimit(&dev
->aead_ratelimit
)) {
622 if (pd
->pd_ctl
.bf
.status
& 2)
623 pr_err("pad fail error\n");
624 if (pd
->pd_ctl
.bf
.status
& 4)
625 pr_err("seqnum fail\n");
626 if (pd
->pd_ctl
.bf
.status
& 8)
627 pr_err("error _notify\n");
628 pr_err("aead return err status = 0x%02x\n",
629 pd
->pd_ctl
.bf
.status
& 0xff);
630 pr_err("pd pad_ctl = 0x%08x\n",
631 pd
->pd_ctl
.bf
.pd_pad_ctl
);
636 if (pd_uinfo
->state
& PD_ENTRY_BUSY
)
637 aead_request_complete(aead_req
, -EINPROGRESS
);
639 aead_request_complete(aead_req
, err
);
642 static void crypto4xx_pd_done(struct crypto4xx_device
*dev
, u32 idx
)
644 struct ce_pd
*pd
= &dev
->pdr
[idx
];
645 struct pd_uinfo
*pd_uinfo
= &dev
->pdr_uinfo
[idx
];
647 switch (crypto_tfm_alg_type(pd_uinfo
->async_req
->tfm
)) {
648 case CRYPTO_ALG_TYPE_SKCIPHER
:
649 crypto4xx_cipher_done(dev
, pd_uinfo
, pd
);
651 case CRYPTO_ALG_TYPE_AEAD
:
652 crypto4xx_aead_done(dev
, pd_uinfo
, pd
);
654 case CRYPTO_ALG_TYPE_AHASH
:
655 crypto4xx_ahash_done(dev
, pd_uinfo
);
660 static void crypto4xx_stop_all(struct crypto4xx_core_device
*core_dev
)
662 crypto4xx_destroy_pdr(core_dev
->dev
);
663 crypto4xx_destroy_gdr(core_dev
->dev
);
664 crypto4xx_destroy_sdr(core_dev
->dev
);
665 iounmap(core_dev
->dev
->ce_base
);
666 kfree(core_dev
->dev
);
670 static u32
get_next_gd(u32 current
)
672 if (current
!= PPC4XX_LAST_GD
)
678 static u32
get_next_sd(u32 current
)
680 if (current
!= PPC4XX_LAST_SD
)
686 int crypto4xx_build_pd(struct crypto_async_request
*req
,
687 struct crypto4xx_ctx
*ctx
,
688 struct scatterlist
*src
,
689 struct scatterlist
*dst
,
690 const unsigned int datalen
,
691 const __le32
*iv
, const u32 iv_len
,
692 const struct dynamic_sa_ctl
*req_sa
,
693 const unsigned int sa_len
,
694 const unsigned int assoclen
,
695 struct scatterlist
*_dst
)
697 struct crypto4xx_device
*dev
= ctx
->dev
;
698 struct dynamic_sa_ctl
*sa
;
702 u32 fst_gd
= 0xffffffff;
703 u32 fst_sd
= 0xffffffff;
706 struct pd_uinfo
*pd_uinfo
;
707 unsigned int nbytes
= datalen
;
708 size_t offset_to_sr_ptr
;
711 bool is_busy
, force_sd
;
714 * There's a very subtile/disguised "bug" in the hardware that
715 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
716 * of the hardware spec:
717 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
718 * operation modes for >>> "Block ciphers" <<<.
720 * To workaround this issue and stop the hardware from causing
721 * "overran dst buffer" on crypttexts that are not a multiple
722 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
725 force_sd
= (req_sa
->sa_command_1
.bf
.crypto_mode9_8
== CRYPTO_MODE_CFB
726 || req_sa
->sa_command_1
.bf
.crypto_mode9_8
== CRYPTO_MODE_OFB
)
727 && (datalen
% AES_BLOCK_SIZE
);
729 /* figure how many gd are needed */
730 tmp
= sg_nents_for_len(src
, assoclen
+ datalen
);
732 dev_err(dev
->core_dev
->device
, "Invalid number of src SG.\n");
741 dst
= scatterwalk_ffwd(_dst
, dst
, assoclen
);
744 /* figure how many sd are needed */
745 if (sg_is_last(dst
) && force_sd
== false) {
748 if (datalen
> PPC4XX_SD_BUFFER_SIZE
) {
749 num_sd
= datalen
/ PPC4XX_SD_BUFFER_SIZE
;
750 if (datalen
% PPC4XX_SD_BUFFER_SIZE
)
758 * The follow section of code needs to be protected
759 * The gather ring and scatter ring needs to be consecutive
760 * In case of run out of any kind of descriptor, the descriptor
761 * already got must be return the original place.
763 spin_lock_irqsave(&dev
->core_dev
->lock
, flags
);
765 * Let the caller know to slow down, once more than 13/16ths = 81%
766 * of the available data contexts are being used simultaneously.
768 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
769 * 31 more contexts. Before new requests have to be rejected.
771 if (req
->flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
) {
772 is_busy
= ((dev
->pdr_head
- dev
->pdr_tail
) % PPC4XX_NUM_PD
) >=
773 ((PPC4XX_NUM_PD
* 13) / 16);
776 * To fix contention issues between ipsec (no blacklog) and
777 * dm-crypto (backlog) reserve 32 entries for "no backlog"
780 is_busy
= ((dev
->pdr_head
- dev
->pdr_tail
) % PPC4XX_NUM_PD
) >=
781 ((PPC4XX_NUM_PD
* 15) / 16);
784 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
790 fst_gd
= crypto4xx_get_n_gd(dev
, num_gd
);
791 if (fst_gd
== ERING_WAS_FULL
) {
792 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
797 fst_sd
= crypto4xx_get_n_sd(dev
, num_sd
);
798 if (fst_sd
== ERING_WAS_FULL
) {
800 dev
->gdr_head
= fst_gd
;
801 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
805 pd_entry
= crypto4xx_get_pd_from_pdr_nolock(dev
);
806 if (pd_entry
== ERING_WAS_FULL
) {
808 dev
->gdr_head
= fst_gd
;
810 dev
->sdr_head
= fst_sd
;
811 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
814 spin_unlock_irqrestore(&dev
->core_dev
->lock
, flags
);
816 pd
= &dev
->pdr
[pd_entry
];
819 pd_uinfo
= &dev
->pdr_uinfo
[pd_entry
];
820 pd_uinfo
->num_gd
= num_gd
;
821 pd_uinfo
->num_sd
= num_sd
;
822 pd_uinfo
->dest_va
= dst
;
823 pd_uinfo
->async_req
= req
;
826 memcpy(pd_uinfo
->sr_va
->save_iv
, iv
, iv_len
);
828 sa
= pd_uinfo
->sa_va
;
829 memcpy(sa
, req_sa
, sa_len
* 4);
831 sa
->sa_command_1
.bf
.hash_crypto_offset
= (assoclen
>> 2);
832 offset_to_sr_ptr
= get_dynamic_sa_offset_state_ptr_field(sa
);
833 *(u32
*)((unsigned long)sa
+ offset_to_sr_ptr
) = pd_uinfo
->sr_pa
;
837 struct scatterlist
*sg
;
839 /* get first gd we are going to use */
841 pd_uinfo
->first_gd
= fst_gd
;
842 gd
= crypto4xx_get_gdp(dev
, &gd_dma
, gd_idx
);
845 sa
->sa_command_0
.bf
.gather
= 1;
846 /* walk the sg, and setup gather array */
852 len
= min(sg
->length
, nbytes
);
853 gd
->ptr
= dma_map_page(dev
->core_dev
->device
,
854 sg_page(sg
), sg
->offset
, len
, DMA_TO_DEVICE
);
855 gd
->ctl_len
.len
= len
;
856 gd
->ctl_len
.done
= 0;
857 gd
->ctl_len
.ready
= 1;
861 nbytes
-= sg
->length
;
862 gd_idx
= get_next_gd(gd_idx
);
863 gd
= crypto4xx_get_gdp(dev
, &gd_dma
, gd_idx
);
867 pd
->src
= (u32
)dma_map_page(dev
->core_dev
->device
, sg_page(src
),
868 src
->offset
, min(nbytes
, src
->length
),
871 * Disable gather in sa command
873 sa
->sa_command_0
.bf
.gather
= 0;
875 * Indicate gather array is not used
877 pd_uinfo
->first_gd
= 0xffffffff;
881 * we know application give us dst a whole piece of memory
882 * no need to use scatter ring.
884 pd_uinfo
->using_sd
= 0;
885 pd_uinfo
->first_sd
= 0xffffffff;
886 sa
->sa_command_0
.bf
.scatter
= 0;
887 pd
->dest
= (u32
)dma_map_page(dev
->core_dev
->device
,
888 sg_page(dst
), dst
->offset
,
889 min(datalen
, dst
->length
),
893 struct ce_sd
*sd
= NULL
;
897 sa
->sa_command_0
.bf
.scatter
= 1;
898 pd_uinfo
->using_sd
= 1;
899 pd_uinfo
->first_sd
= fst_sd
;
900 sd
= crypto4xx_get_sdp(dev
, &sd_dma
, sd_idx
);
902 /* setup scatter descriptor */
905 /* sd->ptr should be setup by sd_init routine*/
906 if (nbytes
>= PPC4XX_SD_BUFFER_SIZE
)
907 nbytes
-= PPC4XX_SD_BUFFER_SIZE
;
911 sd_idx
= get_next_sd(sd_idx
);
912 sd
= crypto4xx_get_sdp(dev
, &sd_dma
, sd_idx
);
913 /* setup scatter descriptor */
916 if (nbytes
>= PPC4XX_SD_BUFFER_SIZE
) {
917 nbytes
-= PPC4XX_SD_BUFFER_SIZE
;
920 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
921 * which is more than nbytes, so done.
928 pd
->pd_ctl
.w
= PD_CTL_HOST_READY
|
929 ((crypto_tfm_alg_type(req
->tfm
) == CRYPTO_ALG_TYPE_AHASH
) |
930 (crypto_tfm_alg_type(req
->tfm
) == CRYPTO_ALG_TYPE_AEAD
) ?
931 PD_CTL_HASH_FINAL
: 0);
932 pd
->pd_ctl_len
.w
= 0x00400000 | (assoclen
+ datalen
);
933 pd_uinfo
->state
= PD_ENTRY_INUSE
| (is_busy
? PD_ENTRY_BUSY
: 0);
936 /* write any value to push engine to read a pd */
937 writel(0, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_RD
);
938 writel(1, dev
->ce_base
+ CRYPTO4XX_INT_DESCR_RD
);
939 return is_busy
? -EBUSY
: -EINPROGRESS
;
943 * Algorithm Registration Functions
945 static void crypto4xx_ctx_init(struct crypto4xx_alg
*amcc_alg
,
946 struct crypto4xx_ctx
*ctx
)
948 ctx
->dev
= amcc_alg
->dev
;
954 static int crypto4xx_sk_init(struct crypto_skcipher
*sk
)
956 struct skcipher_alg
*alg
= crypto_skcipher_alg(sk
);
957 struct crypto4xx_alg
*amcc_alg
;
958 struct crypto4xx_ctx
*ctx
= crypto_skcipher_ctx(sk
);
960 if (alg
->base
.cra_flags
& CRYPTO_ALG_NEED_FALLBACK
) {
961 ctx
->sw_cipher
.cipher
=
962 crypto_alloc_skcipher(alg
->base
.cra_name
, 0,
963 CRYPTO_ALG_NEED_FALLBACK
|
965 if (IS_ERR(ctx
->sw_cipher
.cipher
))
966 return PTR_ERR(ctx
->sw_cipher
.cipher
);
968 crypto_skcipher_set_reqsize(sk
,
969 sizeof(struct skcipher_request
) + 32 +
970 crypto_skcipher_reqsize(ctx
->sw_cipher
.cipher
));
973 amcc_alg
= container_of(alg
, struct crypto4xx_alg
, alg
.u
.cipher
);
974 crypto4xx_ctx_init(amcc_alg
, ctx
);
978 static void crypto4xx_common_exit(struct crypto4xx_ctx
*ctx
)
980 crypto4xx_free_sa(ctx
);
983 static void crypto4xx_sk_exit(struct crypto_skcipher
*sk
)
985 struct crypto4xx_ctx
*ctx
= crypto_skcipher_ctx(sk
);
987 crypto4xx_common_exit(ctx
);
988 if (ctx
->sw_cipher
.cipher
)
989 crypto_free_skcipher(ctx
->sw_cipher
.cipher
);
992 static int crypto4xx_aead_init(struct crypto_aead
*tfm
)
994 struct aead_alg
*alg
= crypto_aead_alg(tfm
);
995 struct crypto4xx_ctx
*ctx
= crypto_aead_ctx(tfm
);
996 struct crypto4xx_alg
*amcc_alg
;
998 ctx
->sw_cipher
.aead
= crypto_alloc_aead(alg
->base
.cra_name
, 0,
999 CRYPTO_ALG_NEED_FALLBACK
|
1001 if (IS_ERR(ctx
->sw_cipher
.aead
))
1002 return PTR_ERR(ctx
->sw_cipher
.aead
);
1004 amcc_alg
= container_of(alg
, struct crypto4xx_alg
, alg
.u
.aead
);
1005 crypto4xx_ctx_init(amcc_alg
, ctx
);
1006 crypto_aead_set_reqsize(tfm
, max(sizeof(struct aead_request
) + 32 +
1007 crypto_aead_reqsize(ctx
->sw_cipher
.aead
),
1008 sizeof(struct crypto4xx_aead_reqctx
)));
1012 static void crypto4xx_aead_exit(struct crypto_aead
*tfm
)
1014 struct crypto4xx_ctx
*ctx
= crypto_aead_ctx(tfm
);
1016 crypto4xx_common_exit(ctx
);
1017 crypto_free_aead(ctx
->sw_cipher
.aead
);
1020 static int crypto4xx_register_alg(struct crypto4xx_device
*sec_dev
,
1021 struct crypto4xx_alg_common
*crypto_alg
,
1024 struct crypto4xx_alg
*alg
;
1028 for (i
= 0; i
< array_size
; i
++) {
1029 alg
= kzalloc(sizeof(struct crypto4xx_alg
), GFP_KERNEL
);
1033 alg
->alg
= crypto_alg
[i
];
1036 switch (alg
->alg
.type
) {
1037 case CRYPTO_ALG_TYPE_AEAD
:
1038 rc
= crypto_register_aead(&alg
->alg
.u
.aead
);
1041 case CRYPTO_ALG_TYPE_AHASH
:
1042 rc
= crypto_register_ahash(&alg
->alg
.u
.hash
);
1046 rc
= crypto_register_skcipher(&alg
->alg
.u
.cipher
);
1053 list_add_tail(&alg
->entry
, &sec_dev
->alg_list
);
1059 static void crypto4xx_unregister_alg(struct crypto4xx_device
*sec_dev
)
1061 struct crypto4xx_alg
*alg
, *tmp
;
1063 list_for_each_entry_safe(alg
, tmp
, &sec_dev
->alg_list
, entry
) {
1064 list_del(&alg
->entry
);
1065 switch (alg
->alg
.type
) {
1066 case CRYPTO_ALG_TYPE_AHASH
:
1067 crypto_unregister_ahash(&alg
->alg
.u
.hash
);
1070 case CRYPTO_ALG_TYPE_AEAD
:
1071 crypto_unregister_aead(&alg
->alg
.u
.aead
);
1075 crypto_unregister_skcipher(&alg
->alg
.u
.cipher
);
1081 static void crypto4xx_bh_tasklet_cb(unsigned long data
)
1083 struct device
*dev
= (struct device
*)data
;
1084 struct crypto4xx_core_device
*core_dev
= dev_get_drvdata(dev
);
1085 struct pd_uinfo
*pd_uinfo
;
1087 u32 tail
= core_dev
->dev
->pdr_tail
;
1088 u32 head
= core_dev
->dev
->pdr_head
;
1091 pd_uinfo
= &core_dev
->dev
->pdr_uinfo
[tail
];
1092 pd
= &core_dev
->dev
->pdr
[tail
];
1093 if ((pd_uinfo
->state
& PD_ENTRY_INUSE
) &&
1094 ((READ_ONCE(pd
->pd_ctl
.w
) &
1095 (PD_CTL_PE_DONE
| PD_CTL_HOST_READY
)) ==
1097 crypto4xx_pd_done(core_dev
->dev
, tail
);
1098 tail
= crypto4xx_put_pd_to_pdr(core_dev
->dev
, tail
);
1100 /* if tail not done, break */
1103 } while (head
!= tail
);
1109 static inline irqreturn_t
crypto4xx_interrupt_handler(int irq
, void *data
,
1112 struct device
*dev
= (struct device
*)data
;
1113 struct crypto4xx_core_device
*core_dev
= dev_get_drvdata(dev
);
1115 writel(clr_val
, core_dev
->dev
->ce_base
+ CRYPTO4XX_INT_CLR
);
1116 tasklet_schedule(&core_dev
->tasklet
);
1121 static irqreturn_t
crypto4xx_ce_interrupt_handler(int irq
, void *data
)
1123 return crypto4xx_interrupt_handler(irq
, data
, PPC4XX_INTERRUPT_CLR
);
1126 static irqreturn_t
crypto4xx_ce_interrupt_handler_revb(int irq
, void *data
)
1128 return crypto4xx_interrupt_handler(irq
, data
, PPC4XX_INTERRUPT_CLR
|
1129 PPC4XX_TMO_ERR_INT
);
1133 * Supported Crypto Algorithms
1135 static struct crypto4xx_alg_common crypto4xx_alg
[] = {
1136 /* Crypto AES modes */
1137 { .type
= CRYPTO_ALG_TYPE_SKCIPHER
, .u
.cipher
= {
1139 .cra_name
= "cbc(aes)",
1140 .cra_driver_name
= "cbc-aes-ppc4xx",
1141 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1142 .cra_flags
= CRYPTO_ALG_ASYNC
|
1143 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1144 .cra_blocksize
= AES_BLOCK_SIZE
,
1145 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1146 .cra_module
= THIS_MODULE
,
1148 .min_keysize
= AES_MIN_KEY_SIZE
,
1149 .max_keysize
= AES_MAX_KEY_SIZE
,
1150 .ivsize
= AES_IV_SIZE
,
1151 .setkey
= crypto4xx_setkey_aes_cbc
,
1152 .encrypt
= crypto4xx_encrypt_iv_block
,
1153 .decrypt
= crypto4xx_decrypt_iv_block
,
1154 .init
= crypto4xx_sk_init
,
1155 .exit
= crypto4xx_sk_exit
,
1157 { .type
= CRYPTO_ALG_TYPE_SKCIPHER
, .u
.cipher
= {
1159 .cra_name
= "cfb(aes)",
1160 .cra_driver_name
= "cfb-aes-ppc4xx",
1161 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1162 .cra_flags
= CRYPTO_ALG_ASYNC
|
1163 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1164 .cra_blocksize
= AES_BLOCK_SIZE
,
1165 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1166 .cra_module
= THIS_MODULE
,
1168 .min_keysize
= AES_MIN_KEY_SIZE
,
1169 .max_keysize
= AES_MAX_KEY_SIZE
,
1170 .ivsize
= AES_IV_SIZE
,
1171 .setkey
= crypto4xx_setkey_aes_cfb
,
1172 .encrypt
= crypto4xx_encrypt_iv_stream
,
1173 .decrypt
= crypto4xx_decrypt_iv_stream
,
1174 .init
= crypto4xx_sk_init
,
1175 .exit
= crypto4xx_sk_exit
,
1177 { .type
= CRYPTO_ALG_TYPE_SKCIPHER
, .u
.cipher
= {
1179 .cra_name
= "ctr(aes)",
1180 .cra_driver_name
= "ctr-aes-ppc4xx",
1181 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1182 .cra_flags
= CRYPTO_ALG_NEED_FALLBACK
|
1184 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1186 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1187 .cra_module
= THIS_MODULE
,
1189 .min_keysize
= AES_MIN_KEY_SIZE
,
1190 .max_keysize
= AES_MAX_KEY_SIZE
,
1191 .ivsize
= AES_IV_SIZE
,
1192 .setkey
= crypto4xx_setkey_aes_ctr
,
1193 .encrypt
= crypto4xx_encrypt_ctr
,
1194 .decrypt
= crypto4xx_decrypt_ctr
,
1195 .init
= crypto4xx_sk_init
,
1196 .exit
= crypto4xx_sk_exit
,
1198 { .type
= CRYPTO_ALG_TYPE_SKCIPHER
, .u
.cipher
= {
1200 .cra_name
= "rfc3686(ctr(aes))",
1201 .cra_driver_name
= "rfc3686-ctr-aes-ppc4xx",
1202 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1203 .cra_flags
= CRYPTO_ALG_ASYNC
|
1204 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1206 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1207 .cra_module
= THIS_MODULE
,
1209 .min_keysize
= AES_MIN_KEY_SIZE
+ CTR_RFC3686_NONCE_SIZE
,
1210 .max_keysize
= AES_MAX_KEY_SIZE
+ CTR_RFC3686_NONCE_SIZE
,
1211 .ivsize
= CTR_RFC3686_IV_SIZE
,
1212 .setkey
= crypto4xx_setkey_rfc3686
,
1213 .encrypt
= crypto4xx_rfc3686_encrypt
,
1214 .decrypt
= crypto4xx_rfc3686_decrypt
,
1215 .init
= crypto4xx_sk_init
,
1216 .exit
= crypto4xx_sk_exit
,
1218 { .type
= CRYPTO_ALG_TYPE_SKCIPHER
, .u
.cipher
= {
1220 .cra_name
= "ecb(aes)",
1221 .cra_driver_name
= "ecb-aes-ppc4xx",
1222 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1223 .cra_flags
= CRYPTO_ALG_ASYNC
|
1224 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1226 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1227 .cra_module
= THIS_MODULE
,
1229 .min_keysize
= AES_MIN_KEY_SIZE
,
1230 .max_keysize
= AES_MAX_KEY_SIZE
,
1231 .setkey
= crypto4xx_setkey_aes_ecb
,
1232 .encrypt
= crypto4xx_encrypt_noiv_block
,
1233 .decrypt
= crypto4xx_decrypt_noiv_block
,
1234 .init
= crypto4xx_sk_init
,
1235 .exit
= crypto4xx_sk_exit
,
1237 { .type
= CRYPTO_ALG_TYPE_SKCIPHER
, .u
.cipher
= {
1239 .cra_name
= "ofb(aes)",
1240 .cra_driver_name
= "ofb-aes-ppc4xx",
1241 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1242 .cra_flags
= CRYPTO_ALG_ASYNC
|
1243 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1245 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1246 .cra_module
= THIS_MODULE
,
1248 .min_keysize
= AES_MIN_KEY_SIZE
,
1249 .max_keysize
= AES_MAX_KEY_SIZE
,
1250 .ivsize
= AES_IV_SIZE
,
1251 .setkey
= crypto4xx_setkey_aes_ofb
,
1252 .encrypt
= crypto4xx_encrypt_iv_stream
,
1253 .decrypt
= crypto4xx_decrypt_iv_stream
,
1254 .init
= crypto4xx_sk_init
,
1255 .exit
= crypto4xx_sk_exit
,
1259 { .type
= CRYPTO_ALG_TYPE_AEAD
, .u
.aead
= {
1260 .setkey
= crypto4xx_setkey_aes_ccm
,
1261 .setauthsize
= crypto4xx_setauthsize_aead
,
1262 .encrypt
= crypto4xx_encrypt_aes_ccm
,
1263 .decrypt
= crypto4xx_decrypt_aes_ccm
,
1264 .init
= crypto4xx_aead_init
,
1265 .exit
= crypto4xx_aead_exit
,
1266 .ivsize
= AES_BLOCK_SIZE
,
1269 .cra_name
= "ccm(aes)",
1270 .cra_driver_name
= "ccm-aes-ppc4xx",
1271 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1272 .cra_flags
= CRYPTO_ALG_ASYNC
|
1273 CRYPTO_ALG_NEED_FALLBACK
|
1274 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1276 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1277 .cra_module
= THIS_MODULE
,
1280 { .type
= CRYPTO_ALG_TYPE_AEAD
, .u
.aead
= {
1281 .setkey
= crypto4xx_setkey_aes_gcm
,
1282 .setauthsize
= crypto4xx_setauthsize_aead
,
1283 .encrypt
= crypto4xx_encrypt_aes_gcm
,
1284 .decrypt
= crypto4xx_decrypt_aes_gcm
,
1285 .init
= crypto4xx_aead_init
,
1286 .exit
= crypto4xx_aead_exit
,
1287 .ivsize
= GCM_AES_IV_SIZE
,
1290 .cra_name
= "gcm(aes)",
1291 .cra_driver_name
= "gcm-aes-ppc4xx",
1292 .cra_priority
= CRYPTO4XX_CRYPTO_PRIORITY
,
1293 .cra_flags
= CRYPTO_ALG_ASYNC
|
1294 CRYPTO_ALG_NEED_FALLBACK
|
1295 CRYPTO_ALG_KERN_DRIVER_ONLY
,
1297 .cra_ctxsize
= sizeof(struct crypto4xx_ctx
),
1298 .cra_module
= THIS_MODULE
,
1304 * Module Initialization Routine
1306 static int crypto4xx_probe(struct platform_device
*ofdev
)
1309 struct resource res
;
1310 struct device
*dev
= &ofdev
->dev
;
1311 struct crypto4xx_core_device
*core_dev
;
1313 bool is_revb
= true;
1315 rc
= of_address_to_resource(ofdev
->dev
.of_node
, 0, &res
);
1319 if (of_find_compatible_node(NULL
, NULL
, "amcc,ppc460ex-crypto")) {
1320 mtdcri(SDR0
, PPC460EX_SDR0_SRST
,
1321 mfdcri(SDR0
, PPC460EX_SDR0_SRST
) | PPC460EX_CE_RESET
);
1322 mtdcri(SDR0
, PPC460EX_SDR0_SRST
,
1323 mfdcri(SDR0
, PPC460EX_SDR0_SRST
) & ~PPC460EX_CE_RESET
);
1324 } else if (of_find_compatible_node(NULL
, NULL
,
1325 "amcc,ppc405ex-crypto")) {
1326 mtdcri(SDR0
, PPC405EX_SDR0_SRST
,
1327 mfdcri(SDR0
, PPC405EX_SDR0_SRST
) | PPC405EX_CE_RESET
);
1328 mtdcri(SDR0
, PPC405EX_SDR0_SRST
,
1329 mfdcri(SDR0
, PPC405EX_SDR0_SRST
) & ~PPC405EX_CE_RESET
);
1331 } else if (of_find_compatible_node(NULL
, NULL
,
1332 "amcc,ppc460sx-crypto")) {
1333 mtdcri(SDR0
, PPC460SX_SDR0_SRST
,
1334 mfdcri(SDR0
, PPC460SX_SDR0_SRST
) | PPC460SX_CE_RESET
);
1335 mtdcri(SDR0
, PPC460SX_SDR0_SRST
,
1336 mfdcri(SDR0
, PPC460SX_SDR0_SRST
) & ~PPC460SX_CE_RESET
);
1338 printk(KERN_ERR
"Crypto Function Not supported!\n");
1342 core_dev
= kzalloc(sizeof(struct crypto4xx_core_device
), GFP_KERNEL
);
1346 dev_set_drvdata(dev
, core_dev
);
1347 core_dev
->ofdev
= ofdev
;
1348 core_dev
->dev
= kzalloc(sizeof(struct crypto4xx_device
), GFP_KERNEL
);
1354 * Older version of 460EX/GT have a hardware bug.
1355 * Hence they do not support H/W based security intr coalescing
1357 pvr
= mfspr(SPRN_PVR
);
1358 if (is_revb
&& ((pvr
>> 4) == 0x130218A)) {
1359 u32 min
= PVR_MIN(pvr
);
1362 dev_info(dev
, "RevA detected - disable interrupt coalescing\n");
1367 core_dev
->dev
->core_dev
= core_dev
;
1368 core_dev
->dev
->is_revb
= is_revb
;
1369 core_dev
->device
= dev
;
1370 spin_lock_init(&core_dev
->lock
);
1371 INIT_LIST_HEAD(&core_dev
->dev
->alg_list
);
1372 ratelimit_default_init(&core_dev
->dev
->aead_ratelimit
);
1373 rc
= crypto4xx_build_pdr(core_dev
->dev
);
1377 rc
= crypto4xx_build_gdr(core_dev
->dev
);
1381 rc
= crypto4xx_build_sdr(core_dev
->dev
);
1385 /* Init tasklet for bottom half processing */
1386 tasklet_init(&core_dev
->tasklet
, crypto4xx_bh_tasklet_cb
,
1387 (unsigned long) dev
);
1389 core_dev
->dev
->ce_base
= of_iomap(ofdev
->dev
.of_node
, 0);
1390 if (!core_dev
->dev
->ce_base
) {
1391 dev_err(dev
, "failed to of_iomap\n");
1396 /* Register for Crypto isr, Crypto Engine IRQ */
1397 core_dev
->irq
= irq_of_parse_and_map(ofdev
->dev
.of_node
, 0);
1398 rc
= request_irq(core_dev
->irq
, is_revb
?
1399 crypto4xx_ce_interrupt_handler_revb
:
1400 crypto4xx_ce_interrupt_handler
, 0,
1401 KBUILD_MODNAME
, dev
);
1403 goto err_request_irq
;
1405 /* need to setup pdr, rdr, gdr and sdr before this */
1406 crypto4xx_hw_init(core_dev
->dev
);
1408 /* Register security algorithms with Linux CryptoAPI */
1409 rc
= crypto4xx_register_alg(core_dev
->dev
, crypto4xx_alg
,
1410 ARRAY_SIZE(crypto4xx_alg
));
1414 ppc4xx_trng_probe(core_dev
);
1418 free_irq(core_dev
->irq
, dev
);
1420 irq_dispose_mapping(core_dev
->irq
);
1421 iounmap(core_dev
->dev
->ce_base
);
1423 tasklet_kill(&core_dev
->tasklet
);
1425 crypto4xx_destroy_sdr(core_dev
->dev
);
1426 crypto4xx_destroy_gdr(core_dev
->dev
);
1428 crypto4xx_destroy_pdr(core_dev
->dev
);
1429 kfree(core_dev
->dev
);
1436 static int crypto4xx_remove(struct platform_device
*ofdev
)
1438 struct device
*dev
= &ofdev
->dev
;
1439 struct crypto4xx_core_device
*core_dev
= dev_get_drvdata(dev
);
1441 ppc4xx_trng_remove(core_dev
);
1443 free_irq(core_dev
->irq
, dev
);
1444 irq_dispose_mapping(core_dev
->irq
);
1446 tasklet_kill(&core_dev
->tasklet
);
1447 /* Un-register with Linux CryptoAPI */
1448 crypto4xx_unregister_alg(core_dev
->dev
);
1449 /* Free all allocated memory */
1450 crypto4xx_stop_all(core_dev
);
1455 static const struct of_device_id crypto4xx_match
[] = {
1456 { .compatible
= "amcc,ppc4xx-crypto",},
1459 MODULE_DEVICE_TABLE(of
, crypto4xx_match
);
1461 static struct platform_driver crypto4xx_driver
= {
1463 .name
= KBUILD_MODNAME
,
1464 .of_match_table
= crypto4xx_match
,
1466 .probe
= crypto4xx_probe
,
1467 .remove
= crypto4xx_remove
,
1470 module_platform_driver(crypto4xx_driver
);
1472 MODULE_LICENSE("GPL");
1473 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1474 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");