2 * offload engine driver for the Marvell XOR engine
3 * Copyright (C) 2007, 2008, Marvell International Ltd.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/memory.h>
24 #include <linux/clk.h>
26 #include <linux/of_irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/cpumask.h>
29 #include <linux/platform_data/dma-mv_xor.h>
31 #include "dmaengine.h"
45 static void mv_xor_issue_pending(struct dma_chan
*chan
);
47 #define to_mv_xor_chan(chan) \
48 container_of(chan, struct mv_xor_chan, dmachan)
50 #define to_mv_xor_slot(tx) \
51 container_of(tx, struct mv_xor_desc_slot, async_tx)
53 #define mv_chan_to_devp(chan) \
56 static void mv_desc_init(struct mv_xor_desc_slot
*desc
,
57 dma_addr_t addr
, u32 byte_count
,
58 enum dma_ctrl_flags flags
)
60 struct mv_xor_desc
*hw_desc
= desc
->hw_desc
;
62 hw_desc
->status
= XOR_DESC_DMA_OWNED
;
63 hw_desc
->phy_next_desc
= 0;
64 /* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
65 hw_desc
->desc_command
= (flags
& DMA_PREP_INTERRUPT
) ?
66 XOR_DESC_EOD_INT_EN
: 0;
67 hw_desc
->phy_dest_addr
= addr
;
68 hw_desc
->byte_count
= byte_count
;
71 static void mv_desc_set_mode(struct mv_xor_desc_slot
*desc
)
73 struct mv_xor_desc
*hw_desc
= desc
->hw_desc
;
78 hw_desc
->desc_command
|= XOR_DESC_OPERATION_XOR
;
81 hw_desc
->desc_command
|= XOR_DESC_OPERATION_MEMCPY
;
89 static void mv_desc_set_next_desc(struct mv_xor_desc_slot
*desc
,
92 struct mv_xor_desc
*hw_desc
= desc
->hw_desc
;
93 BUG_ON(hw_desc
->phy_next_desc
);
94 hw_desc
->phy_next_desc
= next_desc_addr
;
97 static void mv_desc_set_src_addr(struct mv_xor_desc_slot
*desc
,
98 int index
, dma_addr_t addr
)
100 struct mv_xor_desc
*hw_desc
= desc
->hw_desc
;
101 hw_desc
->phy_src_addr
[mv_phy_src_idx(index
)] = addr
;
102 if (desc
->type
== DMA_XOR
)
103 hw_desc
->desc_command
|= (1 << index
);
106 static u32
mv_chan_get_current_desc(struct mv_xor_chan
*chan
)
108 return readl_relaxed(XOR_CURR_DESC(chan
));
111 static void mv_chan_set_next_descriptor(struct mv_xor_chan
*chan
,
114 writel_relaxed(next_desc_addr
, XOR_NEXT_DESC(chan
));
117 static void mv_chan_unmask_interrupts(struct mv_xor_chan
*chan
)
119 u32 val
= readl_relaxed(XOR_INTR_MASK(chan
));
120 val
|= XOR_INTR_MASK_VALUE
<< (chan
->idx
* 16);
121 writel_relaxed(val
, XOR_INTR_MASK(chan
));
124 static u32
mv_chan_get_intr_cause(struct mv_xor_chan
*chan
)
126 u32 intr_cause
= readl_relaxed(XOR_INTR_CAUSE(chan
));
127 intr_cause
= (intr_cause
>> (chan
->idx
* 16)) & 0xFFFF;
131 static void mv_chan_clear_eoc_cause(struct mv_xor_chan
*chan
)
135 val
= XOR_INT_END_OF_DESC
| XOR_INT_END_OF_CHAIN
| XOR_INT_STOPPED
;
136 val
= ~(val
<< (chan
->idx
* 16));
137 dev_dbg(mv_chan_to_devp(chan
), "%s, val 0x%08x\n", __func__
, val
);
138 writel_relaxed(val
, XOR_INTR_CAUSE(chan
));
141 static void mv_chan_clear_err_status(struct mv_xor_chan
*chan
)
143 u32 val
= 0xFFFF0000 >> (chan
->idx
* 16);
144 writel_relaxed(val
, XOR_INTR_CAUSE(chan
));
147 static void mv_chan_set_mode(struct mv_xor_chan
*chan
,
150 u32 config
= readl_relaxed(XOR_CONFIG(chan
));
155 #if defined(__BIG_ENDIAN)
156 config
|= XOR_DESCRIPTOR_SWAP
;
158 config
&= ~XOR_DESCRIPTOR_SWAP
;
161 writel_relaxed(config
, XOR_CONFIG(chan
));
164 static void mv_chan_activate(struct mv_xor_chan
*chan
)
166 dev_dbg(mv_chan_to_devp(chan
), " activate chan.\n");
168 /* writel ensures all descriptors are flushed before activation */
169 writel(BIT(0), XOR_ACTIVATION(chan
));
172 static char mv_chan_is_busy(struct mv_xor_chan
*chan
)
174 u32 state
= readl_relaxed(XOR_ACTIVATION(chan
));
176 state
= (state
>> 4) & 0x3;
178 return (state
== 1) ? 1 : 0;
182 * mv_chan_start_new_chain - program the engine to operate on new
183 * chain headed by sw_desc
184 * Caller must hold &mv_chan->lock while calling this function
186 static void mv_chan_start_new_chain(struct mv_xor_chan
*mv_chan
,
187 struct mv_xor_desc_slot
*sw_desc
)
189 dev_dbg(mv_chan_to_devp(mv_chan
), "%s %d: sw_desc %p\n",
190 __func__
, __LINE__
, sw_desc
);
192 /* set the hardware chain */
193 mv_chan_set_next_descriptor(mv_chan
, sw_desc
->async_tx
.phys
);
196 mv_xor_issue_pending(&mv_chan
->dmachan
);
200 mv_desc_run_tx_complete_actions(struct mv_xor_desc_slot
*desc
,
201 struct mv_xor_chan
*mv_chan
,
204 BUG_ON(desc
->async_tx
.cookie
< 0);
206 if (desc
->async_tx
.cookie
> 0) {
207 cookie
= desc
->async_tx
.cookie
;
209 dma_descriptor_unmap(&desc
->async_tx
);
210 /* call the callback (must not sleep or submit new
211 * operations to this channel)
213 dmaengine_desc_get_callback_invoke(&desc
->async_tx
, NULL
);
216 /* run dependent operations */
217 dma_run_dependencies(&desc
->async_tx
);
223 mv_chan_clean_completed_slots(struct mv_xor_chan
*mv_chan
)
225 struct mv_xor_desc_slot
*iter
, *_iter
;
227 dev_dbg(mv_chan_to_devp(mv_chan
), "%s %d\n", __func__
, __LINE__
);
228 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->completed_slots
,
231 if (async_tx_test_ack(&iter
->async_tx
)) {
232 list_move_tail(&iter
->node
, &mv_chan
->free_slots
);
233 if (!list_empty(&iter
->sg_tx_list
)) {
234 list_splice_tail_init(&iter
->sg_tx_list
,
235 &mv_chan
->free_slots
);
243 mv_desc_clean_slot(struct mv_xor_desc_slot
*desc
,
244 struct mv_xor_chan
*mv_chan
)
246 dev_dbg(mv_chan_to_devp(mv_chan
), "%s %d: desc %p flags %d\n",
247 __func__
, __LINE__
, desc
, desc
->async_tx
.flags
);
249 /* the client is allowed to attach dependent operations
252 if (!async_tx_test_ack(&desc
->async_tx
)) {
253 /* move this slot to the completed_slots */
254 list_move_tail(&desc
->node
, &mv_chan
->completed_slots
);
255 if (!list_empty(&desc
->sg_tx_list
)) {
256 list_splice_tail_init(&desc
->sg_tx_list
,
257 &mv_chan
->completed_slots
);
260 list_move_tail(&desc
->node
, &mv_chan
->free_slots
);
261 if (!list_empty(&desc
->sg_tx_list
)) {
262 list_splice_tail_init(&desc
->sg_tx_list
,
263 &mv_chan
->free_slots
);
270 /* This function must be called with the mv_xor_chan spinlock held */
271 static void mv_chan_slot_cleanup(struct mv_xor_chan
*mv_chan
)
273 struct mv_xor_desc_slot
*iter
, *_iter
;
274 dma_cookie_t cookie
= 0;
275 int busy
= mv_chan_is_busy(mv_chan
);
276 u32 current_desc
= mv_chan_get_current_desc(mv_chan
);
277 int current_cleaned
= 0;
278 struct mv_xor_desc
*hw_desc
;
280 dev_dbg(mv_chan_to_devp(mv_chan
), "%s %d\n", __func__
, __LINE__
);
281 dev_dbg(mv_chan_to_devp(mv_chan
), "current_desc %x\n", current_desc
);
282 mv_chan_clean_completed_slots(mv_chan
);
284 /* free completed slots from the chain starting with
285 * the oldest descriptor
288 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->chain
,
291 /* clean finished descriptors */
292 hw_desc
= iter
->hw_desc
;
293 if (hw_desc
->status
& XOR_DESC_SUCCESS
) {
294 cookie
= mv_desc_run_tx_complete_actions(iter
, mv_chan
,
297 /* done processing desc, clean slot */
298 mv_desc_clean_slot(iter
, mv_chan
);
300 /* break if we did cleaned the current */
301 if (iter
->async_tx
.phys
== current_desc
) {
306 if (iter
->async_tx
.phys
== current_desc
) {
313 if ((busy
== 0) && !list_empty(&mv_chan
->chain
)) {
314 if (current_cleaned
) {
316 * current descriptor cleaned and removed, run
319 iter
= list_entry(mv_chan
->chain
.next
,
320 struct mv_xor_desc_slot
,
322 mv_chan_start_new_chain(mv_chan
, iter
);
324 if (!list_is_last(&iter
->node
, &mv_chan
->chain
)) {
326 * descriptors are still waiting after
327 * current, trigger them
329 iter
= list_entry(iter
->node
.next
,
330 struct mv_xor_desc_slot
,
332 mv_chan_start_new_chain(mv_chan
, iter
);
335 * some descriptors are still waiting
338 tasklet_schedule(&mv_chan
->irq_tasklet
);
344 mv_chan
->dmachan
.completed_cookie
= cookie
;
347 static void mv_xor_tasklet(unsigned long data
)
349 struct mv_xor_chan
*chan
= (struct mv_xor_chan
*) data
;
351 spin_lock_bh(&chan
->lock
);
352 mv_chan_slot_cleanup(chan
);
353 spin_unlock_bh(&chan
->lock
);
356 static struct mv_xor_desc_slot
*
357 mv_chan_alloc_slot(struct mv_xor_chan
*mv_chan
)
359 struct mv_xor_desc_slot
*iter
;
361 spin_lock_bh(&mv_chan
->lock
);
363 if (!list_empty(&mv_chan
->free_slots
)) {
364 iter
= list_first_entry(&mv_chan
->free_slots
,
365 struct mv_xor_desc_slot
,
368 list_move_tail(&iter
->node
, &mv_chan
->allocated_slots
);
370 spin_unlock_bh(&mv_chan
->lock
);
372 /* pre-ack descriptor */
373 async_tx_ack(&iter
->async_tx
);
374 iter
->async_tx
.cookie
= -EBUSY
;
380 spin_unlock_bh(&mv_chan
->lock
);
382 /* try to free some slots if the allocation fails */
383 tasklet_schedule(&mv_chan
->irq_tasklet
);
388 /************************ DMA engine API functions ****************************/
390 mv_xor_tx_submit(struct dma_async_tx_descriptor
*tx
)
392 struct mv_xor_desc_slot
*sw_desc
= to_mv_xor_slot(tx
);
393 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(tx
->chan
);
394 struct mv_xor_desc_slot
*old_chain_tail
;
396 int new_hw_chain
= 1;
398 dev_dbg(mv_chan_to_devp(mv_chan
),
399 "%s sw_desc %p: async_tx %p\n",
400 __func__
, sw_desc
, &sw_desc
->async_tx
);
402 spin_lock_bh(&mv_chan
->lock
);
403 cookie
= dma_cookie_assign(tx
);
405 if (list_empty(&mv_chan
->chain
))
406 list_move_tail(&sw_desc
->node
, &mv_chan
->chain
);
410 old_chain_tail
= list_entry(mv_chan
->chain
.prev
,
411 struct mv_xor_desc_slot
,
413 list_move_tail(&sw_desc
->node
, &mv_chan
->chain
);
415 dev_dbg(mv_chan_to_devp(mv_chan
), "Append to last desc %pa\n",
416 &old_chain_tail
->async_tx
.phys
);
418 /* fix up the hardware chain */
419 mv_desc_set_next_desc(old_chain_tail
, sw_desc
->async_tx
.phys
);
421 /* if the channel is not busy */
422 if (!mv_chan_is_busy(mv_chan
)) {
423 u32 current_desc
= mv_chan_get_current_desc(mv_chan
);
425 * and the curren desc is the end of the chain before
426 * the append, then we need to start the channel
428 if (current_desc
== old_chain_tail
->async_tx
.phys
)
434 mv_chan_start_new_chain(mv_chan
, sw_desc
);
436 spin_unlock_bh(&mv_chan
->lock
);
441 /* returns the number of allocated descriptors */
442 static int mv_xor_alloc_chan_resources(struct dma_chan
*chan
)
447 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
448 struct mv_xor_desc_slot
*slot
= NULL
;
449 int num_descs_in_pool
= MV_XOR_POOL_SIZE
/MV_XOR_SLOT_SIZE
;
451 /* Allocate descriptor slots */
452 idx
= mv_chan
->slots_allocated
;
453 while (idx
< num_descs_in_pool
) {
454 slot
= kzalloc(sizeof(*slot
), GFP_KERNEL
);
456 dev_info(mv_chan_to_devp(mv_chan
),
457 "channel only initialized %d descriptor slots",
461 virt_desc
= mv_chan
->dma_desc_pool_virt
;
462 slot
->hw_desc
= virt_desc
+ idx
* MV_XOR_SLOT_SIZE
;
464 dma_async_tx_descriptor_init(&slot
->async_tx
, chan
);
465 slot
->async_tx
.tx_submit
= mv_xor_tx_submit
;
466 INIT_LIST_HEAD(&slot
->node
);
467 INIT_LIST_HEAD(&slot
->sg_tx_list
);
468 dma_desc
= mv_chan
->dma_desc_pool
;
469 slot
->async_tx
.phys
= dma_desc
+ idx
* MV_XOR_SLOT_SIZE
;
472 spin_lock_bh(&mv_chan
->lock
);
473 mv_chan
->slots_allocated
= idx
;
474 list_add_tail(&slot
->node
, &mv_chan
->free_slots
);
475 spin_unlock_bh(&mv_chan
->lock
);
478 dev_dbg(mv_chan_to_devp(mv_chan
),
479 "allocated %d descriptor slots\n",
480 mv_chan
->slots_allocated
);
482 return mv_chan
->slots_allocated
? : -ENOMEM
;
486 * Check if source or destination is an PCIe/IO address (non-SDRAM) and add
487 * a new MBus window if necessary. Use a cache for these check so that
488 * the MMIO mapped registers don't have to be accessed for this check
489 * to speed up this process.
491 static int mv_xor_add_io_win(struct mv_xor_chan
*mv_chan
, u32 addr
)
493 struct mv_xor_device
*xordev
= mv_chan
->xordev
;
494 void __iomem
*base
= mv_chan
->mmr_high_base
;
501 /* Nothing needs to get done for the Armada 3700 */
502 if (xordev
->xor_type
== XOR_ARMADA_37XX
)
506 * Loop over the cached windows to check, if the requested area
507 * is already mapped. If this the case, nothing needs to be done
510 for (i
= 0; i
< WINDOW_COUNT
; i
++) {
511 if (addr
>= xordev
->win_start
[i
] &&
512 addr
<= xordev
->win_end
[i
]) {
513 /* Window is already mapped */
519 * The window is not mapped, so we need to create the new mapping
522 /* If no IO window is found that addr has to be located in SDRAM */
523 ret
= mvebu_mbus_get_io_win_info(addr
, &size
, &target
, &attr
);
528 * Mask the base addr 'addr' according to 'size' read back from the
529 * MBus window. Otherwise we might end up with an address located
530 * somewhere in the middle of this area here.
536 * Reading one of both enabled register is enough, as they are always
537 * programmed to the identical values
539 win_enable
= readl(base
+ WINDOW_BAR_ENABLE(0));
541 /* Set 'i' to the first free window to write the new values to */
542 i
= ffs(~win_enable
) - 1;
543 if (i
>= WINDOW_COUNT
)
546 writel((addr
& 0xffff0000) | (attr
<< 8) | target
,
547 base
+ WINDOW_BASE(i
));
548 writel(size
& 0xffff0000, base
+ WINDOW_SIZE(i
));
550 /* Fill the caching variables for later use */
551 xordev
->win_start
[i
] = addr
;
552 xordev
->win_end
[i
] = addr
+ size
;
554 win_enable
|= (1 << i
);
555 win_enable
|= 3 << (16 + (2 * i
));
556 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(0));
557 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(1));
562 static struct dma_async_tx_descriptor
*
563 mv_xor_prep_dma_xor(struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t
*src
,
564 unsigned int src_cnt
, size_t len
, unsigned long flags
)
566 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
567 struct mv_xor_desc_slot
*sw_desc
;
570 if (unlikely(len
< MV_XOR_MIN_BYTE_COUNT
))
573 BUG_ON(len
> MV_XOR_MAX_BYTE_COUNT
);
575 dev_dbg(mv_chan_to_devp(mv_chan
),
576 "%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
577 __func__
, src_cnt
, len
, &dest
, flags
);
579 /* Check if a new window needs to get added for 'dest' */
580 ret
= mv_xor_add_io_win(mv_chan
, dest
);
584 sw_desc
= mv_chan_alloc_slot(mv_chan
);
586 sw_desc
->type
= DMA_XOR
;
587 sw_desc
->async_tx
.flags
= flags
;
588 mv_desc_init(sw_desc
, dest
, len
, flags
);
589 if (mv_chan
->op_in_desc
== XOR_MODE_IN_DESC
)
590 mv_desc_set_mode(sw_desc
);
592 /* Check if a new window needs to get added for 'src' */
593 ret
= mv_xor_add_io_win(mv_chan
, src
[src_cnt
]);
596 mv_desc_set_src_addr(sw_desc
, src_cnt
, src
[src_cnt
]);
600 dev_dbg(mv_chan_to_devp(mv_chan
),
601 "%s sw_desc %p async_tx %p \n",
602 __func__
, sw_desc
, &sw_desc
->async_tx
);
603 return sw_desc
? &sw_desc
->async_tx
: NULL
;
606 static struct dma_async_tx_descriptor
*
607 mv_xor_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
608 size_t len
, unsigned long flags
)
611 * A MEMCPY operation is identical to an XOR operation with only
612 * a single source address.
614 return mv_xor_prep_dma_xor(chan
, dest
, &src
, 1, len
, flags
);
617 static struct dma_async_tx_descriptor
*
618 mv_xor_prep_dma_interrupt(struct dma_chan
*chan
, unsigned long flags
)
620 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
621 dma_addr_t src
, dest
;
624 src
= mv_chan
->dummy_src_addr
;
625 dest
= mv_chan
->dummy_dst_addr
;
626 len
= MV_XOR_MIN_BYTE_COUNT
;
629 * We implement the DMA_INTERRUPT operation as a minimum sized
630 * XOR operation with a single dummy source address.
632 return mv_xor_prep_dma_xor(chan
, dest
, &src
, 1, len
, flags
);
635 static void mv_xor_free_chan_resources(struct dma_chan
*chan
)
637 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
638 struct mv_xor_desc_slot
*iter
, *_iter
;
639 int in_use_descs
= 0;
641 spin_lock_bh(&mv_chan
->lock
);
643 mv_chan_slot_cleanup(mv_chan
);
645 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->chain
,
648 list_move_tail(&iter
->node
, &mv_chan
->free_slots
);
650 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->completed_slots
,
653 list_move_tail(&iter
->node
, &mv_chan
->free_slots
);
655 list_for_each_entry_safe(iter
, _iter
, &mv_chan
->allocated_slots
,
658 list_move_tail(&iter
->node
, &mv_chan
->free_slots
);
660 list_for_each_entry_safe_reverse(
661 iter
, _iter
, &mv_chan
->free_slots
, node
) {
662 list_del(&iter
->node
);
664 mv_chan
->slots_allocated
--;
667 dev_dbg(mv_chan_to_devp(mv_chan
), "%s slots_allocated %d\n",
668 __func__
, mv_chan
->slots_allocated
);
669 spin_unlock_bh(&mv_chan
->lock
);
672 dev_err(mv_chan_to_devp(mv_chan
),
673 "freeing %d in use descriptors!\n", in_use_descs
);
677 * mv_xor_status - poll the status of an XOR transaction
678 * @chan: XOR channel handle
679 * @cookie: XOR transaction identifier
680 * @txstate: XOR transactions state holder (or NULL)
682 static enum dma_status
mv_xor_status(struct dma_chan
*chan
,
684 struct dma_tx_state
*txstate
)
686 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
689 ret
= dma_cookie_status(chan
, cookie
, txstate
);
690 if (ret
== DMA_COMPLETE
)
693 spin_lock_bh(&mv_chan
->lock
);
694 mv_chan_slot_cleanup(mv_chan
);
695 spin_unlock_bh(&mv_chan
->lock
);
697 return dma_cookie_status(chan
, cookie
, txstate
);
700 static void mv_chan_dump_regs(struct mv_xor_chan
*chan
)
704 val
= readl_relaxed(XOR_CONFIG(chan
));
705 dev_err(mv_chan_to_devp(chan
), "config 0x%08x\n", val
);
707 val
= readl_relaxed(XOR_ACTIVATION(chan
));
708 dev_err(mv_chan_to_devp(chan
), "activation 0x%08x\n", val
);
710 val
= readl_relaxed(XOR_INTR_CAUSE(chan
));
711 dev_err(mv_chan_to_devp(chan
), "intr cause 0x%08x\n", val
);
713 val
= readl_relaxed(XOR_INTR_MASK(chan
));
714 dev_err(mv_chan_to_devp(chan
), "intr mask 0x%08x\n", val
);
716 val
= readl_relaxed(XOR_ERROR_CAUSE(chan
));
717 dev_err(mv_chan_to_devp(chan
), "error cause 0x%08x\n", val
);
719 val
= readl_relaxed(XOR_ERROR_ADDR(chan
));
720 dev_err(mv_chan_to_devp(chan
), "error addr 0x%08x\n", val
);
723 static void mv_chan_err_interrupt_handler(struct mv_xor_chan
*chan
,
726 if (intr_cause
& XOR_INT_ERR_DECODE
) {
727 dev_dbg(mv_chan_to_devp(chan
), "ignoring address decode error\n");
731 dev_err(mv_chan_to_devp(chan
), "error on chan %d. intr cause 0x%08x\n",
732 chan
->idx
, intr_cause
);
734 mv_chan_dump_regs(chan
);
738 static irqreturn_t
mv_xor_interrupt_handler(int irq
, void *data
)
740 struct mv_xor_chan
*chan
= data
;
741 u32 intr_cause
= mv_chan_get_intr_cause(chan
);
743 dev_dbg(mv_chan_to_devp(chan
), "intr cause %x\n", intr_cause
);
745 if (intr_cause
& XOR_INTR_ERRORS
)
746 mv_chan_err_interrupt_handler(chan
, intr_cause
);
748 tasklet_schedule(&chan
->irq_tasklet
);
750 mv_chan_clear_eoc_cause(chan
);
755 static void mv_xor_issue_pending(struct dma_chan
*chan
)
757 struct mv_xor_chan
*mv_chan
= to_mv_xor_chan(chan
);
759 if (mv_chan
->pending
>= MV_XOR_THRESHOLD
) {
760 mv_chan
->pending
= 0;
761 mv_chan_activate(mv_chan
);
766 * Perform a transaction to verify the HW works.
769 static int mv_chan_memcpy_self_test(struct mv_xor_chan
*mv_chan
)
773 dma_addr_t src_dma
, dest_dma
;
774 struct dma_chan
*dma_chan
;
776 struct dma_async_tx_descriptor
*tx
;
777 struct dmaengine_unmap_data
*unmap
;
780 src
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
784 dest
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
790 /* Fill in src buffer */
791 for (i
= 0; i
< PAGE_SIZE
; i
++)
792 ((u8
*) src
)[i
] = (u8
)i
;
794 dma_chan
= &mv_chan
->dmachan
;
795 if (mv_xor_alloc_chan_resources(dma_chan
) < 1) {
800 unmap
= dmaengine_get_unmap_data(dma_chan
->device
->dev
, 2, GFP_KERNEL
);
806 src_dma
= dma_map_page(dma_chan
->device
->dev
, virt_to_page(src
),
807 offset_in_page(src
), PAGE_SIZE
,
809 unmap
->addr
[0] = src_dma
;
811 ret
= dma_mapping_error(dma_chan
->device
->dev
, src_dma
);
818 dest_dma
= dma_map_page(dma_chan
->device
->dev
, virt_to_page(dest
),
819 offset_in_page(dest
), PAGE_SIZE
,
821 unmap
->addr
[1] = dest_dma
;
823 ret
= dma_mapping_error(dma_chan
->device
->dev
, dest_dma
);
829 unmap
->len
= PAGE_SIZE
;
831 tx
= mv_xor_prep_dma_memcpy(dma_chan
, dest_dma
, src_dma
,
834 dev_err(dma_chan
->device
->dev
,
835 "Self-test cannot prepare operation, disabling\n");
840 cookie
= mv_xor_tx_submit(tx
);
841 if (dma_submit_error(cookie
)) {
842 dev_err(dma_chan
->device
->dev
,
843 "Self-test submit error, disabling\n");
848 mv_xor_issue_pending(dma_chan
);
852 if (mv_xor_status(dma_chan
, cookie
, NULL
) !=
854 dev_err(dma_chan
->device
->dev
,
855 "Self-test copy timed out, disabling\n");
860 dma_sync_single_for_cpu(dma_chan
->device
->dev
, dest_dma
,
861 PAGE_SIZE
, DMA_FROM_DEVICE
);
862 if (memcmp(src
, dest
, PAGE_SIZE
)) {
863 dev_err(dma_chan
->device
->dev
,
864 "Self-test copy failed compare, disabling\n");
870 dmaengine_unmap_put(unmap
);
871 mv_xor_free_chan_resources(dma_chan
);
878 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
880 mv_chan_xor_self_test(struct mv_xor_chan
*mv_chan
)
884 struct page
*xor_srcs
[MV_XOR_NUM_SRC_TEST
];
885 dma_addr_t dma_srcs
[MV_XOR_NUM_SRC_TEST
];
887 struct dma_async_tx_descriptor
*tx
;
888 struct dmaengine_unmap_data
*unmap
;
889 struct dma_chan
*dma_chan
;
894 int src_count
= MV_XOR_NUM_SRC_TEST
;
896 for (src_idx
= 0; src_idx
< src_count
; src_idx
++) {
897 xor_srcs
[src_idx
] = alloc_page(GFP_KERNEL
);
898 if (!xor_srcs
[src_idx
]) {
900 __free_page(xor_srcs
[src_idx
]);
905 dest
= alloc_page(GFP_KERNEL
);
908 __free_page(xor_srcs
[src_idx
]);
912 /* Fill in src buffers */
913 for (src_idx
= 0; src_idx
< src_count
; src_idx
++) {
914 u8
*ptr
= page_address(xor_srcs
[src_idx
]);
915 for (i
= 0; i
< PAGE_SIZE
; i
++)
916 ptr
[i
] = (1 << src_idx
);
919 for (src_idx
= 0; src_idx
< src_count
; src_idx
++)
920 cmp_byte
^= (u8
) (1 << src_idx
);
922 cmp_word
= (cmp_byte
<< 24) | (cmp_byte
<< 16) |
923 (cmp_byte
<< 8) | cmp_byte
;
925 memset(page_address(dest
), 0, PAGE_SIZE
);
927 dma_chan
= &mv_chan
->dmachan
;
928 if (mv_xor_alloc_chan_resources(dma_chan
) < 1) {
933 unmap
= dmaengine_get_unmap_data(dma_chan
->device
->dev
, src_count
+ 1,
941 for (i
= 0; i
< src_count
; i
++) {
942 unmap
->addr
[i
] = dma_map_page(dma_chan
->device
->dev
, xor_srcs
[i
],
943 0, PAGE_SIZE
, DMA_TO_DEVICE
);
944 dma_srcs
[i
] = unmap
->addr
[i
];
945 ret
= dma_mapping_error(dma_chan
->device
->dev
, unmap
->addr
[i
]);
953 unmap
->addr
[src_count
] = dma_map_page(dma_chan
->device
->dev
, dest
, 0, PAGE_SIZE
,
955 dest_dma
= unmap
->addr
[src_count
];
956 ret
= dma_mapping_error(dma_chan
->device
->dev
, unmap
->addr
[src_count
]);
962 unmap
->len
= PAGE_SIZE
;
964 tx
= mv_xor_prep_dma_xor(dma_chan
, dest_dma
, dma_srcs
,
965 src_count
, PAGE_SIZE
, 0);
967 dev_err(dma_chan
->device
->dev
,
968 "Self-test cannot prepare operation, disabling\n");
973 cookie
= mv_xor_tx_submit(tx
);
974 if (dma_submit_error(cookie
)) {
975 dev_err(dma_chan
->device
->dev
,
976 "Self-test submit error, disabling\n");
981 mv_xor_issue_pending(dma_chan
);
985 if (mv_xor_status(dma_chan
, cookie
, NULL
) !=
987 dev_err(dma_chan
->device
->dev
,
988 "Self-test xor timed out, disabling\n");
993 dma_sync_single_for_cpu(dma_chan
->device
->dev
, dest_dma
,
994 PAGE_SIZE
, DMA_FROM_DEVICE
);
995 for (i
= 0; i
< (PAGE_SIZE
/ sizeof(u32
)); i
++) {
996 u32
*ptr
= page_address(dest
);
997 if (ptr
[i
] != cmp_word
) {
998 dev_err(dma_chan
->device
->dev
,
999 "Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
1000 i
, ptr
[i
], cmp_word
);
1002 goto free_resources
;
1007 dmaengine_unmap_put(unmap
);
1008 mv_xor_free_chan_resources(dma_chan
);
1010 src_idx
= src_count
;
1012 __free_page(xor_srcs
[src_idx
]);
1017 static int mv_xor_channel_remove(struct mv_xor_chan
*mv_chan
)
1019 struct dma_chan
*chan
, *_chan
;
1020 struct device
*dev
= mv_chan
->dmadev
.dev
;
1022 dma_async_device_unregister(&mv_chan
->dmadev
);
1024 dma_free_coherent(dev
, MV_XOR_POOL_SIZE
,
1025 mv_chan
->dma_desc_pool_virt
, mv_chan
->dma_desc_pool
);
1026 dma_unmap_single(dev
, mv_chan
->dummy_src_addr
,
1027 MV_XOR_MIN_BYTE_COUNT
, DMA_FROM_DEVICE
);
1028 dma_unmap_single(dev
, mv_chan
->dummy_dst_addr
,
1029 MV_XOR_MIN_BYTE_COUNT
, DMA_TO_DEVICE
);
1031 list_for_each_entry_safe(chan
, _chan
, &mv_chan
->dmadev
.channels
,
1033 list_del(&chan
->device_node
);
1036 free_irq(mv_chan
->irq
, mv_chan
);
1041 static struct mv_xor_chan
*
1042 mv_xor_channel_add(struct mv_xor_device
*xordev
,
1043 struct platform_device
*pdev
,
1044 int idx
, dma_cap_mask_t cap_mask
, int irq
)
1047 struct mv_xor_chan
*mv_chan
;
1048 struct dma_device
*dma_dev
;
1050 mv_chan
= devm_kzalloc(&pdev
->dev
, sizeof(*mv_chan
), GFP_KERNEL
);
1052 return ERR_PTR(-ENOMEM
);
1056 if (xordev
->xor_type
== XOR_ORION
)
1057 mv_chan
->op_in_desc
= XOR_MODE_IN_REG
;
1059 mv_chan
->op_in_desc
= XOR_MODE_IN_DESC
;
1061 dma_dev
= &mv_chan
->dmadev
;
1062 dma_dev
->dev
= &pdev
->dev
;
1063 mv_chan
->xordev
= xordev
;
1066 * These source and destination dummy buffers are used to implement
1067 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
1068 * Hence, we only need to map the buffers at initialization-time.
1070 mv_chan
->dummy_src_addr
= dma_map_single(dma_dev
->dev
,
1071 mv_chan
->dummy_src
, MV_XOR_MIN_BYTE_COUNT
, DMA_FROM_DEVICE
);
1072 mv_chan
->dummy_dst_addr
= dma_map_single(dma_dev
->dev
,
1073 mv_chan
->dummy_dst
, MV_XOR_MIN_BYTE_COUNT
, DMA_TO_DEVICE
);
1075 /* allocate coherent memory for hardware descriptors
1076 * note: writecombine gives slightly better performance, but
1077 * requires that we explicitly flush the writes
1079 mv_chan
->dma_desc_pool_virt
=
1080 dma_alloc_wc(&pdev
->dev
, MV_XOR_POOL_SIZE
, &mv_chan
->dma_desc_pool
,
1082 if (!mv_chan
->dma_desc_pool_virt
)
1083 return ERR_PTR(-ENOMEM
);
1085 /* discover transaction capabilites from the platform data */
1086 dma_dev
->cap_mask
= cap_mask
;
1088 INIT_LIST_HEAD(&dma_dev
->channels
);
1090 /* set base routines */
1091 dma_dev
->device_alloc_chan_resources
= mv_xor_alloc_chan_resources
;
1092 dma_dev
->device_free_chan_resources
= mv_xor_free_chan_resources
;
1093 dma_dev
->device_tx_status
= mv_xor_status
;
1094 dma_dev
->device_issue_pending
= mv_xor_issue_pending
;
1096 /* set prep routines based on capability */
1097 if (dma_has_cap(DMA_INTERRUPT
, dma_dev
->cap_mask
))
1098 dma_dev
->device_prep_dma_interrupt
= mv_xor_prep_dma_interrupt
;
1099 if (dma_has_cap(DMA_MEMCPY
, dma_dev
->cap_mask
))
1100 dma_dev
->device_prep_dma_memcpy
= mv_xor_prep_dma_memcpy
;
1101 if (dma_has_cap(DMA_XOR
, dma_dev
->cap_mask
)) {
1102 dma_dev
->max_xor
= 8;
1103 dma_dev
->device_prep_dma_xor
= mv_xor_prep_dma_xor
;
1106 mv_chan
->mmr_base
= xordev
->xor_base
;
1107 mv_chan
->mmr_high_base
= xordev
->xor_high_base
;
1108 tasklet_init(&mv_chan
->irq_tasklet
, mv_xor_tasklet
, (unsigned long)
1111 /* clear errors before enabling interrupts */
1112 mv_chan_clear_err_status(mv_chan
);
1114 ret
= request_irq(mv_chan
->irq
, mv_xor_interrupt_handler
,
1115 0, dev_name(&pdev
->dev
), mv_chan
);
1119 mv_chan_unmask_interrupts(mv_chan
);
1121 if (mv_chan
->op_in_desc
== XOR_MODE_IN_DESC
)
1122 mv_chan_set_mode(mv_chan
, XOR_OPERATION_MODE_IN_DESC
);
1124 mv_chan_set_mode(mv_chan
, XOR_OPERATION_MODE_XOR
);
1126 spin_lock_init(&mv_chan
->lock
);
1127 INIT_LIST_HEAD(&mv_chan
->chain
);
1128 INIT_LIST_HEAD(&mv_chan
->completed_slots
);
1129 INIT_LIST_HEAD(&mv_chan
->free_slots
);
1130 INIT_LIST_HEAD(&mv_chan
->allocated_slots
);
1131 mv_chan
->dmachan
.device
= dma_dev
;
1132 dma_cookie_init(&mv_chan
->dmachan
);
1134 list_add_tail(&mv_chan
->dmachan
.device_node
, &dma_dev
->channels
);
1136 if (dma_has_cap(DMA_MEMCPY
, dma_dev
->cap_mask
)) {
1137 ret
= mv_chan_memcpy_self_test(mv_chan
);
1138 dev_dbg(&pdev
->dev
, "memcpy self test returned %d\n", ret
);
1143 if (dma_has_cap(DMA_XOR
, dma_dev
->cap_mask
)) {
1144 ret
= mv_chan_xor_self_test(mv_chan
);
1145 dev_dbg(&pdev
->dev
, "xor self test returned %d\n", ret
);
1150 dev_info(&pdev
->dev
, "Marvell XOR (%s): ( %s%s%s)\n",
1151 mv_chan
->op_in_desc
? "Descriptor Mode" : "Registers Mode",
1152 dma_has_cap(DMA_XOR
, dma_dev
->cap_mask
) ? "xor " : "",
1153 dma_has_cap(DMA_MEMCPY
, dma_dev
->cap_mask
) ? "cpy " : "",
1154 dma_has_cap(DMA_INTERRUPT
, dma_dev
->cap_mask
) ? "intr " : "");
1156 dma_async_device_register(dma_dev
);
1160 free_irq(mv_chan
->irq
, mv_chan
);
1162 dma_free_coherent(&pdev
->dev
, MV_XOR_POOL_SIZE
,
1163 mv_chan
->dma_desc_pool_virt
, mv_chan
->dma_desc_pool
);
1164 return ERR_PTR(ret
);
1168 mv_xor_conf_mbus_windows(struct mv_xor_device
*xordev
,
1169 const struct mbus_dram_target_info
*dram
)
1171 void __iomem
*base
= xordev
->xor_high_base
;
1175 for (i
= 0; i
< 8; i
++) {
1176 writel(0, base
+ WINDOW_BASE(i
));
1177 writel(0, base
+ WINDOW_SIZE(i
));
1179 writel(0, base
+ WINDOW_REMAP_HIGH(i
));
1182 for (i
= 0; i
< dram
->num_cs
; i
++) {
1183 const struct mbus_dram_window
*cs
= dram
->cs
+ i
;
1185 writel((cs
->base
& 0xffff0000) |
1186 (cs
->mbus_attr
<< 8) |
1187 dram
->mbus_dram_target_id
, base
+ WINDOW_BASE(i
));
1188 writel((cs
->size
- 1) & 0xffff0000, base
+ WINDOW_SIZE(i
));
1190 /* Fill the caching variables for later use */
1191 xordev
->win_start
[i
] = cs
->base
;
1192 xordev
->win_end
[i
] = cs
->base
+ cs
->size
- 1;
1194 win_enable
|= (1 << i
);
1195 win_enable
|= 3 << (16 + (2 * i
));
1198 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(0));
1199 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(1));
1200 writel(0, base
+ WINDOW_OVERRIDE_CTRL(0));
1201 writel(0, base
+ WINDOW_OVERRIDE_CTRL(1));
1205 mv_xor_conf_mbus_windows_a3700(struct mv_xor_device
*xordev
)
1207 void __iomem
*base
= xordev
->xor_high_base
;
1211 for (i
= 0; i
< 8; i
++) {
1212 writel(0, base
+ WINDOW_BASE(i
));
1213 writel(0, base
+ WINDOW_SIZE(i
));
1215 writel(0, base
+ WINDOW_REMAP_HIGH(i
));
1218 * For Armada3700 open default 4GB Mbus window. The dram
1219 * related configuration are done at AXIS level.
1221 writel(0xffff0000, base
+ WINDOW_SIZE(0));
1223 win_enable
|= 3 << 16;
1225 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(0));
1226 writel(win_enable
, base
+ WINDOW_BAR_ENABLE(1));
1227 writel(0, base
+ WINDOW_OVERRIDE_CTRL(0));
1228 writel(0, base
+ WINDOW_OVERRIDE_CTRL(1));
1232 * Since this XOR driver is basically used only for RAID5, we don't
1233 * need to care about synchronizing ->suspend with DMA activity,
1234 * because the DMA engine will naturally be quiet due to the block
1235 * devices being suspended.
1237 static int mv_xor_suspend(struct platform_device
*pdev
, pm_message_t state
)
1239 struct mv_xor_device
*xordev
= platform_get_drvdata(pdev
);
1242 for (i
= 0; i
< MV_XOR_MAX_CHANNELS
; i
++) {
1243 struct mv_xor_chan
*mv_chan
= xordev
->channels
[i
];
1248 mv_chan
->saved_config_reg
=
1249 readl_relaxed(XOR_CONFIG(mv_chan
));
1250 mv_chan
->saved_int_mask_reg
=
1251 readl_relaxed(XOR_INTR_MASK(mv_chan
));
1257 static int mv_xor_resume(struct platform_device
*dev
)
1259 struct mv_xor_device
*xordev
= platform_get_drvdata(dev
);
1260 const struct mbus_dram_target_info
*dram
;
1263 for (i
= 0; i
< MV_XOR_MAX_CHANNELS
; i
++) {
1264 struct mv_xor_chan
*mv_chan
= xordev
->channels
[i
];
1269 writel_relaxed(mv_chan
->saved_config_reg
,
1270 XOR_CONFIG(mv_chan
));
1271 writel_relaxed(mv_chan
->saved_int_mask_reg
,
1272 XOR_INTR_MASK(mv_chan
));
1275 if (xordev
->xor_type
== XOR_ARMADA_37XX
) {
1276 mv_xor_conf_mbus_windows_a3700(xordev
);
1280 dram
= mv_mbus_dram_info();
1282 mv_xor_conf_mbus_windows(xordev
, dram
);
1287 static const struct of_device_id mv_xor_dt_ids
[] = {
1288 { .compatible
= "marvell,orion-xor", .data
= (void *)XOR_ORION
},
1289 { .compatible
= "marvell,armada-380-xor", .data
= (void *)XOR_ARMADA_38X
},
1290 { .compatible
= "marvell,armada-3700-xor", .data
= (void *)XOR_ARMADA_37XX
},
1294 static unsigned int mv_xor_engine_count
;
1296 static int mv_xor_probe(struct platform_device
*pdev
)
1298 const struct mbus_dram_target_info
*dram
;
1299 struct mv_xor_device
*xordev
;
1300 struct mv_xor_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1301 struct resource
*res
;
1302 unsigned int max_engines
, max_channels
;
1305 dev_notice(&pdev
->dev
, "Marvell shared XOR driver\n");
1307 xordev
= devm_kzalloc(&pdev
->dev
, sizeof(*xordev
), GFP_KERNEL
);
1311 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1315 xordev
->xor_base
= devm_ioremap(&pdev
->dev
, res
->start
,
1316 resource_size(res
));
1317 if (!xordev
->xor_base
)
1320 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1324 xordev
->xor_high_base
= devm_ioremap(&pdev
->dev
, res
->start
,
1325 resource_size(res
));
1326 if (!xordev
->xor_high_base
)
1329 platform_set_drvdata(pdev
, xordev
);
1333 * We need to know which type of XOR device we use before
1334 * setting up. In non-dt case it can only be the legacy one.
1336 xordev
->xor_type
= XOR_ORION
;
1337 if (pdev
->dev
.of_node
) {
1338 const struct of_device_id
*of_id
=
1339 of_match_device(mv_xor_dt_ids
,
1342 xordev
->xor_type
= (uintptr_t)of_id
->data
;
1346 * (Re-)program MBUS remapping windows if we are asked to.
1348 if (xordev
->xor_type
== XOR_ARMADA_37XX
) {
1349 mv_xor_conf_mbus_windows_a3700(xordev
);
1351 dram
= mv_mbus_dram_info();
1353 mv_xor_conf_mbus_windows(xordev
, dram
);
1356 /* Not all platforms can gate the clock, so it is not
1357 * an error if the clock does not exists.
1359 xordev
->clk
= clk_get(&pdev
->dev
, NULL
);
1360 if (!IS_ERR(xordev
->clk
))
1361 clk_prepare_enable(xordev
->clk
);
1364 * We don't want to have more than one channel per CPU in
1365 * order for async_tx to perform well. So we limit the number
1366 * of engines and channels so that we take into account this
1367 * constraint. Note that we also want to use channels from
1368 * separate engines when possible. For dual-CPU Armada 3700
1369 * SoC with single XOR engine allow using its both channels.
1371 max_engines
= num_present_cpus();
1372 if (xordev
->xor_type
== XOR_ARMADA_37XX
)
1373 max_channels
= num_present_cpus();
1375 max_channels
= min_t(unsigned int,
1376 MV_XOR_MAX_CHANNELS
,
1377 DIV_ROUND_UP(num_present_cpus(), 2));
1379 if (mv_xor_engine_count
>= max_engines
)
1382 if (pdev
->dev
.of_node
) {
1383 struct device_node
*np
;
1386 for_each_child_of_node(pdev
->dev
.of_node
, np
) {
1387 struct mv_xor_chan
*chan
;
1388 dma_cap_mask_t cap_mask
;
1391 if (i
>= max_channels
)
1394 dma_cap_zero(cap_mask
);
1395 dma_cap_set(DMA_MEMCPY
, cap_mask
);
1396 dma_cap_set(DMA_XOR
, cap_mask
);
1397 dma_cap_set(DMA_INTERRUPT
, cap_mask
);
1399 irq
= irq_of_parse_and_map(np
, 0);
1402 goto err_channel_add
;
1405 chan
= mv_xor_channel_add(xordev
, pdev
, i
,
1408 ret
= PTR_ERR(chan
);
1409 irq_dispose_mapping(irq
);
1410 goto err_channel_add
;
1413 xordev
->channels
[i
] = chan
;
1416 } else if (pdata
&& pdata
->channels
) {
1417 for (i
= 0; i
< max_channels
; i
++) {
1418 struct mv_xor_channel_data
*cd
;
1419 struct mv_xor_chan
*chan
;
1422 cd
= &pdata
->channels
[i
];
1423 irq
= platform_get_irq(pdev
, i
);
1426 goto err_channel_add
;
1429 chan
= mv_xor_channel_add(xordev
, pdev
, i
,
1432 ret
= PTR_ERR(chan
);
1433 goto err_channel_add
;
1436 xordev
->channels
[i
] = chan
;
1443 for (i
= 0; i
< MV_XOR_MAX_CHANNELS
; i
++)
1444 if (xordev
->channels
[i
]) {
1445 mv_xor_channel_remove(xordev
->channels
[i
]);
1446 if (pdev
->dev
.of_node
)
1447 irq_dispose_mapping(xordev
->channels
[i
]->irq
);
1450 if (!IS_ERR(xordev
->clk
)) {
1451 clk_disable_unprepare(xordev
->clk
);
1452 clk_put(xordev
->clk
);
1458 static struct platform_driver mv_xor_driver
= {
1459 .probe
= mv_xor_probe
,
1460 .suspend
= mv_xor_suspend
,
1461 .resume
= mv_xor_resume
,
1463 .name
= MV_XOR_NAME
,
1464 .of_match_table
= of_match_ptr(mv_xor_dt_ids
),
1468 builtin_platform_driver(mv_xor_driver
);
1471 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1472 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1473 MODULE_LICENSE("GPL");