Linux 4.19.133
[linux/fpc-iii.git] / drivers / crypto / atmel-ecc.c
blob74f083f45e97854ed8b805a51fa60ab9e3533785
1 /*
2 * Microchip / Atmel ECC (I2C) driver.
4 * Copyright (c) 2017, Microchip Technology Inc.
5 * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
7 * This software is licensed under the terms of the GNU General Public
8 * License version 2, as published by the Free Software Foundation, and
9 * may be copied, distributed, and modified under those terms.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
18 #include <linux/bitrev.h>
19 #include <linux/crc16.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/errno.h>
24 #include <linux/i2c.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/scatterlist.h>
30 #include <linux/slab.h>
31 #include <linux/workqueue.h>
32 #include <crypto/internal/kpp.h>
33 #include <crypto/ecdh.h>
34 #include <crypto/kpp.h>
35 #include "atmel-ecc.h"
37 /* Used for binding tfm objects to i2c clients. */
38 struct atmel_ecc_driver_data {
39 struct list_head i2c_client_list;
40 spinlock_t i2c_list_lock;
41 } ____cacheline_aligned;
43 static struct atmel_ecc_driver_data driver_data;
45 /**
46 * atmel_ecc_i2c_client_priv - i2c_client private data
47 * @client : pointer to i2c client device
48 * @i2c_client_list_node: part of i2c_client_list
49 * @lock : lock for sending i2c commands
50 * @wake_token : wake token array of zeros
51 * @wake_token_sz : size in bytes of the wake_token
52 * @tfm_count : number of active crypto transformations on i2c client
54 * Reads and writes from/to the i2c client are sequential. The first byte
55 * transmitted to the device is treated as the byte size. Any attempt to send
56 * more than this number of bytes will cause the device to not ACK those bytes.
57 * After the host writes a single command byte to the input buffer, reads are
58 * prohibited until after the device completes command execution. Use a mutex
59 * when sending i2c commands.
61 struct atmel_ecc_i2c_client_priv {
62 struct i2c_client *client;
63 struct list_head i2c_client_list_node;
64 struct mutex lock;
65 u8 wake_token[WAKE_TOKEN_MAX_SIZE];
66 size_t wake_token_sz;
67 atomic_t tfm_count ____cacheline_aligned;
70 /**
71 * atmel_ecdh_ctx - transformation context
72 * @client : pointer to i2c client device
73 * @fallback : used for unsupported curves or when user wants to use its own
74 * private key.
75 * @public_key : generated when calling set_secret(). It's the responsibility
76 * of the user to not call set_secret() while
77 * generate_public_key() or compute_shared_secret() are in flight.
78 * @curve_id : elliptic curve id
79 * @n_sz : size in bytes of the n prime
80 * @do_fallback: true when the device doesn't support the curve or when the user
81 * wants to use its own private key.
83 struct atmel_ecdh_ctx {
84 struct i2c_client *client;
85 struct crypto_kpp *fallback;
86 const u8 *public_key;
87 unsigned int curve_id;
88 size_t n_sz;
89 bool do_fallback;
92 /**
93 * atmel_ecc_work_data - data structure representing the work
94 * @ctx : transformation context.
95 * @cbk : pointer to a callback function to be invoked upon completion of this
96 * request. This has the form:
97 * callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status)
98 * where:
99 * @work_data: data structure representing the work
100 * @areq : optional pointer to an argument passed with the original
101 * request.
102 * @status : status returned from the i2c client device or i2c error.
103 * @areq: optional pointer to a user argument for use at callback time.
104 * @work: describes the task to be executed.
105 * @cmd : structure used for communicating with the device.
107 struct atmel_ecc_work_data {
108 struct atmel_ecdh_ctx *ctx;
109 void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq,
110 int status);
111 void *areq;
112 struct work_struct work;
113 struct atmel_ecc_cmd cmd;
116 static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len)
118 return cpu_to_le16(bitrev16(crc16(crc, buffer, len)));
122 * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
123 * CRC16 verification of the count, opcode, param1, param2 and data bytes.
124 * The checksum is saved in little-endian format in the least significant
125 * two bytes of the command. CRC polynomial is 0x8005 and the initial register
126 * value should be zero.
128 * @cmd : structure used for communicating with the device.
130 static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd)
132 u8 *data = &cmd->count;
133 size_t len = cmd->count - CRC_SIZE;
134 u16 *crc16 = (u16 *)(data + len);
136 *crc16 = atmel_ecc_crc16(0, data, len);
139 static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd)
141 cmd->word_addr = COMMAND;
142 cmd->opcode = OPCODE_READ;
144 * Read the word from Configuration zone that contains the lock bytes
145 * (UserExtra, Selector, LockValue, LockConfig).
147 cmd->param1 = CONFIG_ZONE;
148 cmd->param2 = DEVICE_LOCK_ADDR;
149 cmd->count = READ_COUNT;
151 atmel_ecc_checksum(cmd);
153 cmd->msecs = MAX_EXEC_TIME_READ;
154 cmd->rxsize = READ_RSP_SIZE;
157 static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid)
159 cmd->word_addr = COMMAND;
160 cmd->count = GENKEY_COUNT;
161 cmd->opcode = OPCODE_GENKEY;
162 cmd->param1 = GENKEY_MODE_PRIVATE;
163 /* a random private key will be generated and stored in slot keyID */
164 cmd->param2 = cpu_to_le16(keyid);
166 atmel_ecc_checksum(cmd);
168 cmd->msecs = MAX_EXEC_TIME_GENKEY;
169 cmd->rxsize = GENKEY_RSP_SIZE;
172 static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd,
173 struct scatterlist *pubkey)
175 size_t copied;
177 cmd->word_addr = COMMAND;
178 cmd->count = ECDH_COUNT;
179 cmd->opcode = OPCODE_ECDH;
180 cmd->param1 = ECDH_PREFIX_MODE;
181 /* private key slot */
182 cmd->param2 = cpu_to_le16(DATA_SLOT_2);
185 * The device only supports NIST P256 ECC keys. The public key size will
186 * always be the same. Use a macro for the key size to avoid unnecessary
187 * computations.
189 copied = sg_copy_to_buffer(pubkey,
190 sg_nents_for_len(pubkey,
191 ATMEL_ECC_PUBKEY_SIZE),
192 cmd->data, ATMEL_ECC_PUBKEY_SIZE);
193 if (copied != ATMEL_ECC_PUBKEY_SIZE)
194 return -EINVAL;
196 atmel_ecc_checksum(cmd);
198 cmd->msecs = MAX_EXEC_TIME_ECDH;
199 cmd->rxsize = ECDH_RSP_SIZE;
201 return 0;
205 * After wake and after execution of a command, there will be error, status, or
206 * result bytes in the device's output register that can be retrieved by the
207 * system. When the length of that group is four bytes, the codes returned are
208 * detailed in error_list.
210 static int atmel_ecc_status(struct device *dev, u8 *status)
212 size_t err_list_len = ARRAY_SIZE(error_list);
213 int i;
214 u8 err_id = status[1];
216 if (*status != STATUS_SIZE)
217 return 0;
219 if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
220 return 0;
222 for (i = 0; i < err_list_len; i++)
223 if (error_list[i].value == err_id)
224 break;
226 /* if err_id is not in the error_list then ignore it */
227 if (i != err_list_len) {
228 dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
229 return err_id;
232 return 0;
235 static int atmel_ecc_wakeup(struct i2c_client *client)
237 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
238 u8 status[STATUS_RSP_SIZE];
239 int ret;
242 * The device ignores any levels or transitions on the SCL pin when the
243 * device is idle, asleep or during waking up. Don't check for error
244 * when waking up the device.
246 i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz);
249 * Wait to wake the device. Typical execution times for ecdh and genkey
250 * are around tens of milliseconds. Delta is chosen to 50 microseconds.
252 usleep_range(TWHI_MIN, TWHI_MAX);
254 ret = i2c_master_recv(client, status, STATUS_SIZE);
255 if (ret < 0)
256 return ret;
258 return atmel_ecc_status(&client->dev, status);
261 static int atmel_ecc_sleep(struct i2c_client *client)
263 u8 sleep = SLEEP_TOKEN;
265 return i2c_master_send(client, &sleep, 1);
268 static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq,
269 int status)
271 struct kpp_request *req = areq;
272 struct atmel_ecdh_ctx *ctx = work_data->ctx;
273 struct atmel_ecc_cmd *cmd = &work_data->cmd;
274 size_t copied, n_sz;
276 if (status)
277 goto free_work_data;
279 /* might want less than we've got */
280 n_sz = min_t(size_t, ctx->n_sz, req->dst_len);
282 /* copy the shared secret */
283 copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz),
284 &cmd->data[RSP_DATA_IDX], n_sz);
285 if (copied != n_sz)
286 status = -EINVAL;
288 /* fall through */
289 free_work_data:
290 kzfree(work_data);
291 kpp_request_complete(req, status);
295 * atmel_ecc_send_receive() - send a command to the device and receive its
296 * response.
297 * @client: i2c client device
298 * @cmd : structure used to communicate with the device
300 * After the device receives a Wake token, a watchdog counter starts within the
301 * device. After the watchdog timer expires, the device enters sleep mode
302 * regardless of whether some I/O transmission or command execution is in
303 * progress. If a command is attempted when insufficient time remains prior to
304 * watchdog timer execution, the device will return the watchdog timeout error
305 * code without attempting to execute the command. There is no way to reset the
306 * counter other than to put the device into sleep or idle mode and then
307 * wake it up again.
309 static int atmel_ecc_send_receive(struct i2c_client *client,
310 struct atmel_ecc_cmd *cmd)
312 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
313 int ret;
315 mutex_lock(&i2c_priv->lock);
317 ret = atmel_ecc_wakeup(client);
318 if (ret)
319 goto err;
321 /* send the command */
322 ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
323 if (ret < 0)
324 goto err;
326 /* delay the appropriate amount of time for command to execute */
327 msleep(cmd->msecs);
329 /* receive the response */
330 ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
331 if (ret < 0)
332 goto err;
334 /* put the device into low-power mode */
335 ret = atmel_ecc_sleep(client);
336 if (ret < 0)
337 goto err;
339 mutex_unlock(&i2c_priv->lock);
340 return atmel_ecc_status(&client->dev, cmd->data);
341 err:
342 mutex_unlock(&i2c_priv->lock);
343 return ret;
346 static void atmel_ecc_work_handler(struct work_struct *work)
348 struct atmel_ecc_work_data *work_data =
349 container_of(work, struct atmel_ecc_work_data, work);
350 struct atmel_ecc_cmd *cmd = &work_data->cmd;
351 struct i2c_client *client = work_data->ctx->client;
352 int status;
354 status = atmel_ecc_send_receive(client, cmd);
355 work_data->cbk(work_data, work_data->areq, status);
358 static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data,
359 void (*cbk)(struct atmel_ecc_work_data *work_data,
360 void *areq, int status),
361 void *areq)
363 work_data->cbk = (void *)cbk;
364 work_data->areq = areq;
366 INIT_WORK(&work_data->work, atmel_ecc_work_handler);
367 schedule_work(&work_data->work);
370 static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id)
372 if (curve_id == ECC_CURVE_NIST_P256)
373 return ATMEL_ECC_NIST_P256_N_SIZE;
375 return 0;
379 * A random private key is generated and stored in the device. The device
380 * returns the pair public key.
382 static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
383 unsigned int len)
385 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
386 struct atmel_ecc_cmd *cmd;
387 void *public_key;
388 struct ecdh params;
389 int ret = -ENOMEM;
391 /* free the old public key, if any */
392 kfree(ctx->public_key);
393 /* make sure you don't free the old public key twice */
394 ctx->public_key = NULL;
396 if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
397 dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
398 return -EINVAL;
401 ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id);
402 if (!ctx->n_sz || params.key_size) {
403 /* fallback to ecdh software implementation */
404 ctx->do_fallback = true;
405 return crypto_kpp_set_secret(ctx->fallback, buf, len);
408 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
409 if (!cmd)
410 return -ENOMEM;
413 * The device only supports NIST P256 ECC keys. The public key size will
414 * always be the same. Use a macro for the key size to avoid unnecessary
415 * computations.
417 public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
418 if (!public_key)
419 goto free_cmd;
421 ctx->do_fallback = false;
422 ctx->curve_id = params.curve_id;
424 atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2);
426 ret = atmel_ecc_send_receive(ctx->client, cmd);
427 if (ret)
428 goto free_public_key;
430 /* save the public key */
431 memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
432 ctx->public_key = public_key;
434 kfree(cmd);
435 return 0;
437 free_public_key:
438 kfree(public_key);
439 free_cmd:
440 kfree(cmd);
441 return ret;
444 static int atmel_ecdh_generate_public_key(struct kpp_request *req)
446 struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
447 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
448 size_t copied, nbytes;
449 int ret = 0;
451 if (ctx->do_fallback) {
452 kpp_request_set_tfm(req, ctx->fallback);
453 return crypto_kpp_generate_public_key(req);
456 /* might want less than we've got */
457 nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len);
459 /* public key was saved at private key generation */
460 copied = sg_copy_from_buffer(req->dst,
461 sg_nents_for_len(req->dst, nbytes),
462 ctx->public_key, nbytes);
463 if (copied != nbytes)
464 ret = -EINVAL;
466 return ret;
469 static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
471 struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
472 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
473 struct atmel_ecc_work_data *work_data;
474 gfp_t gfp;
475 int ret;
477 if (ctx->do_fallback) {
478 kpp_request_set_tfm(req, ctx->fallback);
479 return crypto_kpp_compute_shared_secret(req);
482 /* must have exactly two points to be on the curve */
483 if (req->src_len != ATMEL_ECC_PUBKEY_SIZE)
484 return -EINVAL;
486 gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
487 GFP_ATOMIC;
489 work_data = kmalloc(sizeof(*work_data), gfp);
490 if (!work_data)
491 return -ENOMEM;
493 work_data->ctx = ctx;
495 ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src);
496 if (ret)
497 goto free_work_data;
499 atmel_ecc_enqueue(work_data, atmel_ecdh_done, req);
501 return -EINPROGRESS;
503 free_work_data:
504 kfree(work_data);
505 return ret;
508 static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
510 struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
511 struct i2c_client *client = ERR_PTR(-ENODEV);
512 int min_tfm_cnt = INT_MAX;
513 int tfm_cnt;
515 spin_lock(&driver_data.i2c_list_lock);
517 if (list_empty(&driver_data.i2c_client_list)) {
518 spin_unlock(&driver_data.i2c_list_lock);
519 return ERR_PTR(-ENODEV);
522 list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
523 i2c_client_list_node) {
524 tfm_cnt = atomic_read(&i2c_priv->tfm_count);
525 if (tfm_cnt < min_tfm_cnt) {
526 min_tfm_cnt = tfm_cnt;
527 min_i2c_priv = i2c_priv;
529 if (!min_tfm_cnt)
530 break;
533 if (min_i2c_priv) {
534 atomic_inc(&min_i2c_priv->tfm_count);
535 client = min_i2c_priv->client;
538 spin_unlock(&driver_data.i2c_list_lock);
540 return client;
543 static void atmel_ecc_i2c_client_free(struct i2c_client *client)
545 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
547 atomic_dec(&i2c_priv->tfm_count);
550 static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
552 const char *alg = kpp_alg_name(tfm);
553 struct crypto_kpp *fallback;
554 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
556 ctx->client = atmel_ecc_i2c_client_alloc();
557 if (IS_ERR(ctx->client)) {
558 pr_err("tfm - i2c_client binding failed\n");
559 return PTR_ERR(ctx->client);
562 fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
563 if (IS_ERR(fallback)) {
564 dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
565 alg, PTR_ERR(fallback));
566 return PTR_ERR(fallback);
569 crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
570 ctx->fallback = fallback;
572 return 0;
575 static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
577 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
579 kfree(ctx->public_key);
580 crypto_free_kpp(ctx->fallback);
581 atmel_ecc_i2c_client_free(ctx->client);
584 static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
586 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
588 if (ctx->fallback)
589 return crypto_kpp_maxsize(ctx->fallback);
592 * The device only supports NIST P256 ECC keys. The public key size will
593 * always be the same. Use a macro for the key size to avoid unnecessary
594 * computations.
596 return ATMEL_ECC_PUBKEY_SIZE;
599 static struct kpp_alg atmel_ecdh = {
600 .set_secret = atmel_ecdh_set_secret,
601 .generate_public_key = atmel_ecdh_generate_public_key,
602 .compute_shared_secret = atmel_ecdh_compute_shared_secret,
603 .init = atmel_ecdh_init_tfm,
604 .exit = atmel_ecdh_exit_tfm,
605 .max_size = atmel_ecdh_max_size,
606 .base = {
607 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
608 .cra_name = "ecdh",
609 .cra_driver_name = "atmel-ecdh",
610 .cra_priority = ATMEL_ECC_PRIORITY,
611 .cra_module = THIS_MODULE,
612 .cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
616 static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate)
618 u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);
620 /* return the size of the wake_token in bytes */
621 return DIV_ROUND_UP(no_of_bits, 8);
624 static int device_sanity_check(struct i2c_client *client)
626 struct atmel_ecc_cmd *cmd;
627 int ret;
629 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
630 if (!cmd)
631 return -ENOMEM;
633 atmel_ecc_init_read_cmd(cmd);
635 ret = atmel_ecc_send_receive(client, cmd);
636 if (ret)
637 goto free_cmd;
640 * It is vital that the Configuration, Data and OTP zones be locked
641 * prior to release into the field of the system containing the device.
642 * Failure to lock these zones may permit modification of any secret
643 * keys and may lead to other security problems.
645 if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
646 dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
647 ret = -ENOTSUPP;
650 /* fall through */
651 free_cmd:
652 kfree(cmd);
653 return ret;
656 static int atmel_ecc_probe(struct i2c_client *client,
657 const struct i2c_device_id *id)
659 struct atmel_ecc_i2c_client_priv *i2c_priv;
660 struct device *dev = &client->dev;
661 int ret;
662 u32 bus_clk_rate;
664 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
665 dev_err(dev, "I2C_FUNC_I2C not supported\n");
666 return -ENODEV;
669 ret = of_property_read_u32(client->adapter->dev.of_node,
670 "clock-frequency", &bus_clk_rate);
671 if (ret) {
672 dev_err(dev, "of: failed to read clock-frequency property\n");
673 return ret;
676 if (bus_clk_rate > 1000000L) {
677 dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n",
678 bus_clk_rate);
679 return -EINVAL;
682 i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
683 if (!i2c_priv)
684 return -ENOMEM;
686 i2c_priv->client = client;
687 mutex_init(&i2c_priv->lock);
690 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
691 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
692 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
694 i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate);
696 memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));
698 atomic_set(&i2c_priv->tfm_count, 0);
700 i2c_set_clientdata(client, i2c_priv);
702 ret = device_sanity_check(client);
703 if (ret)
704 return ret;
706 spin_lock(&driver_data.i2c_list_lock);
707 list_add_tail(&i2c_priv->i2c_client_list_node,
708 &driver_data.i2c_client_list);
709 spin_unlock(&driver_data.i2c_list_lock);
711 ret = crypto_register_kpp(&atmel_ecdh);
712 if (ret) {
713 spin_lock(&driver_data.i2c_list_lock);
714 list_del(&i2c_priv->i2c_client_list_node);
715 spin_unlock(&driver_data.i2c_list_lock);
717 dev_err(dev, "%s alg registration failed\n",
718 atmel_ecdh.base.cra_driver_name);
719 } else {
720 dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n");
723 return ret;
726 static int atmel_ecc_remove(struct i2c_client *client)
728 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
730 /* Return EBUSY if i2c client already allocated. */
731 if (atomic_read(&i2c_priv->tfm_count)) {
732 dev_err(&client->dev, "Device is busy\n");
733 return -EBUSY;
736 crypto_unregister_kpp(&atmel_ecdh);
738 spin_lock(&driver_data.i2c_list_lock);
739 list_del(&i2c_priv->i2c_client_list_node);
740 spin_unlock(&driver_data.i2c_list_lock);
742 return 0;
745 #ifdef CONFIG_OF
746 static const struct of_device_id atmel_ecc_dt_ids[] = {
748 .compatible = "atmel,atecc508a",
749 }, {
750 /* sentinel */
753 MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
754 #endif
756 static const struct i2c_device_id atmel_ecc_id[] = {
757 { "atecc508a", 0 },
760 MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
762 static struct i2c_driver atmel_ecc_driver = {
763 .driver = {
764 .name = "atmel-ecc",
765 .of_match_table = of_match_ptr(atmel_ecc_dt_ids),
767 .probe = atmel_ecc_probe,
768 .remove = atmel_ecc_remove,
769 .id_table = atmel_ecc_id,
772 static int __init atmel_ecc_init(void)
774 spin_lock_init(&driver_data.i2c_list_lock);
775 INIT_LIST_HEAD(&driver_data.i2c_client_list);
776 return i2c_add_driver(&atmel_ecc_driver);
779 static void __exit atmel_ecc_exit(void)
781 flush_scheduled_work();
782 i2c_del_driver(&atmel_ecc_driver);
785 module_init(atmel_ecc_init);
786 module_exit(atmel_ecc_exit);
788 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
789 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
790 MODULE_LICENSE("GPL v2");