2 * AMD Cryptographic Coprocessor (CCP) driver
4 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 * Author: Gary R Hook <gary.hook@amd.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/interrupt.h>
18 #include <crypto/scatterwalk.h>
19 #include <crypto/des.h>
20 #include <linux/ccp.h>
24 /* SHA initial context values */
25 static const __be32 ccp_sha1_init
[SHA1_DIGEST_SIZE
/ sizeof(__be32
)] = {
26 cpu_to_be32(SHA1_H0
), cpu_to_be32(SHA1_H1
),
27 cpu_to_be32(SHA1_H2
), cpu_to_be32(SHA1_H3
),
31 static const __be32 ccp_sha224_init
[SHA256_DIGEST_SIZE
/ sizeof(__be32
)] = {
32 cpu_to_be32(SHA224_H0
), cpu_to_be32(SHA224_H1
),
33 cpu_to_be32(SHA224_H2
), cpu_to_be32(SHA224_H3
),
34 cpu_to_be32(SHA224_H4
), cpu_to_be32(SHA224_H5
),
35 cpu_to_be32(SHA224_H6
), cpu_to_be32(SHA224_H7
),
38 static const __be32 ccp_sha256_init
[SHA256_DIGEST_SIZE
/ sizeof(__be32
)] = {
39 cpu_to_be32(SHA256_H0
), cpu_to_be32(SHA256_H1
),
40 cpu_to_be32(SHA256_H2
), cpu_to_be32(SHA256_H3
),
41 cpu_to_be32(SHA256_H4
), cpu_to_be32(SHA256_H5
),
42 cpu_to_be32(SHA256_H6
), cpu_to_be32(SHA256_H7
),
45 static const __be64 ccp_sha384_init
[SHA512_DIGEST_SIZE
/ sizeof(__be64
)] = {
46 cpu_to_be64(SHA384_H0
), cpu_to_be64(SHA384_H1
),
47 cpu_to_be64(SHA384_H2
), cpu_to_be64(SHA384_H3
),
48 cpu_to_be64(SHA384_H4
), cpu_to_be64(SHA384_H5
),
49 cpu_to_be64(SHA384_H6
), cpu_to_be64(SHA384_H7
),
52 static const __be64 ccp_sha512_init
[SHA512_DIGEST_SIZE
/ sizeof(__be64
)] = {
53 cpu_to_be64(SHA512_H0
), cpu_to_be64(SHA512_H1
),
54 cpu_to_be64(SHA512_H2
), cpu_to_be64(SHA512_H3
),
55 cpu_to_be64(SHA512_H4
), cpu_to_be64(SHA512_H5
),
56 cpu_to_be64(SHA512_H6
), cpu_to_be64(SHA512_H7
),
59 #define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
60 ccp_gen_jobid(ccp) : 0)
62 static u32
ccp_gen_jobid(struct ccp_device
*ccp
)
64 return atomic_inc_return(&ccp
->current_id
) & CCP_JOBID_MASK
;
67 static void ccp_sg_free(struct ccp_sg_workarea
*wa
)
70 dma_unmap_sg(wa
->dma_dev
, wa
->dma_sg
, wa
->nents
, wa
->dma_dir
);
75 static int ccp_init_sg_workarea(struct ccp_sg_workarea
*wa
, struct device
*dev
,
76 struct scatterlist
*sg
, u64 len
,
77 enum dma_data_direction dma_dir
)
79 memset(wa
, 0, sizeof(*wa
));
85 wa
->nents
= sg_nents_for_len(sg
, len
);
95 if (dma_dir
== DMA_NONE
)
100 wa
->dma_dir
= dma_dir
;
101 wa
->dma_count
= dma_map_sg(dev
, sg
, wa
->nents
, dma_dir
);
108 static void ccp_update_sg_workarea(struct ccp_sg_workarea
*wa
, unsigned int len
)
110 unsigned int nbytes
= min_t(u64
, len
, wa
->bytes_left
);
115 wa
->sg_used
+= nbytes
;
116 wa
->bytes_left
-= nbytes
;
117 if (wa
->sg_used
== wa
->sg
->length
) {
118 wa
->sg
= sg_next(wa
->sg
);
123 static void ccp_dm_free(struct ccp_dm_workarea
*wa
)
125 if (wa
->length
<= CCP_DMAPOOL_MAX_SIZE
) {
127 dma_pool_free(wa
->dma_pool
, wa
->address
,
131 dma_unmap_single(wa
->dev
, wa
->dma
.address
, wa
->length
,
140 static int ccp_init_dm_workarea(struct ccp_dm_workarea
*wa
,
141 struct ccp_cmd_queue
*cmd_q
,
143 enum dma_data_direction dir
)
145 memset(wa
, 0, sizeof(*wa
));
150 wa
->dev
= cmd_q
->ccp
->dev
;
153 if (len
<= CCP_DMAPOOL_MAX_SIZE
) {
154 wa
->dma_pool
= cmd_q
->dma_pool
;
156 wa
->address
= dma_pool_alloc(wa
->dma_pool
, GFP_KERNEL
,
161 wa
->dma
.length
= CCP_DMAPOOL_MAX_SIZE
;
163 memset(wa
->address
, 0, CCP_DMAPOOL_MAX_SIZE
);
165 wa
->address
= kzalloc(len
, GFP_KERNEL
);
169 wa
->dma
.address
= dma_map_single(wa
->dev
, wa
->address
, len
,
171 if (dma_mapping_error(wa
->dev
, wa
->dma
.address
))
174 wa
->dma
.length
= len
;
181 static int ccp_set_dm_area(struct ccp_dm_workarea
*wa
, unsigned int wa_offset
,
182 struct scatterlist
*sg
, unsigned int sg_offset
,
185 WARN_ON(!wa
->address
);
187 if (len
> (wa
->length
- wa_offset
))
190 scatterwalk_map_and_copy(wa
->address
+ wa_offset
, sg
, sg_offset
, len
,
195 static void ccp_get_dm_area(struct ccp_dm_workarea
*wa
, unsigned int wa_offset
,
196 struct scatterlist
*sg
, unsigned int sg_offset
,
199 WARN_ON(!wa
->address
);
201 scatterwalk_map_and_copy(wa
->address
+ wa_offset
, sg
, sg_offset
, len
,
205 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea
*wa
,
206 unsigned int wa_offset
,
207 struct scatterlist
*sg
,
208 unsigned int sg_offset
,
214 rc
= ccp_set_dm_area(wa
, wa_offset
, sg
, sg_offset
, len
);
218 p
= wa
->address
+ wa_offset
;
230 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea
*wa
,
231 unsigned int wa_offset
,
232 struct scatterlist
*sg
,
233 unsigned int sg_offset
,
238 p
= wa
->address
+ wa_offset
;
248 ccp_get_dm_area(wa
, wa_offset
, sg
, sg_offset
, len
);
251 static void ccp_free_data(struct ccp_data
*data
, struct ccp_cmd_queue
*cmd_q
)
253 ccp_dm_free(&data
->dm_wa
);
254 ccp_sg_free(&data
->sg_wa
);
257 static int ccp_init_data(struct ccp_data
*data
, struct ccp_cmd_queue
*cmd_q
,
258 struct scatterlist
*sg
, u64 sg_len
,
260 enum dma_data_direction dir
)
264 memset(data
, 0, sizeof(*data
));
266 ret
= ccp_init_sg_workarea(&data
->sg_wa
, cmd_q
->ccp
->dev
, sg
, sg_len
,
271 ret
= ccp_init_dm_workarea(&data
->dm_wa
, cmd_q
, dm_len
, dir
);
278 ccp_free_data(data
, cmd_q
);
283 static unsigned int ccp_queue_buf(struct ccp_data
*data
, unsigned int from
)
285 struct ccp_sg_workarea
*sg_wa
= &data
->sg_wa
;
286 struct ccp_dm_workarea
*dm_wa
= &data
->dm_wa
;
287 unsigned int buf_count
, nbytes
;
289 /* Clear the buffer if setting it */
291 memset(dm_wa
->address
, 0, dm_wa
->length
);
296 /* Perform the copy operation
297 * nbytes will always be <= UINT_MAX because dm_wa->length is
300 nbytes
= min_t(u64
, sg_wa
->bytes_left
, dm_wa
->length
);
301 scatterwalk_map_and_copy(dm_wa
->address
, sg_wa
->sg
, sg_wa
->sg_used
,
304 /* Update the structures and generate the count */
306 while (sg_wa
->bytes_left
&& (buf_count
< dm_wa
->length
)) {
307 nbytes
= min(sg_wa
->sg
->length
- sg_wa
->sg_used
,
308 dm_wa
->length
- buf_count
);
309 nbytes
= min_t(u64
, sg_wa
->bytes_left
, nbytes
);
312 ccp_update_sg_workarea(sg_wa
, nbytes
);
318 static unsigned int ccp_fill_queue_buf(struct ccp_data
*data
)
320 return ccp_queue_buf(data
, 0);
323 static unsigned int ccp_empty_queue_buf(struct ccp_data
*data
)
325 return ccp_queue_buf(data
, 1);
328 static void ccp_prepare_data(struct ccp_data
*src
, struct ccp_data
*dst
,
329 struct ccp_op
*op
, unsigned int block_size
,
332 unsigned int sg_src_len
, sg_dst_len
, op_len
;
334 /* The CCP can only DMA from/to one address each per operation. This
335 * requires that we find the smallest DMA area between the source
336 * and destination. The resulting len values will always be <= UINT_MAX
337 * because the dma length is an unsigned int.
339 sg_src_len
= sg_dma_len(src
->sg_wa
.sg
) - src
->sg_wa
.sg_used
;
340 sg_src_len
= min_t(u64
, src
->sg_wa
.bytes_left
, sg_src_len
);
343 sg_dst_len
= sg_dma_len(dst
->sg_wa
.sg
) - dst
->sg_wa
.sg_used
;
344 sg_dst_len
= min_t(u64
, src
->sg_wa
.bytes_left
, sg_dst_len
);
345 op_len
= min(sg_src_len
, sg_dst_len
);
350 /* The data operation length will be at least block_size in length
351 * or the smaller of available sg room remaining for the source or
354 op_len
= max(op_len
, block_size
);
356 /* Unless we have to buffer data, there's no reason to wait */
359 if (sg_src_len
< block_size
) {
360 /* Not enough data in the sg element, so it
361 * needs to be buffered into a blocksize chunk
363 int cp_len
= ccp_fill_queue_buf(src
);
366 op
->src
.u
.dma
.address
= src
->dm_wa
.dma
.address
;
367 op
->src
.u
.dma
.offset
= 0;
368 op
->src
.u
.dma
.length
= (blocksize_op
) ? block_size
: cp_len
;
370 /* Enough data in the sg element, but we need to
371 * adjust for any previously copied data
373 op
->src
.u
.dma
.address
= sg_dma_address(src
->sg_wa
.sg
);
374 op
->src
.u
.dma
.offset
= src
->sg_wa
.sg_used
;
375 op
->src
.u
.dma
.length
= op_len
& ~(block_size
- 1);
377 ccp_update_sg_workarea(&src
->sg_wa
, op
->src
.u
.dma
.length
);
381 if (sg_dst_len
< block_size
) {
382 /* Not enough room in the sg element or we're on the
383 * last piece of data (when using padding), so the
384 * output needs to be buffered into a blocksize chunk
387 op
->dst
.u
.dma
.address
= dst
->dm_wa
.dma
.address
;
388 op
->dst
.u
.dma
.offset
= 0;
389 op
->dst
.u
.dma
.length
= op
->src
.u
.dma
.length
;
391 /* Enough room in the sg element, but we need to
392 * adjust for any previously used area
394 op
->dst
.u
.dma
.address
= sg_dma_address(dst
->sg_wa
.sg
);
395 op
->dst
.u
.dma
.offset
= dst
->sg_wa
.sg_used
;
396 op
->dst
.u
.dma
.length
= op
->src
.u
.dma
.length
;
401 static void ccp_process_data(struct ccp_data
*src
, struct ccp_data
*dst
,
407 if (op
->dst
.u
.dma
.address
== dst
->dm_wa
.dma
.address
)
408 ccp_empty_queue_buf(dst
);
410 ccp_update_sg_workarea(&dst
->sg_wa
,
411 op
->dst
.u
.dma
.length
);
415 static int ccp_copy_to_from_sb(struct ccp_cmd_queue
*cmd_q
,
416 struct ccp_dm_workarea
*wa
, u32 jobid
, u32 sb
,
417 u32 byte_swap
, bool from
)
421 memset(&op
, 0, sizeof(op
));
429 op
.src
.type
= CCP_MEMTYPE_SB
;
431 op
.dst
.type
= CCP_MEMTYPE_SYSTEM
;
432 op
.dst
.u
.dma
.address
= wa
->dma
.address
;
433 op
.dst
.u
.dma
.length
= wa
->length
;
435 op
.src
.type
= CCP_MEMTYPE_SYSTEM
;
436 op
.src
.u
.dma
.address
= wa
->dma
.address
;
437 op
.src
.u
.dma
.length
= wa
->length
;
438 op
.dst
.type
= CCP_MEMTYPE_SB
;
442 op
.u
.passthru
.byte_swap
= byte_swap
;
444 return cmd_q
->ccp
->vdata
->perform
->passthru(&op
);
447 static int ccp_copy_to_sb(struct ccp_cmd_queue
*cmd_q
,
448 struct ccp_dm_workarea
*wa
, u32 jobid
, u32 sb
,
451 return ccp_copy_to_from_sb(cmd_q
, wa
, jobid
, sb
, byte_swap
, false);
454 static int ccp_copy_from_sb(struct ccp_cmd_queue
*cmd_q
,
455 struct ccp_dm_workarea
*wa
, u32 jobid
, u32 sb
,
458 return ccp_copy_to_from_sb(cmd_q
, wa
, jobid
, sb
, byte_swap
, true);
461 static noinline_for_stack
int
462 ccp_run_aes_cmac_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
464 struct ccp_aes_engine
*aes
= &cmd
->u
.aes
;
465 struct ccp_dm_workarea key
, ctx
;
468 unsigned int dm_offset
;
471 if (!((aes
->key_len
== AES_KEYSIZE_128
) ||
472 (aes
->key_len
== AES_KEYSIZE_192
) ||
473 (aes
->key_len
== AES_KEYSIZE_256
)))
476 if (aes
->src_len
& (AES_BLOCK_SIZE
- 1))
479 if (aes
->iv_len
!= AES_BLOCK_SIZE
)
482 if (!aes
->key
|| !aes
->iv
|| !aes
->src
)
485 if (aes
->cmac_final
) {
486 if (aes
->cmac_key_len
!= AES_BLOCK_SIZE
)
493 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT
!= 1);
494 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT
!= 1);
497 memset(&op
, 0, sizeof(op
));
499 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
500 op
.sb_key
= cmd_q
->sb_key
;
501 op
.sb_ctx
= cmd_q
->sb_ctx
;
503 op
.u
.aes
.type
= aes
->type
;
504 op
.u
.aes
.mode
= aes
->mode
;
505 op
.u
.aes
.action
= aes
->action
;
507 /* All supported key sizes fit in a single (32-byte) SB entry
508 * and must be in little endian format. Use the 256-bit byte
509 * swap passthru option to convert from big endian to little
512 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
513 CCP_AES_KEY_SB_COUNT
* CCP_SB_BYTES
,
518 dm_offset
= CCP_SB_BYTES
- aes
->key_len
;
519 ret
= ccp_set_dm_area(&key
, dm_offset
, aes
->key
, 0, aes
->key_len
);
522 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
523 CCP_PASSTHRU_BYTESWAP_256BIT
);
525 cmd
->engine_error
= cmd_q
->cmd_error
;
529 /* The AES context fits in a single (32-byte) SB entry and
530 * must be in little endian format. Use the 256-bit byte swap
531 * passthru option to convert from big endian to little endian.
533 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
534 CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
539 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
540 ret
= ccp_set_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
543 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
544 CCP_PASSTHRU_BYTESWAP_256BIT
);
546 cmd
->engine_error
= cmd_q
->cmd_error
;
550 /* Send data to the CCP AES engine */
551 ret
= ccp_init_data(&src
, cmd_q
, aes
->src
, aes
->src_len
,
552 AES_BLOCK_SIZE
, DMA_TO_DEVICE
);
556 while (src
.sg_wa
.bytes_left
) {
557 ccp_prepare_data(&src
, NULL
, &op
, AES_BLOCK_SIZE
, true);
558 if (aes
->cmac_final
&& !src
.sg_wa
.bytes_left
) {
561 /* Push the K1/K2 key to the CCP now */
562 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
,
564 CCP_PASSTHRU_BYTESWAP_256BIT
);
566 cmd
->engine_error
= cmd_q
->cmd_error
;
570 ret
= ccp_set_dm_area(&ctx
, 0, aes
->cmac_key
, 0,
574 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
575 CCP_PASSTHRU_BYTESWAP_256BIT
);
577 cmd
->engine_error
= cmd_q
->cmd_error
;
582 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
584 cmd
->engine_error
= cmd_q
->cmd_error
;
588 ccp_process_data(&src
, NULL
, &op
);
591 /* Retrieve the AES context - convert from LE to BE using
592 * 32-byte (256-bit) byteswapping
594 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
595 CCP_PASSTHRU_BYTESWAP_256BIT
);
597 cmd
->engine_error
= cmd_q
->cmd_error
;
601 /* ...but we only need AES_BLOCK_SIZE bytes */
602 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
603 ccp_get_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
606 ccp_free_data(&src
, cmd_q
);
617 static noinline_for_stack
int
618 ccp_run_aes_gcm_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
620 struct ccp_aes_engine
*aes
= &cmd
->u
.aes
;
621 struct ccp_dm_workarea key
, ctx
, final_wa
, tag
;
622 struct ccp_data src
, dst
;
626 unsigned long long *final
;
627 unsigned int dm_offset
;
628 unsigned int authsize
;
631 bool in_place
= true; /* Default value */
634 struct scatterlist
*p_inp
, sg_inp
[2];
635 struct scatterlist
*p_tag
, sg_tag
[2];
636 struct scatterlist
*p_outp
, sg_outp
[2];
637 struct scatterlist
*p_aad
;
642 if (!((aes
->key_len
== AES_KEYSIZE_128
) ||
643 (aes
->key_len
== AES_KEYSIZE_192
) ||
644 (aes
->key_len
== AES_KEYSIZE_256
)))
647 if (!aes
->key
) /* Gotta have a key SGL */
650 /* Zero defaults to 16 bytes, the maximum size */
651 authsize
= aes
->authsize
? aes
->authsize
: AES_BLOCK_SIZE
;
665 /* First, decompose the source buffer into AAD & PT,
666 * and the destination buffer into AAD, CT & tag, or
667 * the input into CT & tag.
668 * It is expected that the input and output SGs will
669 * be valid, even if the AAD and input lengths are 0.
672 p_inp
= scatterwalk_ffwd(sg_inp
, aes
->src
, aes
->aad_len
);
673 p_outp
= scatterwalk_ffwd(sg_outp
, aes
->dst
, aes
->aad_len
);
674 if (aes
->action
== CCP_AES_ACTION_ENCRYPT
) {
676 p_tag
= scatterwalk_ffwd(sg_tag
, p_outp
, ilen
);
678 /* Input length for decryption includes tag */
679 ilen
= aes
->src_len
- authsize
;
680 p_tag
= scatterwalk_ffwd(sg_tag
, p_inp
, ilen
);
683 jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
685 memset(&op
, 0, sizeof(op
));
688 op
.sb_key
= cmd_q
->sb_key
; /* Pre-allocated */
689 op
.sb_ctx
= cmd_q
->sb_ctx
; /* Pre-allocated */
691 op
.u
.aes
.type
= aes
->type
;
693 /* Copy the key to the LSB */
694 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
695 CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
700 dm_offset
= CCP_SB_BYTES
- aes
->key_len
;
701 ret
= ccp_set_dm_area(&key
, dm_offset
, aes
->key
, 0, aes
->key_len
);
704 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
705 CCP_PASSTHRU_BYTESWAP_256BIT
);
707 cmd
->engine_error
= cmd_q
->cmd_error
;
711 /* Copy the context (IV) to the LSB.
712 * There is an assumption here that the IV is 96 bits in length, plus
713 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
715 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
716 CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
721 dm_offset
= CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
- aes
->iv_len
;
722 ret
= ccp_set_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
726 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
727 CCP_PASSTHRU_BYTESWAP_256BIT
);
729 cmd
->engine_error
= cmd_q
->cmd_error
;
734 if (aes
->aad_len
> 0) {
735 /* Step 1: Run a GHASH over the Additional Authenticated Data */
736 ret
= ccp_init_data(&aad
, cmd_q
, p_aad
, aes
->aad_len
,
742 op
.u
.aes
.mode
= CCP_AES_MODE_GHASH
;
743 op
.u
.aes
.action
= CCP_AES_GHASHAAD
;
745 while (aad
.sg_wa
.bytes_left
) {
746 ccp_prepare_data(&aad
, NULL
, &op
, AES_BLOCK_SIZE
, true);
748 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
750 cmd
->engine_error
= cmd_q
->cmd_error
;
754 ccp_process_data(&aad
, NULL
, &op
);
759 op
.u
.aes
.mode
= CCP_AES_MODE_GCTR
;
760 op
.u
.aes
.action
= aes
->action
;
763 /* Step 2: Run a GCTR over the plaintext */
764 in_place
= (sg_virt(p_inp
) == sg_virt(p_outp
)) ? true : false;
766 ret
= ccp_init_data(&src
, cmd_q
, p_inp
, ilen
,
768 in_place
? DMA_BIDIRECTIONAL
776 ret
= ccp_init_data(&dst
, cmd_q
, p_outp
, ilen
,
777 AES_BLOCK_SIZE
, DMA_FROM_DEVICE
);
785 while (src
.sg_wa
.bytes_left
) {
786 ccp_prepare_data(&src
, &dst
, &op
, AES_BLOCK_SIZE
, true);
787 if (!src
.sg_wa
.bytes_left
) {
788 unsigned int nbytes
= ilen
% AES_BLOCK_SIZE
;
792 op
.u
.aes
.size
= (nbytes
* 8) - 1;
796 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
798 cmd
->engine_error
= cmd_q
->cmd_error
;
802 ccp_process_data(&src
, &dst
, &op
);
807 /* Step 3: Update the IV portion of the context with the original IV */
808 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
809 CCP_PASSTHRU_BYTESWAP_256BIT
);
811 cmd
->engine_error
= cmd_q
->cmd_error
;
815 ret
= ccp_set_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
819 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
820 CCP_PASSTHRU_BYTESWAP_256BIT
);
822 cmd
->engine_error
= cmd_q
->cmd_error
;
826 /* Step 4: Concatenate the lengths of the AAD and source, and
827 * hash that 16 byte buffer.
829 ret
= ccp_init_dm_workarea(&final_wa
, cmd_q
, AES_BLOCK_SIZE
,
833 final
= (unsigned long long *) final_wa
.address
;
834 final
[0] = cpu_to_be64(aes
->aad_len
* 8);
835 final
[1] = cpu_to_be64(ilen
* 8);
837 memset(&op
, 0, sizeof(op
));
840 op
.sb_key
= cmd_q
->sb_key
; /* Pre-allocated */
841 op
.sb_ctx
= cmd_q
->sb_ctx
; /* Pre-allocated */
843 op
.u
.aes
.type
= aes
->type
;
844 op
.u
.aes
.mode
= CCP_AES_MODE_GHASH
;
845 op
.u
.aes
.action
= CCP_AES_GHASHFINAL
;
846 op
.src
.type
= CCP_MEMTYPE_SYSTEM
;
847 op
.src
.u
.dma
.address
= final_wa
.dma
.address
;
848 op
.src
.u
.dma
.length
= AES_BLOCK_SIZE
;
849 op
.dst
.type
= CCP_MEMTYPE_SYSTEM
;
850 op
.dst
.u
.dma
.address
= final_wa
.dma
.address
;
851 op
.dst
.u
.dma
.length
= AES_BLOCK_SIZE
;
854 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
858 if (aes
->action
== CCP_AES_ACTION_ENCRYPT
) {
859 /* Put the ciphered tag after the ciphertext. */
860 ccp_get_dm_area(&final_wa
, 0, p_tag
, 0, authsize
);
862 /* Does this ciphered tag match the input? */
863 ret
= ccp_init_dm_workarea(&tag
, cmd_q
, authsize
,
867 ret
= ccp_set_dm_area(&tag
, 0, p_tag
, 0, authsize
);
871 ret
= crypto_memneq(tag
.address
, final_wa
.address
,
872 authsize
) ? -EBADMSG
: 0;
877 ccp_dm_free(&final_wa
);
880 if (ilen
> 0 && !in_place
)
881 ccp_free_data(&dst
, cmd_q
);
885 ccp_free_data(&src
, cmd_q
);
889 ccp_free_data(&aad
, cmd_q
);
900 static noinline_for_stack
int
901 ccp_run_aes_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
903 struct ccp_aes_engine
*aes
= &cmd
->u
.aes
;
904 struct ccp_dm_workarea key
, ctx
;
905 struct ccp_data src
, dst
;
907 unsigned int dm_offset
;
908 bool in_place
= false;
911 if (!((aes
->key_len
== AES_KEYSIZE_128
) ||
912 (aes
->key_len
== AES_KEYSIZE_192
) ||
913 (aes
->key_len
== AES_KEYSIZE_256
)))
916 if (((aes
->mode
== CCP_AES_MODE_ECB
) ||
917 (aes
->mode
== CCP_AES_MODE_CBC
) ||
918 (aes
->mode
== CCP_AES_MODE_CFB
)) &&
919 (aes
->src_len
& (AES_BLOCK_SIZE
- 1)))
922 if (!aes
->key
|| !aes
->src
|| !aes
->dst
)
925 if (aes
->mode
!= CCP_AES_MODE_ECB
) {
926 if (aes
->iv_len
!= AES_BLOCK_SIZE
)
933 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT
!= 1);
934 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT
!= 1);
937 memset(&op
, 0, sizeof(op
));
939 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
940 op
.sb_key
= cmd_q
->sb_key
;
941 op
.sb_ctx
= cmd_q
->sb_ctx
;
942 op
.init
= (aes
->mode
== CCP_AES_MODE_ECB
) ? 0 : 1;
943 op
.u
.aes
.type
= aes
->type
;
944 op
.u
.aes
.mode
= aes
->mode
;
945 op
.u
.aes
.action
= aes
->action
;
947 /* All supported key sizes fit in a single (32-byte) SB entry
948 * and must be in little endian format. Use the 256-bit byte
949 * swap passthru option to convert from big endian to little
952 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
953 CCP_AES_KEY_SB_COUNT
* CCP_SB_BYTES
,
958 dm_offset
= CCP_SB_BYTES
- aes
->key_len
;
959 ret
= ccp_set_dm_area(&key
, dm_offset
, aes
->key
, 0, aes
->key_len
);
962 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
963 CCP_PASSTHRU_BYTESWAP_256BIT
);
965 cmd
->engine_error
= cmd_q
->cmd_error
;
969 /* The AES context fits in a single (32-byte) SB entry and
970 * must be in little endian format. Use the 256-bit byte swap
971 * passthru option to convert from big endian to little endian.
973 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
974 CCP_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
979 if (aes
->mode
!= CCP_AES_MODE_ECB
) {
980 /* Load the AES context - convert to LE */
981 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
982 ret
= ccp_set_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
985 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
986 CCP_PASSTHRU_BYTESWAP_256BIT
);
988 cmd
->engine_error
= cmd_q
->cmd_error
;
993 case CCP_AES_MODE_CFB
: /* CFB128 only */
994 case CCP_AES_MODE_CTR
:
995 op
.u
.aes
.size
= AES_BLOCK_SIZE
* BITS_PER_BYTE
- 1;
1001 /* Prepare the input and output data workareas. For in-place
1002 * operations we need to set the dma direction to BIDIRECTIONAL
1003 * and copy the src workarea to the dst workarea.
1005 if (sg_virt(aes
->src
) == sg_virt(aes
->dst
))
1008 ret
= ccp_init_data(&src
, cmd_q
, aes
->src
, aes
->src_len
,
1010 in_place
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
1017 ret
= ccp_init_data(&dst
, cmd_q
, aes
->dst
, aes
->src_len
,
1018 AES_BLOCK_SIZE
, DMA_FROM_DEVICE
);
1023 /* Send data to the CCP AES engine */
1024 while (src
.sg_wa
.bytes_left
) {
1025 ccp_prepare_data(&src
, &dst
, &op
, AES_BLOCK_SIZE
, true);
1026 if (!src
.sg_wa
.bytes_left
) {
1029 /* Since we don't retrieve the AES context in ECB
1030 * mode we have to wait for the operation to complete
1031 * on the last piece of data
1033 if (aes
->mode
== CCP_AES_MODE_ECB
)
1037 ret
= cmd_q
->ccp
->vdata
->perform
->aes(&op
);
1039 cmd
->engine_error
= cmd_q
->cmd_error
;
1043 ccp_process_data(&src
, &dst
, &op
);
1046 if (aes
->mode
!= CCP_AES_MODE_ECB
) {
1047 /* Retrieve the AES context - convert from LE to BE using
1048 * 32-byte (256-bit) byteswapping
1050 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1051 CCP_PASSTHRU_BYTESWAP_256BIT
);
1053 cmd
->engine_error
= cmd_q
->cmd_error
;
1057 /* ...but we only need AES_BLOCK_SIZE bytes */
1058 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
1059 ccp_get_dm_area(&ctx
, dm_offset
, aes
->iv
, 0, aes
->iv_len
);
1064 ccp_free_data(&dst
, cmd_q
);
1067 ccp_free_data(&src
, cmd_q
);
1078 static noinline_for_stack
int
1079 ccp_run_xts_aes_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
1081 struct ccp_xts_aes_engine
*xts
= &cmd
->u
.xts
;
1082 struct ccp_dm_workarea key
, ctx
;
1083 struct ccp_data src
, dst
;
1085 unsigned int unit_size
, dm_offset
;
1086 bool in_place
= false;
1087 unsigned int sb_count
;
1088 enum ccp_aes_type aestype
;
1091 switch (xts
->unit_size
) {
1092 case CCP_XTS_AES_UNIT_SIZE_16
:
1095 case CCP_XTS_AES_UNIT_SIZE_512
:
1098 case CCP_XTS_AES_UNIT_SIZE_1024
:
1101 case CCP_XTS_AES_UNIT_SIZE_2048
:
1104 case CCP_XTS_AES_UNIT_SIZE_4096
:
1112 if (xts
->key_len
== AES_KEYSIZE_128
)
1113 aestype
= CCP_AES_TYPE_128
;
1114 else if (xts
->key_len
== AES_KEYSIZE_256
)
1115 aestype
= CCP_AES_TYPE_256
;
1119 if (!xts
->final
&& (xts
->src_len
& (AES_BLOCK_SIZE
- 1)))
1122 if (xts
->iv_len
!= AES_BLOCK_SIZE
)
1125 if (!xts
->key
|| !xts
->iv
|| !xts
->src
|| !xts
->dst
)
1128 BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT
!= 1);
1129 BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT
!= 1);
1132 memset(&op
, 0, sizeof(op
));
1134 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1135 op
.sb_key
= cmd_q
->sb_key
;
1136 op
.sb_ctx
= cmd_q
->sb_ctx
;
1138 op
.u
.xts
.type
= aestype
;
1139 op
.u
.xts
.action
= xts
->action
;
1140 op
.u
.xts
.unit_size
= xts
->unit_size
;
1142 /* A version 3 device only supports 128-bit keys, which fits into a
1143 * single SB entry. A version 5 device uses a 512-bit vector, so two
1146 if (cmd_q
->ccp
->vdata
->version
== CCP_VERSION(3, 0))
1147 sb_count
= CCP_XTS_AES_KEY_SB_COUNT
;
1149 sb_count
= CCP5_XTS_AES_KEY_SB_COUNT
;
1150 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
1151 sb_count
* CCP_SB_BYTES
,
1156 if (cmd_q
->ccp
->vdata
->version
== CCP_VERSION(3, 0)) {
1157 /* All supported key sizes must be in little endian format.
1158 * Use the 256-bit byte swap passthru option to convert from
1159 * big endian to little endian.
1161 dm_offset
= CCP_SB_BYTES
- AES_KEYSIZE_128
;
1162 ret
= ccp_set_dm_area(&key
, dm_offset
, xts
->key
, 0, xts
->key_len
);
1165 ret
= ccp_set_dm_area(&key
, 0, xts
->key
, xts
->key_len
, xts
->key_len
);
1169 /* Version 5 CCPs use a 512-bit space for the key: each portion
1170 * occupies 256 bits, or one entire slot, and is zero-padded.
1174 dm_offset
= CCP_SB_BYTES
;
1175 pad
= dm_offset
- xts
->key_len
;
1176 ret
= ccp_set_dm_area(&key
, pad
, xts
->key
, 0, xts
->key_len
);
1179 ret
= ccp_set_dm_area(&key
, dm_offset
+ pad
, xts
->key
,
1180 xts
->key_len
, xts
->key_len
);
1184 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
1185 CCP_PASSTHRU_BYTESWAP_256BIT
);
1187 cmd
->engine_error
= cmd_q
->cmd_error
;
1191 /* The AES context fits in a single (32-byte) SB entry and
1192 * for XTS is already in little endian format so no byte swapping
1195 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
1196 CCP_XTS_AES_CTX_SB_COUNT
* CCP_SB_BYTES
,
1201 ret
= ccp_set_dm_area(&ctx
, 0, xts
->iv
, 0, xts
->iv_len
);
1204 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1205 CCP_PASSTHRU_BYTESWAP_NOOP
);
1207 cmd
->engine_error
= cmd_q
->cmd_error
;
1211 /* Prepare the input and output data workareas. For in-place
1212 * operations we need to set the dma direction to BIDIRECTIONAL
1213 * and copy the src workarea to the dst workarea.
1215 if (sg_virt(xts
->src
) == sg_virt(xts
->dst
))
1218 ret
= ccp_init_data(&src
, cmd_q
, xts
->src
, xts
->src_len
,
1220 in_place
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
1227 ret
= ccp_init_data(&dst
, cmd_q
, xts
->dst
, xts
->src_len
,
1228 unit_size
, DMA_FROM_DEVICE
);
1233 /* Send data to the CCP AES engine */
1234 while (src
.sg_wa
.bytes_left
) {
1235 ccp_prepare_data(&src
, &dst
, &op
, unit_size
, true);
1236 if (!src
.sg_wa
.bytes_left
)
1239 ret
= cmd_q
->ccp
->vdata
->perform
->xts_aes(&op
);
1241 cmd
->engine_error
= cmd_q
->cmd_error
;
1245 ccp_process_data(&src
, &dst
, &op
);
1248 /* Retrieve the AES context - convert from LE to BE using
1249 * 32-byte (256-bit) byteswapping
1251 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1252 CCP_PASSTHRU_BYTESWAP_256BIT
);
1254 cmd
->engine_error
= cmd_q
->cmd_error
;
1258 /* ...but we only need AES_BLOCK_SIZE bytes */
1259 dm_offset
= CCP_SB_BYTES
- AES_BLOCK_SIZE
;
1260 ccp_get_dm_area(&ctx
, dm_offset
, xts
->iv
, 0, xts
->iv_len
);
1264 ccp_free_data(&dst
, cmd_q
);
1267 ccp_free_data(&src
, cmd_q
);
1278 static noinline_for_stack
int
1279 ccp_run_des3_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
1281 struct ccp_des3_engine
*des3
= &cmd
->u
.des3
;
1283 struct ccp_dm_workarea key
, ctx
;
1284 struct ccp_data src
, dst
;
1286 unsigned int dm_offset
;
1287 unsigned int len_singlekey
;
1288 bool in_place
= false;
1292 if (cmd_q
->ccp
->vdata
->version
< CCP_VERSION(5, 0))
1295 if (!cmd_q
->ccp
->vdata
->perform
->des3
)
1298 if (des3
->key_len
!= DES3_EDE_KEY_SIZE
)
1301 if (((des3
->mode
== CCP_DES3_MODE_ECB
) ||
1302 (des3
->mode
== CCP_DES3_MODE_CBC
)) &&
1303 (des3
->src_len
& (DES3_EDE_BLOCK_SIZE
- 1)))
1306 if (!des3
->key
|| !des3
->src
|| !des3
->dst
)
1309 if (des3
->mode
!= CCP_DES3_MODE_ECB
) {
1310 if (des3
->iv_len
!= DES3_EDE_BLOCK_SIZE
)
1318 /* Zero out all the fields of the command desc */
1319 memset(&op
, 0, sizeof(op
));
1321 /* Set up the Function field */
1323 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1324 op
.sb_key
= cmd_q
->sb_key
;
1326 op
.init
= (des3
->mode
== CCP_DES3_MODE_ECB
) ? 0 : 1;
1327 op
.u
.des3
.type
= des3
->type
;
1328 op
.u
.des3
.mode
= des3
->mode
;
1329 op
.u
.des3
.action
= des3
->action
;
1332 * All supported key sizes fit in a single (32-byte) KSB entry and
1333 * (like AES) must be in little endian format. Use the 256-bit byte
1334 * swap passthru option to convert from big endian to little endian.
1336 ret
= ccp_init_dm_workarea(&key
, cmd_q
,
1337 CCP_DES3_KEY_SB_COUNT
* CCP_SB_BYTES
,
1343 * The contents of the key triplet are in the reverse order of what
1344 * is required by the engine. Copy the 3 pieces individually to put
1345 * them where they belong.
1347 dm_offset
= CCP_SB_BYTES
- des3
->key_len
; /* Basic offset */
1349 len_singlekey
= des3
->key_len
/ 3;
1350 ret
= ccp_set_dm_area(&key
, dm_offset
+ 2 * len_singlekey
,
1351 des3
->key
, 0, len_singlekey
);
1354 ret
= ccp_set_dm_area(&key
, dm_offset
+ len_singlekey
,
1355 des3
->key
, len_singlekey
, len_singlekey
);
1358 ret
= ccp_set_dm_area(&key
, dm_offset
,
1359 des3
->key
, 2 * len_singlekey
, len_singlekey
);
1363 /* Copy the key to the SB */
1364 ret
= ccp_copy_to_sb(cmd_q
, &key
, op
.jobid
, op
.sb_key
,
1365 CCP_PASSTHRU_BYTESWAP_256BIT
);
1367 cmd
->engine_error
= cmd_q
->cmd_error
;
1372 * The DES3 context fits in a single (32-byte) KSB entry and
1373 * must be in little endian format. Use the 256-bit byte swap
1374 * passthru option to convert from big endian to little endian.
1376 if (des3
->mode
!= CCP_DES3_MODE_ECB
) {
1377 op
.sb_ctx
= cmd_q
->sb_ctx
;
1379 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
,
1380 CCP_DES3_CTX_SB_COUNT
* CCP_SB_BYTES
,
1385 /* Load the context into the LSB */
1386 dm_offset
= CCP_SB_BYTES
- des3
->iv_len
;
1387 ret
= ccp_set_dm_area(&ctx
, dm_offset
, des3
->iv
, 0,
1392 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1393 CCP_PASSTHRU_BYTESWAP_256BIT
);
1395 cmd
->engine_error
= cmd_q
->cmd_error
;
1401 * Prepare the input and output data workareas. For in-place
1402 * operations we need to set the dma direction to BIDIRECTIONAL
1403 * and copy the src workarea to the dst workarea.
1405 if (sg_virt(des3
->src
) == sg_virt(des3
->dst
))
1408 ret
= ccp_init_data(&src
, cmd_q
, des3
->src
, des3
->src_len
,
1409 DES3_EDE_BLOCK_SIZE
,
1410 in_place
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
1417 ret
= ccp_init_data(&dst
, cmd_q
, des3
->dst
, des3
->src_len
,
1418 DES3_EDE_BLOCK_SIZE
, DMA_FROM_DEVICE
);
1423 /* Send data to the CCP DES3 engine */
1424 while (src
.sg_wa
.bytes_left
) {
1425 ccp_prepare_data(&src
, &dst
, &op
, DES3_EDE_BLOCK_SIZE
, true);
1426 if (!src
.sg_wa
.bytes_left
) {
1429 /* Since we don't retrieve the context in ECB mode
1430 * we have to wait for the operation to complete
1431 * on the last piece of data
1436 ret
= cmd_q
->ccp
->vdata
->perform
->des3(&op
);
1438 cmd
->engine_error
= cmd_q
->cmd_error
;
1442 ccp_process_data(&src
, &dst
, &op
);
1445 if (des3
->mode
!= CCP_DES3_MODE_ECB
) {
1446 /* Retrieve the context and make BE */
1447 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1448 CCP_PASSTHRU_BYTESWAP_256BIT
);
1450 cmd
->engine_error
= cmd_q
->cmd_error
;
1454 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1455 ccp_get_dm_area(&ctx
, dm_offset
, des3
->iv
, 0,
1456 DES3_EDE_BLOCK_SIZE
);
1460 ccp_free_data(&dst
, cmd_q
);
1463 ccp_free_data(&src
, cmd_q
);
1466 if (des3
->mode
!= CCP_DES3_MODE_ECB
)
1475 static noinline_for_stack
int
1476 ccp_run_sha_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
1478 struct ccp_sha_engine
*sha
= &cmd
->u
.sha
;
1479 struct ccp_dm_workarea ctx
;
1480 struct ccp_data src
;
1482 unsigned int ioffset
, ooffset
;
1483 unsigned int digest_size
;
1490 switch (sha
->type
) {
1491 case CCP_SHA_TYPE_1
:
1492 if (sha
->ctx_len
< SHA1_DIGEST_SIZE
)
1494 block_size
= SHA1_BLOCK_SIZE
;
1496 case CCP_SHA_TYPE_224
:
1497 if (sha
->ctx_len
< SHA224_DIGEST_SIZE
)
1499 block_size
= SHA224_BLOCK_SIZE
;
1501 case CCP_SHA_TYPE_256
:
1502 if (sha
->ctx_len
< SHA256_DIGEST_SIZE
)
1504 block_size
= SHA256_BLOCK_SIZE
;
1506 case CCP_SHA_TYPE_384
:
1507 if (cmd_q
->ccp
->vdata
->version
< CCP_VERSION(4, 0)
1508 || sha
->ctx_len
< SHA384_DIGEST_SIZE
)
1510 block_size
= SHA384_BLOCK_SIZE
;
1512 case CCP_SHA_TYPE_512
:
1513 if (cmd_q
->ccp
->vdata
->version
< CCP_VERSION(4, 0)
1514 || sha
->ctx_len
< SHA512_DIGEST_SIZE
)
1516 block_size
= SHA512_BLOCK_SIZE
;
1525 if (!sha
->final
&& (sha
->src_len
& (block_size
- 1)))
1528 /* The version 3 device can't handle zero-length input */
1529 if (cmd_q
->ccp
->vdata
->version
== CCP_VERSION(3, 0)) {
1531 if (!sha
->src_len
) {
1532 unsigned int digest_len
;
1535 /* Not final, just return */
1539 /* CCP can't do a zero length sha operation so the
1540 * caller must buffer the data.
1545 /* The CCP cannot perform zero-length sha operations
1546 * so the caller is required to buffer data for the
1547 * final operation. However, a sha operation for a
1548 * message with a total length of zero is valid so
1549 * known values are required to supply the result.
1551 switch (sha
->type
) {
1552 case CCP_SHA_TYPE_1
:
1553 sha_zero
= sha1_zero_message_hash
;
1554 digest_len
= SHA1_DIGEST_SIZE
;
1556 case CCP_SHA_TYPE_224
:
1557 sha_zero
= sha224_zero_message_hash
;
1558 digest_len
= SHA224_DIGEST_SIZE
;
1560 case CCP_SHA_TYPE_256
:
1561 sha_zero
= sha256_zero_message_hash
;
1562 digest_len
= SHA256_DIGEST_SIZE
;
1568 scatterwalk_map_and_copy((void *)sha_zero
, sha
->ctx
, 0,
1575 /* Set variables used throughout */
1576 switch (sha
->type
) {
1577 case CCP_SHA_TYPE_1
:
1578 digest_size
= SHA1_DIGEST_SIZE
;
1579 init
= (void *) ccp_sha1_init
;
1580 ctx_size
= SHA1_DIGEST_SIZE
;
1582 if (cmd_q
->ccp
->vdata
->version
!= CCP_VERSION(3, 0))
1583 ooffset
= ioffset
= CCP_SB_BYTES
- SHA1_DIGEST_SIZE
;
1585 ooffset
= ioffset
= 0;
1587 case CCP_SHA_TYPE_224
:
1588 digest_size
= SHA224_DIGEST_SIZE
;
1589 init
= (void *) ccp_sha224_init
;
1590 ctx_size
= SHA256_DIGEST_SIZE
;
1593 if (cmd_q
->ccp
->vdata
->version
!= CCP_VERSION(3, 0))
1594 ooffset
= CCP_SB_BYTES
- SHA224_DIGEST_SIZE
;
1598 case CCP_SHA_TYPE_256
:
1599 digest_size
= SHA256_DIGEST_SIZE
;
1600 init
= (void *) ccp_sha256_init
;
1601 ctx_size
= SHA256_DIGEST_SIZE
;
1603 ooffset
= ioffset
= 0;
1605 case CCP_SHA_TYPE_384
:
1606 digest_size
= SHA384_DIGEST_SIZE
;
1607 init
= (void *) ccp_sha384_init
;
1608 ctx_size
= SHA512_DIGEST_SIZE
;
1611 ooffset
= 2 * CCP_SB_BYTES
- SHA384_DIGEST_SIZE
;
1613 case CCP_SHA_TYPE_512
:
1614 digest_size
= SHA512_DIGEST_SIZE
;
1615 init
= (void *) ccp_sha512_init
;
1616 ctx_size
= SHA512_DIGEST_SIZE
;
1618 ooffset
= ioffset
= 0;
1625 /* For zero-length plaintext the src pointer is ignored;
1626 * otherwise both parts must be valid
1628 if (sha
->src_len
&& !sha
->src
)
1631 memset(&op
, 0, sizeof(op
));
1633 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1634 op
.sb_ctx
= cmd_q
->sb_ctx
; /* Pre-allocated */
1635 op
.u
.sha
.type
= sha
->type
;
1636 op
.u
.sha
.msg_bits
= sha
->msg_bits
;
1638 /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1639 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1640 * first slot, and the left half in the second. Each portion must then
1641 * be in little endian format: use the 256-bit byte swap option.
1643 ret
= ccp_init_dm_workarea(&ctx
, cmd_q
, sb_count
* CCP_SB_BYTES
,
1648 switch (sha
->type
) {
1649 case CCP_SHA_TYPE_1
:
1650 case CCP_SHA_TYPE_224
:
1651 case CCP_SHA_TYPE_256
:
1652 memcpy(ctx
.address
+ ioffset
, init
, ctx_size
);
1654 case CCP_SHA_TYPE_384
:
1655 case CCP_SHA_TYPE_512
:
1656 memcpy(ctx
.address
+ ctx_size
/ 2, init
,
1658 memcpy(ctx
.address
, init
+ ctx_size
/ 2,
1666 /* Restore the context */
1667 ret
= ccp_set_dm_area(&ctx
, 0, sha
->ctx
, 0,
1668 sb_count
* CCP_SB_BYTES
);
1673 ret
= ccp_copy_to_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1674 CCP_PASSTHRU_BYTESWAP_256BIT
);
1676 cmd
->engine_error
= cmd_q
->cmd_error
;
1681 /* Send data to the CCP SHA engine; block_size is set above */
1682 ret
= ccp_init_data(&src
, cmd_q
, sha
->src
, sha
->src_len
,
1683 block_size
, DMA_TO_DEVICE
);
1687 while (src
.sg_wa
.bytes_left
) {
1688 ccp_prepare_data(&src
, NULL
, &op
, block_size
, false);
1689 if (sha
->final
&& !src
.sg_wa
.bytes_left
)
1692 ret
= cmd_q
->ccp
->vdata
->perform
->sha(&op
);
1694 cmd
->engine_error
= cmd_q
->cmd_error
;
1698 ccp_process_data(&src
, NULL
, &op
);
1702 ret
= cmd_q
->ccp
->vdata
->perform
->sha(&op
);
1704 cmd
->engine_error
= cmd_q
->cmd_error
;
1709 /* Retrieve the SHA context - convert from LE to BE using
1710 * 32-byte (256-bit) byteswapping to BE
1712 ret
= ccp_copy_from_sb(cmd_q
, &ctx
, op
.jobid
, op
.sb_ctx
,
1713 CCP_PASSTHRU_BYTESWAP_256BIT
);
1715 cmd
->engine_error
= cmd_q
->cmd_error
;
1720 /* Finishing up, so get the digest */
1721 switch (sha
->type
) {
1722 case CCP_SHA_TYPE_1
:
1723 case CCP_SHA_TYPE_224
:
1724 case CCP_SHA_TYPE_256
:
1725 ccp_get_dm_area(&ctx
, ooffset
,
1729 case CCP_SHA_TYPE_384
:
1730 case CCP_SHA_TYPE_512
:
1731 ccp_get_dm_area(&ctx
, 0,
1732 sha
->ctx
, LSB_ITEM_SIZE
- ooffset
,
1734 ccp_get_dm_area(&ctx
, LSB_ITEM_SIZE
+ ooffset
,
1736 LSB_ITEM_SIZE
- ooffset
);
1743 /* Stash the context */
1744 ccp_get_dm_area(&ctx
, 0, sha
->ctx
, 0,
1745 sb_count
* CCP_SB_BYTES
);
1748 if (sha
->final
&& sha
->opad
) {
1749 /* HMAC operation, recursively perform final SHA */
1750 struct ccp_cmd hmac_cmd
;
1751 struct scatterlist sg
;
1754 if (sha
->opad_len
!= block_size
) {
1759 hmac_buf
= kmalloc(block_size
+ digest_size
, GFP_KERNEL
);
1764 sg_init_one(&sg
, hmac_buf
, block_size
+ digest_size
);
1766 scatterwalk_map_and_copy(hmac_buf
, sha
->opad
, 0, block_size
, 0);
1767 switch (sha
->type
) {
1768 case CCP_SHA_TYPE_1
:
1769 case CCP_SHA_TYPE_224
:
1770 case CCP_SHA_TYPE_256
:
1771 memcpy(hmac_buf
+ block_size
,
1772 ctx
.address
+ ooffset
,
1775 case CCP_SHA_TYPE_384
:
1776 case CCP_SHA_TYPE_512
:
1777 memcpy(hmac_buf
+ block_size
,
1778 ctx
.address
+ LSB_ITEM_SIZE
+ ooffset
,
1780 memcpy(hmac_buf
+ block_size
+
1781 (LSB_ITEM_SIZE
- ooffset
),
1790 memset(&hmac_cmd
, 0, sizeof(hmac_cmd
));
1791 hmac_cmd
.engine
= CCP_ENGINE_SHA
;
1792 hmac_cmd
.u
.sha
.type
= sha
->type
;
1793 hmac_cmd
.u
.sha
.ctx
= sha
->ctx
;
1794 hmac_cmd
.u
.sha
.ctx_len
= sha
->ctx_len
;
1795 hmac_cmd
.u
.sha
.src
= &sg
;
1796 hmac_cmd
.u
.sha
.src_len
= block_size
+ digest_size
;
1797 hmac_cmd
.u
.sha
.opad
= NULL
;
1798 hmac_cmd
.u
.sha
.opad_len
= 0;
1799 hmac_cmd
.u
.sha
.first
= 1;
1800 hmac_cmd
.u
.sha
.final
= 1;
1801 hmac_cmd
.u
.sha
.msg_bits
= (block_size
+ digest_size
) << 3;
1803 ret
= ccp_run_sha_cmd(cmd_q
, &hmac_cmd
);
1805 cmd
->engine_error
= hmac_cmd
.engine_error
;
1812 ccp_free_data(&src
, cmd_q
);
1820 static noinline_for_stack
int
1821 ccp_run_rsa_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
1823 struct ccp_rsa_engine
*rsa
= &cmd
->u
.rsa
;
1824 struct ccp_dm_workarea exp
, src
, dst
;
1826 unsigned int sb_count
, i_len
, o_len
;
1829 /* Check against the maximum allowable size, in bits */
1830 if (rsa
->key_size
> cmd_q
->ccp
->vdata
->rsamax
)
1833 if (!rsa
->exp
|| !rsa
->mod
|| !rsa
->src
|| !rsa
->dst
)
1836 memset(&op
, 0, sizeof(op
));
1838 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1840 /* The RSA modulus must precede the message being acted upon, so
1841 * it must be copied to a DMA area where the message and the
1842 * modulus can be concatenated. Therefore the input buffer
1843 * length required is twice the output buffer length (which
1844 * must be a multiple of 256-bits). Compute o_len, i_len in bytes.
1845 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1848 o_len
= 32 * ((rsa
->key_size
+ 255) / 256);
1852 if (cmd_q
->ccp
->vdata
->version
< CCP_VERSION(5, 0)) {
1853 /* sb_count is the number of storage block slots required
1856 sb_count
= o_len
/ CCP_SB_BYTES
;
1857 op
.sb_key
= cmd_q
->ccp
->vdata
->perform
->sballoc(cmd_q
,
1862 /* A version 5 device allows a modulus size that will not fit
1863 * in the LSB, so the command will transfer it from memory.
1864 * Set the sb key to the default, even though it's not used.
1866 op
.sb_key
= cmd_q
->sb_key
;
1869 /* The RSA exponent must be in little endian format. Reverse its
1872 ret
= ccp_init_dm_workarea(&exp
, cmd_q
, o_len
, DMA_TO_DEVICE
);
1876 ret
= ccp_reverse_set_dm_area(&exp
, 0, rsa
->exp
, 0, rsa
->exp_len
);
1880 if (cmd_q
->ccp
->vdata
->version
< CCP_VERSION(5, 0)) {
1881 /* Copy the exponent to the local storage block, using
1882 * as many 32-byte blocks as were allocated above. It's
1883 * already little endian, so no further change is required.
1885 ret
= ccp_copy_to_sb(cmd_q
, &exp
, op
.jobid
, op
.sb_key
,
1886 CCP_PASSTHRU_BYTESWAP_NOOP
);
1888 cmd
->engine_error
= cmd_q
->cmd_error
;
1892 /* The exponent can be retrieved from memory via DMA. */
1893 op
.exp
.u
.dma
.address
= exp
.dma
.address
;
1894 op
.exp
.u
.dma
.offset
= 0;
1897 /* Concatenate the modulus and the message. Both the modulus and
1898 * the operands must be in little endian format. Since the input
1899 * is in big endian format it must be converted.
1901 ret
= ccp_init_dm_workarea(&src
, cmd_q
, i_len
, DMA_TO_DEVICE
);
1905 ret
= ccp_reverse_set_dm_area(&src
, 0, rsa
->mod
, 0, rsa
->mod_len
);
1908 ret
= ccp_reverse_set_dm_area(&src
, o_len
, rsa
->src
, 0, rsa
->src_len
);
1912 /* Prepare the output area for the operation */
1913 ret
= ccp_init_dm_workarea(&dst
, cmd_q
, o_len
, DMA_FROM_DEVICE
);
1918 op
.src
.u
.dma
.address
= src
.dma
.address
;
1919 op
.src
.u
.dma
.offset
= 0;
1920 op
.src
.u
.dma
.length
= i_len
;
1921 op
.dst
.u
.dma
.address
= dst
.dma
.address
;
1922 op
.dst
.u
.dma
.offset
= 0;
1923 op
.dst
.u
.dma
.length
= o_len
;
1925 op
.u
.rsa
.mod_size
= rsa
->key_size
;
1926 op
.u
.rsa
.input_len
= i_len
;
1928 ret
= cmd_q
->ccp
->vdata
->perform
->rsa(&op
);
1930 cmd
->engine_error
= cmd_q
->cmd_error
;
1934 ccp_reverse_get_dm_area(&dst
, 0, rsa
->dst
, 0, rsa
->mod_len
);
1947 cmd_q
->ccp
->vdata
->perform
->sbfree(cmd_q
, op
.sb_key
, sb_count
);
1952 static noinline_for_stack
int
1953 ccp_run_passthru_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
1955 struct ccp_passthru_engine
*pt
= &cmd
->u
.passthru
;
1956 struct ccp_dm_workarea mask
;
1957 struct ccp_data src
, dst
;
1959 bool in_place
= false;
1963 if (!pt
->final
&& (pt
->src_len
& (CCP_PASSTHRU_BLOCKSIZE
- 1)))
1966 if (!pt
->src
|| !pt
->dst
)
1969 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
) {
1970 if (pt
->mask_len
!= CCP_PASSTHRU_MASKSIZE
)
1976 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT
!= 1);
1978 memset(&op
, 0, sizeof(op
));
1980 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
1982 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
) {
1984 op
.sb_key
= cmd_q
->sb_key
;
1986 ret
= ccp_init_dm_workarea(&mask
, cmd_q
,
1987 CCP_PASSTHRU_SB_COUNT
*
1993 ret
= ccp_set_dm_area(&mask
, 0, pt
->mask
, 0, pt
->mask_len
);
1996 ret
= ccp_copy_to_sb(cmd_q
, &mask
, op
.jobid
, op
.sb_key
,
1997 CCP_PASSTHRU_BYTESWAP_NOOP
);
1999 cmd
->engine_error
= cmd_q
->cmd_error
;
2004 /* Prepare the input and output data workareas. For in-place
2005 * operations we need to set the dma direction to BIDIRECTIONAL
2006 * and copy the src workarea to the dst workarea.
2008 if (sg_virt(pt
->src
) == sg_virt(pt
->dst
))
2011 ret
= ccp_init_data(&src
, cmd_q
, pt
->src
, pt
->src_len
,
2012 CCP_PASSTHRU_MASKSIZE
,
2013 in_place
? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE
);
2020 ret
= ccp_init_data(&dst
, cmd_q
, pt
->dst
, pt
->src_len
,
2021 CCP_PASSTHRU_MASKSIZE
, DMA_FROM_DEVICE
);
2026 /* Send data to the CCP Passthru engine
2027 * Because the CCP engine works on a single source and destination
2028 * dma address at a time, each entry in the source scatterlist
2029 * (after the dma_map_sg call) must be less than or equal to the
2030 * (remaining) length in the destination scatterlist entry and the
2031 * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2033 dst
.sg_wa
.sg_used
= 0;
2034 for (i
= 1; i
<= src
.sg_wa
.dma_count
; i
++) {
2035 if (!dst
.sg_wa
.sg
||
2036 (dst
.sg_wa
.sg
->length
< src
.sg_wa
.sg
->length
)) {
2041 if (i
== src
.sg_wa
.dma_count
) {
2046 op
.src
.type
= CCP_MEMTYPE_SYSTEM
;
2047 op
.src
.u
.dma
.address
= sg_dma_address(src
.sg_wa
.sg
);
2048 op
.src
.u
.dma
.offset
= 0;
2049 op
.src
.u
.dma
.length
= sg_dma_len(src
.sg_wa
.sg
);
2051 op
.dst
.type
= CCP_MEMTYPE_SYSTEM
;
2052 op
.dst
.u
.dma
.address
= sg_dma_address(dst
.sg_wa
.sg
);
2053 op
.dst
.u
.dma
.offset
= dst
.sg_wa
.sg_used
;
2054 op
.dst
.u
.dma
.length
= op
.src
.u
.dma
.length
;
2056 ret
= cmd_q
->ccp
->vdata
->perform
->passthru(&op
);
2058 cmd
->engine_error
= cmd_q
->cmd_error
;
2062 dst
.sg_wa
.sg_used
+= src
.sg_wa
.sg
->length
;
2063 if (dst
.sg_wa
.sg_used
== dst
.sg_wa
.sg
->length
) {
2064 dst
.sg_wa
.sg
= sg_next(dst
.sg_wa
.sg
);
2065 dst
.sg_wa
.sg_used
= 0;
2067 src
.sg_wa
.sg
= sg_next(src
.sg_wa
.sg
);
2072 ccp_free_data(&dst
, cmd_q
);
2075 ccp_free_data(&src
, cmd_q
);
2078 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
)
2084 static noinline_for_stack
int
2085 ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue
*cmd_q
,
2086 struct ccp_cmd
*cmd
)
2088 struct ccp_passthru_nomap_engine
*pt
= &cmd
->u
.passthru_nomap
;
2089 struct ccp_dm_workarea mask
;
2093 if (!pt
->final
&& (pt
->src_len
& (CCP_PASSTHRU_BLOCKSIZE
- 1)))
2096 if (!pt
->src_dma
|| !pt
->dst_dma
)
2099 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
) {
2100 if (pt
->mask_len
!= CCP_PASSTHRU_MASKSIZE
)
2106 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT
!= 1);
2108 memset(&op
, 0, sizeof(op
));
2110 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
2112 if (pt
->bit_mod
!= CCP_PASSTHRU_BITWISE_NOOP
) {
2114 op
.sb_key
= cmd_q
->sb_key
;
2116 mask
.length
= pt
->mask_len
;
2117 mask
.dma
.address
= pt
->mask
;
2118 mask
.dma
.length
= pt
->mask_len
;
2120 ret
= ccp_copy_to_sb(cmd_q
, &mask
, op
.jobid
, op
.sb_key
,
2121 CCP_PASSTHRU_BYTESWAP_NOOP
);
2123 cmd
->engine_error
= cmd_q
->cmd_error
;
2128 /* Send data to the CCP Passthru engine */
2132 op
.src
.type
= CCP_MEMTYPE_SYSTEM
;
2133 op
.src
.u
.dma
.address
= pt
->src_dma
;
2134 op
.src
.u
.dma
.offset
= 0;
2135 op
.src
.u
.dma
.length
= pt
->src_len
;
2137 op
.dst
.type
= CCP_MEMTYPE_SYSTEM
;
2138 op
.dst
.u
.dma
.address
= pt
->dst_dma
;
2139 op
.dst
.u
.dma
.offset
= 0;
2140 op
.dst
.u
.dma
.length
= pt
->src_len
;
2142 ret
= cmd_q
->ccp
->vdata
->perform
->passthru(&op
);
2144 cmd
->engine_error
= cmd_q
->cmd_error
;
2149 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
2151 struct ccp_ecc_engine
*ecc
= &cmd
->u
.ecc
;
2152 struct ccp_dm_workarea src
, dst
;
2157 if (!ecc
->u
.mm
.operand_1
||
2158 (ecc
->u
.mm
.operand_1_len
> CCP_ECC_MODULUS_BYTES
))
2161 if (ecc
->function
!= CCP_ECC_FUNCTION_MINV_384BIT
)
2162 if (!ecc
->u
.mm
.operand_2
||
2163 (ecc
->u
.mm
.operand_2_len
> CCP_ECC_MODULUS_BYTES
))
2166 if (!ecc
->u
.mm
.result
||
2167 (ecc
->u
.mm
.result_len
< CCP_ECC_MODULUS_BYTES
))
2170 memset(&op
, 0, sizeof(op
));
2172 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
2174 /* Concatenate the modulus and the operands. Both the modulus and
2175 * the operands must be in little endian format. Since the input
2176 * is in big endian format it must be converted and placed in a
2177 * fixed length buffer.
2179 ret
= ccp_init_dm_workarea(&src
, cmd_q
, CCP_ECC_SRC_BUF_SIZE
,
2184 /* Save the workarea address since it is updated in order to perform
2189 /* Copy the ECC modulus */
2190 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->mod
, 0, ecc
->mod_len
);
2193 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2195 /* Copy the first operand */
2196 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.mm
.operand_1
, 0,
2197 ecc
->u
.mm
.operand_1_len
);
2200 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2202 if (ecc
->function
!= CCP_ECC_FUNCTION_MINV_384BIT
) {
2203 /* Copy the second operand */
2204 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.mm
.operand_2
, 0,
2205 ecc
->u
.mm
.operand_2_len
);
2208 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2211 /* Restore the workarea address */
2214 /* Prepare the output area for the operation */
2215 ret
= ccp_init_dm_workarea(&dst
, cmd_q
, CCP_ECC_DST_BUF_SIZE
,
2221 op
.src
.u
.dma
.address
= src
.dma
.address
;
2222 op
.src
.u
.dma
.offset
= 0;
2223 op
.src
.u
.dma
.length
= src
.length
;
2224 op
.dst
.u
.dma
.address
= dst
.dma
.address
;
2225 op
.dst
.u
.dma
.offset
= 0;
2226 op
.dst
.u
.dma
.length
= dst
.length
;
2228 op
.u
.ecc
.function
= cmd
->u
.ecc
.function
;
2230 ret
= cmd_q
->ccp
->vdata
->perform
->ecc(&op
);
2232 cmd
->engine_error
= cmd_q
->cmd_error
;
2236 ecc
->ecc_result
= le16_to_cpup(
2237 (const __le16
*)(dst
.address
+ CCP_ECC_RESULT_OFFSET
));
2238 if (!(ecc
->ecc_result
& CCP_ECC_RESULT_SUCCESS
)) {
2243 /* Save the ECC result */
2244 ccp_reverse_get_dm_area(&dst
, 0, ecc
->u
.mm
.result
, 0,
2245 CCP_ECC_MODULUS_BYTES
);
2256 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
2258 struct ccp_ecc_engine
*ecc
= &cmd
->u
.ecc
;
2259 struct ccp_dm_workarea src
, dst
;
2264 if (!ecc
->u
.pm
.point_1
.x
||
2265 (ecc
->u
.pm
.point_1
.x_len
> CCP_ECC_MODULUS_BYTES
) ||
2266 !ecc
->u
.pm
.point_1
.y
||
2267 (ecc
->u
.pm
.point_1
.y_len
> CCP_ECC_MODULUS_BYTES
))
2270 if (ecc
->function
== CCP_ECC_FUNCTION_PADD_384BIT
) {
2271 if (!ecc
->u
.pm
.point_2
.x
||
2272 (ecc
->u
.pm
.point_2
.x_len
> CCP_ECC_MODULUS_BYTES
) ||
2273 !ecc
->u
.pm
.point_2
.y
||
2274 (ecc
->u
.pm
.point_2
.y_len
> CCP_ECC_MODULUS_BYTES
))
2277 if (!ecc
->u
.pm
.domain_a
||
2278 (ecc
->u
.pm
.domain_a_len
> CCP_ECC_MODULUS_BYTES
))
2281 if (ecc
->function
== CCP_ECC_FUNCTION_PMUL_384BIT
)
2282 if (!ecc
->u
.pm
.scalar
||
2283 (ecc
->u
.pm
.scalar_len
> CCP_ECC_MODULUS_BYTES
))
2287 if (!ecc
->u
.pm
.result
.x
||
2288 (ecc
->u
.pm
.result
.x_len
< CCP_ECC_MODULUS_BYTES
) ||
2289 !ecc
->u
.pm
.result
.y
||
2290 (ecc
->u
.pm
.result
.y_len
< CCP_ECC_MODULUS_BYTES
))
2293 memset(&op
, 0, sizeof(op
));
2295 op
.jobid
= CCP_NEW_JOBID(cmd_q
->ccp
);
2297 /* Concatenate the modulus and the operands. Both the modulus and
2298 * the operands must be in little endian format. Since the input
2299 * is in big endian format it must be converted and placed in a
2300 * fixed length buffer.
2302 ret
= ccp_init_dm_workarea(&src
, cmd_q
, CCP_ECC_SRC_BUF_SIZE
,
2307 /* Save the workarea address since it is updated in order to perform
2312 /* Copy the ECC modulus */
2313 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->mod
, 0, ecc
->mod_len
);
2316 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2318 /* Copy the first point X and Y coordinate */
2319 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.point_1
.x
, 0,
2320 ecc
->u
.pm
.point_1
.x_len
);
2323 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2324 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.point_1
.y
, 0,
2325 ecc
->u
.pm
.point_1
.y_len
);
2328 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2330 /* Set the first point Z coordinate to 1 */
2331 *src
.address
= 0x01;
2332 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2334 if (ecc
->function
== CCP_ECC_FUNCTION_PADD_384BIT
) {
2335 /* Copy the second point X and Y coordinate */
2336 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.point_2
.x
, 0,
2337 ecc
->u
.pm
.point_2
.x_len
);
2340 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2341 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.point_2
.y
, 0,
2342 ecc
->u
.pm
.point_2
.y_len
);
2345 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2347 /* Set the second point Z coordinate to 1 */
2348 *src
.address
= 0x01;
2349 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2351 /* Copy the Domain "a" parameter */
2352 ret
= ccp_reverse_set_dm_area(&src
, 0, ecc
->u
.pm
.domain_a
, 0,
2353 ecc
->u
.pm
.domain_a_len
);
2356 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2358 if (ecc
->function
== CCP_ECC_FUNCTION_PMUL_384BIT
) {
2359 /* Copy the scalar value */
2360 ret
= ccp_reverse_set_dm_area(&src
, 0,
2361 ecc
->u
.pm
.scalar
, 0,
2362 ecc
->u
.pm
.scalar_len
);
2365 src
.address
+= CCP_ECC_OPERAND_SIZE
;
2369 /* Restore the workarea address */
2372 /* Prepare the output area for the operation */
2373 ret
= ccp_init_dm_workarea(&dst
, cmd_q
, CCP_ECC_DST_BUF_SIZE
,
2379 op
.src
.u
.dma
.address
= src
.dma
.address
;
2380 op
.src
.u
.dma
.offset
= 0;
2381 op
.src
.u
.dma
.length
= src
.length
;
2382 op
.dst
.u
.dma
.address
= dst
.dma
.address
;
2383 op
.dst
.u
.dma
.offset
= 0;
2384 op
.dst
.u
.dma
.length
= dst
.length
;
2386 op
.u
.ecc
.function
= cmd
->u
.ecc
.function
;
2388 ret
= cmd_q
->ccp
->vdata
->perform
->ecc(&op
);
2390 cmd
->engine_error
= cmd_q
->cmd_error
;
2394 ecc
->ecc_result
= le16_to_cpup(
2395 (const __le16
*)(dst
.address
+ CCP_ECC_RESULT_OFFSET
));
2396 if (!(ecc
->ecc_result
& CCP_ECC_RESULT_SUCCESS
)) {
2401 /* Save the workarea address since it is updated as we walk through
2402 * to copy the point math result
2406 /* Save the ECC result X and Y coordinates */
2407 ccp_reverse_get_dm_area(&dst
, 0, ecc
->u
.pm
.result
.x
, 0,
2408 CCP_ECC_MODULUS_BYTES
);
2409 dst
.address
+= CCP_ECC_OUTPUT_SIZE
;
2410 ccp_reverse_get_dm_area(&dst
, 0, ecc
->u
.pm
.result
.y
, 0,
2411 CCP_ECC_MODULUS_BYTES
);
2412 dst
.address
+= CCP_ECC_OUTPUT_SIZE
;
2414 /* Restore the workarea address */
2426 static noinline_for_stack
int
2427 ccp_run_ecc_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
2429 struct ccp_ecc_engine
*ecc
= &cmd
->u
.ecc
;
2431 ecc
->ecc_result
= 0;
2434 (ecc
->mod_len
> CCP_ECC_MODULUS_BYTES
))
2437 switch (ecc
->function
) {
2438 case CCP_ECC_FUNCTION_MMUL_384BIT
:
2439 case CCP_ECC_FUNCTION_MADD_384BIT
:
2440 case CCP_ECC_FUNCTION_MINV_384BIT
:
2441 return ccp_run_ecc_mm_cmd(cmd_q
, cmd
);
2443 case CCP_ECC_FUNCTION_PADD_384BIT
:
2444 case CCP_ECC_FUNCTION_PMUL_384BIT
:
2445 case CCP_ECC_FUNCTION_PDBL_384BIT
:
2446 return ccp_run_ecc_pm_cmd(cmd_q
, cmd
);
2453 int ccp_run_cmd(struct ccp_cmd_queue
*cmd_q
, struct ccp_cmd
*cmd
)
2457 cmd
->engine_error
= 0;
2458 cmd_q
->cmd_error
= 0;
2459 cmd_q
->int_rcvd
= 0;
2460 cmd_q
->free_slots
= cmd_q
->ccp
->vdata
->perform
->get_free_slots(cmd_q
);
2462 switch (cmd
->engine
) {
2463 case CCP_ENGINE_AES
:
2464 switch (cmd
->u
.aes
.mode
) {
2465 case CCP_AES_MODE_CMAC
:
2466 ret
= ccp_run_aes_cmac_cmd(cmd_q
, cmd
);
2468 case CCP_AES_MODE_GCM
:
2469 ret
= ccp_run_aes_gcm_cmd(cmd_q
, cmd
);
2472 ret
= ccp_run_aes_cmd(cmd_q
, cmd
);
2476 case CCP_ENGINE_XTS_AES_128
:
2477 ret
= ccp_run_xts_aes_cmd(cmd_q
, cmd
);
2479 case CCP_ENGINE_DES3
:
2480 ret
= ccp_run_des3_cmd(cmd_q
, cmd
);
2482 case CCP_ENGINE_SHA
:
2483 ret
= ccp_run_sha_cmd(cmd_q
, cmd
);
2485 case CCP_ENGINE_RSA
:
2486 ret
= ccp_run_rsa_cmd(cmd_q
, cmd
);
2488 case CCP_ENGINE_PASSTHRU
:
2489 if (cmd
->flags
& CCP_CMD_PASSTHRU_NO_DMA_MAP
)
2490 ret
= ccp_run_passthru_nomap_cmd(cmd_q
, cmd
);
2492 ret
= ccp_run_passthru_cmd(cmd_q
, cmd
);
2494 case CCP_ENGINE_ECC
:
2495 ret
= ccp_run_ecc_cmd(cmd_q
, cmd
);