1 // SPDX-License-Identifier: GPL-2.0
3 * Renesas R-Car Gen2 DMA Controller Driver
5 * Copyright (C) 2014 Renesas Electronics Inc.
7 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
18 #include <linux/of_dma.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
25 #include "../dmaengine.h"
28 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
29 * @node: entry in the parent's chunks list
30 * @src_addr: device source address
31 * @dst_addr: device destination address
32 * @size: transfer size in bytes
34 struct rcar_dmac_xfer_chunk
{
35 struct list_head node
;
43 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
44 * @sar: value of the SAR register (source address)
45 * @dar: value of the DAR register (destination address)
46 * @tcr: value of the TCR register (transfer count)
48 struct rcar_dmac_hw_desc
{
53 } __attribute__((__packed__
));
56 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
57 * @async_tx: base DMA asynchronous transaction descriptor
58 * @direction: direction of the DMA transfer
59 * @xfer_shift: log2 of the transfer size
60 * @chcr: value of the channel configuration register for this transfer
61 * @node: entry in the channel's descriptors lists
62 * @chunks: list of transfer chunks for this transfer
63 * @running: the transfer chunk being currently processed
64 * @nchunks: number of transfer chunks for this transfer
65 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
66 * @hwdescs.mem: hardware descriptors memory for the transfer
67 * @hwdescs.dma: device address of the hardware descriptors memory
68 * @hwdescs.size: size of the hardware descriptors in bytes
69 * @size: transfer size in bytes
70 * @cyclic: when set indicates that the DMA transfer is cyclic
72 struct rcar_dmac_desc
{
73 struct dma_async_tx_descriptor async_tx
;
74 enum dma_transfer_direction direction
;
75 unsigned int xfer_shift
;
78 struct list_head node
;
79 struct list_head chunks
;
80 struct rcar_dmac_xfer_chunk
*running
;
85 struct rcar_dmac_hw_desc
*mem
;
94 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
97 * struct rcar_dmac_desc_page - One page worth of descriptors
98 * @node: entry in the channel's pages list
99 * @descs: array of DMA descriptors
100 * @chunks: array of transfer chunk descriptors
102 struct rcar_dmac_desc_page
{
103 struct list_head node
;
106 struct rcar_dmac_desc descs
[0];
107 struct rcar_dmac_xfer_chunk chunks
[0];
111 #define RCAR_DMAC_DESCS_PER_PAGE \
112 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
113 sizeof(struct rcar_dmac_desc))
114 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
115 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
116 sizeof(struct rcar_dmac_xfer_chunk))
119 * struct rcar_dmac_chan_slave - Slave configuration
120 * @slave_addr: slave memory address
121 * @xfer_size: size (in bytes) of hardware transfers
123 struct rcar_dmac_chan_slave
{
124 phys_addr_t slave_addr
;
125 unsigned int xfer_size
;
129 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
130 * @addr: slave dma address
131 * @dir: direction of mapping
132 * @slave: slave configuration that is mapped
134 struct rcar_dmac_chan_map
{
136 enum dma_data_direction dir
;
137 struct rcar_dmac_chan_slave slave
;
141 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
142 * @chan: base DMA channel object
143 * @iomem: channel I/O memory base
144 * @index: index of this channel in the controller
146 * @src: slave memory address and size on the source side
147 * @dst: slave memory address and size on the destination side
148 * @mid_rid: hardware MID/RID for the DMA client using this channel
149 * @lock: protects the channel CHCR register and the desc members
150 * @desc.free: list of free descriptors
151 * @desc.pending: list of pending descriptors (submitted with tx_submit)
152 * @desc.active: list of active descriptors (activated with issue_pending)
153 * @desc.done: list of completed descriptors
154 * @desc.wait: list of descriptors waiting for an ack
155 * @desc.running: the descriptor being processed (a member of the active list)
156 * @desc.chunks_free: list of free transfer chunk descriptors
157 * @desc.pages: list of pages used by allocated descriptors
159 struct rcar_dmac_chan
{
160 struct dma_chan chan
;
165 struct rcar_dmac_chan_slave src
;
166 struct rcar_dmac_chan_slave dst
;
167 struct rcar_dmac_chan_map map
;
173 struct list_head free
;
174 struct list_head pending
;
175 struct list_head active
;
176 struct list_head done
;
177 struct list_head wait
;
178 struct rcar_dmac_desc
*running
;
180 struct list_head chunks_free
;
182 struct list_head pages
;
186 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
189 * struct rcar_dmac - R-Car Gen2 DMA Controller
190 * @engine: base DMA engine object
191 * @dev: the hardware device
192 * @iomem: remapped I/O memory base
193 * @n_channels: number of available channels
194 * @channels: array of DMAC channels
195 * @modules: bitmask of client modules in use
198 struct dma_device engine
;
201 struct device_dma_parameters parms
;
203 unsigned int n_channels
;
204 struct rcar_dmac_chan
*channels
;
206 DECLARE_BITMAP(modules
, 256);
209 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
211 /* -----------------------------------------------------------------------------
215 #define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i))
217 #define RCAR_DMAISTA 0x0020
218 #define RCAR_DMASEC 0x0030
219 #define RCAR_DMAOR 0x0060
220 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
221 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
222 #define RCAR_DMAOR_AE (1 << 2)
223 #define RCAR_DMAOR_DME (1 << 0)
224 #define RCAR_DMACHCLR 0x0080
225 #define RCAR_DMADPSEC 0x00a0
227 #define RCAR_DMASAR 0x0000
228 #define RCAR_DMADAR 0x0004
229 #define RCAR_DMATCR 0x0008
230 #define RCAR_DMATCR_MASK 0x00ffffff
231 #define RCAR_DMATSR 0x0028
232 #define RCAR_DMACHCR 0x000c
233 #define RCAR_DMACHCR_CAE (1 << 31)
234 #define RCAR_DMACHCR_CAIE (1 << 30)
235 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
236 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
237 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
238 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
239 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
240 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
241 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
242 #define RCAR_DMACHCR_DPB (1 << 22)
243 #define RCAR_DMACHCR_DSE (1 << 19)
244 #define RCAR_DMACHCR_DSIE (1 << 18)
245 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
246 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
247 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
248 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
249 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
250 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
251 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
252 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
253 #define RCAR_DMACHCR_DM_INC (1 << 14)
254 #define RCAR_DMACHCR_DM_DEC (2 << 14)
255 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
256 #define RCAR_DMACHCR_SM_INC (1 << 12)
257 #define RCAR_DMACHCR_SM_DEC (2 << 12)
258 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
259 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
260 #define RCAR_DMACHCR_IE (1 << 2)
261 #define RCAR_DMACHCR_TE (1 << 1)
262 #define RCAR_DMACHCR_DE (1 << 0)
263 #define RCAR_DMATCRB 0x0018
264 #define RCAR_DMATSRB 0x0038
265 #define RCAR_DMACHCRB 0x001c
266 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
267 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
268 #define RCAR_DMACHCRB_DPTR_SHIFT 16
269 #define RCAR_DMACHCRB_DRST (1 << 15)
270 #define RCAR_DMACHCRB_DTS (1 << 8)
271 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
272 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
273 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
274 #define RCAR_DMARS 0x0040
275 #define RCAR_DMABUFCR 0x0048
276 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
277 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
278 #define RCAR_DMADPBASE 0x0050
279 #define RCAR_DMADPBASE_MASK 0xfffffff0
280 #define RCAR_DMADPBASE_SEL (1 << 0)
281 #define RCAR_DMADPCR 0x0054
282 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
283 #define RCAR_DMAFIXSAR 0x0010
284 #define RCAR_DMAFIXDAR 0x0014
285 #define RCAR_DMAFIXDPBASE 0x0060
287 /* Hardcode the MEMCPY transfer size to 4 bytes. */
288 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
290 /* -----------------------------------------------------------------------------
294 static void rcar_dmac_write(struct rcar_dmac
*dmac
, u32 reg
, u32 data
)
296 if (reg
== RCAR_DMAOR
)
297 writew(data
, dmac
->iomem
+ reg
);
299 writel(data
, dmac
->iomem
+ reg
);
302 static u32
rcar_dmac_read(struct rcar_dmac
*dmac
, u32 reg
)
304 if (reg
== RCAR_DMAOR
)
305 return readw(dmac
->iomem
+ reg
);
307 return readl(dmac
->iomem
+ reg
);
310 static u32
rcar_dmac_chan_read(struct rcar_dmac_chan
*chan
, u32 reg
)
312 if (reg
== RCAR_DMARS
)
313 return readw(chan
->iomem
+ reg
);
315 return readl(chan
->iomem
+ reg
);
318 static void rcar_dmac_chan_write(struct rcar_dmac_chan
*chan
, u32 reg
, u32 data
)
320 if (reg
== RCAR_DMARS
)
321 writew(data
, chan
->iomem
+ reg
);
323 writel(data
, chan
->iomem
+ reg
);
326 /* -----------------------------------------------------------------------------
327 * Initialization and configuration
330 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan
*chan
)
332 u32 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
334 return !!(chcr
& (RCAR_DMACHCR_DE
| RCAR_DMACHCR_TE
));
337 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan
*chan
)
339 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
340 u32 chcr
= desc
->chcr
;
342 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan
));
344 if (chan
->mid_rid
>= 0)
345 rcar_dmac_chan_write(chan
, RCAR_DMARS
, chan
->mid_rid
);
347 if (desc
->hwdescs
.use
) {
348 struct rcar_dmac_xfer_chunk
*chunk
=
349 list_first_entry(&desc
->chunks
,
350 struct rcar_dmac_xfer_chunk
, node
);
352 dev_dbg(chan
->chan
.device
->dev
,
353 "chan%u: queue desc %p: %u@%pad\n",
354 chan
->index
, desc
, desc
->nchunks
, &desc
->hwdescs
.dma
);
356 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
357 rcar_dmac_chan_write(chan
, RCAR_DMAFIXSAR
,
358 chunk
->src_addr
>> 32);
359 rcar_dmac_chan_write(chan
, RCAR_DMAFIXDAR
,
360 chunk
->dst_addr
>> 32);
361 rcar_dmac_chan_write(chan
, RCAR_DMAFIXDPBASE
,
362 desc
->hwdescs
.dma
>> 32);
364 rcar_dmac_chan_write(chan
, RCAR_DMADPBASE
,
365 (desc
->hwdescs
.dma
& 0xfffffff0) |
367 rcar_dmac_chan_write(chan
, RCAR_DMACHCRB
,
368 RCAR_DMACHCRB_DCNT(desc
->nchunks
- 1) |
372 * Errata: When descriptor memory is accessed through an IOMMU
373 * the DMADAR register isn't initialized automatically from the
374 * first descriptor at beginning of transfer by the DMAC like it
375 * should. Initialize it manually with the destination address
376 * of the first chunk.
378 rcar_dmac_chan_write(chan
, RCAR_DMADAR
,
379 chunk
->dst_addr
& 0xffffffff);
382 * Program the descriptor stage interrupt to occur after the end
383 * of the first stage.
385 rcar_dmac_chan_write(chan
, RCAR_DMADPCR
, RCAR_DMADPCR_DIPT(1));
387 chcr
|= RCAR_DMACHCR_RPT_SAR
| RCAR_DMACHCR_RPT_DAR
388 | RCAR_DMACHCR_RPT_TCR
| RCAR_DMACHCR_DPB
;
391 * If the descriptor isn't cyclic enable normal descriptor mode
392 * and the transfer completion interrupt.
395 chcr
|= RCAR_DMACHCR_DPM_ENABLED
| RCAR_DMACHCR_IE
;
397 * If the descriptor is cyclic and has a callback enable the
398 * descriptor stage interrupt in infinite repeat mode.
400 else if (desc
->async_tx
.callback
)
401 chcr
|= RCAR_DMACHCR_DPM_INFINITE
| RCAR_DMACHCR_DSIE
;
403 * Otherwise just select infinite repeat mode without any
407 chcr
|= RCAR_DMACHCR_DPM_INFINITE
;
409 struct rcar_dmac_xfer_chunk
*chunk
= desc
->running
;
411 dev_dbg(chan
->chan
.device
->dev
,
412 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
413 chan
->index
, chunk
, chunk
->size
, &chunk
->src_addr
,
416 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
417 rcar_dmac_chan_write(chan
, RCAR_DMAFIXSAR
,
418 chunk
->src_addr
>> 32);
419 rcar_dmac_chan_write(chan
, RCAR_DMAFIXDAR
,
420 chunk
->dst_addr
>> 32);
422 rcar_dmac_chan_write(chan
, RCAR_DMASAR
,
423 chunk
->src_addr
& 0xffffffff);
424 rcar_dmac_chan_write(chan
, RCAR_DMADAR
,
425 chunk
->dst_addr
& 0xffffffff);
426 rcar_dmac_chan_write(chan
, RCAR_DMATCR
,
427 chunk
->size
>> desc
->xfer_shift
);
429 chcr
|= RCAR_DMACHCR_DPM_DISABLED
| RCAR_DMACHCR_IE
;
432 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
,
433 chcr
| RCAR_DMACHCR_DE
| RCAR_DMACHCR_CAIE
);
436 static int rcar_dmac_init(struct rcar_dmac
*dmac
)
440 /* Clear all channels and enable the DMAC globally. */
441 rcar_dmac_write(dmac
, RCAR_DMACHCLR
, GENMASK(dmac
->n_channels
- 1, 0));
442 rcar_dmac_write(dmac
, RCAR_DMAOR
,
443 RCAR_DMAOR_PRI_FIXED
| RCAR_DMAOR_DME
);
445 dmaor
= rcar_dmac_read(dmac
, RCAR_DMAOR
);
446 if ((dmaor
& (RCAR_DMAOR_AE
| RCAR_DMAOR_DME
)) != RCAR_DMAOR_DME
) {
447 dev_warn(dmac
->dev
, "DMAOR initialization failed.\n");
454 /* -----------------------------------------------------------------------------
455 * Descriptors submission
458 static dma_cookie_t
rcar_dmac_tx_submit(struct dma_async_tx_descriptor
*tx
)
460 struct rcar_dmac_chan
*chan
= to_rcar_dmac_chan(tx
->chan
);
461 struct rcar_dmac_desc
*desc
= to_rcar_dmac_desc(tx
);
465 spin_lock_irqsave(&chan
->lock
, flags
);
467 cookie
= dma_cookie_assign(tx
);
469 dev_dbg(chan
->chan
.device
->dev
, "chan%u: submit #%d@%p\n",
470 chan
->index
, tx
->cookie
, desc
);
472 list_add_tail(&desc
->node
, &chan
->desc
.pending
);
473 desc
->running
= list_first_entry(&desc
->chunks
,
474 struct rcar_dmac_xfer_chunk
, node
);
476 spin_unlock_irqrestore(&chan
->lock
, flags
);
481 /* -----------------------------------------------------------------------------
482 * Descriptors allocation and free
486 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
487 * @chan: the DMA channel
488 * @gfp: allocation flags
490 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan
*chan
, gfp_t gfp
)
492 struct rcar_dmac_desc_page
*page
;
497 page
= (void *)get_zeroed_page(gfp
);
501 for (i
= 0; i
< RCAR_DMAC_DESCS_PER_PAGE
; ++i
) {
502 struct rcar_dmac_desc
*desc
= &page
->descs
[i
];
504 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->chan
);
505 desc
->async_tx
.tx_submit
= rcar_dmac_tx_submit
;
506 INIT_LIST_HEAD(&desc
->chunks
);
508 list_add_tail(&desc
->node
, &list
);
511 spin_lock_irqsave(&chan
->lock
, flags
);
512 list_splice_tail(&list
, &chan
->desc
.free
);
513 list_add_tail(&page
->node
, &chan
->desc
.pages
);
514 spin_unlock_irqrestore(&chan
->lock
, flags
);
520 * rcar_dmac_desc_put - Release a DMA transfer descriptor
521 * @chan: the DMA channel
522 * @desc: the descriptor
524 * Put the descriptor and its transfer chunk descriptors back in the channel's
525 * free descriptors lists. The descriptor's chunks list will be reinitialized to
526 * an empty list as a result.
528 * The descriptor must have been removed from the channel's lists before calling
531 static void rcar_dmac_desc_put(struct rcar_dmac_chan
*chan
,
532 struct rcar_dmac_desc
*desc
)
536 spin_lock_irqsave(&chan
->lock
, flags
);
537 list_splice_tail_init(&desc
->chunks
, &chan
->desc
.chunks_free
);
538 list_add(&desc
->node
, &chan
->desc
.free
);
539 spin_unlock_irqrestore(&chan
->lock
, flags
);
542 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan
*chan
)
544 struct rcar_dmac_desc
*desc
, *_desc
;
549 * We have to temporarily move all descriptors from the wait list to a
550 * local list as iterating over the wait list, even with
551 * list_for_each_entry_safe, isn't safe if we release the channel lock
552 * around the rcar_dmac_desc_put() call.
554 spin_lock_irqsave(&chan
->lock
, flags
);
555 list_splice_init(&chan
->desc
.wait
, &list
);
556 spin_unlock_irqrestore(&chan
->lock
, flags
);
558 list_for_each_entry_safe(desc
, _desc
, &list
, node
) {
559 if (async_tx_test_ack(&desc
->async_tx
)) {
560 list_del(&desc
->node
);
561 rcar_dmac_desc_put(chan
, desc
);
565 if (list_empty(&list
))
568 /* Put the remaining descriptors back in the wait list. */
569 spin_lock_irqsave(&chan
->lock
, flags
);
570 list_splice(&list
, &chan
->desc
.wait
);
571 spin_unlock_irqrestore(&chan
->lock
, flags
);
575 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
576 * @chan: the DMA channel
578 * Locking: This function must be called in a non-atomic context.
580 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
583 static struct rcar_dmac_desc
*rcar_dmac_desc_get(struct rcar_dmac_chan
*chan
)
585 struct rcar_dmac_desc
*desc
;
589 /* Recycle acked descriptors before attempting allocation. */
590 rcar_dmac_desc_recycle_acked(chan
);
592 spin_lock_irqsave(&chan
->lock
, flags
);
594 while (list_empty(&chan
->desc
.free
)) {
596 * No free descriptors, allocate a page worth of them and try
597 * again, as someone else could race us to get the newly
598 * allocated descriptors. If the allocation fails return an
601 spin_unlock_irqrestore(&chan
->lock
, flags
);
602 ret
= rcar_dmac_desc_alloc(chan
, GFP_NOWAIT
);
605 spin_lock_irqsave(&chan
->lock
, flags
);
608 desc
= list_first_entry(&chan
->desc
.free
, struct rcar_dmac_desc
, node
);
609 list_del(&desc
->node
);
611 spin_unlock_irqrestore(&chan
->lock
, flags
);
617 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
618 * @chan: the DMA channel
619 * @gfp: allocation flags
621 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan
*chan
, gfp_t gfp
)
623 struct rcar_dmac_desc_page
*page
;
628 page
= (void *)get_zeroed_page(gfp
);
632 for (i
= 0; i
< RCAR_DMAC_XFER_CHUNKS_PER_PAGE
; ++i
) {
633 struct rcar_dmac_xfer_chunk
*chunk
= &page
->chunks
[i
];
635 list_add_tail(&chunk
->node
, &list
);
638 spin_lock_irqsave(&chan
->lock
, flags
);
639 list_splice_tail(&list
, &chan
->desc
.chunks_free
);
640 list_add_tail(&page
->node
, &chan
->desc
.pages
);
641 spin_unlock_irqrestore(&chan
->lock
, flags
);
647 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
648 * @chan: the DMA channel
650 * Locking: This function must be called in a non-atomic context.
652 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
653 * descriptor can be allocated.
655 static struct rcar_dmac_xfer_chunk
*
656 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan
*chan
)
658 struct rcar_dmac_xfer_chunk
*chunk
;
662 spin_lock_irqsave(&chan
->lock
, flags
);
664 while (list_empty(&chan
->desc
.chunks_free
)) {
666 * No free descriptors, allocate a page worth of them and try
667 * again, as someone else could race us to get the newly
668 * allocated descriptors. If the allocation fails return an
671 spin_unlock_irqrestore(&chan
->lock
, flags
);
672 ret
= rcar_dmac_xfer_chunk_alloc(chan
, GFP_NOWAIT
);
675 spin_lock_irqsave(&chan
->lock
, flags
);
678 chunk
= list_first_entry(&chan
->desc
.chunks_free
,
679 struct rcar_dmac_xfer_chunk
, node
);
680 list_del(&chunk
->node
);
682 spin_unlock_irqrestore(&chan
->lock
, flags
);
687 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan
*chan
,
688 struct rcar_dmac_desc
*desc
, size_t size
)
691 * dma_alloc_coherent() allocates memory in page size increments. To
692 * avoid reallocating the hardware descriptors when the allocated size
693 * wouldn't change align the requested size to a multiple of the page
696 size
= PAGE_ALIGN(size
);
698 if (desc
->hwdescs
.size
== size
)
701 if (desc
->hwdescs
.mem
) {
702 dma_free_coherent(chan
->chan
.device
->dev
, desc
->hwdescs
.size
,
703 desc
->hwdescs
.mem
, desc
->hwdescs
.dma
);
704 desc
->hwdescs
.mem
= NULL
;
705 desc
->hwdescs
.size
= 0;
711 desc
->hwdescs
.mem
= dma_alloc_coherent(chan
->chan
.device
->dev
, size
,
712 &desc
->hwdescs
.dma
, GFP_NOWAIT
);
713 if (!desc
->hwdescs
.mem
)
716 desc
->hwdescs
.size
= size
;
719 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan
*chan
,
720 struct rcar_dmac_desc
*desc
)
722 struct rcar_dmac_xfer_chunk
*chunk
;
723 struct rcar_dmac_hw_desc
*hwdesc
;
725 rcar_dmac_realloc_hwdesc(chan
, desc
, desc
->nchunks
* sizeof(*hwdesc
));
727 hwdesc
= desc
->hwdescs
.mem
;
731 list_for_each_entry(chunk
, &desc
->chunks
, node
) {
732 hwdesc
->sar
= chunk
->src_addr
;
733 hwdesc
->dar
= chunk
->dst_addr
;
734 hwdesc
->tcr
= chunk
->size
>> desc
->xfer_shift
;
741 /* -----------------------------------------------------------------------------
744 static void rcar_dmac_chcr_de_barrier(struct rcar_dmac_chan
*chan
)
750 * Ensure that the setting of the DE bit is actually 0 after
753 for (i
= 0; i
< 1024; i
++) {
754 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
755 if (!(chcr
& RCAR_DMACHCR_DE
))
760 dev_err(chan
->chan
.device
->dev
, "CHCR DE check error\n");
763 static void rcar_dmac_clear_chcr_de(struct rcar_dmac_chan
*chan
)
765 u32 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
767 /* set DE=0 and flush remaining data */
768 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
, (chcr
& ~RCAR_DMACHCR_DE
));
770 /* make sure all remaining data was flushed */
771 rcar_dmac_chcr_de_barrier(chan
);
774 static void rcar_dmac_chan_halt(struct rcar_dmac_chan
*chan
)
776 u32 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
778 chcr
&= ~(RCAR_DMACHCR_DSE
| RCAR_DMACHCR_DSIE
| RCAR_DMACHCR_IE
|
779 RCAR_DMACHCR_TE
| RCAR_DMACHCR_DE
|
780 RCAR_DMACHCR_CAE
| RCAR_DMACHCR_CAIE
);
781 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
, chcr
);
782 rcar_dmac_chcr_de_barrier(chan
);
785 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan
*chan
)
787 struct rcar_dmac_desc
*desc
, *_desc
;
791 spin_lock_irqsave(&chan
->lock
, flags
);
793 /* Move all non-free descriptors to the local lists. */
794 list_splice_init(&chan
->desc
.pending
, &descs
);
795 list_splice_init(&chan
->desc
.active
, &descs
);
796 list_splice_init(&chan
->desc
.done
, &descs
);
797 list_splice_init(&chan
->desc
.wait
, &descs
);
799 chan
->desc
.running
= NULL
;
801 spin_unlock_irqrestore(&chan
->lock
, flags
);
803 list_for_each_entry_safe(desc
, _desc
, &descs
, node
) {
804 list_del(&desc
->node
);
805 rcar_dmac_desc_put(chan
, desc
);
809 static void rcar_dmac_stop_all_chan(struct rcar_dmac
*dmac
)
813 /* Stop all channels. */
814 for (i
= 0; i
< dmac
->n_channels
; ++i
) {
815 struct rcar_dmac_chan
*chan
= &dmac
->channels
[i
];
817 /* Stop and reinitialize the channel. */
818 spin_lock_irq(&chan
->lock
);
819 rcar_dmac_chan_halt(chan
);
820 spin_unlock_irq(&chan
->lock
);
824 static int rcar_dmac_chan_pause(struct dma_chan
*chan
)
827 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
829 spin_lock_irqsave(&rchan
->lock
, flags
);
830 rcar_dmac_clear_chcr_de(rchan
);
831 spin_unlock_irqrestore(&rchan
->lock
, flags
);
836 /* -----------------------------------------------------------------------------
837 * Descriptors preparation
840 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan
*chan
,
841 struct rcar_dmac_desc
*desc
)
843 static const u32 chcr_ts
[] = {
844 RCAR_DMACHCR_TS_1B
, RCAR_DMACHCR_TS_2B
,
845 RCAR_DMACHCR_TS_4B
, RCAR_DMACHCR_TS_8B
,
846 RCAR_DMACHCR_TS_16B
, RCAR_DMACHCR_TS_32B
,
850 unsigned int xfer_size
;
853 switch (desc
->direction
) {
855 chcr
= RCAR_DMACHCR_DM_INC
| RCAR_DMACHCR_SM_FIXED
856 | RCAR_DMACHCR_RS_DMARS
;
857 xfer_size
= chan
->src
.xfer_size
;
861 chcr
= RCAR_DMACHCR_DM_FIXED
| RCAR_DMACHCR_SM_INC
862 | RCAR_DMACHCR_RS_DMARS
;
863 xfer_size
= chan
->dst
.xfer_size
;
868 chcr
= RCAR_DMACHCR_DM_INC
| RCAR_DMACHCR_SM_INC
869 | RCAR_DMACHCR_RS_AUTO
;
870 xfer_size
= RCAR_DMAC_MEMCPY_XFER_SIZE
;
874 desc
->xfer_shift
= ilog2(xfer_size
);
875 desc
->chcr
= chcr
| chcr_ts
[desc
->xfer_shift
];
879 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
881 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
882 * converted to scatter-gather to guarantee consistent locking and a correct
883 * list manipulation. For slave DMA direction carries the usual meaning, and,
884 * logically, the SG list is RAM and the addr variable contains slave address,
885 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
886 * and the SG list contains only one element and points at the source buffer.
888 static struct dma_async_tx_descriptor
*
889 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan
*chan
, struct scatterlist
*sgl
,
890 unsigned int sg_len
, dma_addr_t dev_addr
,
891 enum dma_transfer_direction dir
, unsigned long dma_flags
,
894 struct rcar_dmac_xfer_chunk
*chunk
;
895 struct rcar_dmac_desc
*desc
;
896 struct scatterlist
*sg
;
897 unsigned int nchunks
= 0;
898 unsigned int max_chunk_size
;
899 unsigned int full_size
= 0;
900 bool cross_boundary
= false;
902 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
907 desc
= rcar_dmac_desc_get(chan
);
911 desc
->async_tx
.flags
= dma_flags
;
912 desc
->async_tx
.cookie
= -EBUSY
;
914 desc
->cyclic
= cyclic
;
915 desc
->direction
= dir
;
917 rcar_dmac_chan_configure_desc(chan
, desc
);
919 max_chunk_size
= RCAR_DMATCR_MASK
<< desc
->xfer_shift
;
922 * Allocate and fill the transfer chunk descriptors. We own the only
923 * reference to the DMA descriptor, there's no need for locking.
925 for_each_sg(sgl
, sg
, sg_len
, i
) {
926 dma_addr_t mem_addr
= sg_dma_address(sg
);
927 unsigned int len
= sg_dma_len(sg
);
931 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
933 high_dev_addr
= dev_addr
>> 32;
934 high_mem_addr
= mem_addr
>> 32;
937 if ((dev_addr
>> 32 != high_dev_addr
) ||
938 (mem_addr
>> 32 != high_mem_addr
))
939 cross_boundary
= true;
942 unsigned int size
= min(len
, max_chunk_size
);
944 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
946 * Prevent individual transfers from crossing 4GB
949 if (dev_addr
>> 32 != (dev_addr
+ size
- 1) >> 32) {
950 size
= ALIGN(dev_addr
, 1ULL << 32) - dev_addr
;
951 cross_boundary
= true;
953 if (mem_addr
>> 32 != (mem_addr
+ size
- 1) >> 32) {
954 size
= ALIGN(mem_addr
, 1ULL << 32) - mem_addr
;
955 cross_boundary
= true;
959 chunk
= rcar_dmac_xfer_chunk_get(chan
);
961 rcar_dmac_desc_put(chan
, desc
);
965 if (dir
== DMA_DEV_TO_MEM
) {
966 chunk
->src_addr
= dev_addr
;
967 chunk
->dst_addr
= mem_addr
;
969 chunk
->src_addr
= mem_addr
;
970 chunk
->dst_addr
= dev_addr
;
975 dev_dbg(chan
->chan
.device
->dev
,
976 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
977 chan
->index
, chunk
, desc
, i
, sg
, size
, len
,
978 &chunk
->src_addr
, &chunk
->dst_addr
);
981 if (dir
== DMA_MEM_TO_MEM
)
986 list_add_tail(&chunk
->node
, &desc
->chunks
);
991 desc
->nchunks
= nchunks
;
992 desc
->size
= full_size
;
995 * Use hardware descriptor lists if possible when more than one chunk
996 * needs to be transferred (otherwise they don't make much sense).
998 * Source/Destination address should be located in same 4GiB region
999 * in the 40bit address space when it uses Hardware descriptor,
1000 * and cross_boundary is checking it.
1002 desc
->hwdescs
.use
= !cross_boundary
&& nchunks
> 1;
1003 if (desc
->hwdescs
.use
) {
1004 if (rcar_dmac_fill_hwdesc(chan
, desc
) < 0)
1005 desc
->hwdescs
.use
= false;
1008 return &desc
->async_tx
;
1011 /* -----------------------------------------------------------------------------
1012 * DMA engine operations
1015 static int rcar_dmac_alloc_chan_resources(struct dma_chan
*chan
)
1017 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1020 INIT_LIST_HEAD(&rchan
->desc
.chunks_free
);
1021 INIT_LIST_HEAD(&rchan
->desc
.pages
);
1023 /* Preallocate descriptors. */
1024 ret
= rcar_dmac_xfer_chunk_alloc(rchan
, GFP_KERNEL
);
1028 ret
= rcar_dmac_desc_alloc(rchan
, GFP_KERNEL
);
1032 return pm_runtime_get_sync(chan
->device
->dev
);
1035 static void rcar_dmac_free_chan_resources(struct dma_chan
*chan
)
1037 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1038 struct rcar_dmac
*dmac
= to_rcar_dmac(chan
->device
);
1039 struct rcar_dmac_chan_map
*map
= &rchan
->map
;
1040 struct rcar_dmac_desc_page
*page
, *_page
;
1041 struct rcar_dmac_desc
*desc
;
1044 /* Protect against ISR */
1045 spin_lock_irq(&rchan
->lock
);
1046 rcar_dmac_chan_halt(rchan
);
1047 spin_unlock_irq(&rchan
->lock
);
1050 * Now no new interrupts will occur, but one might already be
1051 * running. Wait for it to finish before freeing resources.
1053 synchronize_irq(rchan
->irq
);
1055 if (rchan
->mid_rid
>= 0) {
1056 /* The caller is holding dma_list_mutex */
1057 clear_bit(rchan
->mid_rid
, dmac
->modules
);
1058 rchan
->mid_rid
= -EINVAL
;
1061 list_splice_init(&rchan
->desc
.free
, &list
);
1062 list_splice_init(&rchan
->desc
.pending
, &list
);
1063 list_splice_init(&rchan
->desc
.active
, &list
);
1064 list_splice_init(&rchan
->desc
.done
, &list
);
1065 list_splice_init(&rchan
->desc
.wait
, &list
);
1067 rchan
->desc
.running
= NULL
;
1069 list_for_each_entry(desc
, &list
, node
)
1070 rcar_dmac_realloc_hwdesc(rchan
, desc
, 0);
1072 list_for_each_entry_safe(page
, _page
, &rchan
->desc
.pages
, node
) {
1073 list_del(&page
->node
);
1074 free_page((unsigned long)page
);
1077 /* Remove slave mapping if present. */
1078 if (map
->slave
.xfer_size
) {
1079 dma_unmap_resource(chan
->device
->dev
, map
->addr
,
1080 map
->slave
.xfer_size
, map
->dir
, 0);
1081 map
->slave
.xfer_size
= 0;
1084 pm_runtime_put(chan
->device
->dev
);
1087 static struct dma_async_tx_descriptor
*
1088 rcar_dmac_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dma_dest
,
1089 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
1091 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1092 struct scatterlist sgl
;
1097 sg_init_table(&sgl
, 1);
1098 sg_set_page(&sgl
, pfn_to_page(PFN_DOWN(dma_src
)), len
,
1099 offset_in_page(dma_src
));
1100 sg_dma_address(&sgl
) = dma_src
;
1101 sg_dma_len(&sgl
) = len
;
1103 return rcar_dmac_chan_prep_sg(rchan
, &sgl
, 1, dma_dest
,
1104 DMA_MEM_TO_MEM
, flags
, false);
1107 static int rcar_dmac_map_slave_addr(struct dma_chan
*chan
,
1108 enum dma_transfer_direction dir
)
1110 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1111 struct rcar_dmac_chan_map
*map
= &rchan
->map
;
1112 phys_addr_t dev_addr
;
1114 enum dma_data_direction dev_dir
;
1116 if (dir
== DMA_DEV_TO_MEM
) {
1117 dev_addr
= rchan
->src
.slave_addr
;
1118 dev_size
= rchan
->src
.xfer_size
;
1119 dev_dir
= DMA_TO_DEVICE
;
1121 dev_addr
= rchan
->dst
.slave_addr
;
1122 dev_size
= rchan
->dst
.xfer_size
;
1123 dev_dir
= DMA_FROM_DEVICE
;
1126 /* Reuse current map if possible. */
1127 if (dev_addr
== map
->slave
.slave_addr
&&
1128 dev_size
== map
->slave
.xfer_size
&&
1129 dev_dir
== map
->dir
)
1132 /* Remove old mapping if present. */
1133 if (map
->slave
.xfer_size
)
1134 dma_unmap_resource(chan
->device
->dev
, map
->addr
,
1135 map
->slave
.xfer_size
, map
->dir
, 0);
1136 map
->slave
.xfer_size
= 0;
1138 /* Create new slave address map. */
1139 map
->addr
= dma_map_resource(chan
->device
->dev
, dev_addr
, dev_size
,
1142 if (dma_mapping_error(chan
->device
->dev
, map
->addr
)) {
1143 dev_err(chan
->device
->dev
,
1144 "chan%u: failed to map %zx@%pap", rchan
->index
,
1145 dev_size
, &dev_addr
);
1149 dev_dbg(chan
->device
->dev
, "chan%u: map %zx@%pap to %pad dir: %s\n",
1150 rchan
->index
, dev_size
, &dev_addr
, &map
->addr
,
1151 dev_dir
== DMA_TO_DEVICE
? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1153 map
->slave
.slave_addr
= dev_addr
;
1154 map
->slave
.xfer_size
= dev_size
;
1160 static struct dma_async_tx_descriptor
*
1161 rcar_dmac_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
1162 unsigned int sg_len
, enum dma_transfer_direction dir
,
1163 unsigned long flags
, void *context
)
1165 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1167 /* Someone calling slave DMA on a generic channel? */
1168 if (rchan
->mid_rid
< 0 || !sg_len
|| !sg_dma_len(sgl
)) {
1169 dev_warn(chan
->device
->dev
,
1170 "%s: bad parameter: len=%d, id=%d\n",
1171 __func__
, sg_len
, rchan
->mid_rid
);
1175 if (rcar_dmac_map_slave_addr(chan
, dir
))
1178 return rcar_dmac_chan_prep_sg(rchan
, sgl
, sg_len
, rchan
->map
.addr
,
1182 #define RCAR_DMAC_MAX_SG_LEN 32
1184 static struct dma_async_tx_descriptor
*
1185 rcar_dmac_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t buf_addr
,
1186 size_t buf_len
, size_t period_len
,
1187 enum dma_transfer_direction dir
, unsigned long flags
)
1189 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1190 struct dma_async_tx_descriptor
*desc
;
1191 struct scatterlist
*sgl
;
1192 unsigned int sg_len
;
1195 /* Someone calling slave DMA on a generic channel? */
1196 if (rchan
->mid_rid
< 0 || buf_len
< period_len
) {
1197 dev_warn(chan
->device
->dev
,
1198 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1199 __func__
, buf_len
, period_len
, rchan
->mid_rid
);
1203 if (rcar_dmac_map_slave_addr(chan
, dir
))
1206 sg_len
= buf_len
/ period_len
;
1207 if (sg_len
> RCAR_DMAC_MAX_SG_LEN
) {
1208 dev_err(chan
->device
->dev
,
1209 "chan%u: sg length %d exceds limit %d",
1210 rchan
->index
, sg_len
, RCAR_DMAC_MAX_SG_LEN
);
1215 * Allocate the sg list dynamically as it would consume too much stack
1218 sgl
= kcalloc(sg_len
, sizeof(*sgl
), GFP_NOWAIT
);
1222 sg_init_table(sgl
, sg_len
);
1224 for (i
= 0; i
< sg_len
; ++i
) {
1225 dma_addr_t src
= buf_addr
+ (period_len
* i
);
1227 sg_set_page(&sgl
[i
], pfn_to_page(PFN_DOWN(src
)), period_len
,
1228 offset_in_page(src
));
1229 sg_dma_address(&sgl
[i
]) = src
;
1230 sg_dma_len(&sgl
[i
]) = period_len
;
1233 desc
= rcar_dmac_chan_prep_sg(rchan
, sgl
, sg_len
, rchan
->map
.addr
,
1240 static int rcar_dmac_device_config(struct dma_chan
*chan
,
1241 struct dma_slave_config
*cfg
)
1243 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1246 * We could lock this, but you shouldn't be configuring the
1247 * channel, while using it...
1249 rchan
->src
.slave_addr
= cfg
->src_addr
;
1250 rchan
->dst
.slave_addr
= cfg
->dst_addr
;
1251 rchan
->src
.xfer_size
= cfg
->src_addr_width
;
1252 rchan
->dst
.xfer_size
= cfg
->dst_addr_width
;
1257 static int rcar_dmac_chan_terminate_all(struct dma_chan
*chan
)
1259 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1260 unsigned long flags
;
1262 spin_lock_irqsave(&rchan
->lock
, flags
);
1263 rcar_dmac_chan_halt(rchan
);
1264 spin_unlock_irqrestore(&rchan
->lock
, flags
);
1267 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1271 rcar_dmac_chan_reinit(rchan
);
1276 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan
*chan
,
1277 dma_cookie_t cookie
)
1279 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
1280 struct rcar_dmac_xfer_chunk
*running
= NULL
;
1281 struct rcar_dmac_xfer_chunk
*chunk
;
1282 enum dma_status status
;
1283 unsigned int residue
= 0;
1284 unsigned int dptr
= 0;
1293 * If the cookie corresponds to a descriptor that has been completed
1294 * there is no residue. The same check has already been performed by the
1295 * caller but without holding the channel lock, so the descriptor could
1298 status
= dma_cookie_status(&chan
->chan
, cookie
, NULL
);
1299 if (status
== DMA_COMPLETE
)
1303 * If the cookie doesn't correspond to the currently running transfer
1304 * then the descriptor hasn't been processed yet, and the residue is
1305 * equal to the full descriptor size.
1306 * Also, a client driver is possible to call this function before
1307 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1308 * will be the next descriptor, and the done list will appear. So, if
1309 * the argument cookie matches the done list's cookie, we can assume
1310 * the residue is zero.
1312 if (cookie
!= desc
->async_tx
.cookie
) {
1313 list_for_each_entry(desc
, &chan
->desc
.done
, node
) {
1314 if (cookie
== desc
->async_tx
.cookie
)
1317 list_for_each_entry(desc
, &chan
->desc
.pending
, node
) {
1318 if (cookie
== desc
->async_tx
.cookie
)
1321 list_for_each_entry(desc
, &chan
->desc
.active
, node
) {
1322 if (cookie
== desc
->async_tx
.cookie
)
1327 * No descriptor found for the cookie, there's thus no residue.
1328 * This shouldn't happen if the calling driver passes a correct
1331 WARN(1, "No descriptor for cookie!");
1336 * We need to read two registers.
1337 * Make sure the control register does not skip to next chunk
1338 * while reading the counter.
1339 * Trying it 3 times should be enough: Initial read, retry, retry
1342 for (i
= 0; i
< 3; i
++) {
1343 chcrb
= rcar_dmac_chan_read(chan
, RCAR_DMACHCRB
) &
1344 RCAR_DMACHCRB_DPTR_MASK
;
1345 tcrb
= rcar_dmac_chan_read(chan
, RCAR_DMATCRB
);
1346 /* Still the same? */
1347 if (chcrb
== (rcar_dmac_chan_read(chan
, RCAR_DMACHCRB
) &
1348 RCAR_DMACHCRB_DPTR_MASK
))
1351 WARN_ONCE(i
>= 3, "residue might be not continuous!");
1354 * In descriptor mode the descriptor running pointer is not maintained
1355 * by the interrupt handler, find the running descriptor from the
1356 * descriptor pointer field in the CHCRB register. In non-descriptor
1357 * mode just use the running descriptor pointer.
1359 if (desc
->hwdescs
.use
) {
1360 dptr
= chcrb
>> RCAR_DMACHCRB_DPTR_SHIFT
;
1362 dptr
= desc
->nchunks
;
1364 WARN_ON(dptr
>= desc
->nchunks
);
1366 running
= desc
->running
;
1369 /* Compute the size of all chunks still to be transferred. */
1370 list_for_each_entry_reverse(chunk
, &desc
->chunks
, node
) {
1371 if (chunk
== running
|| ++dptr
== desc
->nchunks
)
1374 residue
+= chunk
->size
;
1377 /* Add the residue for the current chunk. */
1378 residue
+= tcrb
<< desc
->xfer_shift
;
1383 static enum dma_status
rcar_dmac_tx_status(struct dma_chan
*chan
,
1384 dma_cookie_t cookie
,
1385 struct dma_tx_state
*txstate
)
1387 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1388 enum dma_status status
;
1389 unsigned long flags
;
1390 unsigned int residue
;
1393 status
= dma_cookie_status(chan
, cookie
, txstate
);
1394 if (status
== DMA_COMPLETE
|| !txstate
)
1397 spin_lock_irqsave(&rchan
->lock
, flags
);
1398 residue
= rcar_dmac_chan_get_residue(rchan
, cookie
);
1399 cyclic
= rchan
->desc
.running
? rchan
->desc
.running
->cyclic
: false;
1400 spin_unlock_irqrestore(&rchan
->lock
, flags
);
1402 /* if there's no residue, the cookie is complete */
1403 if (!residue
&& !cyclic
)
1404 return DMA_COMPLETE
;
1406 dma_set_residue(txstate
, residue
);
1411 static void rcar_dmac_issue_pending(struct dma_chan
*chan
)
1413 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1414 unsigned long flags
;
1416 spin_lock_irqsave(&rchan
->lock
, flags
);
1418 if (list_empty(&rchan
->desc
.pending
))
1421 /* Append the pending list to the active list. */
1422 list_splice_tail_init(&rchan
->desc
.pending
, &rchan
->desc
.active
);
1425 * If no transfer is running pick the first descriptor from the active
1426 * list and start the transfer.
1428 if (!rchan
->desc
.running
) {
1429 struct rcar_dmac_desc
*desc
;
1431 desc
= list_first_entry(&rchan
->desc
.active
,
1432 struct rcar_dmac_desc
, node
);
1433 rchan
->desc
.running
= desc
;
1435 rcar_dmac_chan_start_xfer(rchan
);
1439 spin_unlock_irqrestore(&rchan
->lock
, flags
);
1442 static void rcar_dmac_device_synchronize(struct dma_chan
*chan
)
1444 struct rcar_dmac_chan
*rchan
= to_rcar_dmac_chan(chan
);
1446 synchronize_irq(rchan
->irq
);
1449 /* -----------------------------------------------------------------------------
1453 static irqreturn_t
rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan
*chan
)
1455 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
1458 if (WARN_ON(!desc
|| !desc
->cyclic
)) {
1460 * This should never happen, there should always be a running
1461 * cyclic descriptor when a descriptor stage end interrupt is
1462 * triggered. Warn and return.
1467 /* Program the interrupt pointer to the next stage. */
1468 stage
= (rcar_dmac_chan_read(chan
, RCAR_DMACHCRB
) &
1469 RCAR_DMACHCRB_DPTR_MASK
) >> RCAR_DMACHCRB_DPTR_SHIFT
;
1470 rcar_dmac_chan_write(chan
, RCAR_DMADPCR
, RCAR_DMADPCR_DIPT(stage
));
1472 return IRQ_WAKE_THREAD
;
1475 static irqreturn_t
rcar_dmac_isr_transfer_end(struct rcar_dmac_chan
*chan
)
1477 struct rcar_dmac_desc
*desc
= chan
->desc
.running
;
1478 irqreturn_t ret
= IRQ_WAKE_THREAD
;
1480 if (WARN_ON_ONCE(!desc
)) {
1482 * This should never happen, there should always be a running
1483 * descriptor when a transfer end interrupt is triggered. Warn
1490 * The transfer end interrupt isn't generated for each chunk when using
1491 * descriptor mode. Only update the running chunk pointer in
1492 * non-descriptor mode.
1494 if (!desc
->hwdescs
.use
) {
1496 * If we haven't completed the last transfer chunk simply move
1497 * to the next one. Only wake the IRQ thread if the transfer is
1500 if (!list_is_last(&desc
->running
->node
, &desc
->chunks
)) {
1501 desc
->running
= list_next_entry(desc
->running
, node
);
1508 * We've completed the last transfer chunk. If the transfer is
1509 * cyclic, move back to the first one.
1513 list_first_entry(&desc
->chunks
,
1514 struct rcar_dmac_xfer_chunk
,
1520 /* The descriptor is complete, move it to the done list. */
1521 list_move_tail(&desc
->node
, &chan
->desc
.done
);
1523 /* Queue the next descriptor, if any. */
1524 if (!list_empty(&chan
->desc
.active
))
1525 chan
->desc
.running
= list_first_entry(&chan
->desc
.active
,
1526 struct rcar_dmac_desc
,
1529 chan
->desc
.running
= NULL
;
1532 if (chan
->desc
.running
)
1533 rcar_dmac_chan_start_xfer(chan
);
1538 static irqreturn_t
rcar_dmac_isr_channel(int irq
, void *dev
)
1540 u32 mask
= RCAR_DMACHCR_DSE
| RCAR_DMACHCR_TE
;
1541 struct rcar_dmac_chan
*chan
= dev
;
1542 irqreturn_t ret
= IRQ_NONE
;
1543 bool reinit
= false;
1546 spin_lock(&chan
->lock
);
1548 chcr
= rcar_dmac_chan_read(chan
, RCAR_DMACHCR
);
1549 if (chcr
& RCAR_DMACHCR_CAE
) {
1550 struct rcar_dmac
*dmac
= to_rcar_dmac(chan
->chan
.device
);
1553 * We don't need to call rcar_dmac_chan_halt()
1554 * because channel is already stopped in error case.
1555 * We need to clear register and check DE bit as recovery.
1557 rcar_dmac_write(dmac
, RCAR_DMACHCLR
, 1 << chan
->index
);
1558 rcar_dmac_chcr_de_barrier(chan
);
1563 if (chcr
& RCAR_DMACHCR_TE
)
1564 mask
|= RCAR_DMACHCR_DE
;
1565 rcar_dmac_chan_write(chan
, RCAR_DMACHCR
, chcr
& ~mask
);
1566 if (mask
& RCAR_DMACHCR_DE
)
1567 rcar_dmac_chcr_de_barrier(chan
);
1569 if (chcr
& RCAR_DMACHCR_DSE
)
1570 ret
|= rcar_dmac_isr_desc_stage_end(chan
);
1572 if (chcr
& RCAR_DMACHCR_TE
)
1573 ret
|= rcar_dmac_isr_transfer_end(chan
);
1576 spin_unlock(&chan
->lock
);
1579 dev_err(chan
->chan
.device
->dev
, "Channel Address Error\n");
1581 rcar_dmac_chan_reinit(chan
);
1588 static irqreturn_t
rcar_dmac_isr_channel_thread(int irq
, void *dev
)
1590 struct rcar_dmac_chan
*chan
= dev
;
1591 struct rcar_dmac_desc
*desc
;
1592 struct dmaengine_desc_callback cb
;
1594 spin_lock_irq(&chan
->lock
);
1596 /* For cyclic transfers notify the user after every chunk. */
1597 if (chan
->desc
.running
&& chan
->desc
.running
->cyclic
) {
1598 desc
= chan
->desc
.running
;
1599 dmaengine_desc_get_callback(&desc
->async_tx
, &cb
);
1601 if (dmaengine_desc_callback_valid(&cb
)) {
1602 spin_unlock_irq(&chan
->lock
);
1603 dmaengine_desc_callback_invoke(&cb
, NULL
);
1604 spin_lock_irq(&chan
->lock
);
1609 * Call the callback function for all descriptors on the done list and
1610 * move them to the ack wait list.
1612 while (!list_empty(&chan
->desc
.done
)) {
1613 desc
= list_first_entry(&chan
->desc
.done
, struct rcar_dmac_desc
,
1615 dma_cookie_complete(&desc
->async_tx
);
1616 list_del(&desc
->node
);
1618 dmaengine_desc_get_callback(&desc
->async_tx
, &cb
);
1619 if (dmaengine_desc_callback_valid(&cb
)) {
1620 spin_unlock_irq(&chan
->lock
);
1622 * We own the only reference to this descriptor, we can
1623 * safely dereference it without holding the channel
1626 dmaengine_desc_callback_invoke(&cb
, NULL
);
1627 spin_lock_irq(&chan
->lock
);
1630 list_add_tail(&desc
->node
, &chan
->desc
.wait
);
1633 spin_unlock_irq(&chan
->lock
);
1635 /* Recycle all acked descriptors. */
1636 rcar_dmac_desc_recycle_acked(chan
);
1641 /* -----------------------------------------------------------------------------
1642 * OF xlate and channel filter
1645 static bool rcar_dmac_chan_filter(struct dma_chan
*chan
, void *arg
)
1647 struct rcar_dmac
*dmac
= to_rcar_dmac(chan
->device
);
1648 struct of_phandle_args
*dma_spec
= arg
;
1651 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1652 * function knows from which device it wants to allocate a channel from,
1653 * and would be perfectly capable of selecting the channel it wants.
1654 * Forcing it to call dma_request_channel() and iterate through all
1655 * channels from all controllers is just pointless.
1657 if (chan
->device
->device_config
!= rcar_dmac_device_config
||
1658 dma_spec
->np
!= chan
->device
->dev
->of_node
)
1661 return !test_and_set_bit(dma_spec
->args
[0], dmac
->modules
);
1664 static struct dma_chan
*rcar_dmac_of_xlate(struct of_phandle_args
*dma_spec
,
1665 struct of_dma
*ofdma
)
1667 struct rcar_dmac_chan
*rchan
;
1668 struct dma_chan
*chan
;
1669 dma_cap_mask_t mask
;
1671 if (dma_spec
->args_count
!= 1)
1674 /* Only slave DMA channels can be allocated via DT */
1676 dma_cap_set(DMA_SLAVE
, mask
);
1678 chan
= dma_request_channel(mask
, rcar_dmac_chan_filter
, dma_spec
);
1682 rchan
= to_rcar_dmac_chan(chan
);
1683 rchan
->mid_rid
= dma_spec
->args
[0];
1688 /* -----------------------------------------------------------------------------
1693 static int rcar_dmac_runtime_suspend(struct device
*dev
)
1698 static int rcar_dmac_runtime_resume(struct device
*dev
)
1700 struct rcar_dmac
*dmac
= dev_get_drvdata(dev
);
1702 return rcar_dmac_init(dmac
);
1706 static const struct dev_pm_ops rcar_dmac_pm
= {
1708 * TODO for system sleep/resume:
1709 * - Wait for the current transfer to complete and stop the device,
1710 * - Resume transfers, if any.
1712 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1713 pm_runtime_force_resume
)
1714 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend
, rcar_dmac_runtime_resume
,
1718 /* -----------------------------------------------------------------------------
1722 static int rcar_dmac_chan_probe(struct rcar_dmac
*dmac
,
1723 struct rcar_dmac_chan
*rchan
,
1726 struct platform_device
*pdev
= to_platform_device(dmac
->dev
);
1727 struct dma_chan
*chan
= &rchan
->chan
;
1728 char pdev_irqname
[5];
1732 rchan
->index
= index
;
1733 rchan
->iomem
= dmac
->iomem
+ RCAR_DMAC_CHAN_OFFSET(index
);
1734 rchan
->mid_rid
= -EINVAL
;
1736 spin_lock_init(&rchan
->lock
);
1738 INIT_LIST_HEAD(&rchan
->desc
.free
);
1739 INIT_LIST_HEAD(&rchan
->desc
.pending
);
1740 INIT_LIST_HEAD(&rchan
->desc
.active
);
1741 INIT_LIST_HEAD(&rchan
->desc
.done
);
1742 INIT_LIST_HEAD(&rchan
->desc
.wait
);
1744 /* Request the channel interrupt. */
1745 sprintf(pdev_irqname
, "ch%u", index
);
1746 rchan
->irq
= platform_get_irq_byname(pdev
, pdev_irqname
);
1747 if (rchan
->irq
< 0) {
1748 dev_err(dmac
->dev
, "no IRQ specified for channel %u\n", index
);
1752 irqname
= devm_kasprintf(dmac
->dev
, GFP_KERNEL
, "%s:%u",
1753 dev_name(dmac
->dev
), index
);
1758 * Initialize the DMA engine channel and add it to the DMA engine
1761 chan
->device
= &dmac
->engine
;
1762 dma_cookie_init(chan
);
1764 list_add_tail(&chan
->device_node
, &dmac
->engine
.channels
);
1766 ret
= devm_request_threaded_irq(dmac
->dev
, rchan
->irq
,
1767 rcar_dmac_isr_channel
,
1768 rcar_dmac_isr_channel_thread
, 0,
1771 dev_err(dmac
->dev
, "failed to request IRQ %u (%d)\n",
1779 static int rcar_dmac_parse_of(struct device
*dev
, struct rcar_dmac
*dmac
)
1781 struct device_node
*np
= dev
->of_node
;
1784 ret
= of_property_read_u32(np
, "dma-channels", &dmac
->n_channels
);
1786 dev_err(dev
, "unable to read dma-channels property\n");
1790 if (dmac
->n_channels
<= 0 || dmac
->n_channels
>= 100) {
1791 dev_err(dev
, "invalid number of channels %u\n",
1799 static int rcar_dmac_probe(struct platform_device
*pdev
)
1801 const enum dma_slave_buswidth widths
= DMA_SLAVE_BUSWIDTH_1_BYTE
|
1802 DMA_SLAVE_BUSWIDTH_2_BYTES
| DMA_SLAVE_BUSWIDTH_4_BYTES
|
1803 DMA_SLAVE_BUSWIDTH_8_BYTES
| DMA_SLAVE_BUSWIDTH_16_BYTES
|
1804 DMA_SLAVE_BUSWIDTH_32_BYTES
| DMA_SLAVE_BUSWIDTH_64_BYTES
;
1805 unsigned int channels_offset
= 0;
1806 struct dma_device
*engine
;
1807 struct rcar_dmac
*dmac
;
1808 struct resource
*mem
;
1812 dmac
= devm_kzalloc(&pdev
->dev
, sizeof(*dmac
), GFP_KERNEL
);
1816 dmac
->dev
= &pdev
->dev
;
1817 platform_set_drvdata(pdev
, dmac
);
1818 dmac
->dev
->dma_parms
= &dmac
->parms
;
1819 dma_set_max_seg_size(dmac
->dev
, RCAR_DMATCR_MASK
);
1820 dma_set_mask_and_coherent(dmac
->dev
, DMA_BIT_MASK(40));
1822 ret
= rcar_dmac_parse_of(&pdev
->dev
, dmac
);
1827 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1828 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1829 * is connected to microTLB 0 on currently supported platforms, so we
1830 * can't use it with the IPMMU. As the IOMMU API operates at the device
1831 * level we can't disable it selectively, so ignore channel 0 for now if
1832 * the device is part of an IOMMU group.
1834 if (pdev
->dev
.iommu_group
) {
1836 channels_offset
= 1;
1839 dmac
->channels
= devm_kcalloc(&pdev
->dev
, dmac
->n_channels
,
1840 sizeof(*dmac
->channels
), GFP_KERNEL
);
1841 if (!dmac
->channels
)
1844 /* Request resources. */
1845 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1846 dmac
->iomem
= devm_ioremap_resource(&pdev
->dev
, mem
);
1847 if (IS_ERR(dmac
->iomem
))
1848 return PTR_ERR(dmac
->iomem
);
1850 /* Enable runtime PM and initialize the device. */
1851 pm_runtime_enable(&pdev
->dev
);
1852 ret
= pm_runtime_get_sync(&pdev
->dev
);
1854 dev_err(&pdev
->dev
, "runtime PM get sync failed (%d)\n", ret
);
1858 ret
= rcar_dmac_init(dmac
);
1859 pm_runtime_put(&pdev
->dev
);
1862 dev_err(&pdev
->dev
, "failed to reset device\n");
1866 /* Initialize engine */
1867 engine
= &dmac
->engine
;
1869 dma_cap_set(DMA_MEMCPY
, engine
->cap_mask
);
1870 dma_cap_set(DMA_SLAVE
, engine
->cap_mask
);
1872 engine
->dev
= &pdev
->dev
;
1873 engine
->copy_align
= ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE
);
1875 engine
->src_addr_widths
= widths
;
1876 engine
->dst_addr_widths
= widths
;
1877 engine
->directions
= BIT(DMA_MEM_TO_DEV
) | BIT(DMA_DEV_TO_MEM
);
1878 engine
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1880 engine
->device_alloc_chan_resources
= rcar_dmac_alloc_chan_resources
;
1881 engine
->device_free_chan_resources
= rcar_dmac_free_chan_resources
;
1882 engine
->device_prep_dma_memcpy
= rcar_dmac_prep_dma_memcpy
;
1883 engine
->device_prep_slave_sg
= rcar_dmac_prep_slave_sg
;
1884 engine
->device_prep_dma_cyclic
= rcar_dmac_prep_dma_cyclic
;
1885 engine
->device_config
= rcar_dmac_device_config
;
1886 engine
->device_pause
= rcar_dmac_chan_pause
;
1887 engine
->device_terminate_all
= rcar_dmac_chan_terminate_all
;
1888 engine
->device_tx_status
= rcar_dmac_tx_status
;
1889 engine
->device_issue_pending
= rcar_dmac_issue_pending
;
1890 engine
->device_synchronize
= rcar_dmac_device_synchronize
;
1892 INIT_LIST_HEAD(&engine
->channels
);
1894 for (i
= 0; i
< dmac
->n_channels
; ++i
) {
1895 ret
= rcar_dmac_chan_probe(dmac
, &dmac
->channels
[i
],
1896 i
+ channels_offset
);
1901 /* Register the DMAC as a DMA provider for DT. */
1902 ret
= of_dma_controller_register(pdev
->dev
.of_node
, rcar_dmac_of_xlate
,
1908 * Register the DMA engine device.
1910 * Default transfer size of 32 bytes requires 32-byte alignment.
1912 ret
= dma_async_device_register(engine
);
1919 of_dma_controller_free(pdev
->dev
.of_node
);
1920 pm_runtime_disable(&pdev
->dev
);
1924 static int rcar_dmac_remove(struct platform_device
*pdev
)
1926 struct rcar_dmac
*dmac
= platform_get_drvdata(pdev
);
1928 of_dma_controller_free(pdev
->dev
.of_node
);
1929 dma_async_device_unregister(&dmac
->engine
);
1931 pm_runtime_disable(&pdev
->dev
);
1936 static void rcar_dmac_shutdown(struct platform_device
*pdev
)
1938 struct rcar_dmac
*dmac
= platform_get_drvdata(pdev
);
1940 rcar_dmac_stop_all_chan(dmac
);
1943 static const struct of_device_id rcar_dmac_of_ids
[] = {
1944 { .compatible
= "renesas,rcar-dmac", },
1947 MODULE_DEVICE_TABLE(of
, rcar_dmac_of_ids
);
1949 static struct platform_driver rcar_dmac_driver
= {
1951 .pm
= &rcar_dmac_pm
,
1952 .name
= "rcar-dmac",
1953 .of_match_table
= rcar_dmac_of_ids
,
1955 .probe
= rcar_dmac_probe
,
1956 .remove
= rcar_dmac_remove
,
1957 .shutdown
= rcar_dmac_shutdown
,
1960 module_platform_driver(rcar_dmac_driver
);
1962 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1963 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1964 MODULE_LICENSE("GPL v2");