Linux 4.19.133
[linux/fpc-iii.git] / drivers / crypto / cavium / cpt / cptpf_main.c
blob06ad85ab5e8653291f4d90c0c8aed1273095a696
1 /*
2 * Copyright (C) 2016 Cavium, Inc.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License
6 * as published by the Free Software Foundation.
7 */
9 #include <linux/device.h>
10 #include <linux/firmware.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/pci.h>
15 #include <linux/printk.h>
16 #include <linux/version.h>
18 #include "cptpf.h"
20 #define DRV_NAME "thunder-cpt"
21 #define DRV_VERSION "1.0"
23 static u32 num_vfs = 4; /* Default 4 VF enabled */
24 module_param(num_vfs, uint, 0444);
25 MODULE_PARM_DESC(num_vfs, "Number of VFs to enable(1-16)");
28 * Disable cores specified by coremask
30 static void cpt_disable_cores(struct cpt_device *cpt, u64 coremask,
31 u8 type, u8 grp)
33 u64 pf_exe_ctl;
34 u32 timeout = 100;
35 u64 grpmask = 0;
36 struct device *dev = &cpt->pdev->dev;
38 if (type == AE_TYPES)
39 coremask = (coremask << cpt->max_se_cores);
41 /* Disengage the cores from groups */
42 grpmask = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp));
43 cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp),
44 (grpmask & ~coremask));
45 udelay(CSR_DELAY);
46 grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0));
47 while (grp & coremask) {
48 dev_err(dev, "Cores still busy %llx", coremask);
49 grp = cpt_read_csr64(cpt->reg_base,
50 CPTX_PF_EXEC_BUSY(0));
51 if (timeout--)
52 break;
54 udelay(CSR_DELAY);
57 /* Disable the cores */
58 pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0));
59 cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0),
60 (pf_exe_ctl & ~coremask));
61 udelay(CSR_DELAY);
65 * Enable cores specified by coremask
67 static void cpt_enable_cores(struct cpt_device *cpt, u64 coremask,
68 u8 type)
70 u64 pf_exe_ctl;
72 if (type == AE_TYPES)
73 coremask = (coremask << cpt->max_se_cores);
75 pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0));
76 cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0),
77 (pf_exe_ctl | coremask));
78 udelay(CSR_DELAY);
81 static void cpt_configure_group(struct cpt_device *cpt, u8 grp,
82 u64 coremask, u8 type)
84 u64 pf_gx_en = 0;
86 if (type == AE_TYPES)
87 coremask = (coremask << cpt->max_se_cores);
89 pf_gx_en = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp));
90 cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp),
91 (pf_gx_en | coremask));
92 udelay(CSR_DELAY);
95 static void cpt_disable_mbox_interrupts(struct cpt_device *cpt)
97 /* Clear mbox(0) interupts for all vfs */
98 cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1CX(0, 0), ~0ull);
101 static void cpt_disable_ecc_interrupts(struct cpt_device *cpt)
103 /* Clear ecc(0) interupts for all vfs */
104 cpt_write_csr64(cpt->reg_base, CPTX_PF_ECC0_ENA_W1C(0), ~0ull);
107 static void cpt_disable_exec_interrupts(struct cpt_device *cpt)
109 /* Clear exec interupts for all vfs */
110 cpt_write_csr64(cpt->reg_base, CPTX_PF_EXEC_ENA_W1C(0), ~0ull);
113 static void cpt_disable_all_interrupts(struct cpt_device *cpt)
115 cpt_disable_mbox_interrupts(cpt);
116 cpt_disable_ecc_interrupts(cpt);
117 cpt_disable_exec_interrupts(cpt);
120 static void cpt_enable_mbox_interrupts(struct cpt_device *cpt)
122 /* Set mbox(0) interupts for all vfs */
123 cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1SX(0, 0), ~0ull);
126 static int cpt_load_microcode(struct cpt_device *cpt, struct microcode *mcode)
128 int ret = 0, core = 0, shift = 0;
129 u32 total_cores = 0;
130 struct device *dev = &cpt->pdev->dev;
132 if (!mcode || !mcode->code) {
133 dev_err(dev, "Either the mcode is null or data is NULL\n");
134 return -EINVAL;
137 if (mcode->code_size == 0) {
138 dev_err(dev, "microcode size is 0\n");
139 return -EINVAL;
142 /* Assumes 0-9 are SE cores for UCODE_BASE registers and
143 * AE core bases follow
145 if (mcode->is_ae) {
146 core = CPT_MAX_SE_CORES; /* start couting from 10 */
147 total_cores = CPT_MAX_TOTAL_CORES; /* upto 15 */
148 } else {
149 core = 0; /* start couting from 0 */
150 total_cores = CPT_MAX_SE_CORES; /* upto 9 */
153 /* Point to microcode for each core of the group */
154 for (; core < total_cores ; core++, shift++) {
155 if (mcode->core_mask & (1 << shift)) {
156 cpt_write_csr64(cpt->reg_base,
157 CPTX_PF_ENGX_UCODE_BASE(0, core),
158 (u64)mcode->phys_base);
161 return ret;
164 static int do_cpt_init(struct cpt_device *cpt, struct microcode *mcode)
166 int ret = 0;
167 struct device *dev = &cpt->pdev->dev;
169 /* Make device not ready */
170 cpt->flags &= ~CPT_FLAG_DEVICE_READY;
171 /* Disable All PF interrupts */
172 cpt_disable_all_interrupts(cpt);
173 /* Calculate mcode group and coremasks */
174 if (mcode->is_ae) {
175 if (mcode->num_cores > cpt->max_ae_cores) {
176 dev_err(dev, "Requested for more cores than available AE cores\n");
177 ret = -EINVAL;
178 goto cpt_init_fail;
181 if (cpt->next_group >= CPT_MAX_CORE_GROUPS) {
182 dev_err(dev, "Can't load, all eight microcode groups in use");
183 return -ENFILE;
186 mcode->group = cpt->next_group;
187 /* Convert requested cores to mask */
188 mcode->core_mask = GENMASK(mcode->num_cores, 0);
189 cpt_disable_cores(cpt, mcode->core_mask, AE_TYPES,
190 mcode->group);
191 /* Load microcode for AE engines */
192 ret = cpt_load_microcode(cpt, mcode);
193 if (ret) {
194 dev_err(dev, "Microcode load Failed for %s\n",
195 mcode->version);
196 goto cpt_init_fail;
198 cpt->next_group++;
199 /* Configure group mask for the mcode */
200 cpt_configure_group(cpt, mcode->group, mcode->core_mask,
201 AE_TYPES);
202 /* Enable AE cores for the group mask */
203 cpt_enable_cores(cpt, mcode->core_mask, AE_TYPES);
204 } else {
205 if (mcode->num_cores > cpt->max_se_cores) {
206 dev_err(dev, "Requested for more cores than available SE cores\n");
207 ret = -EINVAL;
208 goto cpt_init_fail;
210 if (cpt->next_group >= CPT_MAX_CORE_GROUPS) {
211 dev_err(dev, "Can't load, all eight microcode groups in use");
212 return -ENFILE;
215 mcode->group = cpt->next_group;
216 /* Covert requested cores to mask */
217 mcode->core_mask = GENMASK(mcode->num_cores, 0);
218 cpt_disable_cores(cpt, mcode->core_mask, SE_TYPES,
219 mcode->group);
220 /* Load microcode for SE engines */
221 ret = cpt_load_microcode(cpt, mcode);
222 if (ret) {
223 dev_err(dev, "Microcode load Failed for %s\n",
224 mcode->version);
225 goto cpt_init_fail;
227 cpt->next_group++;
228 /* Configure group mask for the mcode */
229 cpt_configure_group(cpt, mcode->group, mcode->core_mask,
230 SE_TYPES);
231 /* Enable SE cores for the group mask */
232 cpt_enable_cores(cpt, mcode->core_mask, SE_TYPES);
235 /* Enabled PF mailbox interrupts */
236 cpt_enable_mbox_interrupts(cpt);
237 cpt->flags |= CPT_FLAG_DEVICE_READY;
239 return ret;
241 cpt_init_fail:
242 /* Enabled PF mailbox interrupts */
243 cpt_enable_mbox_interrupts(cpt);
245 return ret;
248 struct ucode_header {
249 u8 version[CPT_UCODE_VERSION_SZ];
250 u32 code_length;
251 u32 data_length;
252 u64 sram_address;
255 static int cpt_ucode_load_fw(struct cpt_device *cpt, const u8 *fw, bool is_ae)
257 const struct firmware *fw_entry;
258 struct device *dev = &cpt->pdev->dev;
259 struct ucode_header *ucode;
260 struct microcode *mcode;
261 int j, ret = 0;
263 ret = request_firmware(&fw_entry, fw, dev);
264 if (ret)
265 return ret;
267 ucode = (struct ucode_header *)fw_entry->data;
268 mcode = &cpt->mcode[cpt->next_mc_idx];
269 memcpy(mcode->version, (u8 *)fw_entry->data, CPT_UCODE_VERSION_SZ);
270 mcode->code_size = ntohl(ucode->code_length) * 2;
271 if (!mcode->code_size) {
272 ret = -EINVAL;
273 goto fw_release;
276 mcode->is_ae = is_ae;
277 mcode->core_mask = 0ULL;
278 mcode->num_cores = is_ae ? 6 : 10;
280 /* Allocate DMAable space */
281 mcode->code = dma_zalloc_coherent(&cpt->pdev->dev, mcode->code_size,
282 &mcode->phys_base, GFP_KERNEL);
283 if (!mcode->code) {
284 dev_err(dev, "Unable to allocate space for microcode");
285 ret = -ENOMEM;
286 goto fw_release;
289 memcpy((void *)mcode->code, (void *)(fw_entry->data + sizeof(*ucode)),
290 mcode->code_size);
292 /* Byte swap 64-bit */
293 for (j = 0; j < (mcode->code_size / 8); j++)
294 ((u64 *)mcode->code)[j] = cpu_to_be64(((u64 *)mcode->code)[j]);
295 /* MC needs 16-bit swap */
296 for (j = 0; j < (mcode->code_size / 2); j++)
297 ((u16 *)mcode->code)[j] = cpu_to_be16(((u16 *)mcode->code)[j]);
299 dev_dbg(dev, "mcode->code_size = %u\n", mcode->code_size);
300 dev_dbg(dev, "mcode->is_ae = %u\n", mcode->is_ae);
301 dev_dbg(dev, "mcode->num_cores = %u\n", mcode->num_cores);
302 dev_dbg(dev, "mcode->code = %llx\n", (u64)mcode->code);
303 dev_dbg(dev, "mcode->phys_base = %llx\n", mcode->phys_base);
305 ret = do_cpt_init(cpt, mcode);
306 if (ret) {
307 dev_err(dev, "do_cpt_init failed with ret: %d\n", ret);
308 goto fw_release;
311 dev_info(dev, "Microcode Loaded %s\n", mcode->version);
312 mcode->is_mc_valid = 1;
313 cpt->next_mc_idx++;
315 fw_release:
316 release_firmware(fw_entry);
318 return ret;
321 static int cpt_ucode_load(struct cpt_device *cpt)
323 int ret = 0;
324 struct device *dev = &cpt->pdev->dev;
326 ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-ae.out", true);
327 if (ret) {
328 dev_err(dev, "ae:cpt_ucode_load failed with ret: %d\n", ret);
329 return ret;
331 ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-se.out", false);
332 if (ret) {
333 dev_err(dev, "se:cpt_ucode_load failed with ret: %d\n", ret);
334 return ret;
337 return ret;
340 static irqreturn_t cpt_mbx0_intr_handler(int irq, void *cpt_irq)
342 struct cpt_device *cpt = (struct cpt_device *)cpt_irq;
344 cpt_mbox_intr_handler(cpt, 0);
346 return IRQ_HANDLED;
349 static void cpt_reset(struct cpt_device *cpt)
351 cpt_write_csr64(cpt->reg_base, CPTX_PF_RESET(0), 1);
354 static void cpt_find_max_enabled_cores(struct cpt_device *cpt)
356 union cptx_pf_constants pf_cnsts = {0};
358 pf_cnsts.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_CONSTANTS(0));
359 cpt->max_se_cores = pf_cnsts.s.se;
360 cpt->max_ae_cores = pf_cnsts.s.ae;
363 static u32 cpt_check_bist_status(struct cpt_device *cpt)
365 union cptx_pf_bist_status bist_sts = {0};
367 bist_sts.u = cpt_read_csr64(cpt->reg_base,
368 CPTX_PF_BIST_STATUS(0));
370 return bist_sts.u;
373 static u64 cpt_check_exe_bist_status(struct cpt_device *cpt)
375 union cptx_pf_exe_bist_status bist_sts = {0};
377 bist_sts.u = cpt_read_csr64(cpt->reg_base,
378 CPTX_PF_EXE_BIST_STATUS(0));
380 return bist_sts.u;
383 static void cpt_disable_all_cores(struct cpt_device *cpt)
385 u32 grp, timeout = 100;
386 struct device *dev = &cpt->pdev->dev;
388 /* Disengage the cores from groups */
389 for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) {
390 cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp), 0);
391 udelay(CSR_DELAY);
394 grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0));
395 while (grp) {
396 dev_err(dev, "Cores still busy");
397 grp = cpt_read_csr64(cpt->reg_base,
398 CPTX_PF_EXEC_BUSY(0));
399 if (timeout--)
400 break;
402 udelay(CSR_DELAY);
404 /* Disable the cores */
405 cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0), 0);
409 * Ensure all cores are disengaged from all groups by
410 * calling cpt_disable_all_cores() before calling this
411 * function.
413 static void cpt_unload_microcode(struct cpt_device *cpt)
415 u32 grp = 0, core;
417 /* Free microcode bases and reset group masks */
418 for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) {
419 struct microcode *mcode = &cpt->mcode[grp];
421 if (cpt->mcode[grp].code)
422 dma_free_coherent(&cpt->pdev->dev, mcode->code_size,
423 mcode->code, mcode->phys_base);
424 mcode->code = NULL;
426 /* Clear UCODE_BASE registers for all engines */
427 for (core = 0; core < CPT_MAX_TOTAL_CORES; core++)
428 cpt_write_csr64(cpt->reg_base,
429 CPTX_PF_ENGX_UCODE_BASE(0, core), 0ull);
432 static int cpt_device_init(struct cpt_device *cpt)
434 u64 bist;
435 struct device *dev = &cpt->pdev->dev;
437 /* Reset the PF when probed first */
438 cpt_reset(cpt);
439 msleep(100);
441 /*Check BIST status*/
442 bist = (u64)cpt_check_bist_status(cpt);
443 if (bist) {
444 dev_err(dev, "RAM BIST failed with code 0x%llx", bist);
445 return -ENODEV;
448 bist = cpt_check_exe_bist_status(cpt);
449 if (bist) {
450 dev_err(dev, "Engine BIST failed with code 0x%llx", bist);
451 return -ENODEV;
454 /*Get CLK frequency*/
455 /*Get max enabled cores */
456 cpt_find_max_enabled_cores(cpt);
457 /*Disable all cores*/
458 cpt_disable_all_cores(cpt);
459 /*Reset device parameters*/
460 cpt->next_mc_idx = 0;
461 cpt->next_group = 0;
462 /* PF is ready */
463 cpt->flags |= CPT_FLAG_DEVICE_READY;
465 return 0;
468 static int cpt_register_interrupts(struct cpt_device *cpt)
470 int ret;
471 struct device *dev = &cpt->pdev->dev;
473 /* Enable MSI-X */
474 ret = pci_alloc_irq_vectors(cpt->pdev, CPT_PF_MSIX_VECTORS,
475 CPT_PF_MSIX_VECTORS, PCI_IRQ_MSIX);
476 if (ret < 0) {
477 dev_err(&cpt->pdev->dev, "Request for #%d msix vectors failed\n",
478 CPT_PF_MSIX_VECTORS);
479 return ret;
482 /* Register mailbox interrupt handlers */
483 ret = request_irq(pci_irq_vector(cpt->pdev, CPT_PF_INT_VEC_E_MBOXX(0)),
484 cpt_mbx0_intr_handler, 0, "CPT Mbox0", cpt);
485 if (ret)
486 goto fail;
488 /* Enable mailbox interrupt */
489 cpt_enable_mbox_interrupts(cpt);
490 return 0;
492 fail:
493 dev_err(dev, "Request irq failed\n");
494 pci_disable_msix(cpt->pdev);
495 return ret;
498 static void cpt_unregister_interrupts(struct cpt_device *cpt)
500 free_irq(pci_irq_vector(cpt->pdev, CPT_PF_INT_VEC_E_MBOXX(0)), cpt);
501 pci_disable_msix(cpt->pdev);
504 static int cpt_sriov_init(struct cpt_device *cpt, int num_vfs)
506 int pos = 0;
507 int err;
508 u16 total_vf_cnt;
509 struct pci_dev *pdev = cpt->pdev;
511 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
512 if (!pos) {
513 dev_err(&pdev->dev, "SRIOV capability is not found in PCIe config space\n");
514 return -ENODEV;
517 cpt->num_vf_en = num_vfs; /* User requested VFs */
518 pci_read_config_word(pdev, (pos + PCI_SRIOV_TOTAL_VF), &total_vf_cnt);
519 if (total_vf_cnt < cpt->num_vf_en)
520 cpt->num_vf_en = total_vf_cnt;
522 if (!total_vf_cnt)
523 return 0;
525 /*Enabled the available VFs */
526 err = pci_enable_sriov(pdev, cpt->num_vf_en);
527 if (err) {
528 dev_err(&pdev->dev, "SRIOV enable failed, num VF is %d\n",
529 cpt->num_vf_en);
530 cpt->num_vf_en = 0;
531 return err;
534 /* TODO: Optionally enable static VQ priorities feature */
536 dev_info(&pdev->dev, "SRIOV enabled, number of VF available %d\n",
537 cpt->num_vf_en);
539 cpt->flags |= CPT_FLAG_SRIOV_ENABLED;
541 return 0;
544 static int cpt_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
546 struct device *dev = &pdev->dev;
547 struct cpt_device *cpt;
548 int err;
550 if (num_vfs > 16 || num_vfs < 4) {
551 dev_warn(dev, "Invalid vf count %d, Resetting it to 4(default)\n",
552 num_vfs);
553 num_vfs = 4;
556 cpt = devm_kzalloc(dev, sizeof(*cpt), GFP_KERNEL);
557 if (!cpt)
558 return -ENOMEM;
560 pci_set_drvdata(pdev, cpt);
561 cpt->pdev = pdev;
562 err = pci_enable_device(pdev);
563 if (err) {
564 dev_err(dev, "Failed to enable PCI device\n");
565 pci_set_drvdata(pdev, NULL);
566 return err;
569 err = pci_request_regions(pdev, DRV_NAME);
570 if (err) {
571 dev_err(dev, "PCI request regions failed 0x%x\n", err);
572 goto cpt_err_disable_device;
575 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
576 if (err) {
577 dev_err(dev, "Unable to get usable DMA configuration\n");
578 goto cpt_err_release_regions;
581 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
582 if (err) {
583 dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n");
584 goto cpt_err_release_regions;
587 /* MAP PF's configuration registers */
588 cpt->reg_base = pcim_iomap(pdev, 0, 0);
589 if (!cpt->reg_base) {
590 dev_err(dev, "Cannot map config register space, aborting\n");
591 err = -ENOMEM;
592 goto cpt_err_release_regions;
595 /* CPT device HW initialization */
596 cpt_device_init(cpt);
598 /* Register interrupts */
599 err = cpt_register_interrupts(cpt);
600 if (err)
601 goto cpt_err_release_regions;
603 err = cpt_ucode_load(cpt);
604 if (err)
605 goto cpt_err_unregister_interrupts;
607 /* Configure SRIOV */
608 err = cpt_sriov_init(cpt, num_vfs);
609 if (err)
610 goto cpt_err_unregister_interrupts;
612 return 0;
614 cpt_err_unregister_interrupts:
615 cpt_unregister_interrupts(cpt);
616 cpt_err_release_regions:
617 pci_release_regions(pdev);
618 cpt_err_disable_device:
619 pci_disable_device(pdev);
620 pci_set_drvdata(pdev, NULL);
621 return err;
624 static void cpt_remove(struct pci_dev *pdev)
626 struct cpt_device *cpt = pci_get_drvdata(pdev);
628 /* Disengage SE and AE cores from all groups*/
629 cpt_disable_all_cores(cpt);
630 /* Unload microcodes */
631 cpt_unload_microcode(cpt);
632 cpt_unregister_interrupts(cpt);
633 pci_disable_sriov(pdev);
634 pci_release_regions(pdev);
635 pci_disable_device(pdev);
636 pci_set_drvdata(pdev, NULL);
639 static void cpt_shutdown(struct pci_dev *pdev)
641 struct cpt_device *cpt = pci_get_drvdata(pdev);
643 if (!cpt)
644 return;
646 dev_info(&pdev->dev, "Shutdown device %x:%x.\n",
647 (u32)pdev->vendor, (u32)pdev->device);
649 cpt_unregister_interrupts(cpt);
650 pci_release_regions(pdev);
651 pci_disable_device(pdev);
652 pci_set_drvdata(pdev, NULL);
655 /* Supported devices */
656 static const struct pci_device_id cpt_id_table[] = {
657 { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, CPT_81XX_PCI_PF_DEVICE_ID) },
658 { 0, } /* end of table */
661 static struct pci_driver cpt_pci_driver = {
662 .name = DRV_NAME,
663 .id_table = cpt_id_table,
664 .probe = cpt_probe,
665 .remove = cpt_remove,
666 .shutdown = cpt_shutdown,
669 module_pci_driver(cpt_pci_driver);
671 MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
672 MODULE_DESCRIPTION("Cavium Thunder CPT Physical Function Driver");
673 MODULE_LICENSE("GPL v2");
674 MODULE_VERSION(DRV_VERSION);
675 MODULE_DEVICE_TABLE(pci, cpt_id_table);