Linux 4.19.133
[linux/fpc-iii.git] / drivers / crypto / mediatek / mtk-aes.c
blobc2058cf59f574a26707f240cf68573daf50b96be
1 /*
2 * Cryptographic API.
4 * Driver for EIP97 AES acceleration.
6 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * Some ideas are from atmel-aes.c drivers.
15 #include <crypto/aes.h>
16 #include <crypto/gcm.h>
17 #include "mtk-platform.h"
19 #define AES_QUEUE_SIZE 512
20 #define AES_BUF_ORDER 2
21 #define AES_BUF_SIZE ((PAGE_SIZE << AES_BUF_ORDER) \
22 & ~(AES_BLOCK_SIZE - 1))
23 #define AES_MAX_STATE_BUF_SIZE SIZE_IN_WORDS(AES_KEYSIZE_256 + \
24 AES_BLOCK_SIZE * 2)
25 #define AES_MAX_CT_SIZE 6
27 #define AES_CT_CTRL_HDR cpu_to_le32(0x00220000)
29 /* AES-CBC/ECB/CTR command token */
30 #define AES_CMD0 cpu_to_le32(0x05000000)
31 #define AES_CMD1 cpu_to_le32(0x2d060000)
32 #define AES_CMD2 cpu_to_le32(0xe4a63806)
33 /* AES-GCM command token */
34 #define AES_GCM_CMD0 cpu_to_le32(0x0b000000)
35 #define AES_GCM_CMD1 cpu_to_le32(0xa0800000)
36 #define AES_GCM_CMD2 cpu_to_le32(0x25000010)
37 #define AES_GCM_CMD3 cpu_to_le32(0x0f020000)
38 #define AES_GCM_CMD4 cpu_to_le32(0x21e60000)
39 #define AES_GCM_CMD5 cpu_to_le32(0x40e60000)
40 #define AES_GCM_CMD6 cpu_to_le32(0xd0070000)
42 /* AES transform information word 0 fields */
43 #define AES_TFM_BASIC_OUT cpu_to_le32(0x4 << 0)
44 #define AES_TFM_BASIC_IN cpu_to_le32(0x5 << 0)
45 #define AES_TFM_GCM_OUT cpu_to_le32(0x6 << 0)
46 #define AES_TFM_GCM_IN cpu_to_le32(0xf << 0)
47 #define AES_TFM_SIZE(x) cpu_to_le32((x) << 8)
48 #define AES_TFM_128BITS cpu_to_le32(0xb << 16)
49 #define AES_TFM_192BITS cpu_to_le32(0xd << 16)
50 #define AES_TFM_256BITS cpu_to_le32(0xf << 16)
51 #define AES_TFM_GHASH_DIGEST cpu_to_le32(0x2 << 21)
52 #define AES_TFM_GHASH cpu_to_le32(0x4 << 23)
53 /* AES transform information word 1 fields */
54 #define AES_TFM_ECB cpu_to_le32(0x0 << 0)
55 #define AES_TFM_CBC cpu_to_le32(0x1 << 0)
56 #define AES_TFM_CTR_INIT cpu_to_le32(0x2 << 0) /* init counter to 1 */
57 #define AES_TFM_CTR_LOAD cpu_to_le32(0x6 << 0) /* load/reuse counter */
58 #define AES_TFM_3IV cpu_to_le32(0x7 << 5) /* using IV 0-2 */
59 #define AES_TFM_FULL_IV cpu_to_le32(0xf << 5) /* using IV 0-3 */
60 #define AES_TFM_IV_CTR_MODE cpu_to_le32(0x1 << 10)
61 #define AES_TFM_ENC_HASH cpu_to_le32(0x1 << 17)
63 /* AES flags */
64 #define AES_FLAGS_CIPHER_MSK GENMASK(2, 0)
65 #define AES_FLAGS_ECB BIT(0)
66 #define AES_FLAGS_CBC BIT(1)
67 #define AES_FLAGS_CTR BIT(2)
68 #define AES_FLAGS_GCM BIT(3)
69 #define AES_FLAGS_ENCRYPT BIT(4)
70 #define AES_FLAGS_BUSY BIT(5)
72 #define AES_AUTH_TAG_ERR cpu_to_le32(BIT(26))
74 /**
75 * mtk_aes_info - hardware information of AES
76 * @cmd: command token, hardware instruction
77 * @tfm: transform state of cipher algorithm.
78 * @state: contains keys and initial vectors.
80 * Memory layout of GCM buffer:
81 * /-----------\
82 * | AES KEY | 128/196/256 bits
83 * |-----------|
84 * | HASH KEY | a string 128 zero bits encrypted using the block cipher
85 * |-----------|
86 * | IVs | 4 * 4 bytes
87 * \-----------/
89 * The engine requires all these info to do:
90 * - Commands decoding and control of the engine's data path.
91 * - Coordinating hardware data fetch and store operations.
92 * - Result token construction and output.
94 struct mtk_aes_info {
95 __le32 cmd[AES_MAX_CT_SIZE];
96 __le32 tfm[2];
97 __le32 state[AES_MAX_STATE_BUF_SIZE];
100 struct mtk_aes_reqctx {
101 u64 mode;
104 struct mtk_aes_base_ctx {
105 struct mtk_cryp *cryp;
106 u32 keylen;
107 __le32 keymode;
109 mtk_aes_fn start;
111 struct mtk_aes_info info;
112 dma_addr_t ct_dma;
113 dma_addr_t tfm_dma;
115 __le32 ct_hdr;
116 u32 ct_size;
119 struct mtk_aes_ctx {
120 struct mtk_aes_base_ctx base;
123 struct mtk_aes_ctr_ctx {
124 struct mtk_aes_base_ctx base;
126 u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
127 size_t offset;
128 struct scatterlist src[2];
129 struct scatterlist dst[2];
132 struct mtk_aes_gcm_ctx {
133 struct mtk_aes_base_ctx base;
135 u32 authsize;
136 size_t textlen;
138 struct crypto_skcipher *ctr;
141 struct mtk_aes_drv {
142 struct list_head dev_list;
143 /* Device list lock */
144 spinlock_t lock;
147 static struct mtk_aes_drv mtk_aes = {
148 .dev_list = LIST_HEAD_INIT(mtk_aes.dev_list),
149 .lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock),
152 static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset)
154 return readl_relaxed(cryp->base + offset);
157 static inline void mtk_aes_write(struct mtk_cryp *cryp,
158 u32 offset, u32 value)
160 writel_relaxed(value, cryp->base + offset);
163 static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx)
165 struct mtk_cryp *cryp = NULL;
166 struct mtk_cryp *tmp;
168 spin_lock_bh(&mtk_aes.lock);
169 if (!ctx->cryp) {
170 list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) {
171 cryp = tmp;
172 break;
174 ctx->cryp = cryp;
175 } else {
176 cryp = ctx->cryp;
178 spin_unlock_bh(&mtk_aes.lock);
180 return cryp;
183 static inline size_t mtk_aes_padlen(size_t len)
185 len &= AES_BLOCK_SIZE - 1;
186 return len ? AES_BLOCK_SIZE - len : 0;
189 static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len,
190 struct mtk_aes_dma *dma)
192 int nents;
194 if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
195 return false;
197 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
198 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
199 return false;
201 if (len <= sg->length) {
202 if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
203 return false;
205 dma->nents = nents + 1;
206 dma->remainder = sg->length - len;
207 sg->length = len;
208 return true;
211 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
212 return false;
214 len -= sg->length;
217 return false;
220 static inline void mtk_aes_set_mode(struct mtk_aes_rec *aes,
221 const struct mtk_aes_reqctx *rctx)
223 /* Clear all but persistent flags and set request flags. */
224 aes->flags = (aes->flags & AES_FLAGS_BUSY) | rctx->mode;
227 static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
229 struct scatterlist *sg = dma->sg;
230 int nents = dma->nents;
232 if (!dma->remainder)
233 return;
235 while (--nents > 0 && sg)
236 sg = sg_next(sg);
238 if (!sg)
239 return;
241 sg->length += dma->remainder;
244 static inline void mtk_aes_write_state_le(__le32 *dst, const u32 *src, u32 size)
246 int i;
248 for (i = 0; i < SIZE_IN_WORDS(size); i++)
249 dst[i] = cpu_to_le32(src[i]);
252 static inline void mtk_aes_write_state_be(__be32 *dst, const u32 *src, u32 size)
254 int i;
256 for (i = 0; i < SIZE_IN_WORDS(size); i++)
257 dst[i] = cpu_to_be32(src[i]);
260 static inline int mtk_aes_complete(struct mtk_cryp *cryp,
261 struct mtk_aes_rec *aes,
262 int err)
264 aes->flags &= ~AES_FLAGS_BUSY;
265 aes->areq->complete(aes->areq, err);
266 /* Handle new request */
267 tasklet_schedule(&aes->queue_task);
268 return err;
272 * Write descriptors for processing. This will configure the engine, load
273 * the transform information and then start the packet processing.
275 static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
277 struct mtk_ring *ring = cryp->ring[aes->id];
278 struct mtk_desc *cmd = NULL, *res = NULL;
279 struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg;
280 u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len;
281 int nents;
283 /* Write command descriptors */
284 for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) {
285 cmd = ring->cmd_next;
286 cmd->hdr = MTK_DESC_BUF_LEN(ssg->length);
287 cmd->buf = cpu_to_le32(sg_dma_address(ssg));
289 if (nents == 0) {
290 cmd->hdr |= MTK_DESC_FIRST |
291 MTK_DESC_CT_LEN(aes->ctx->ct_size);
292 cmd->ct = cpu_to_le32(aes->ctx->ct_dma);
293 cmd->ct_hdr = aes->ctx->ct_hdr;
294 cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma);
297 /* Shift ring buffer and check boundary */
298 if (++ring->cmd_next == ring->cmd_base + MTK_DESC_NUM)
299 ring->cmd_next = ring->cmd_base;
301 cmd->hdr |= MTK_DESC_LAST;
303 /* Prepare result descriptors */
304 for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) {
305 res = ring->res_next;
306 res->hdr = MTK_DESC_BUF_LEN(dsg->length);
307 res->buf = cpu_to_le32(sg_dma_address(dsg));
309 if (nents == 0)
310 res->hdr |= MTK_DESC_FIRST;
312 /* Shift ring buffer and check boundary */
313 if (++ring->res_next == ring->res_base + MTK_DESC_NUM)
314 ring->res_next = ring->res_base;
316 res->hdr |= MTK_DESC_LAST;
318 /* Pointer to current result descriptor */
319 ring->res_prev = res;
321 /* Prepare enough space for authenticated tag */
322 if (aes->flags & AES_FLAGS_GCM)
323 res->hdr += AES_BLOCK_SIZE;
326 * Make sure that all changes to the DMA ring are done before we
327 * start engine.
329 wmb();
330 /* Start DMA transfer */
331 mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen));
332 mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen));
334 return -EINPROGRESS;
337 static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
339 struct mtk_aes_base_ctx *ctx = aes->ctx;
341 dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
342 DMA_TO_DEVICE);
344 if (aes->src.sg == aes->dst.sg) {
345 dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
346 DMA_BIDIRECTIONAL);
348 if (aes->src.sg != &aes->aligned_sg)
349 mtk_aes_restore_sg(&aes->src);
350 } else {
351 dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents,
352 DMA_FROM_DEVICE);
354 if (aes->dst.sg != &aes->aligned_sg)
355 mtk_aes_restore_sg(&aes->dst);
357 dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
358 DMA_TO_DEVICE);
360 if (aes->src.sg != &aes->aligned_sg)
361 mtk_aes_restore_sg(&aes->src);
364 if (aes->dst.sg == &aes->aligned_sg)
365 sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst),
366 aes->buf, aes->total);
369 static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
371 struct mtk_aes_base_ctx *ctx = aes->ctx;
372 struct mtk_aes_info *info = &ctx->info;
374 ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
375 DMA_TO_DEVICE);
376 if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
377 goto exit;
379 ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd);
381 if (aes->src.sg == aes->dst.sg) {
382 aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
383 aes->src.nents,
384 DMA_BIDIRECTIONAL);
385 aes->dst.sg_len = aes->src.sg_len;
386 if (unlikely(!aes->src.sg_len))
387 goto sg_map_err;
388 } else {
389 aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
390 aes->src.nents, DMA_TO_DEVICE);
391 if (unlikely(!aes->src.sg_len))
392 goto sg_map_err;
394 aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg,
395 aes->dst.nents, DMA_FROM_DEVICE);
396 if (unlikely(!aes->dst.sg_len)) {
397 dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
398 DMA_TO_DEVICE);
399 goto sg_map_err;
403 return mtk_aes_xmit(cryp, aes);
405 sg_map_err:
406 dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE);
407 exit:
408 return mtk_aes_complete(cryp, aes, -EINVAL);
411 /* Initialize transform information of CBC/ECB/CTR mode */
412 static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
413 size_t len)
415 struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
416 struct mtk_aes_base_ctx *ctx = aes->ctx;
417 struct mtk_aes_info *info = &ctx->info;
418 u32 cnt = 0;
420 ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
421 info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len);
422 info->cmd[cnt++] = AES_CMD1;
424 info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode;
425 if (aes->flags & AES_FLAGS_ENCRYPT)
426 info->tfm[0] |= AES_TFM_BASIC_OUT;
427 else
428 info->tfm[0] |= AES_TFM_BASIC_IN;
430 switch (aes->flags & AES_FLAGS_CIPHER_MSK) {
431 case AES_FLAGS_CBC:
432 info->tfm[1] = AES_TFM_CBC;
433 break;
434 case AES_FLAGS_ECB:
435 info->tfm[1] = AES_TFM_ECB;
436 goto ecb;
437 case AES_FLAGS_CTR:
438 info->tfm[1] = AES_TFM_CTR_LOAD;
439 goto ctr;
441 default:
442 /* Should not happen... */
443 return;
446 mtk_aes_write_state_le(info->state + ctx->keylen, req->info,
447 AES_BLOCK_SIZE);
448 ctr:
449 info->tfm[0] += AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE));
450 info->tfm[1] |= AES_TFM_FULL_IV;
451 info->cmd[cnt++] = AES_CMD2;
452 ecb:
453 ctx->ct_size = cnt;
456 static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
457 struct scatterlist *src, struct scatterlist *dst,
458 size_t len)
460 size_t padlen = 0;
461 bool src_aligned, dst_aligned;
463 aes->total = len;
464 aes->src.sg = src;
465 aes->dst.sg = dst;
466 aes->real_dst = dst;
468 src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
469 if (src == dst)
470 dst_aligned = src_aligned;
471 else
472 dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
474 if (!src_aligned || !dst_aligned) {
475 padlen = mtk_aes_padlen(len);
477 if (len + padlen > AES_BUF_SIZE)
478 return mtk_aes_complete(cryp, aes, -ENOMEM);
480 if (!src_aligned) {
481 sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
482 aes->src.sg = &aes->aligned_sg;
483 aes->src.nents = 1;
484 aes->src.remainder = 0;
487 if (!dst_aligned) {
488 aes->dst.sg = &aes->aligned_sg;
489 aes->dst.nents = 1;
490 aes->dst.remainder = 0;
493 sg_init_table(&aes->aligned_sg, 1);
494 sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen);
497 mtk_aes_info_init(cryp, aes, len + padlen);
499 return mtk_aes_map(cryp, aes);
502 static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id,
503 struct crypto_async_request *new_areq)
505 struct mtk_aes_rec *aes = cryp->aes[id];
506 struct crypto_async_request *areq, *backlog;
507 struct mtk_aes_base_ctx *ctx;
508 unsigned long flags;
509 int ret = 0;
511 spin_lock_irqsave(&aes->lock, flags);
512 if (new_areq)
513 ret = crypto_enqueue_request(&aes->queue, new_areq);
514 if (aes->flags & AES_FLAGS_BUSY) {
515 spin_unlock_irqrestore(&aes->lock, flags);
516 return ret;
518 backlog = crypto_get_backlog(&aes->queue);
519 areq = crypto_dequeue_request(&aes->queue);
520 if (areq)
521 aes->flags |= AES_FLAGS_BUSY;
522 spin_unlock_irqrestore(&aes->lock, flags);
524 if (!areq)
525 return ret;
527 if (backlog)
528 backlog->complete(backlog, -EINPROGRESS);
530 ctx = crypto_tfm_ctx(areq->tfm);
532 aes->areq = areq;
533 aes->ctx = ctx;
535 return ctx->start(cryp, aes);
538 static int mtk_aes_transfer_complete(struct mtk_cryp *cryp,
539 struct mtk_aes_rec *aes)
541 return mtk_aes_complete(cryp, aes, 0);
544 static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
546 struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
547 struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req);
549 mtk_aes_set_mode(aes, rctx);
550 aes->resume = mtk_aes_transfer_complete;
552 return mtk_aes_dma(cryp, aes, req->src, req->dst, req->nbytes);
555 static inline struct mtk_aes_ctr_ctx *
556 mtk_aes_ctr_ctx_cast(struct mtk_aes_base_ctx *ctx)
558 return container_of(ctx, struct mtk_aes_ctr_ctx, base);
561 static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
563 struct mtk_aes_base_ctx *ctx = aes->ctx;
564 struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx);
565 struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
566 struct scatterlist *src, *dst;
567 u32 start, end, ctr, blocks;
568 size_t datalen;
569 bool fragmented = false;
571 /* Check for transfer completion. */
572 cctx->offset += aes->total;
573 if (cctx->offset >= req->nbytes)
574 return mtk_aes_transfer_complete(cryp, aes);
576 /* Compute data length. */
577 datalen = req->nbytes - cctx->offset;
578 blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
579 ctr = be32_to_cpu(cctx->iv[3]);
581 /* Check 32bit counter overflow. */
582 start = ctr;
583 end = start + blocks - 1;
584 if (end < start) {
585 ctr |= 0xffffffff;
586 datalen = AES_BLOCK_SIZE * -start;
587 fragmented = true;
590 /* Jump to offset. */
591 src = scatterwalk_ffwd(cctx->src, req->src, cctx->offset);
592 dst = ((req->src == req->dst) ? src :
593 scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset));
595 /* Write IVs into transform state buffer. */
596 mtk_aes_write_state_le(ctx->info.state + ctx->keylen, cctx->iv,
597 AES_BLOCK_SIZE);
599 if (unlikely(fragmented)) {
601 * Increment the counter manually to cope with the hardware
602 * counter overflow.
604 cctx->iv[3] = cpu_to_be32(ctr);
605 crypto_inc((u8 *)cctx->iv, AES_BLOCK_SIZE);
608 return mtk_aes_dma(cryp, aes, src, dst, datalen);
611 static int mtk_aes_ctr_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
613 struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(aes->ctx);
614 struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
615 struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req);
617 mtk_aes_set_mode(aes, rctx);
619 memcpy(cctx->iv, req->info, AES_BLOCK_SIZE);
620 cctx->offset = 0;
621 aes->total = 0;
622 aes->resume = mtk_aes_ctr_transfer;
624 return mtk_aes_ctr_transfer(cryp, aes);
627 /* Check and set the AES key to transform state buffer */
628 static int mtk_aes_setkey(struct crypto_ablkcipher *tfm,
629 const u8 *key, u32 keylen)
631 struct mtk_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
633 switch (keylen) {
634 case AES_KEYSIZE_128:
635 ctx->keymode = AES_TFM_128BITS;
636 break;
637 case AES_KEYSIZE_192:
638 ctx->keymode = AES_TFM_192BITS;
639 break;
640 case AES_KEYSIZE_256:
641 ctx->keymode = AES_TFM_256BITS;
642 break;
644 default:
645 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
646 return -EINVAL;
649 ctx->keylen = SIZE_IN_WORDS(keylen);
650 mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen);
652 return 0;
655 static int mtk_aes_crypt(struct ablkcipher_request *req, u64 mode)
657 struct mtk_aes_base_ctx *ctx;
658 struct mtk_aes_reqctx *rctx;
660 ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
661 rctx = ablkcipher_request_ctx(req);
662 rctx->mode = mode;
664 return mtk_aes_handle_queue(ctx->cryp, !(mode & AES_FLAGS_ENCRYPT),
665 &req->base);
668 static int mtk_aes_ecb_encrypt(struct ablkcipher_request *req)
670 return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB);
673 static int mtk_aes_ecb_decrypt(struct ablkcipher_request *req)
675 return mtk_aes_crypt(req, AES_FLAGS_ECB);
678 static int mtk_aes_cbc_encrypt(struct ablkcipher_request *req)
680 return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
683 static int mtk_aes_cbc_decrypt(struct ablkcipher_request *req)
685 return mtk_aes_crypt(req, AES_FLAGS_CBC);
688 static int mtk_aes_ctr_encrypt(struct ablkcipher_request *req)
690 return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
693 static int mtk_aes_ctr_decrypt(struct ablkcipher_request *req)
695 return mtk_aes_crypt(req, AES_FLAGS_CTR);
698 static int mtk_aes_cra_init(struct crypto_tfm *tfm)
700 struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm);
701 struct mtk_cryp *cryp = NULL;
703 cryp = mtk_aes_find_dev(&ctx->base);
704 if (!cryp) {
705 pr_err("can't find crypto device\n");
706 return -ENODEV;
709 tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx);
710 ctx->base.start = mtk_aes_start;
711 return 0;
714 static int mtk_aes_ctr_cra_init(struct crypto_tfm *tfm)
716 struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm);
717 struct mtk_cryp *cryp = NULL;
719 cryp = mtk_aes_find_dev(&ctx->base);
720 if (!cryp) {
721 pr_err("can't find crypto device\n");
722 return -ENODEV;
725 tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx);
726 ctx->base.start = mtk_aes_ctr_start;
727 return 0;
730 static struct crypto_alg aes_algs[] = {
732 .cra_name = "cbc(aes)",
733 .cra_driver_name = "cbc-aes-mtk",
734 .cra_priority = 400,
735 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
736 CRYPTO_ALG_ASYNC,
737 .cra_init = mtk_aes_cra_init,
738 .cra_blocksize = AES_BLOCK_SIZE,
739 .cra_ctxsize = sizeof(struct mtk_aes_ctx),
740 .cra_alignmask = 0xf,
741 .cra_type = &crypto_ablkcipher_type,
742 .cra_module = THIS_MODULE,
743 .cra_u.ablkcipher = {
744 .min_keysize = AES_MIN_KEY_SIZE,
745 .max_keysize = AES_MAX_KEY_SIZE,
746 .setkey = mtk_aes_setkey,
747 .encrypt = mtk_aes_cbc_encrypt,
748 .decrypt = mtk_aes_cbc_decrypt,
749 .ivsize = AES_BLOCK_SIZE,
753 .cra_name = "ecb(aes)",
754 .cra_driver_name = "ecb-aes-mtk",
755 .cra_priority = 400,
756 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
757 CRYPTO_ALG_ASYNC,
758 .cra_init = mtk_aes_cra_init,
759 .cra_blocksize = AES_BLOCK_SIZE,
760 .cra_ctxsize = sizeof(struct mtk_aes_ctx),
761 .cra_alignmask = 0xf,
762 .cra_type = &crypto_ablkcipher_type,
763 .cra_module = THIS_MODULE,
764 .cra_u.ablkcipher = {
765 .min_keysize = AES_MIN_KEY_SIZE,
766 .max_keysize = AES_MAX_KEY_SIZE,
767 .setkey = mtk_aes_setkey,
768 .encrypt = mtk_aes_ecb_encrypt,
769 .decrypt = mtk_aes_ecb_decrypt,
773 .cra_name = "ctr(aes)",
774 .cra_driver_name = "ctr-aes-mtk",
775 .cra_priority = 400,
776 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
777 CRYPTO_ALG_ASYNC,
778 .cra_init = mtk_aes_ctr_cra_init,
779 .cra_blocksize = 1,
780 .cra_ctxsize = sizeof(struct mtk_aes_ctr_ctx),
781 .cra_alignmask = 0xf,
782 .cra_type = &crypto_ablkcipher_type,
783 .cra_module = THIS_MODULE,
784 .cra_u.ablkcipher = {
785 .min_keysize = AES_MIN_KEY_SIZE,
786 .max_keysize = AES_MAX_KEY_SIZE,
787 .ivsize = AES_BLOCK_SIZE,
788 .setkey = mtk_aes_setkey,
789 .encrypt = mtk_aes_ctr_encrypt,
790 .decrypt = mtk_aes_ctr_decrypt,
795 static inline struct mtk_aes_gcm_ctx *
796 mtk_aes_gcm_ctx_cast(struct mtk_aes_base_ctx *ctx)
798 return container_of(ctx, struct mtk_aes_gcm_ctx, base);
802 * Engine will verify and compare tag automatically, so we just need
803 * to check returned status which stored in the result descriptor.
805 static int mtk_aes_gcm_tag_verify(struct mtk_cryp *cryp,
806 struct mtk_aes_rec *aes)
808 u32 status = cryp->ring[aes->id]->res_prev->ct;
810 return mtk_aes_complete(cryp, aes, (status & AES_AUTH_TAG_ERR) ?
811 -EBADMSG : 0);
814 /* Initialize transform information of GCM mode */
815 static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp,
816 struct mtk_aes_rec *aes,
817 size_t len)
819 struct aead_request *req = aead_request_cast(aes->areq);
820 struct mtk_aes_base_ctx *ctx = aes->ctx;
821 struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
822 struct mtk_aes_info *info = &ctx->info;
823 u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
824 u32 cnt = 0;
826 ctx->ct_hdr = AES_CT_CTRL_HDR | len;
828 info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
829 info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
830 info->cmd[cnt++] = AES_GCM_CMD2;
831 info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
833 if (aes->flags & AES_FLAGS_ENCRYPT) {
834 info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
835 info->tfm[0] = AES_TFM_GCM_OUT;
836 } else {
837 info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
838 info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
839 info->tfm[0] = AES_TFM_GCM_IN;
841 ctx->ct_size = cnt;
843 info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE(
844 ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) |
845 ctx->keymode;
846 info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV |
847 AES_TFM_ENC_HASH;
849 mtk_aes_write_state_le(info->state + ctx->keylen + SIZE_IN_WORDS(
850 AES_BLOCK_SIZE), (const u32 *)req->iv, ivsize);
853 static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
854 struct scatterlist *src, struct scatterlist *dst,
855 size_t len)
857 bool src_aligned, dst_aligned;
859 aes->src.sg = src;
860 aes->dst.sg = dst;
861 aes->real_dst = dst;
863 src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
864 if (src == dst)
865 dst_aligned = src_aligned;
866 else
867 dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
869 if (!src_aligned || !dst_aligned) {
870 if (aes->total > AES_BUF_SIZE)
871 return mtk_aes_complete(cryp, aes, -ENOMEM);
873 if (!src_aligned) {
874 sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
875 aes->src.sg = &aes->aligned_sg;
876 aes->src.nents = 1;
877 aes->src.remainder = 0;
880 if (!dst_aligned) {
881 aes->dst.sg = &aes->aligned_sg;
882 aes->dst.nents = 1;
883 aes->dst.remainder = 0;
886 sg_init_table(&aes->aligned_sg, 1);
887 sg_set_buf(&aes->aligned_sg, aes->buf, aes->total);
890 mtk_aes_gcm_info_init(cryp, aes, len);
892 return mtk_aes_map(cryp, aes);
895 /* Todo: GMAC */
896 static int mtk_aes_gcm_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
898 struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(aes->ctx);
899 struct aead_request *req = aead_request_cast(aes->areq);
900 struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
901 u32 len = req->assoclen + req->cryptlen;
903 mtk_aes_set_mode(aes, rctx);
905 if (aes->flags & AES_FLAGS_ENCRYPT) {
906 u32 tag[4];
908 aes->resume = mtk_aes_transfer_complete;
909 /* Compute total process length. */
910 aes->total = len + gctx->authsize;
911 /* Compute text length. */
912 gctx->textlen = req->cryptlen;
913 /* Hardware will append authenticated tag to output buffer */
914 scatterwalk_map_and_copy(tag, req->dst, len, gctx->authsize, 1);
915 } else {
916 aes->resume = mtk_aes_gcm_tag_verify;
917 aes->total = len;
918 gctx->textlen = req->cryptlen - gctx->authsize;
921 return mtk_aes_gcm_dma(cryp, aes, req->src, req->dst, len);
924 static int mtk_aes_gcm_crypt(struct aead_request *req, u64 mode)
926 struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
927 struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
928 struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
930 /* Empty messages are not supported yet */
931 if (!gctx->textlen && !req->assoclen)
932 return -EINVAL;
934 rctx->mode = AES_FLAGS_GCM | mode;
936 return mtk_aes_handle_queue(ctx->cryp, !!(mode & AES_FLAGS_ENCRYPT),
937 &req->base);
941 * Because of the hardware limitation, we need to pre-calculate key(H)
942 * for the GHASH operation. The result of the encryption operation
943 * need to be stored in the transform state buffer.
945 static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
946 u32 keylen)
948 struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
949 struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
950 struct crypto_skcipher *ctr = gctx->ctr;
951 struct {
952 u32 hash[4];
953 u8 iv[8];
955 struct crypto_wait wait;
957 struct scatterlist sg[1];
958 struct skcipher_request req;
959 } *data;
960 int err;
962 switch (keylen) {
963 case AES_KEYSIZE_128:
964 ctx->keymode = AES_TFM_128BITS;
965 break;
966 case AES_KEYSIZE_192:
967 ctx->keymode = AES_TFM_192BITS;
968 break;
969 case AES_KEYSIZE_256:
970 ctx->keymode = AES_TFM_256BITS;
971 break;
973 default:
974 crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
975 return -EINVAL;
978 ctx->keylen = SIZE_IN_WORDS(keylen);
980 /* Same as crypto_gcm_setkey() from crypto/gcm.c */
981 crypto_skcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK);
982 crypto_skcipher_set_flags(ctr, crypto_aead_get_flags(aead) &
983 CRYPTO_TFM_REQ_MASK);
984 err = crypto_skcipher_setkey(ctr, key, keylen);
985 crypto_aead_set_flags(aead, crypto_skcipher_get_flags(ctr) &
986 CRYPTO_TFM_RES_MASK);
987 if (err)
988 return err;
990 data = kzalloc(sizeof(*data) + crypto_skcipher_reqsize(ctr),
991 GFP_KERNEL);
992 if (!data)
993 return -ENOMEM;
995 crypto_init_wait(&data->wait);
996 sg_init_one(data->sg, &data->hash, AES_BLOCK_SIZE);
997 skcipher_request_set_tfm(&data->req, ctr);
998 skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
999 CRYPTO_TFM_REQ_MAY_BACKLOG,
1000 crypto_req_done, &data->wait);
1001 skcipher_request_set_crypt(&data->req, data->sg, data->sg,
1002 AES_BLOCK_SIZE, data->iv);
1004 err = crypto_wait_req(crypto_skcipher_encrypt(&data->req),
1005 &data->wait);
1006 if (err)
1007 goto out;
1009 /* Write key into state buffer */
1010 mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen);
1011 /* Write key(H) into state buffer */
1012 mtk_aes_write_state_be(ctx->info.state + ctx->keylen, data->hash,
1013 AES_BLOCK_SIZE);
1014 out:
1015 kzfree(data);
1016 return err;
1019 static int mtk_aes_gcm_setauthsize(struct crypto_aead *aead,
1020 u32 authsize)
1022 struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
1023 struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
1025 /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1026 switch (authsize) {
1027 case 8:
1028 case 12:
1029 case 16:
1030 break;
1031 default:
1032 return -EINVAL;
1035 gctx->authsize = authsize;
1036 return 0;
1039 static int mtk_aes_gcm_encrypt(struct aead_request *req)
1041 return mtk_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1044 static int mtk_aes_gcm_decrypt(struct aead_request *req)
1046 return mtk_aes_gcm_crypt(req, 0);
1049 static int mtk_aes_gcm_init(struct crypto_aead *aead)
1051 struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);
1052 struct mtk_cryp *cryp = NULL;
1054 cryp = mtk_aes_find_dev(&ctx->base);
1055 if (!cryp) {
1056 pr_err("can't find crypto device\n");
1057 return -ENODEV;
1060 ctx->ctr = crypto_alloc_skcipher("ctr(aes)", 0,
1061 CRYPTO_ALG_ASYNC);
1062 if (IS_ERR(ctx->ctr)) {
1063 pr_err("Error allocating ctr(aes)\n");
1064 return PTR_ERR(ctx->ctr);
1067 crypto_aead_set_reqsize(aead, sizeof(struct mtk_aes_reqctx));
1068 ctx->base.start = mtk_aes_gcm_start;
1069 return 0;
1072 static void mtk_aes_gcm_exit(struct crypto_aead *aead)
1074 struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);
1076 crypto_free_skcipher(ctx->ctr);
1079 static struct aead_alg aes_gcm_alg = {
1080 .setkey = mtk_aes_gcm_setkey,
1081 .setauthsize = mtk_aes_gcm_setauthsize,
1082 .encrypt = mtk_aes_gcm_encrypt,
1083 .decrypt = mtk_aes_gcm_decrypt,
1084 .init = mtk_aes_gcm_init,
1085 .exit = mtk_aes_gcm_exit,
1086 .ivsize = GCM_AES_IV_SIZE,
1087 .maxauthsize = AES_BLOCK_SIZE,
1089 .base = {
1090 .cra_name = "gcm(aes)",
1091 .cra_driver_name = "gcm-aes-mtk",
1092 .cra_priority = 400,
1093 .cra_flags = CRYPTO_ALG_ASYNC,
1094 .cra_blocksize = 1,
1095 .cra_ctxsize = sizeof(struct mtk_aes_gcm_ctx),
1096 .cra_alignmask = 0xf,
1097 .cra_module = THIS_MODULE,
1101 static void mtk_aes_queue_task(unsigned long data)
1103 struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
1105 mtk_aes_handle_queue(aes->cryp, aes->id, NULL);
1108 static void mtk_aes_done_task(unsigned long data)
1110 struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
1111 struct mtk_cryp *cryp = aes->cryp;
1113 mtk_aes_unmap(cryp, aes);
1114 aes->resume(cryp, aes);
1117 static irqreturn_t mtk_aes_irq(int irq, void *dev_id)
1119 struct mtk_aes_rec *aes = (struct mtk_aes_rec *)dev_id;
1120 struct mtk_cryp *cryp = aes->cryp;
1121 u32 val = mtk_aes_read(cryp, RDR_STAT(aes->id));
1123 mtk_aes_write(cryp, RDR_STAT(aes->id), val);
1125 if (likely(AES_FLAGS_BUSY & aes->flags)) {
1126 mtk_aes_write(cryp, RDR_PROC_COUNT(aes->id), MTK_CNT_RST);
1127 mtk_aes_write(cryp, RDR_THRESH(aes->id),
1128 MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
1130 tasklet_schedule(&aes->done_task);
1131 } else {
1132 dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
1134 return IRQ_HANDLED;
1138 * The purpose of creating encryption and decryption records is
1139 * to process outbound/inbound data in parallel, it can improve
1140 * performance in most use cases, such as IPSec VPN, especially
1141 * under heavy network traffic.
1143 static int mtk_aes_record_init(struct mtk_cryp *cryp)
1145 struct mtk_aes_rec **aes = cryp->aes;
1146 int i, err = -ENOMEM;
1148 for (i = 0; i < MTK_REC_NUM; i++) {
1149 aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL);
1150 if (!aes[i])
1151 goto err_cleanup;
1153 aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL,
1154 AES_BUF_ORDER);
1155 if (!aes[i]->buf)
1156 goto err_cleanup;
1158 aes[i]->cryp = cryp;
1160 spin_lock_init(&aes[i]->lock);
1161 crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);
1163 tasklet_init(&aes[i]->queue_task, mtk_aes_queue_task,
1164 (unsigned long)aes[i]);
1165 tasklet_init(&aes[i]->done_task, mtk_aes_done_task,
1166 (unsigned long)aes[i]);
1169 /* Link to ring0 and ring1 respectively */
1170 aes[0]->id = MTK_RING0;
1171 aes[1]->id = MTK_RING1;
1173 return 0;
1175 err_cleanup:
1176 for (; i--; ) {
1177 free_page((unsigned long)aes[i]->buf);
1178 kfree(aes[i]);
1181 return err;
1184 static void mtk_aes_record_free(struct mtk_cryp *cryp)
1186 int i;
1188 for (i = 0; i < MTK_REC_NUM; i++) {
1189 tasklet_kill(&cryp->aes[i]->done_task);
1190 tasklet_kill(&cryp->aes[i]->queue_task);
1192 free_page((unsigned long)cryp->aes[i]->buf);
1193 kfree(cryp->aes[i]);
1197 static void mtk_aes_unregister_algs(void)
1199 int i;
1201 crypto_unregister_aead(&aes_gcm_alg);
1203 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
1204 crypto_unregister_alg(&aes_algs[i]);
1207 static int mtk_aes_register_algs(void)
1209 int err, i;
1211 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1212 err = crypto_register_alg(&aes_algs[i]);
1213 if (err)
1214 goto err_aes_algs;
1217 err = crypto_register_aead(&aes_gcm_alg);
1218 if (err)
1219 goto err_aes_algs;
1221 return 0;
1223 err_aes_algs:
1224 for (; i--; )
1225 crypto_unregister_alg(&aes_algs[i]);
1227 return err;
1230 int mtk_cipher_alg_register(struct mtk_cryp *cryp)
1232 int ret;
1234 INIT_LIST_HEAD(&cryp->aes_list);
1236 /* Initialize two cipher records */
1237 ret = mtk_aes_record_init(cryp);
1238 if (ret)
1239 goto err_record;
1241 ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING0], mtk_aes_irq,
1242 0, "mtk-aes", cryp->aes[0]);
1243 if (ret) {
1244 dev_err(cryp->dev, "unable to request AES irq.\n");
1245 goto err_res;
1248 ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING1], mtk_aes_irq,
1249 0, "mtk-aes", cryp->aes[1]);
1250 if (ret) {
1251 dev_err(cryp->dev, "unable to request AES irq.\n");
1252 goto err_res;
1255 /* Enable ring0 and ring1 interrupt */
1256 mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING0), MTK_IRQ_RDR0);
1257 mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING1), MTK_IRQ_RDR1);
1259 spin_lock(&mtk_aes.lock);
1260 list_add_tail(&cryp->aes_list, &mtk_aes.dev_list);
1261 spin_unlock(&mtk_aes.lock);
1263 ret = mtk_aes_register_algs();
1264 if (ret)
1265 goto err_algs;
1267 return 0;
1269 err_algs:
1270 spin_lock(&mtk_aes.lock);
1271 list_del(&cryp->aes_list);
1272 spin_unlock(&mtk_aes.lock);
1273 err_res:
1274 mtk_aes_record_free(cryp);
1275 err_record:
1277 dev_err(cryp->dev, "mtk-aes initialization failed.\n");
1278 return ret;
1281 void mtk_cipher_alg_release(struct mtk_cryp *cryp)
1283 spin_lock(&mtk_aes.lock);
1284 list_del(&cryp->aes_list);
1285 spin_unlock(&mtk_aes.lock);
1287 mtk_aes_unregister_algs();
1288 mtk_aes_record_free(cryp);