Linux 4.19.133
[linux/fpc-iii.git] / drivers / dma / hsu / hsu.c
blob18f155a974db624d6705e66267466c49ed2a7072
1 /*
2 * Core driver for the High Speed UART DMA
4 * Copyright (C) 2015 Intel Corporation
5 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
7 * Partially based on the bits found in drivers/tty/serial/mfd.c.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
15 * DMA channel allocation:
16 * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
17 * Write (UART RX).
18 * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
19 * port 3, and so on.
22 #include <linux/delay.h>
23 #include <linux/dmaengine.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
29 #include "hsu.h"
31 #define HSU_DMA_BUSWIDTHS \
32 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
33 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
34 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
35 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
36 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
37 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \
38 BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
40 static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
42 hsu_chan_writel(hsuc, HSU_CH_CR, 0);
45 static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
47 u32 cr = HSU_CH_CR_CHA;
49 if (hsuc->direction == DMA_MEM_TO_DEV)
50 cr &= ~HSU_CH_CR_CHD;
51 else if (hsuc->direction == DMA_DEV_TO_MEM)
52 cr |= HSU_CH_CR_CHD;
54 hsu_chan_writel(hsuc, HSU_CH_CR, cr);
57 static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
59 struct dma_slave_config *config = &hsuc->config;
60 struct hsu_dma_desc *desc = hsuc->desc;
61 u32 bsr = 0, mtsr = 0; /* to shut the compiler up */
62 u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
63 unsigned int i, count;
65 if (hsuc->direction == DMA_MEM_TO_DEV) {
66 bsr = config->dst_maxburst;
67 mtsr = config->dst_addr_width;
68 } else if (hsuc->direction == DMA_DEV_TO_MEM) {
69 bsr = config->src_maxburst;
70 mtsr = config->src_addr_width;
73 hsu_chan_disable(hsuc);
75 hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
76 hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
77 hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
79 /* Set descriptors */
80 count = desc->nents - desc->active;
81 for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
82 hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
83 hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
85 /* Prepare value for DCR */
86 dcr |= HSU_CH_DCR_DESCA(i);
87 dcr |= HSU_CH_DCR_CHTOI(i); /* timeout bit, see HSU Errata 1 */
89 desc->active++;
91 /* Only for the last descriptor in the chain */
92 dcr |= HSU_CH_DCR_CHSOD(count - 1);
93 dcr |= HSU_CH_DCR_CHDI(count - 1);
95 hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
97 hsu_chan_enable(hsuc);
100 static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
102 hsu_chan_disable(hsuc);
103 hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
106 static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
108 hsu_dma_chan_start(hsuc);
111 static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
113 struct virt_dma_desc *vdesc;
115 /* Get the next descriptor */
116 vdesc = vchan_next_desc(&hsuc->vchan);
117 if (!vdesc) {
118 hsuc->desc = NULL;
119 return;
122 list_del(&vdesc->node);
123 hsuc->desc = to_hsu_dma_desc(vdesc);
125 /* Start the channel with a new descriptor */
126 hsu_dma_start_channel(hsuc);
130 * hsu_dma_get_status() - get DMA channel status
131 * @chip: HSUART DMA chip
132 * @nr: DMA channel number
133 * @status: pointer for DMA Channel Status Register value
135 * Description:
136 * The function reads and clears the DMA Channel Status Register, checks
137 * if it was a timeout interrupt and returns a corresponding value.
139 * Caller should provide a valid pointer for the DMA Channel Status
140 * Register value that will be returned in @status.
142 * Return:
143 * 1 for DMA timeout status, 0 for other DMA status, or error code for
144 * invalid parameters or no interrupt pending.
146 int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
147 u32 *status)
149 struct hsu_dma_chan *hsuc;
150 unsigned long flags;
151 u32 sr;
153 /* Sanity check */
154 if (nr >= chip->hsu->nr_channels)
155 return -EINVAL;
157 hsuc = &chip->hsu->chan[nr];
160 * No matter what situation, need read clear the IRQ status
161 * There is a bug, see Errata 5, HSD 2900918
163 spin_lock_irqsave(&hsuc->vchan.lock, flags);
164 sr = hsu_chan_readl(hsuc, HSU_CH_SR);
165 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
167 /* Check if any interrupt is pending */
168 sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
169 if (!sr)
170 return -EIO;
172 /* Timeout IRQ, need wait some time, see Errata 2 */
173 if (sr & HSU_CH_SR_DESCTO_ANY)
174 udelay(2);
177 * At this point, at least one of Descriptor Time Out, Channel Error
178 * or Descriptor Done bits must be set. Clear the Descriptor Time Out
179 * bits and if sr is still non-zero, it must be channel error or
180 * descriptor done which are higher priority than timeout and handled
181 * in hsu_dma_do_irq(). Else, it must be a timeout.
183 sr &= ~HSU_CH_SR_DESCTO_ANY;
185 *status = sr;
187 return sr ? 0 : 1;
189 EXPORT_SYMBOL_GPL(hsu_dma_get_status);
192 * hsu_dma_do_irq() - DMA interrupt handler
193 * @chip: HSUART DMA chip
194 * @nr: DMA channel number
195 * @status: Channel Status Register value
197 * Description:
198 * This function handles Channel Error and Descriptor Done interrupts.
199 * This function should be called after determining that the DMA interrupt
200 * is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
202 * Return:
203 * 0 for invalid channel number, 1 otherwise.
205 int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status)
207 struct hsu_dma_chan *hsuc;
208 struct hsu_dma_desc *desc;
209 unsigned long flags;
211 /* Sanity check */
212 if (nr >= chip->hsu->nr_channels)
213 return 0;
215 hsuc = &chip->hsu->chan[nr];
217 spin_lock_irqsave(&hsuc->vchan.lock, flags);
218 desc = hsuc->desc;
219 if (desc) {
220 if (status & HSU_CH_SR_CHE) {
221 desc->status = DMA_ERROR;
222 } else if (desc->active < desc->nents) {
223 hsu_dma_start_channel(hsuc);
224 } else {
225 vchan_cookie_complete(&desc->vdesc);
226 desc->status = DMA_COMPLETE;
227 hsu_dma_start_transfer(hsuc);
230 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
232 return 1;
234 EXPORT_SYMBOL_GPL(hsu_dma_do_irq);
236 static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
238 struct hsu_dma_desc *desc;
240 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
241 if (!desc)
242 return NULL;
244 desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
245 if (!desc->sg) {
246 kfree(desc);
247 return NULL;
250 return desc;
253 static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
255 struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
257 kfree(desc->sg);
258 kfree(desc);
261 static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
262 struct dma_chan *chan, struct scatterlist *sgl,
263 unsigned int sg_len, enum dma_transfer_direction direction,
264 unsigned long flags, void *context)
266 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
267 struct hsu_dma_desc *desc;
268 struct scatterlist *sg;
269 unsigned int i;
271 desc = hsu_dma_alloc_desc(sg_len);
272 if (!desc)
273 return NULL;
275 for_each_sg(sgl, sg, sg_len, i) {
276 desc->sg[i].addr = sg_dma_address(sg);
277 desc->sg[i].len = sg_dma_len(sg);
279 desc->length += sg_dma_len(sg);
282 desc->nents = sg_len;
283 desc->direction = direction;
284 /* desc->active = 0 by kzalloc */
285 desc->status = DMA_IN_PROGRESS;
287 return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
290 static void hsu_dma_issue_pending(struct dma_chan *chan)
292 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
293 unsigned long flags;
295 spin_lock_irqsave(&hsuc->vchan.lock, flags);
296 if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
297 hsu_dma_start_transfer(hsuc);
298 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
301 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
303 struct hsu_dma_desc *desc = hsuc->desc;
304 size_t bytes = 0;
305 int i;
307 for (i = desc->active; i < desc->nents; i++)
308 bytes += desc->sg[i].len;
310 i = HSU_DMA_CHAN_NR_DESC - 1;
311 do {
312 bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
313 } while (--i >= 0);
315 return bytes;
318 static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
319 dma_cookie_t cookie, struct dma_tx_state *state)
321 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
322 struct virt_dma_desc *vdesc;
323 enum dma_status status;
324 size_t bytes;
325 unsigned long flags;
327 status = dma_cookie_status(chan, cookie, state);
328 if (status == DMA_COMPLETE)
329 return status;
331 spin_lock_irqsave(&hsuc->vchan.lock, flags);
332 vdesc = vchan_find_desc(&hsuc->vchan, cookie);
333 if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
334 bytes = hsu_dma_active_desc_size(hsuc);
335 dma_set_residue(state, bytes);
336 status = hsuc->desc->status;
337 } else if (vdesc) {
338 bytes = to_hsu_dma_desc(vdesc)->length;
339 dma_set_residue(state, bytes);
341 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
343 return status;
346 static int hsu_dma_slave_config(struct dma_chan *chan,
347 struct dma_slave_config *config)
349 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
351 /* Check if chan will be configured for slave transfers */
352 if (!is_slave_direction(config->direction))
353 return -EINVAL;
355 memcpy(&hsuc->config, config, sizeof(hsuc->config));
357 return 0;
360 static int hsu_dma_pause(struct dma_chan *chan)
362 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
363 unsigned long flags;
365 spin_lock_irqsave(&hsuc->vchan.lock, flags);
366 if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
367 hsu_chan_disable(hsuc);
368 hsuc->desc->status = DMA_PAUSED;
370 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
372 return 0;
375 static int hsu_dma_resume(struct dma_chan *chan)
377 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
378 unsigned long flags;
380 spin_lock_irqsave(&hsuc->vchan.lock, flags);
381 if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
382 hsuc->desc->status = DMA_IN_PROGRESS;
383 hsu_chan_enable(hsuc);
385 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
387 return 0;
390 static int hsu_dma_terminate_all(struct dma_chan *chan)
392 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
393 unsigned long flags;
394 LIST_HEAD(head);
396 spin_lock_irqsave(&hsuc->vchan.lock, flags);
398 hsu_dma_stop_channel(hsuc);
399 if (hsuc->desc) {
400 hsu_dma_desc_free(&hsuc->desc->vdesc);
401 hsuc->desc = NULL;
404 vchan_get_all_descriptors(&hsuc->vchan, &head);
405 spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
406 vchan_dma_desc_free_list(&hsuc->vchan, &head);
408 return 0;
411 static void hsu_dma_free_chan_resources(struct dma_chan *chan)
413 vchan_free_chan_resources(to_virt_chan(chan));
416 static void hsu_dma_synchronize(struct dma_chan *chan)
418 struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
420 vchan_synchronize(&hsuc->vchan);
423 int hsu_dma_probe(struct hsu_dma_chip *chip)
425 struct hsu_dma *hsu;
426 void __iomem *addr = chip->regs + chip->offset;
427 unsigned short i;
428 int ret;
430 hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
431 if (!hsu)
432 return -ENOMEM;
434 chip->hsu = hsu;
436 /* Calculate nr_channels from the IO space length */
437 hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
439 hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
440 sizeof(*hsu->chan), GFP_KERNEL);
441 if (!hsu->chan)
442 return -ENOMEM;
444 INIT_LIST_HEAD(&hsu->dma.channels);
445 for (i = 0; i < hsu->nr_channels; i++) {
446 struct hsu_dma_chan *hsuc = &hsu->chan[i];
448 hsuc->vchan.desc_free = hsu_dma_desc_free;
449 vchan_init(&hsuc->vchan, &hsu->dma);
451 hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
452 hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
455 dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
456 dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
458 hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
460 hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
462 hsu->dma.device_issue_pending = hsu_dma_issue_pending;
463 hsu->dma.device_tx_status = hsu_dma_tx_status;
465 hsu->dma.device_config = hsu_dma_slave_config;
466 hsu->dma.device_pause = hsu_dma_pause;
467 hsu->dma.device_resume = hsu_dma_resume;
468 hsu->dma.device_terminate_all = hsu_dma_terminate_all;
469 hsu->dma.device_synchronize = hsu_dma_synchronize;
471 hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
472 hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
473 hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
474 hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
476 hsu->dma.dev = chip->dev;
478 dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
480 ret = dma_async_device_register(&hsu->dma);
481 if (ret)
482 return ret;
484 dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
485 return 0;
487 EXPORT_SYMBOL_GPL(hsu_dma_probe);
489 int hsu_dma_remove(struct hsu_dma_chip *chip)
491 struct hsu_dma *hsu = chip->hsu;
492 unsigned short i;
494 dma_async_device_unregister(&hsu->dma);
496 for (i = 0; i < hsu->nr_channels; i++) {
497 struct hsu_dma_chan *hsuc = &hsu->chan[i];
499 tasklet_kill(&hsuc->vchan.task);
502 return 0;
504 EXPORT_SYMBOL_GPL(hsu_dma_remove);
506 MODULE_LICENSE("GPL v2");
507 MODULE_DESCRIPTION("High Speed UART DMA core driver");
508 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");