Linux 4.19.133
[linux/fpc-iii.git] / drivers / crypto / mediatek / mtk-platform.c
blobee0404e27a0f2c26b264dd2e6bccedf46fe574bb
1 /*
2 * Driver for EIP97 cryptographic accelerator.
4 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/clk.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include "mtk-platform.h"
21 #define MTK_BURST_SIZE_MSK GENMASK(7, 4)
22 #define MTK_BURST_SIZE(x) ((x) << 4)
23 #define MTK_DESC_SIZE(x) ((x) << 0)
24 #define MTK_DESC_OFFSET(x) ((x) << 16)
25 #define MTK_DESC_FETCH_SIZE(x) ((x) << 0)
26 #define MTK_DESC_FETCH_THRESH(x) ((x) << 16)
27 #define MTK_DESC_OVL_IRQ_EN BIT(25)
28 #define MTK_DESC_ATP_PRESENT BIT(30)
30 #define MTK_DFSE_IDLE GENMASK(3, 0)
31 #define MTK_DFSE_THR_CTRL_EN BIT(30)
32 #define MTK_DFSE_THR_CTRL_RESET BIT(31)
33 #define MTK_DFSE_RING_ID(x) (((x) >> 12) & GENMASK(3, 0))
34 #define MTK_DFSE_MIN_DATA(x) ((x) << 0)
35 #define MTK_DFSE_MAX_DATA(x) ((x) << 8)
36 #define MTK_DFE_MIN_CTRL(x) ((x) << 16)
37 #define MTK_DFE_MAX_CTRL(x) ((x) << 24)
39 #define MTK_IN_BUF_MIN_THRESH(x) ((x) << 8)
40 #define MTK_IN_BUF_MAX_THRESH(x) ((x) << 12)
41 #define MTK_OUT_BUF_MIN_THRESH(x) ((x) << 0)
42 #define MTK_OUT_BUF_MAX_THRESH(x) ((x) << 4)
43 #define MTK_IN_TBUF_SIZE(x) (((x) >> 4) & GENMASK(3, 0))
44 #define MTK_IN_DBUF_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
45 #define MTK_OUT_DBUF_SIZE(x) (((x) >> 16) & GENMASK(3, 0))
46 #define MTK_CMD_FIFO_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
47 #define MTK_RES_FIFO_SIZE(x) (((x) >> 12) & GENMASK(3, 0))
49 #define MTK_PE_TK_LOC_AVL BIT(2)
50 #define MTK_PE_PROC_HELD BIT(14)
51 #define MTK_PE_TK_TIMEOUT_EN BIT(22)
52 #define MTK_PE_INPUT_DMA_ERR BIT(0)
53 #define MTK_PE_OUTPUT_DMA_ERR BIT(1)
54 #define MTK_PE_PKT_PORC_ERR BIT(2)
55 #define MTK_PE_PKT_TIMEOUT BIT(3)
56 #define MTK_PE_FATAL_ERR BIT(14)
57 #define MTK_PE_INPUT_DMA_ERR_EN BIT(16)
58 #define MTK_PE_OUTPUT_DMA_ERR_EN BIT(17)
59 #define MTK_PE_PKT_PORC_ERR_EN BIT(18)
60 #define MTK_PE_PKT_TIMEOUT_EN BIT(19)
61 #define MTK_PE_FATAL_ERR_EN BIT(30)
62 #define MTK_PE_INT_OUT_EN BIT(31)
64 #define MTK_HIA_SIGNATURE ((u16)0x35ca)
65 #define MTK_HIA_DATA_WIDTH(x) (((x) >> 25) & GENMASK(1, 0))
66 #define MTK_HIA_DMA_LENGTH(x) (((x) >> 20) & GENMASK(4, 0))
67 #define MTK_CDR_STAT_CLR GENMASK(4, 0)
68 #define MTK_RDR_STAT_CLR GENMASK(7, 0)
70 #define MTK_AIC_INT_MSK GENMASK(5, 0)
71 #define MTK_AIC_VER_MSK (GENMASK(15, 0) | GENMASK(27, 20))
72 #define MTK_AIC_VER11 0x011036c9
73 #define MTK_AIC_VER12 0x012036c9
74 #define MTK_AIC_G_CLR GENMASK(30, 20)
76 /**
77 * EIP97 is an integrated security subsystem to accelerate cryptographic
78 * functions and protocols to offload the host processor.
79 * Some important hardware modules are briefly introduced below:
81 * Host Interface Adapter(HIA) - the main interface between the host
82 * system and the hardware subsystem. It is responsible for attaching
83 * processing engine to the specific host bus interface and provides a
84 * standardized software view for off loading tasks to the engine.
86 * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
87 * CD the host has prepared in the CDR. It monitors the fill level of its
88 * CD-FIFO and if there's sufficient space for the next block of descriptors,
89 * then it fires off a DMA request to fetch a block of CDs.
91 * Data fetch engine(DFE) - It is responsible for parsing the CD and
92 * setting up the required control and packet data DMA transfers from
93 * system memory to the processing engine.
95 * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
96 * but target is result descriptors, Moreover, it also handles the RD
97 * updates under control of the DSE. For each packet data segment
98 * processed, the DSE triggers the RDR Manager to write the updated RD.
99 * If triggered to update, the RDR Manager sets up a DMA operation to
100 * copy the RD from the DSE to the correct location in the RDR.
102 * Data Store Engine(DSE) - It is responsible for parsing the prepared RD
103 * and setting up the required control and packet data DMA transfers from
104 * the processing engine to system memory.
106 * Advanced Interrupt Controllers(AICs) - receive interrupt request signals
107 * from various sources and combine them into one interrupt output.
108 * The AICs are used by:
109 * - One for the HIA global and processing engine interrupts.
110 * - The others for the descriptor ring interrupts.
113 /* Cryptographic engine capabilities */
114 struct mtk_sys_cap {
115 /* host interface adapter */
116 u32 hia_ver;
117 u32 hia_opt;
118 /* packet engine */
119 u32 pkt_eng_opt;
120 /* global hardware */
121 u32 hw_opt;
124 static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
126 /* Assign rings to DFE/DSE thread and enable it */
127 writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
128 writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
131 static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
132 struct mtk_sys_cap *cap)
134 u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
135 u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
136 u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
137 u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
138 u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
140 writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
141 MTK_DFSE_MAX_DATA(ipbuf) |
142 MTK_DFE_MIN_CTRL(itbuf - 1) |
143 MTK_DFE_MAX_CTRL(itbuf),
144 cryp->base + DFE_CFG);
146 writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
147 MTK_DFSE_MAX_DATA(opbuf),
148 cryp->base + DSE_CFG);
150 writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
151 MTK_IN_BUF_MAX_THRESH(ipbuf),
152 cryp->base + PE_IN_DBUF_THRESH);
154 writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
155 MTK_IN_BUF_MAX_THRESH(itbuf),
156 cryp->base + PE_IN_TBUF_THRESH);
158 writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
159 MTK_OUT_BUF_MAX_THRESH(opbuf),
160 cryp->base + PE_OUT_DBUF_THRESH);
162 writel(0, cryp->base + PE_OUT_TBUF_THRESH);
163 writel(0, cryp->base + PE_OUT_BUF_CTRL);
166 static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
168 int ret = -EINVAL;
169 u32 val;
171 /* Check for completion of all DMA transfers */
172 val = readl(cryp->base + DFE_THR_STAT);
173 if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
174 val = readl(cryp->base + DSE_THR_STAT);
175 if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
176 ret = 0;
179 if (!ret) {
180 /* Take DFE/DSE thread out of reset */
181 writel(0, cryp->base + DFE_THR_CTRL);
182 writel(0, cryp->base + DSE_THR_CTRL);
183 } else {
184 return -EBUSY;
187 return 0;
190 static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
192 int err;
194 /* Reset DSE/DFE and correct system priorities for all rings. */
195 writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
196 writel(0, cryp->base + DFE_PRIO_0);
197 writel(0, cryp->base + DFE_PRIO_1);
198 writel(0, cryp->base + DFE_PRIO_2);
199 writel(0, cryp->base + DFE_PRIO_3);
201 writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
202 writel(0, cryp->base + DSE_PRIO_0);
203 writel(0, cryp->base + DSE_PRIO_1);
204 writel(0, cryp->base + DSE_PRIO_2);
205 writel(0, cryp->base + DSE_PRIO_3);
207 err = mtk_dfe_dse_state_check(cryp);
208 if (err)
209 return err;
211 return 0;
214 static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
215 int i, struct mtk_sys_cap *cap)
217 /* Full descriptor that fits FIFO minus one */
218 u32 count =
219 ((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
221 /* Temporarily disable external triggering */
222 writel(0, cryp->base + CDR_CFG(i));
224 /* Clear CDR count */
225 writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
226 writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
228 writel(0, cryp->base + CDR_PREP_PNTR(i));
229 writel(0, cryp->base + CDR_PROC_PNTR(i));
230 writel(0, cryp->base + CDR_DMA_CFG(i));
232 /* Configure CDR host address space */
233 writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
234 writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
236 writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
238 /* Clear and disable all CDR interrupts */
239 writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
242 * Set command descriptor offset and enable additional
243 * token present in descriptor.
245 writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
246 MTK_DESC_OFFSET(MTK_DESC_OFF) |
247 MTK_DESC_ATP_PRESENT,
248 cryp->base + CDR_DESC_SIZE(i));
250 writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
251 MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
252 cryp->base + CDR_CFG(i));
255 static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
256 int i, struct mtk_sys_cap *cap)
258 u32 rndup = 2;
259 u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
261 /* Temporarily disable external triggering */
262 writel(0, cryp->base + RDR_CFG(i));
264 /* Clear RDR count */
265 writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
266 writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
268 writel(0, cryp->base + RDR_PREP_PNTR(i));
269 writel(0, cryp->base + RDR_PROC_PNTR(i));
270 writel(0, cryp->base + RDR_DMA_CFG(i));
272 /* Configure RDR host address space */
273 writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
274 writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
276 writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
277 writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
280 * RDR manager generates update interrupts on a per-completed-packet,
281 * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
282 * for the RDR exceeds the number of packets.
284 writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
285 cryp->base + RDR_THRESH(i));
288 * Configure a threshold and time-out value for the processed
289 * result descriptors (or complete packets) that are written to
290 * the RDR.
292 writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
293 cryp->base + RDR_DESC_SIZE(i));
296 * Configure HIA fetch size and fetch threshold that are used to
297 * fetch blocks of multiple descriptors.
299 writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
300 MTK_DESC_FETCH_THRESH(count * rndup) |
301 MTK_DESC_OVL_IRQ_EN,
302 cryp->base + RDR_CFG(i));
305 static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
307 struct mtk_sys_cap cap;
308 int i, err;
309 u32 val;
311 cap.hia_ver = readl(cryp->base + HIA_VERSION);
312 cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
313 cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
315 if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
316 return -EINVAL;
318 /* Configure endianness conversion method for master (DMA) interface */
319 writel(0, cryp->base + EIP97_MST_CTRL);
321 /* Set HIA burst size */
322 val = readl(cryp->base + HIA_MST_CTRL);
323 val &= ~MTK_BURST_SIZE_MSK;
324 val |= MTK_BURST_SIZE(5);
325 writel(val, cryp->base + HIA_MST_CTRL);
327 err = mtk_dfe_dse_reset(cryp);
328 if (err) {
329 dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
330 return err;
333 mtk_dfe_dse_buf_setup(cryp, &cap);
335 /* Enable the 4 rings for the packet engines. */
336 mtk_desc_ring_link(cryp, 0xf);
338 for (i = 0; i < MTK_RING_MAX; i++) {
339 mtk_cmd_desc_ring_setup(cryp, i, &cap);
340 mtk_res_desc_ring_setup(cryp, i, &cap);
343 writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
344 cryp->base + PE_TOKEN_CTRL_STAT);
346 /* Clear all pending interrupts */
347 writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
348 writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
349 MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
350 MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
351 MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
352 MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
353 MTK_PE_INT_OUT_EN,
354 cryp->base + PE_INTERRUPT_CTRL_STAT);
356 return 0;
359 static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
361 u32 val;
363 if (hw == MTK_RING_MAX)
364 val = readl(cryp->base + AIC_G_VERSION);
365 else
366 val = readl(cryp->base + AIC_VERSION(hw));
368 val &= MTK_AIC_VER_MSK;
369 if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
370 return -ENXIO;
372 if (hw == MTK_RING_MAX)
373 val = readl(cryp->base + AIC_G_OPTIONS);
374 else
375 val = readl(cryp->base + AIC_OPTIONS(hw));
377 val &= MTK_AIC_INT_MSK;
378 if (!val || val > 32)
379 return -ENXIO;
381 return 0;
384 static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
386 int err;
388 err = mtk_aic_cap_check(cryp, hw);
389 if (err)
390 return err;
392 /* Disable all interrupts and set initial configuration */
393 if (hw == MTK_RING_MAX) {
394 writel(0, cryp->base + AIC_G_ENABLE_CTRL);
395 writel(0, cryp->base + AIC_G_POL_CTRL);
396 writel(0, cryp->base + AIC_G_TYPE_CTRL);
397 writel(0, cryp->base + AIC_G_ENABLE_SET);
398 } else {
399 writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
400 writel(0, cryp->base + AIC_POL_CTRL(hw));
401 writel(0, cryp->base + AIC_TYPE_CTRL(hw));
402 writel(0, cryp->base + AIC_ENABLE_SET(hw));
405 return 0;
408 static int mtk_accelerator_init(struct mtk_cryp *cryp)
410 int i, err;
412 /* Initialize advanced interrupt controller(AIC) */
413 for (i = 0; i < MTK_IRQ_NUM; i++) {
414 err = mtk_aic_init(cryp, i);
415 if (err) {
416 dev_err(cryp->dev, "Failed to initialize AIC.\n");
417 return err;
421 /* Initialize packet engine */
422 err = mtk_packet_engine_setup(cryp);
423 if (err) {
424 dev_err(cryp->dev, "Failed to configure packet engine.\n");
425 return err;
428 return 0;
431 static void mtk_desc_dma_free(struct mtk_cryp *cryp)
433 int i;
435 for (i = 0; i < MTK_RING_MAX; i++) {
436 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
437 cryp->ring[i]->res_base,
438 cryp->ring[i]->res_dma);
439 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
440 cryp->ring[i]->cmd_base,
441 cryp->ring[i]->cmd_dma);
442 kfree(cryp->ring[i]);
446 static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
448 struct mtk_ring **ring = cryp->ring;
449 int i, err = ENOMEM;
451 for (i = 0; i < MTK_RING_MAX; i++) {
452 ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
453 if (!ring[i])
454 goto err_cleanup;
456 ring[i]->cmd_base = dma_zalloc_coherent(cryp->dev,
457 MTK_DESC_RING_SZ,
458 &ring[i]->cmd_dma,
459 GFP_KERNEL);
460 if (!ring[i]->cmd_base)
461 goto err_cleanup;
463 ring[i]->res_base = dma_zalloc_coherent(cryp->dev,
464 MTK_DESC_RING_SZ,
465 &ring[i]->res_dma,
466 GFP_KERNEL);
467 if (!ring[i]->res_base)
468 goto err_cleanup;
470 ring[i]->cmd_next = ring[i]->cmd_base;
471 ring[i]->res_next = ring[i]->res_base;
473 return 0;
475 err_cleanup:
476 for (; i--; ) {
477 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
478 ring[i]->res_base, ring[i]->res_dma);
479 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
480 ring[i]->cmd_base, ring[i]->cmd_dma);
481 kfree(ring[i]);
483 return err;
486 static int mtk_crypto_probe(struct platform_device *pdev)
488 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
489 struct mtk_cryp *cryp;
490 int i, err;
492 cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
493 if (!cryp)
494 return -ENOMEM;
496 cryp->base = devm_ioremap_resource(&pdev->dev, res);
497 if (IS_ERR(cryp->base))
498 return PTR_ERR(cryp->base);
500 for (i = 0; i < MTK_IRQ_NUM; i++) {
501 cryp->irq[i] = platform_get_irq(pdev, i);
502 if (cryp->irq[i] < 0) {
503 dev_err(cryp->dev, "no IRQ:%d resource info\n", i);
504 return cryp->irq[i];
508 cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
509 if (IS_ERR(cryp->clk_cryp))
510 return -EPROBE_DEFER;
512 cryp->dev = &pdev->dev;
513 pm_runtime_enable(cryp->dev);
514 pm_runtime_get_sync(cryp->dev);
516 err = clk_prepare_enable(cryp->clk_cryp);
517 if (err)
518 goto err_clk_cryp;
520 /* Allocate four command/result descriptor rings */
521 err = mtk_desc_ring_alloc(cryp);
522 if (err) {
523 dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
524 goto err_resource;
527 /* Initialize hardware modules */
528 err = mtk_accelerator_init(cryp);
529 if (err) {
530 dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
531 goto err_engine;
534 err = mtk_cipher_alg_register(cryp);
535 if (err) {
536 dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
537 goto err_cipher;
540 err = mtk_hash_alg_register(cryp);
541 if (err) {
542 dev_err(cryp->dev, "Unable to register hash algorithm.\n");
543 goto err_hash;
546 platform_set_drvdata(pdev, cryp);
547 return 0;
549 err_hash:
550 mtk_cipher_alg_release(cryp);
551 err_cipher:
552 mtk_dfe_dse_reset(cryp);
553 err_engine:
554 mtk_desc_dma_free(cryp);
555 err_resource:
556 clk_disable_unprepare(cryp->clk_cryp);
557 err_clk_cryp:
558 pm_runtime_put_sync(cryp->dev);
559 pm_runtime_disable(cryp->dev);
561 return err;
564 static int mtk_crypto_remove(struct platform_device *pdev)
566 struct mtk_cryp *cryp = platform_get_drvdata(pdev);
568 mtk_hash_alg_release(cryp);
569 mtk_cipher_alg_release(cryp);
570 mtk_desc_dma_free(cryp);
572 clk_disable_unprepare(cryp->clk_cryp);
574 pm_runtime_put_sync(cryp->dev);
575 pm_runtime_disable(cryp->dev);
576 platform_set_drvdata(pdev, NULL);
578 return 0;
581 static const struct of_device_id of_crypto_id[] = {
582 { .compatible = "mediatek,eip97-crypto" },
585 MODULE_DEVICE_TABLE(of, of_crypto_id);
587 static struct platform_driver mtk_crypto_driver = {
588 .probe = mtk_crypto_probe,
589 .remove = mtk_crypto_remove,
590 .driver = {
591 .name = "mtk-crypto",
592 .of_match_table = of_crypto_id,
595 module_platform_driver(mtk_crypto_driver);
597 MODULE_LICENSE("GPL");
598 MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
599 MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");