1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info
*pci_ctl
;
6 static int report_gart_errors
;
7 module_param(report_gart_errors
, int, 0644);
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override
;
14 module_param(ecc_enable_override
, int, 0644);
16 static struct msr __percpu
*msrs
;
19 static struct ecc_settings
**ecc_stngs
;
22 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
26 *FIXME: Produce a better mapping/linearisation.
28 static const struct scrubrate
{
29 u32 scrubval
; /* bit pattern for scrub rate */
30 u32 bandwidth
; /* bandwidth consumed (bytes/sec) */
32 { 0x01, 1600000000UL},
54 { 0x00, 0UL}, /* scrubbing off */
57 int __amd64_read_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
58 u32
*val
, const char *func
)
62 err
= pci_read_config_dword(pdev
, offset
, val
);
64 amd64_warn("%s: error reading F%dx%03x.\n",
65 func
, PCI_FUNC(pdev
->devfn
), offset
);
70 int __amd64_write_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
71 u32 val
, const char *func
)
75 err
= pci_write_config_dword(pdev
, offset
, val
);
77 amd64_warn("%s: error writing to F%dx%03x.\n",
78 func
, PCI_FUNC(pdev
->devfn
), offset
);
84 * Select DCT to which PCI cfg accesses are routed
86 static void f15h_select_dct(struct amd64_pvt
*pvt
, u8 dct
)
90 amd64_read_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, ®
);
91 reg
&= (pvt
->model
== 0x30) ? ~3 : ~1;
93 amd64_write_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, reg
);
98 * Depending on the family, F2 DCT reads need special handling:
100 * K8: has a single DCT only and no address offsets >= 0x100
102 * F10h: each DCT has its own set of regs
106 * F16h: has only 1 DCT
108 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
110 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt
*pvt
, u8 dct
,
111 int offset
, u32
*val
)
115 if (dct
|| offset
>= 0x100)
122 * Note: If ganging is enabled, barring the regs
123 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 * return 0. (cf. Section 2.8.1 F10h BKDG)
126 if (dct_ganging_enabled(pvt
))
135 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 * We should select which DCT we access using F1x10C[DctCfgSel]
138 dct
= (dct
&& pvt
->model
== 0x30) ? 3 : dct
;
139 f15h_select_dct(pvt
, dct
);
150 return amd64_read_pci_cfg(pvt
->F2
, offset
, val
);
154 * Memory scrubber control interface. For K8, memory scrubbing is handled by
155 * hardware and can involve L2 cache, dcache as well as the main memory. With
156 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
159 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161 * bytes/sec for the setting.
163 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164 * other archs, we might not have access to the caches directly.
167 static inline void __f17h_set_scrubval(struct amd64_pvt
*pvt
, u32 scrubval
)
170 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
171 * are shifted down by 0x5, so scrubval 0x5 is written to the register
172 * as 0x0, scrubval 0x6 as 0x1, etc.
174 if (scrubval
>= 0x5 && scrubval
<= 0x14) {
176 pci_write_bits32(pvt
->F6
, F17H_SCR_LIMIT_ADDR
, scrubval
, 0xF);
177 pci_write_bits32(pvt
->F6
, F17H_SCR_BASE_ADDR
, 1, 0x1);
179 pci_write_bits32(pvt
->F6
, F17H_SCR_BASE_ADDR
, 0, 0x1);
183 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 * issue. If requested is too big, then use last maximum value found.
186 static int __set_scrub_rate(struct amd64_pvt
*pvt
, u32 new_bw
, u32 min_rate
)
192 * map the configured rate (new_bw) to a value specific to the AMD64
193 * memory controller and apply to register. Search for the first
194 * bandwidth entry that is greater or equal than the setting requested
195 * and program that. If at last entry, turn off DRAM scrubbing.
197 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
198 * by falling back to the last element in scrubrates[].
200 for (i
= 0; i
< ARRAY_SIZE(scrubrates
) - 1; i
++) {
202 * skip scrub rates which aren't recommended
203 * (see F10 BKDG, F3x58)
205 if (scrubrates
[i
].scrubval
< min_rate
)
208 if (scrubrates
[i
].bandwidth
<= new_bw
)
212 scrubval
= scrubrates
[i
].scrubval
;
214 if (pvt
->fam
== 0x17) {
215 __f17h_set_scrubval(pvt
, scrubval
);
216 } else if (pvt
->fam
== 0x15 && pvt
->model
== 0x60) {
217 f15h_select_dct(pvt
, 0);
218 pci_write_bits32(pvt
->F2
, F15H_M60H_SCRCTRL
, scrubval
, 0x001F);
219 f15h_select_dct(pvt
, 1);
220 pci_write_bits32(pvt
->F2
, F15H_M60H_SCRCTRL
, scrubval
, 0x001F);
222 pci_write_bits32(pvt
->F3
, SCRCTRL
, scrubval
, 0x001F);
226 return scrubrates
[i
].bandwidth
;
231 static int set_scrub_rate(struct mem_ctl_info
*mci
, u32 bw
)
233 struct amd64_pvt
*pvt
= mci
->pvt_info
;
234 u32 min_scrubrate
= 0x5;
239 if (pvt
->fam
== 0x15) {
241 if (pvt
->model
< 0x10)
242 f15h_select_dct(pvt
, 0);
244 if (pvt
->model
== 0x60)
247 return __set_scrub_rate(pvt
, bw
, min_scrubrate
);
250 static int get_scrub_rate(struct mem_ctl_info
*mci
)
252 struct amd64_pvt
*pvt
= mci
->pvt_info
;
253 int i
, retval
= -EINVAL
;
259 if (pvt
->model
< 0x10)
260 f15h_select_dct(pvt
, 0);
262 if (pvt
->model
== 0x60)
263 amd64_read_pci_cfg(pvt
->F2
, F15H_M60H_SCRCTRL
, &scrubval
);
265 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
269 amd64_read_pci_cfg(pvt
->F6
, F17H_SCR_BASE_ADDR
, &scrubval
);
270 if (scrubval
& BIT(0)) {
271 amd64_read_pci_cfg(pvt
->F6
, F17H_SCR_LIMIT_ADDR
, &scrubval
);
280 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
284 scrubval
= scrubval
& 0x001F;
286 for (i
= 0; i
< ARRAY_SIZE(scrubrates
); i
++) {
287 if (scrubrates
[i
].scrubval
== scrubval
) {
288 retval
= scrubrates
[i
].bandwidth
;
296 * returns true if the SysAddr given by sys_addr matches the
297 * DRAM base/limit associated with node_id
299 static bool base_limit_match(struct amd64_pvt
*pvt
, u64 sys_addr
, u8 nid
)
303 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
304 * all ones if the most significant implemented address bit is 1.
305 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
306 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
307 * Application Programming.
309 addr
= sys_addr
& 0x000000ffffffffffull
;
311 return ((addr
>= get_dram_base(pvt
, nid
)) &&
312 (addr
<= get_dram_limit(pvt
, nid
)));
316 * Attempt to map a SysAddr to a node. On success, return a pointer to the
317 * mem_ctl_info structure for the node that the SysAddr maps to.
319 * On failure, return NULL.
321 static struct mem_ctl_info
*find_mc_by_sys_addr(struct mem_ctl_info
*mci
,
324 struct amd64_pvt
*pvt
;
329 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
330 * 3.4.4.2) registers to map the SysAddr to a node ID.
335 * The value of this field should be the same for all DRAM Base
336 * registers. Therefore we arbitrarily choose to read it from the
337 * register for node 0.
339 intlv_en
= dram_intlv_en(pvt
, 0);
342 for (node_id
= 0; node_id
< DRAM_RANGES
; node_id
++) {
343 if (base_limit_match(pvt
, sys_addr
, node_id
))
349 if (unlikely((intlv_en
!= 0x01) &&
350 (intlv_en
!= 0x03) &&
351 (intlv_en
!= 0x07))) {
352 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en
);
356 bits
= (((u32
) sys_addr
) >> 12) & intlv_en
;
358 for (node_id
= 0; ; ) {
359 if ((dram_intlv_sel(pvt
, node_id
) & intlv_en
) == bits
)
360 break; /* intlv_sel field matches */
362 if (++node_id
>= DRAM_RANGES
)
366 /* sanity test for sys_addr */
367 if (unlikely(!base_limit_match(pvt
, sys_addr
, node_id
))) {
368 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
369 "range for node %d with node interleaving enabled.\n",
370 __func__
, sys_addr
, node_id
);
375 return edac_mc_find((int)node_id
);
378 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
379 (unsigned long)sys_addr
);
385 * compute the CS base address of the @csrow on the DRAM controller @dct.
386 * For details see F2x[5C:40] in the processor's BKDG
388 static void get_cs_base_and_mask(struct amd64_pvt
*pvt
, int csrow
, u8 dct
,
389 u64
*base
, u64
*mask
)
391 u64 csbase
, csmask
, base_bits
, mask_bits
;
394 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
395 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
396 csmask
= pvt
->csels
[dct
].csmasks
[csrow
];
397 base_bits
= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
398 mask_bits
= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
402 * F16h and F15h, models 30h and later need two addr_shift values:
403 * 8 for high and 6 for low (cf. F16h BKDG).
405 } else if (pvt
->fam
== 0x16 ||
406 (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)) {
407 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
408 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
410 *base
= (csbase
& GENMASK_ULL(15, 5)) << 6;
411 *base
|= (csbase
& GENMASK_ULL(30, 19)) << 8;
414 /* poke holes for the csmask */
415 *mask
&= ~((GENMASK_ULL(15, 5) << 6) |
416 (GENMASK_ULL(30, 19) << 8));
418 *mask
|= (csmask
& GENMASK_ULL(15, 5)) << 6;
419 *mask
|= (csmask
& GENMASK_ULL(30, 19)) << 8;
423 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
424 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
427 if (pvt
->fam
== 0x15)
428 base_bits
= mask_bits
=
429 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
431 base_bits
= mask_bits
=
432 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
435 *base
= (csbase
& base_bits
) << addr_shift
;
438 /* poke holes for the csmask */
439 *mask
&= ~(mask_bits
<< addr_shift
);
441 *mask
|= (csmask
& mask_bits
) << addr_shift
;
444 #define for_each_chip_select(i, dct, pvt) \
445 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
447 #define chip_select_base(i, dct, pvt) \
448 pvt->csels[dct].csbases[i]
450 #define for_each_chip_select_mask(i, dct, pvt) \
451 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
454 * @input_addr is an InputAddr associated with the node given by mci. Return the
455 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
457 static int input_addr_to_csrow(struct mem_ctl_info
*mci
, u64 input_addr
)
459 struct amd64_pvt
*pvt
;
465 for_each_chip_select(csrow
, 0, pvt
) {
466 if (!csrow_enabled(csrow
, 0, pvt
))
469 get_cs_base_and_mask(pvt
, csrow
, 0, &base
, &mask
);
473 if ((input_addr
& mask
) == (base
& mask
)) {
474 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
475 (unsigned long)input_addr
, csrow
,
481 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
482 (unsigned long)input_addr
, pvt
->mc_node_id
);
488 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
489 * for the node represented by mci. Info is passed back in *hole_base,
490 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
491 * info is invalid. Info may be invalid for either of the following reasons:
493 * - The revision of the node is not E or greater. In this case, the DRAM Hole
494 * Address Register does not exist.
496 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
497 * indicating that its contents are not valid.
499 * The values passed back in *hole_base, *hole_offset, and *hole_size are
500 * complete 32-bit values despite the fact that the bitfields in the DHAR
501 * only represent bits 31-24 of the base and offset values.
503 int amd64_get_dram_hole_info(struct mem_ctl_info
*mci
, u64
*hole_base
,
504 u64
*hole_offset
, u64
*hole_size
)
506 struct amd64_pvt
*pvt
= mci
->pvt_info
;
508 /* only revE and later have the DRAM Hole Address Register */
509 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_E
) {
510 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
511 pvt
->ext_model
, pvt
->mc_node_id
);
515 /* valid for Fam10h and above */
516 if (pvt
->fam
>= 0x10 && !dhar_mem_hoist_valid(pvt
)) {
517 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
521 if (!dhar_valid(pvt
)) {
522 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
527 /* This node has Memory Hoisting */
529 /* +------------------+--------------------+--------------------+-----
530 * | memory | DRAM hole | relocated |
531 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
533 * | | | [0x100000000, |
534 * | | | (0x100000000+ |
535 * | | | (0xffffffff-x))] |
536 * +------------------+--------------------+--------------------+-----
538 * Above is a diagram of physical memory showing the DRAM hole and the
539 * relocated addresses from the DRAM hole. As shown, the DRAM hole
540 * starts at address x (the base address) and extends through address
541 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
542 * addresses in the hole so that they start at 0x100000000.
545 *hole_base
= dhar_base(pvt
);
546 *hole_size
= (1ULL << 32) - *hole_base
;
548 *hole_offset
= (pvt
->fam
> 0xf) ? f10_dhar_offset(pvt
)
549 : k8_dhar_offset(pvt
);
551 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
552 pvt
->mc_node_id
, (unsigned long)*hole_base
,
553 (unsigned long)*hole_offset
, (unsigned long)*hole_size
);
557 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info
);
560 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
561 * assumed that sys_addr maps to the node given by mci.
563 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
564 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
565 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
566 * then it is also involved in translating a SysAddr to a DramAddr. Sections
567 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
568 * These parts of the documentation are unclear. I interpret them as follows:
570 * When node n receives a SysAddr, it processes the SysAddr as follows:
572 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
573 * Limit registers for node n. If the SysAddr is not within the range
574 * specified by the base and limit values, then node n ignores the Sysaddr
575 * (since it does not map to node n). Otherwise continue to step 2 below.
577 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
578 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
579 * the range of relocated addresses (starting at 0x100000000) from the DRAM
580 * hole. If not, skip to step 3 below. Else get the value of the
581 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
582 * offset defined by this value from the SysAddr.
584 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
585 * Base register for node n. To obtain the DramAddr, subtract the base
586 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
588 static u64
sys_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
590 struct amd64_pvt
*pvt
= mci
->pvt_info
;
591 u64 dram_base
, hole_base
, hole_offset
, hole_size
, dram_addr
;
594 dram_base
= get_dram_base(pvt
, pvt
->mc_node_id
);
596 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
599 if ((sys_addr
>= (1ULL << 32)) &&
600 (sys_addr
< ((1ULL << 32) + hole_size
))) {
601 /* use DHAR to translate SysAddr to DramAddr */
602 dram_addr
= sys_addr
- hole_offset
;
604 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
605 (unsigned long)sys_addr
,
606 (unsigned long)dram_addr
);
613 * Translate the SysAddr to a DramAddr as shown near the start of
614 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
615 * only deals with 40-bit values. Therefore we discard bits 63-40 of
616 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
617 * discard are all 1s. Otherwise the bits we discard are all 0s. See
618 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
619 * Programmer's Manual Volume 1 Application Programming.
621 dram_addr
= (sys_addr
& GENMASK_ULL(39, 0)) - dram_base
;
623 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
624 (unsigned long)sys_addr
, (unsigned long)dram_addr
);
629 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
630 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
631 * for node interleaving.
633 static int num_node_interleave_bits(unsigned intlv_en
)
635 static const int intlv_shift_table
[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
638 BUG_ON(intlv_en
> 7);
639 n
= intlv_shift_table
[intlv_en
];
643 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
644 static u64
dram_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
646 struct amd64_pvt
*pvt
;
653 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
654 * concerning translating a DramAddr to an InputAddr.
656 intlv_shift
= num_node_interleave_bits(dram_intlv_en(pvt
, 0));
657 input_addr
= ((dram_addr
>> intlv_shift
) & GENMASK_ULL(35, 12)) +
660 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
661 intlv_shift
, (unsigned long)dram_addr
,
662 (unsigned long)input_addr
);
668 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
669 * assumed that @sys_addr maps to the node given by mci.
671 static u64
sys_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
676 dram_addr_to_input_addr(mci
, sys_addr_to_dram_addr(mci
, sys_addr
));
678 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
679 (unsigned long)sys_addr
, (unsigned long)input_addr
);
684 /* Map the Error address to a PAGE and PAGE OFFSET. */
685 static inline void error_address_to_page_and_offset(u64 error_address
,
686 struct err_info
*err
)
688 err
->page
= (u32
) (error_address
>> PAGE_SHIFT
);
689 err
->offset
= ((u32
) error_address
) & ~PAGE_MASK
;
693 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
694 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
695 * of a node that detected an ECC memory error. mci represents the node that
696 * the error address maps to (possibly different from the node that detected
697 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
700 static int sys_addr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
)
704 csrow
= input_addr_to_csrow(mci
, sys_addr_to_input_addr(mci
, sys_addr
));
707 amd64_mc_err(mci
, "Failed to translate InputAddr to csrow for "
708 "address 0x%lx\n", (unsigned long)sys_addr
);
712 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*, u16
);
715 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
718 static unsigned long determine_edac_cap(struct amd64_pvt
*pvt
)
720 unsigned long edac_cap
= EDAC_FLAG_NONE
;
724 u8 i
, umc_en_mask
= 0, dimm_ecc_en_mask
= 0;
726 for (i
= 0; i
< NUM_UMCS
; i
++) {
727 if (!(pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
))
730 umc_en_mask
|= BIT(i
);
732 /* UMC Configuration bit 12 (DimmEccEn) */
733 if (pvt
->umc
[i
].umc_cfg
& BIT(12))
734 dimm_ecc_en_mask
|= BIT(i
);
737 if (umc_en_mask
== dimm_ecc_en_mask
)
738 edac_cap
= EDAC_FLAG_SECDED
;
740 bit
= (pvt
->fam
> 0xf || pvt
->ext_model
>= K8_REV_F
)
744 if (pvt
->dclr0
& BIT(bit
))
745 edac_cap
= EDAC_FLAG_SECDED
;
751 static void debug_display_dimm_sizes(struct amd64_pvt
*, u8
);
753 static void debug_dump_dramcfg_low(struct amd64_pvt
*pvt
, u32 dclr
, int chan
)
755 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan
, dclr
);
757 if (pvt
->dram_type
== MEM_LRDDR3
) {
758 u32 dcsm
= pvt
->csels
[chan
].csmasks
[0];
760 * It's assumed all LRDIMMs in a DCT are going to be of
761 * same 'type' until proven otherwise. So, use a cs
762 * value of '0' here to get dcsm value.
764 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm
& 0x3));
767 edac_dbg(1, "All DIMMs support ECC:%s\n",
768 (dclr
& BIT(19)) ? "yes" : "no");
771 edac_dbg(1, " PAR/ERR parity: %s\n",
772 (dclr
& BIT(8)) ? "enabled" : "disabled");
774 if (pvt
->fam
== 0x10)
775 edac_dbg(1, " DCT 128bit mode width: %s\n",
776 (dclr
& BIT(11)) ? "128b" : "64b");
778 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
779 (dclr
& BIT(12)) ? "yes" : "no",
780 (dclr
& BIT(13)) ? "yes" : "no",
781 (dclr
& BIT(14)) ? "yes" : "no",
782 (dclr
& BIT(15)) ? "yes" : "no");
785 static void debug_display_dimm_sizes_df(struct amd64_pvt
*pvt
, u8 ctrl
)
787 int dimm
, size0
, size1
, cs0
, cs1
;
789 edac_printk(KERN_DEBUG
, EDAC_MC
, "UMC%d chip selects:\n", ctrl
);
791 for (dimm
= 0; dimm
< 4; dimm
++) {
795 if (csrow_enabled(cs0
, ctrl
, pvt
))
796 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
, 0, cs0
);
801 if (csrow_enabled(cs1
, ctrl
, pvt
))
802 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
, 0, cs1
);
804 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
810 static void __dump_misc_regs_df(struct amd64_pvt
*pvt
)
812 struct amd64_umc
*umc
;
813 u32 i
, tmp
, umc_base
;
815 for (i
= 0; i
< NUM_UMCS
; i
++) {
816 umc_base
= get_umc_base(i
);
819 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i
, umc
->dimm_cfg
);
820 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i
, umc
->umc_cfg
);
821 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i
, umc
->sdp_ctrl
);
822 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i
, umc
->ecc_ctrl
);
824 amd_smn_read(pvt
->mc_node_id
, umc_base
+ UMCCH_ECC_BAD_SYMBOL
, &tmp
);
825 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i
, tmp
);
827 amd_smn_read(pvt
->mc_node_id
, umc_base
+ UMCCH_UMC_CAP
, &tmp
);
828 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i
, tmp
);
829 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i
, umc
->umc_cap_hi
);
831 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
832 i
, (umc
->umc_cap_hi
& BIT(30)) ? "yes" : "no",
833 (umc
->umc_cap_hi
& BIT(31)) ? "yes" : "no");
834 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
835 i
, (umc
->umc_cfg
& BIT(12)) ? "yes" : "no");
836 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
837 i
, (umc
->dimm_cfg
& BIT(6)) ? "yes" : "no");
838 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
839 i
, (umc
->dimm_cfg
& BIT(7)) ? "yes" : "no");
841 if (pvt
->dram_type
== MEM_LRDDR4
) {
842 amd_smn_read(pvt
->mc_node_id
, umc_base
+ UMCCH_ADDR_CFG
, &tmp
);
843 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
844 i
, 1 << ((tmp
>> 4) & 0x3));
847 debug_display_dimm_sizes_df(pvt
, i
);
850 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
851 pvt
->dhar
, dhar_base(pvt
));
854 /* Display and decode various NB registers for debug purposes. */
855 static void __dump_misc_regs(struct amd64_pvt
*pvt
)
857 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt
->nbcap
);
859 edac_dbg(1, " NB two channel DRAM capable: %s\n",
860 (pvt
->nbcap
& NBCAP_DCT_DUAL
) ? "yes" : "no");
862 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
863 (pvt
->nbcap
& NBCAP_SECDED
) ? "yes" : "no",
864 (pvt
->nbcap
& NBCAP_CHIPKILL
) ? "yes" : "no");
866 debug_dump_dramcfg_low(pvt
, pvt
->dclr0
, 0);
868 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt
->online_spare
);
870 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
871 pvt
->dhar
, dhar_base(pvt
),
872 (pvt
->fam
== 0xf) ? k8_dhar_offset(pvt
)
873 : f10_dhar_offset(pvt
));
875 debug_display_dimm_sizes(pvt
, 0);
877 /* everything below this point is Fam10h and above */
881 debug_display_dimm_sizes(pvt
, 1);
883 /* Only if NOT ganged does dclr1 have valid info */
884 if (!dct_ganging_enabled(pvt
))
885 debug_dump_dramcfg_low(pvt
, pvt
->dclr1
, 1);
888 /* Display and decode various NB registers for debug purposes. */
889 static void dump_misc_regs(struct amd64_pvt
*pvt
)
892 __dump_misc_regs_df(pvt
);
894 __dump_misc_regs(pvt
);
896 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt
) ? "yes" : "no");
898 amd64_info("using %s syndromes.\n",
899 ((pvt
->ecc_sym_sz
== 8) ? "x8" : "x4"));
903 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
905 static void prep_chip_selects(struct amd64_pvt
*pvt
)
907 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
908 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
909 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 8;
910 } else if (pvt
->fam
== 0x15 && pvt
->model
== 0x30) {
911 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 4;
912 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 2;
914 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
915 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 4;
920 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
922 static void read_dct_base_mask(struct amd64_pvt
*pvt
)
924 int base_reg0
, base_reg1
, mask_reg0
, mask_reg1
, cs
;
926 prep_chip_selects(pvt
);
929 base_reg0
= get_umc_base(0) + UMCCH_BASE_ADDR
;
930 base_reg1
= get_umc_base(1) + UMCCH_BASE_ADDR
;
931 mask_reg0
= get_umc_base(0) + UMCCH_ADDR_MASK
;
932 mask_reg1
= get_umc_base(1) + UMCCH_ADDR_MASK
;
940 for_each_chip_select(cs
, 0, pvt
) {
941 int reg0
= base_reg0
+ (cs
* 4);
942 int reg1
= base_reg1
+ (cs
* 4);
943 u32
*base0
= &pvt
->csels
[0].csbases
[cs
];
944 u32
*base1
= &pvt
->csels
[1].csbases
[cs
];
947 if (!amd_smn_read(pvt
->mc_node_id
, reg0
, base0
))
948 edac_dbg(0, " DCSB0[%d]=0x%08x reg: 0x%x\n",
951 if (!amd_smn_read(pvt
->mc_node_id
, reg1
, base1
))
952 edac_dbg(0, " DCSB1[%d]=0x%08x reg: 0x%x\n",
955 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, base0
))
956 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
962 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, base1
))
963 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
964 cs
, *base1
, (pvt
->fam
== 0x10) ? reg1
969 for_each_chip_select_mask(cs
, 0, pvt
) {
970 int reg0
= mask_reg0
+ (cs
* 4);
971 int reg1
= mask_reg1
+ (cs
* 4);
972 u32
*mask0
= &pvt
->csels
[0].csmasks
[cs
];
973 u32
*mask1
= &pvt
->csels
[1].csmasks
[cs
];
976 if (!amd_smn_read(pvt
->mc_node_id
, reg0
, mask0
))
977 edac_dbg(0, " DCSM0[%d]=0x%08x reg: 0x%x\n",
980 if (!amd_smn_read(pvt
->mc_node_id
, reg1
, mask1
))
981 edac_dbg(0, " DCSM1[%d]=0x%08x reg: 0x%x\n",
984 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, mask0
))
985 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
991 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, mask1
))
992 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
993 cs
, *mask1
, (pvt
->fam
== 0x10) ? reg1
999 static void determine_memory_type(struct amd64_pvt
*pvt
)
1001 u32 dram_ctrl
, dcsm
;
1005 if (pvt
->ext_model
>= K8_REV_F
)
1008 pvt
->dram_type
= (pvt
->dclr0
& BIT(18)) ? MEM_DDR
: MEM_RDDR
;
1012 if (pvt
->dchr0
& DDR3_MODE
)
1015 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR2
: MEM_RDDR2
;
1019 if (pvt
->model
< 0x60)
1023 * Model 0x60h needs special handling:
1025 * We use a Chip Select value of '0' to obtain dcsm.
1026 * Theoretically, it is possible to populate LRDIMMs of different
1027 * 'Rank' value on a DCT. But this is not the common case. So,
1028 * it's reasonable to assume all DIMMs are going to be of same
1029 * 'type' until proven otherwise.
1031 amd64_read_dct_pci_cfg(pvt
, 0, DRAM_CONTROL
, &dram_ctrl
);
1032 dcsm
= pvt
->csels
[0].csmasks
[0];
1034 if (((dram_ctrl
>> 8) & 0x7) == 0x2)
1035 pvt
->dram_type
= MEM_DDR4
;
1036 else if (pvt
->dclr0
& BIT(16))
1037 pvt
->dram_type
= MEM_DDR3
;
1038 else if (dcsm
& 0x3)
1039 pvt
->dram_type
= MEM_LRDDR3
;
1041 pvt
->dram_type
= MEM_RDDR3
;
1049 if ((pvt
->umc
[0].dimm_cfg
| pvt
->umc
[1].dimm_cfg
) & BIT(5))
1050 pvt
->dram_type
= MEM_LRDDR4
;
1051 else if ((pvt
->umc
[0].dimm_cfg
| pvt
->umc
[1].dimm_cfg
) & BIT(4))
1052 pvt
->dram_type
= MEM_RDDR4
;
1054 pvt
->dram_type
= MEM_DDR4
;
1058 WARN(1, KERN_ERR
"%s: Family??? 0x%x\n", __func__
, pvt
->fam
);
1059 pvt
->dram_type
= MEM_EMPTY
;
1064 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR3
: MEM_RDDR3
;
1067 /* Get the number of DCT channels the memory controller is using. */
1068 static int k8_early_channel_count(struct amd64_pvt
*pvt
)
1072 if (pvt
->ext_model
>= K8_REV_F
)
1073 /* RevF (NPT) and later */
1074 flag
= pvt
->dclr0
& WIDTH_128
;
1076 /* RevE and earlier */
1077 flag
= pvt
->dclr0
& REVE_WIDTH_128
;
1082 return (flag
) ? 2 : 1;
1085 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1086 static u64
get_error_address(struct amd64_pvt
*pvt
, struct mce
*m
)
1088 u16 mce_nid
= amd_get_nb_id(m
->extcpu
);
1089 struct mem_ctl_info
*mci
;
1094 mci
= edac_mc_find(mce_nid
);
1098 pvt
= mci
->pvt_info
;
1100 if (pvt
->fam
== 0xf) {
1105 addr
= m
->addr
& GENMASK_ULL(end_bit
, start_bit
);
1108 * Erratum 637 workaround
1110 if (pvt
->fam
== 0x15) {
1111 u64 cc6_base
, tmp_addr
;
1115 if ((addr
& GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1119 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_LIM
, &tmp
);
1120 intlv_en
= tmp
>> 21 & 0x7;
1122 /* add [47:27] + 3 trailing bits */
1123 cc6_base
= (tmp
& GENMASK_ULL(20, 0)) << 3;
1125 /* reverse and add DramIntlvEn */
1126 cc6_base
|= intlv_en
^ 0x7;
1128 /* pin at [47:24] */
1132 return cc6_base
| (addr
& GENMASK_ULL(23, 0));
1134 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_BASE
, &tmp
);
1137 tmp_addr
= (addr
& GENMASK_ULL(23, 12)) << __fls(intlv_en
+ 1);
1139 /* OR DramIntlvSel into bits [14:12] */
1140 tmp_addr
|= (tmp
& GENMASK_ULL(23, 21)) >> 9;
1142 /* add remaining [11:0] bits from original MC4_ADDR */
1143 tmp_addr
|= addr
& GENMASK_ULL(11, 0);
1145 return cc6_base
| tmp_addr
;
1151 static struct pci_dev
*pci_get_related_function(unsigned int vendor
,
1152 unsigned int device
,
1153 struct pci_dev
*related
)
1155 struct pci_dev
*dev
= NULL
;
1157 while ((dev
= pci_get_device(vendor
, device
, dev
))) {
1158 if (pci_domain_nr(dev
->bus
) == pci_domain_nr(related
->bus
) &&
1159 (dev
->bus
->number
== related
->bus
->number
) &&
1160 (PCI_SLOT(dev
->devfn
) == PCI_SLOT(related
->devfn
)))
1167 static void read_dram_base_limit_regs(struct amd64_pvt
*pvt
, unsigned range
)
1169 struct amd_northbridge
*nb
;
1170 struct pci_dev
*f1
= NULL
;
1171 unsigned int pci_func
;
1172 int off
= range
<< 3;
1175 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_LO
+ off
, &pvt
->ranges
[range
].base
.lo
);
1176 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_LO
+ off
, &pvt
->ranges
[range
].lim
.lo
);
1178 if (pvt
->fam
== 0xf)
1181 if (!dram_rw(pvt
, range
))
1184 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_HI
+ off
, &pvt
->ranges
[range
].base
.hi
);
1185 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_HI
+ off
, &pvt
->ranges
[range
].lim
.hi
);
1187 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1188 if (pvt
->fam
!= 0x15)
1191 nb
= node_to_amd_nb(dram_dst_node(pvt
, range
));
1195 if (pvt
->model
== 0x60)
1196 pci_func
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
;
1197 else if (pvt
->model
== 0x30)
1198 pci_func
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
;
1200 pci_func
= PCI_DEVICE_ID_AMD_15H_NB_F1
;
1202 f1
= pci_get_related_function(nb
->misc
->vendor
, pci_func
, nb
->misc
);
1206 amd64_read_pci_cfg(f1
, DRAM_LOCAL_NODE_LIM
, &llim
);
1208 pvt
->ranges
[range
].lim
.lo
&= GENMASK_ULL(15, 0);
1210 /* {[39:27],111b} */
1211 pvt
->ranges
[range
].lim
.lo
|= ((llim
& 0x1fff) << 3 | 0x7) << 16;
1213 pvt
->ranges
[range
].lim
.hi
&= GENMASK_ULL(7, 0);
1216 pvt
->ranges
[range
].lim
.hi
|= llim
>> 13;
1221 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1222 struct err_info
*err
)
1224 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1226 error_address_to_page_and_offset(sys_addr
, err
);
1229 * Find out which node the error address belongs to. This may be
1230 * different from the node that detected the error.
1232 err
->src_mci
= find_mc_by_sys_addr(mci
, sys_addr
);
1233 if (!err
->src_mci
) {
1234 amd64_mc_err(mci
, "failed to map error addr 0x%lx to a node\n",
1235 (unsigned long)sys_addr
);
1236 err
->err_code
= ERR_NODE
;
1240 /* Now map the sys_addr to a CSROW */
1241 err
->csrow
= sys_addr_to_csrow(err
->src_mci
, sys_addr
);
1242 if (err
->csrow
< 0) {
1243 err
->err_code
= ERR_CSROW
;
1247 /* CHIPKILL enabled */
1248 if (pvt
->nbcfg
& NBCFG_CHIPKILL
) {
1249 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
1250 if (err
->channel
< 0) {
1252 * Syndrome didn't map, so we don't know which of the
1253 * 2 DIMMs is in error. So we need to ID 'both' of them
1256 amd64_mc_warn(err
->src_mci
, "unknown syndrome 0x%04x - "
1257 "possible error reporting race\n",
1259 err
->err_code
= ERR_CHANNEL
;
1264 * non-chipkill ecc mode
1266 * The k8 documentation is unclear about how to determine the
1267 * channel number when using non-chipkill memory. This method
1268 * was obtained from email communication with someone at AMD.
1269 * (Wish the email was placed in this comment - norsk)
1271 err
->channel
= ((sys_addr
& BIT(3)) != 0);
1275 static int ddr2_cs_size(unsigned i
, bool dct_width
)
1281 else if (!(i
& 0x1))
1284 shift
= (i
+ 1) >> 1;
1286 return 128 << (shift
+ !!dct_width
);
1289 static int k8_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1290 unsigned cs_mode
, int cs_mask_nr
)
1292 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1294 if (pvt
->ext_model
>= K8_REV_F
) {
1295 WARN_ON(cs_mode
> 11);
1296 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1298 else if (pvt
->ext_model
>= K8_REV_D
) {
1300 WARN_ON(cs_mode
> 10);
1303 * the below calculation, besides trying to win an obfuscated C
1304 * contest, maps cs_mode values to DIMM chip select sizes. The
1307 * cs_mode CS size (mb)
1308 * ======= ============
1321 * Basically, it calculates a value with which to shift the
1322 * smallest CS size of 32MB.
1324 * ddr[23]_cs_size have a similar purpose.
1326 diff
= cs_mode
/3 + (unsigned)(cs_mode
> 5);
1328 return 32 << (cs_mode
- diff
);
1331 WARN_ON(cs_mode
> 6);
1332 return 32 << cs_mode
;
1337 * Get the number of DCT channels in use.
1340 * number of Memory Channels in operation
1342 * contents of the DCL0_LOW register
1344 static int f1x_early_channel_count(struct amd64_pvt
*pvt
)
1346 int i
, j
, channels
= 0;
1348 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1349 if (pvt
->fam
== 0x10 && (pvt
->dclr0
& WIDTH_128
))
1353 * Need to check if in unganged mode: In such, there are 2 channels,
1354 * but they are not in 128 bit mode and thus the above 'dclr0' status
1357 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1358 * their CSEnable bit on. If so, then SINGLE DIMM case.
1360 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1363 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1364 * is more than just one DIMM present in unganged mode. Need to check
1365 * both controllers since DIMMs can be placed in either one.
1367 for (i
= 0; i
< 2; i
++) {
1368 u32 dbam
= (i
? pvt
->dbam1
: pvt
->dbam0
);
1370 for (j
= 0; j
< 4; j
++) {
1371 if (DBAM_DIMM(j
, dbam
) > 0) {
1381 amd64_info("MCT channel count: %d\n", channels
);
1386 static int f17_early_channel_count(struct amd64_pvt
*pvt
)
1388 int i
, channels
= 0;
1390 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1391 for (i
= 0; i
< NUM_UMCS
; i
++)
1392 channels
+= !!(pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
);
1394 amd64_info("MCT channel count: %d\n", channels
);
1399 static int ddr3_cs_size(unsigned i
, bool dct_width
)
1404 if (i
== 0 || i
== 3 || i
== 4)
1410 else if (!(i
& 0x1))
1413 shift
= (i
+ 1) >> 1;
1416 cs_size
= (128 * (1 << !!dct_width
)) << shift
;
1421 static int ddr3_lrdimm_cs_size(unsigned i
, unsigned rank_multiply
)
1426 if (i
< 4 || i
== 6)
1430 else if (!(i
& 0x1))
1433 shift
= (i
+ 1) >> 1;
1436 cs_size
= rank_multiply
* (128 << shift
);
1441 static int ddr4_cs_size(unsigned i
)
1450 /* Min cs_size = 1G */
1451 cs_size
= 1024 * (1 << (i
>> 1));
1456 static int f10_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1457 unsigned cs_mode
, int cs_mask_nr
)
1459 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1461 WARN_ON(cs_mode
> 11);
1463 if (pvt
->dchr0
& DDR3_MODE
|| pvt
->dchr1
& DDR3_MODE
)
1464 return ddr3_cs_size(cs_mode
, dclr
& WIDTH_128
);
1466 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1470 * F15h supports only 64bit DCT interfaces
1472 static int f15_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1473 unsigned cs_mode
, int cs_mask_nr
)
1475 WARN_ON(cs_mode
> 12);
1477 return ddr3_cs_size(cs_mode
, false);
1480 /* F15h M60h supports DDR4 mapping as well.. */
1481 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1482 unsigned cs_mode
, int cs_mask_nr
)
1485 u32 dcsm
= pvt
->csels
[dct
].csmasks
[cs_mask_nr
];
1487 WARN_ON(cs_mode
> 12);
1489 if (pvt
->dram_type
== MEM_DDR4
) {
1493 cs_size
= ddr4_cs_size(cs_mode
);
1494 } else if (pvt
->dram_type
== MEM_LRDDR3
) {
1495 unsigned rank_multiply
= dcsm
& 0xf;
1497 if (rank_multiply
== 3)
1499 cs_size
= ddr3_lrdimm_cs_size(cs_mode
, rank_multiply
);
1501 /* Minimum cs size is 512mb for F15hM60h*/
1505 cs_size
= ddr3_cs_size(cs_mode
, false);
1512 * F16h and F15h model 30h have only limited cs_modes.
1514 static int f16_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1515 unsigned cs_mode
, int cs_mask_nr
)
1517 WARN_ON(cs_mode
> 12);
1519 if (cs_mode
== 6 || cs_mode
== 8 ||
1520 cs_mode
== 9 || cs_mode
== 12)
1523 return ddr3_cs_size(cs_mode
, false);
1526 static int f17_base_addr_to_cs_size(struct amd64_pvt
*pvt
, u8 umc
,
1527 unsigned int cs_mode
, int csrow_nr
)
1529 u32 base_addr
= pvt
->csels
[umc
].csbases
[csrow_nr
];
1531 /* Each mask is used for every two base addresses. */
1532 u32 addr_mask
= pvt
->csels
[umc
].csmasks
[csrow_nr
>> 1];
1534 /* Register [31:1] = Address [39:9]. Size is in kBs here. */
1535 u32 size
= ((addr_mask
>> 1) - (base_addr
>> 1) + 1) >> 1;
1537 edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr
, addr_mask
);
1539 /* Return size in MBs. */
1543 static void read_dram_ctl_register(struct amd64_pvt
*pvt
)
1546 if (pvt
->fam
== 0xf)
1549 if (!amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_LO
, &pvt
->dct_sel_lo
)) {
1550 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1551 pvt
->dct_sel_lo
, dct_sel_baseaddr(pvt
));
1553 edac_dbg(0, " DCTs operate in %s mode\n",
1554 (dct_ganging_enabled(pvt
) ? "ganged" : "unganged"));
1556 if (!dct_ganging_enabled(pvt
))
1557 edac_dbg(0, " Address range split per DCT: %s\n",
1558 (dct_high_range_enabled(pvt
) ? "yes" : "no"));
1560 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1561 (dct_data_intlv_enabled(pvt
) ? "enabled" : "disabled"),
1562 (dct_memory_cleared(pvt
) ? "yes" : "no"));
1564 edac_dbg(0, " channel interleave: %s, "
1565 "interleave bits selector: 0x%x\n",
1566 (dct_interleave_enabled(pvt
) ? "enabled" : "disabled"),
1567 dct_sel_interleave_addr(pvt
));
1570 amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_HI
, &pvt
->dct_sel_hi
);
1574 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1575 * 2.10.12 Memory Interleaving Modes).
1577 static u8
f15_m30h_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1578 u8 intlv_en
, int num_dcts_intlv
,
1585 return (u8
)(dct_sel
);
1587 if (num_dcts_intlv
== 2) {
1588 select
= (sys_addr
>> 8) & 0x3;
1589 channel
= select
? 0x3 : 0;
1590 } else if (num_dcts_intlv
== 4) {
1591 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1592 switch (intlv_addr
) {
1594 channel
= (sys_addr
>> 8) & 0x3;
1597 channel
= (sys_addr
>> 9) & 0x3;
1605 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1606 * Interleaving Modes.
1608 static u8
f1x_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1609 bool hi_range_sel
, u8 intlv_en
)
1611 u8 dct_sel_high
= (pvt
->dct_sel_lo
>> 1) & 1;
1613 if (dct_ganging_enabled(pvt
))
1617 return dct_sel_high
;
1620 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1622 if (dct_interleave_enabled(pvt
)) {
1623 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1625 /* return DCT select function: 0=DCT0, 1=DCT1 */
1627 return sys_addr
>> 6 & 1;
1629 if (intlv_addr
& 0x2) {
1630 u8 shift
= intlv_addr
& 0x1 ? 9 : 6;
1631 u32 temp
= hweight_long((u32
) ((sys_addr
>> 16) & 0x1F)) & 1;
1633 return ((sys_addr
>> shift
) & 1) ^ temp
;
1636 if (intlv_addr
& 0x4) {
1637 u8 shift
= intlv_addr
& 0x1 ? 9 : 8;
1639 return (sys_addr
>> shift
) & 1;
1642 return (sys_addr
>> (12 + hweight8(intlv_en
))) & 1;
1645 if (dct_high_range_enabled(pvt
))
1646 return ~dct_sel_high
& 1;
1651 /* Convert the sys_addr to the normalized DCT address */
1652 static u64
f1x_get_norm_dct_addr(struct amd64_pvt
*pvt
, u8 range
,
1653 u64 sys_addr
, bool hi_rng
,
1654 u32 dct_sel_base_addr
)
1657 u64 dram_base
= get_dram_base(pvt
, range
);
1658 u64 hole_off
= f10_dhar_offset(pvt
);
1659 u64 dct_sel_base_off
= (u64
)(pvt
->dct_sel_hi
& 0xFFFFFC00) << 16;
1664 * base address of high range is below 4Gb
1665 * (bits [47:27] at [31:11])
1666 * DRAM address space on this DCT is hoisted above 4Gb &&
1669 * remove hole offset from sys_addr
1671 * remove high range offset from sys_addr
1673 if ((!(dct_sel_base_addr
>> 16) ||
1674 dct_sel_base_addr
< dhar_base(pvt
)) &&
1676 (sys_addr
>= BIT_64(32)))
1677 chan_off
= hole_off
;
1679 chan_off
= dct_sel_base_off
;
1683 * we have a valid hole &&
1688 * remove dram base to normalize to DCT address
1690 if (dhar_valid(pvt
) && (sys_addr
>= BIT_64(32)))
1691 chan_off
= hole_off
;
1693 chan_off
= dram_base
;
1696 return (sys_addr
& GENMASK_ULL(47,6)) - (chan_off
& GENMASK_ULL(47,23));
1700 * checks if the csrow passed in is marked as SPARED, if so returns the new
1703 static int f10_process_possible_spare(struct amd64_pvt
*pvt
, u8 dct
, int csrow
)
1707 if (online_spare_swap_done(pvt
, dct
) &&
1708 csrow
== online_spare_bad_dramcs(pvt
, dct
)) {
1710 for_each_chip_select(tmp_cs
, dct
, pvt
) {
1711 if (chip_select_base(tmp_cs
, dct
, pvt
) & 0x2) {
1721 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1722 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1725 * -EINVAL: NOT FOUND
1726 * 0..csrow = Chip-Select Row
1728 static int f1x_lookup_addr_in_dct(u64 in_addr
, u8 nid
, u8 dct
)
1730 struct mem_ctl_info
*mci
;
1731 struct amd64_pvt
*pvt
;
1732 u64 cs_base
, cs_mask
;
1733 int cs_found
= -EINVAL
;
1736 mci
= edac_mc_find(nid
);
1740 pvt
= mci
->pvt_info
;
1742 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr
, dct
);
1744 for_each_chip_select(csrow
, dct
, pvt
) {
1745 if (!csrow_enabled(csrow
, dct
, pvt
))
1748 get_cs_base_and_mask(pvt
, csrow
, dct
, &cs_base
, &cs_mask
);
1750 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1751 csrow
, cs_base
, cs_mask
);
1755 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1756 (in_addr
& cs_mask
), (cs_base
& cs_mask
));
1758 if ((in_addr
& cs_mask
) == (cs_base
& cs_mask
)) {
1759 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30) {
1763 cs_found
= f10_process_possible_spare(pvt
, dct
, csrow
);
1765 edac_dbg(1, " MATCH csrow=%d\n", cs_found
);
1773 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1774 * swapped with a region located at the bottom of memory so that the GPU can use
1775 * the interleaved region and thus two channels.
1777 static u64
f1x_swap_interleaved_region(struct amd64_pvt
*pvt
, u64 sys_addr
)
1779 u32 swap_reg
, swap_base
, swap_limit
, rgn_size
, tmp_addr
;
1781 if (pvt
->fam
== 0x10) {
1782 /* only revC3 and revE have that feature */
1783 if (pvt
->model
< 4 || (pvt
->model
< 0xa && pvt
->stepping
< 3))
1787 amd64_read_pci_cfg(pvt
->F2
, SWAP_INTLV_REG
, &swap_reg
);
1789 if (!(swap_reg
& 0x1))
1792 swap_base
= (swap_reg
>> 3) & 0x7f;
1793 swap_limit
= (swap_reg
>> 11) & 0x7f;
1794 rgn_size
= (swap_reg
>> 20) & 0x7f;
1795 tmp_addr
= sys_addr
>> 27;
1797 if (!(sys_addr
>> 34) &&
1798 (((tmp_addr
>= swap_base
) &&
1799 (tmp_addr
<= swap_limit
)) ||
1800 (tmp_addr
< rgn_size
)))
1801 return sys_addr
^ (u64
)swap_base
<< 27;
1806 /* For a given @dram_range, check if @sys_addr falls within it. */
1807 static int f1x_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1808 u64 sys_addr
, int *chan_sel
)
1810 int cs_found
= -EINVAL
;
1814 bool high_range
= false;
1816 u8 node_id
= dram_dst_node(pvt
, range
);
1817 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1818 u32 intlv_sel
= dram_intlv_sel(pvt
, range
);
1820 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1821 range
, sys_addr
, get_dram_limit(pvt
, range
));
1823 if (dhar_valid(pvt
) &&
1824 dhar_base(pvt
) <= sys_addr
&&
1825 sys_addr
< BIT_64(32)) {
1826 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1831 if (intlv_en
&& (intlv_sel
!= ((sys_addr
>> 12) & intlv_en
)))
1834 sys_addr
= f1x_swap_interleaved_region(pvt
, sys_addr
);
1836 dct_sel_base
= dct_sel_baseaddr(pvt
);
1839 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1840 * select between DCT0 and DCT1.
1842 if (dct_high_range_enabled(pvt
) &&
1843 !dct_ganging_enabled(pvt
) &&
1844 ((sys_addr
>> 27) >= (dct_sel_base
>> 11)))
1847 channel
= f1x_determine_channel(pvt
, sys_addr
, high_range
, intlv_en
);
1849 chan_addr
= f1x_get_norm_dct_addr(pvt
, range
, sys_addr
,
1850 high_range
, dct_sel_base
);
1852 /* Remove node interleaving, see F1x120 */
1854 chan_addr
= ((chan_addr
>> (12 + hweight8(intlv_en
))) << 12) |
1855 (chan_addr
& 0xfff);
1857 /* remove channel interleave */
1858 if (dct_interleave_enabled(pvt
) &&
1859 !dct_high_range_enabled(pvt
) &&
1860 !dct_ganging_enabled(pvt
)) {
1862 if (dct_sel_interleave_addr(pvt
) != 1) {
1863 if (dct_sel_interleave_addr(pvt
) == 0x3)
1865 chan_addr
= ((chan_addr
>> 10) << 9) |
1866 (chan_addr
& 0x1ff);
1868 /* A[6] or hash 6 */
1869 chan_addr
= ((chan_addr
>> 7) << 6) |
1873 chan_addr
= ((chan_addr
>> 13) << 12) |
1874 (chan_addr
& 0xfff);
1877 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1879 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, channel
);
1882 *chan_sel
= channel
;
1887 static int f15_m30h_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1888 u64 sys_addr
, int *chan_sel
)
1890 int cs_found
= -EINVAL
;
1891 int num_dcts_intlv
= 0;
1892 u64 chan_addr
, chan_offset
;
1893 u64 dct_base
, dct_limit
;
1894 u32 dct_cont_base_reg
, dct_cont_limit_reg
, tmp
;
1895 u8 channel
, alias_channel
, leg_mmio_hole
, dct_sel
, dct_offset_en
;
1897 u64 dhar_offset
= f10_dhar_offset(pvt
);
1898 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1899 u8 node_id
= dram_dst_node(pvt
, range
);
1900 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1902 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_BASE
, &dct_cont_base_reg
);
1903 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_LIMIT
, &dct_cont_limit_reg
);
1905 dct_offset_en
= (u8
) ((dct_cont_base_reg
>> 3) & BIT(0));
1906 dct_sel
= (u8
) ((dct_cont_base_reg
>> 4) & 0x7);
1908 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1909 range
, sys_addr
, get_dram_limit(pvt
, range
));
1911 if (!(get_dram_base(pvt
, range
) <= sys_addr
) &&
1912 !(get_dram_limit(pvt
, range
) >= sys_addr
))
1915 if (dhar_valid(pvt
) &&
1916 dhar_base(pvt
) <= sys_addr
&&
1917 sys_addr
< BIT_64(32)) {
1918 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1923 /* Verify sys_addr is within DCT Range. */
1924 dct_base
= (u64
) dct_sel_baseaddr(pvt
);
1925 dct_limit
= (dct_cont_limit_reg
>> 11) & 0x1FFF;
1927 if (!(dct_cont_base_reg
& BIT(0)) &&
1928 !(dct_base
<= (sys_addr
>> 27) &&
1929 dct_limit
>= (sys_addr
>> 27)))
1932 /* Verify number of dct's that participate in channel interleaving. */
1933 num_dcts_intlv
= (int) hweight8(intlv_en
);
1935 if (!(num_dcts_intlv
% 2 == 0) || (num_dcts_intlv
> 4))
1938 if (pvt
->model
>= 0x60)
1939 channel
= f1x_determine_channel(pvt
, sys_addr
, false, intlv_en
);
1941 channel
= f15_m30h_determine_channel(pvt
, sys_addr
, intlv_en
,
1942 num_dcts_intlv
, dct_sel
);
1944 /* Verify we stay within the MAX number of channels allowed */
1948 leg_mmio_hole
= (u8
) (dct_cont_base_reg
>> 1 & BIT(0));
1950 /* Get normalized DCT addr */
1951 if (leg_mmio_hole
&& (sys_addr
>= BIT_64(32)))
1952 chan_offset
= dhar_offset
;
1954 chan_offset
= dct_base
<< 27;
1956 chan_addr
= sys_addr
- chan_offset
;
1958 /* remove channel interleave */
1959 if (num_dcts_intlv
== 2) {
1960 if (intlv_addr
== 0x4)
1961 chan_addr
= ((chan_addr
>> 9) << 8) |
1963 else if (intlv_addr
== 0x5)
1964 chan_addr
= ((chan_addr
>> 10) << 9) |
1965 (chan_addr
& 0x1ff);
1969 } else if (num_dcts_intlv
== 4) {
1970 if (intlv_addr
== 0x4)
1971 chan_addr
= ((chan_addr
>> 10) << 8) |
1973 else if (intlv_addr
== 0x5)
1974 chan_addr
= ((chan_addr
>> 11) << 9) |
1975 (chan_addr
& 0x1ff);
1980 if (dct_offset_en
) {
1981 amd64_read_pci_cfg(pvt
->F1
,
1982 DRAM_CONT_HIGH_OFF
+ (int) channel
* 4,
1984 chan_addr
+= (u64
) ((tmp
>> 11) & 0xfff) << 27;
1987 f15h_select_dct(pvt
, channel
);
1989 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1993 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1994 * there is support for 4 DCT's, but only 2 are currently functional.
1995 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1996 * pvt->csels[1]. So we need to use '1' here to get correct info.
1997 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1999 alias_channel
= (channel
== 3) ? 1 : channel
;
2001 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, alias_channel
);
2004 *chan_sel
= alias_channel
;
2009 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt
*pvt
,
2013 int cs_found
= -EINVAL
;
2016 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2017 if (!dram_rw(pvt
, range
))
2020 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)
2021 cs_found
= f15_m30h_match_to_this_node(pvt
, range
,
2025 else if ((get_dram_base(pvt
, range
) <= sys_addr
) &&
2026 (get_dram_limit(pvt
, range
) >= sys_addr
)) {
2027 cs_found
= f1x_match_to_this_node(pvt
, range
,
2028 sys_addr
, chan_sel
);
2037 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2038 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2040 * The @sys_addr is usually an error address received from the hardware
2043 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
2044 struct err_info
*err
)
2046 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2048 error_address_to_page_and_offset(sys_addr
, err
);
2050 err
->csrow
= f1x_translate_sysaddr_to_cs(pvt
, sys_addr
, &err
->channel
);
2051 if (err
->csrow
< 0) {
2052 err
->err_code
= ERR_CSROW
;
2057 * We need the syndromes for channel detection only when we're
2058 * ganged. Otherwise @chan should already contain the channel at
2061 if (dct_ganging_enabled(pvt
))
2062 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
2066 * debug routine to display the memory sizes of all logical DIMMs and its
2069 static void debug_display_dimm_sizes(struct amd64_pvt
*pvt
, u8 ctrl
)
2071 int dimm
, size0
, size1
;
2072 u32
*dcsb
= ctrl
? pvt
->csels
[1].csbases
: pvt
->csels
[0].csbases
;
2073 u32 dbam
= ctrl
? pvt
->dbam1
: pvt
->dbam0
;
2075 if (pvt
->fam
== 0xf) {
2076 /* K8 families < revF not supported yet */
2077 if (pvt
->ext_model
< K8_REV_F
)
2083 if (pvt
->fam
== 0x10) {
2084 dbam
= (ctrl
&& !dct_ganging_enabled(pvt
)) ? pvt
->dbam1
2086 dcsb
= (ctrl
&& !dct_ganging_enabled(pvt
)) ?
2087 pvt
->csels
[1].csbases
:
2088 pvt
->csels
[0].csbases
;
2091 dcsb
= pvt
->csels
[1].csbases
;
2093 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2096 edac_printk(KERN_DEBUG
, EDAC_MC
, "DCT%d chip selects:\n", ctrl
);
2098 /* Dump memory sizes for DIMM and its CSROWs */
2099 for (dimm
= 0; dimm
< 4; dimm
++) {
2102 if (dcsb
[dimm
*2] & DCSB_CS_ENABLE
)
2104 * For F15m60h, we need multiplier for LRDIMM cs_size
2105 * calculation. We pass dimm value to the dbam_to_cs
2106 * mapper so we can find the multiplier from the
2107 * corresponding DCSM.
2109 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
2110 DBAM_DIMM(dimm
, dbam
),
2114 if (dcsb
[dimm
*2 + 1] & DCSB_CS_ENABLE
)
2115 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
2116 DBAM_DIMM(dimm
, dbam
),
2119 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
2121 dimm
* 2 + 1, size1
);
2125 static struct amd64_family_type family_types
[] = {
2128 .f1_id
= PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP
,
2129 .f2_id
= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL
,
2131 .early_channel_count
= k8_early_channel_count
,
2132 .map_sysaddr_to_csrow
= k8_map_sysaddr_to_csrow
,
2133 .dbam_to_cs
= k8_dbam_to_chip_select
,
2138 .f1_id
= PCI_DEVICE_ID_AMD_10H_NB_MAP
,
2139 .f2_id
= PCI_DEVICE_ID_AMD_10H_NB_DRAM
,
2141 .early_channel_count
= f1x_early_channel_count
,
2142 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2143 .dbam_to_cs
= f10_dbam_to_chip_select
,
2148 .f1_id
= PCI_DEVICE_ID_AMD_15H_NB_F1
,
2149 .f2_id
= PCI_DEVICE_ID_AMD_15H_NB_F2
,
2151 .early_channel_count
= f1x_early_channel_count
,
2152 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2153 .dbam_to_cs
= f15_dbam_to_chip_select
,
2157 .ctl_name
= "F15h_M30h",
2158 .f1_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
,
2159 .f2_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F2
,
2161 .early_channel_count
= f1x_early_channel_count
,
2162 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2163 .dbam_to_cs
= f16_dbam_to_chip_select
,
2167 .ctl_name
= "F15h_M60h",
2168 .f1_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
,
2169 .f2_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F2
,
2171 .early_channel_count
= f1x_early_channel_count
,
2172 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2173 .dbam_to_cs
= f15_m60h_dbam_to_chip_select
,
2178 .f1_id
= PCI_DEVICE_ID_AMD_16H_NB_F1
,
2179 .f2_id
= PCI_DEVICE_ID_AMD_16H_NB_F2
,
2181 .early_channel_count
= f1x_early_channel_count
,
2182 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2183 .dbam_to_cs
= f16_dbam_to_chip_select
,
2187 .ctl_name
= "F16h_M30h",
2188 .f1_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F1
,
2189 .f2_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F2
,
2191 .early_channel_count
= f1x_early_channel_count
,
2192 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2193 .dbam_to_cs
= f16_dbam_to_chip_select
,
2198 .f0_id
= PCI_DEVICE_ID_AMD_17H_DF_F0
,
2199 .f6_id
= PCI_DEVICE_ID_AMD_17H_DF_F6
,
2201 .early_channel_count
= f17_early_channel_count
,
2202 .dbam_to_cs
= f17_base_addr_to_cs_size
,
2206 .ctl_name
= "F17h_M10h",
2207 .f0_id
= PCI_DEVICE_ID_AMD_17H_M10H_DF_F0
,
2208 .f6_id
= PCI_DEVICE_ID_AMD_17H_M10H_DF_F6
,
2210 .early_channel_count
= f17_early_channel_count
,
2211 .dbam_to_cs
= f17_base_addr_to_cs_size
,
2215 .ctl_name
= "F17h_M30h",
2216 .f0_id
= PCI_DEVICE_ID_AMD_17H_M30H_DF_F0
,
2217 .f6_id
= PCI_DEVICE_ID_AMD_17H_M30H_DF_F6
,
2219 .early_channel_count
= f17_early_channel_count
,
2220 .dbam_to_cs
= f17_base_addr_to_cs_size
,
2226 * These are tables of eigenvectors (one per line) which can be used for the
2227 * construction of the syndrome tables. The modified syndrome search algorithm
2228 * uses those to find the symbol in error and thus the DIMM.
2230 * Algorithm courtesy of Ross LaFetra from AMD.
2232 static const u16 x4_vectors
[] = {
2233 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2234 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2235 0x0001, 0x0002, 0x0004, 0x0008,
2236 0x1013, 0x3032, 0x4044, 0x8088,
2237 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2238 0x4857, 0xc4fe, 0x13cc, 0x3288,
2239 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2240 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2241 0x15c1, 0x2a42, 0x89ac, 0x4758,
2242 0x2b03, 0x1602, 0x4f0c, 0xca08,
2243 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2244 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2245 0x2b87, 0x164e, 0x642c, 0xdc18,
2246 0x40b9, 0x80de, 0x1094, 0x20e8,
2247 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2248 0x11c1, 0x2242, 0x84ac, 0x4c58,
2249 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2250 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2251 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2252 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2253 0x16b3, 0x3d62, 0x4f34, 0x8518,
2254 0x1e2f, 0x391a, 0x5cac, 0xf858,
2255 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2256 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2257 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2258 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2259 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2260 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2261 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2262 0x185d, 0x2ca6, 0x7914, 0x9e28,
2263 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2264 0x4199, 0x82ee, 0x19f4, 0x2e58,
2265 0x4807, 0xc40e, 0x130c, 0x3208,
2266 0x1905, 0x2e0a, 0x5804, 0xac08,
2267 0x213f, 0x132a, 0xadfc, 0x5ba8,
2268 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2271 static const u16 x8_vectors
[] = {
2272 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2273 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2274 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2275 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2276 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2277 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2278 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2279 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2280 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2281 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2282 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2283 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2284 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2285 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2286 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2287 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2288 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2289 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2290 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2293 static int decode_syndrome(u16 syndrome
, const u16
*vectors
, unsigned num_vecs
,
2296 unsigned int i
, err_sym
;
2298 for (err_sym
= 0; err_sym
< num_vecs
/ v_dim
; err_sym
++) {
2300 unsigned v_idx
= err_sym
* v_dim
;
2301 unsigned v_end
= (err_sym
+ 1) * v_dim
;
2303 /* walk over all 16 bits of the syndrome */
2304 for (i
= 1; i
< (1U << 16); i
<<= 1) {
2306 /* if bit is set in that eigenvector... */
2307 if (v_idx
< v_end
&& vectors
[v_idx
] & i
) {
2308 u16 ev_comp
= vectors
[v_idx
++];
2310 /* ... and bit set in the modified syndrome, */
2320 /* can't get to zero, move to next symbol */
2325 edac_dbg(0, "syndrome(%x) not found\n", syndrome
);
2329 static int map_err_sym_to_channel(int err_sym
, int sym_size
)
2342 return err_sym
>> 4;
2348 /* imaginary bits not in a DIMM */
2350 WARN(1, KERN_ERR
"Invalid error symbol: 0x%x\n",
2362 return err_sym
>> 3;
2368 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*mci
, u16 syndrome
)
2370 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2373 if (pvt
->ecc_sym_sz
== 8)
2374 err_sym
= decode_syndrome(syndrome
, x8_vectors
,
2375 ARRAY_SIZE(x8_vectors
),
2377 else if (pvt
->ecc_sym_sz
== 4)
2378 err_sym
= decode_syndrome(syndrome
, x4_vectors
,
2379 ARRAY_SIZE(x4_vectors
),
2382 amd64_warn("Illegal syndrome type: %u\n", pvt
->ecc_sym_sz
);
2386 return map_err_sym_to_channel(err_sym
, pvt
->ecc_sym_sz
);
2389 static void __log_ecc_error(struct mem_ctl_info
*mci
, struct err_info
*err
,
2392 enum hw_event_mc_err_type err_type
;
2396 err_type
= HW_EVENT_ERR_CORRECTED
;
2397 else if (ecc_type
== 1)
2398 err_type
= HW_EVENT_ERR_UNCORRECTED
;
2399 else if (ecc_type
== 3)
2400 err_type
= HW_EVENT_ERR_DEFERRED
;
2402 WARN(1, "Something is rotten in the state of Denmark.\n");
2406 switch (err
->err_code
) {
2411 string
= "Failed to map error addr to a node";
2414 string
= "Failed to map error addr to a csrow";
2417 string
= "Unknown syndrome - possible error reporting race";
2420 string
= "MCA_SYND not valid - unknown syndrome and csrow";
2423 string
= "Cannot decode normalized address";
2426 string
= "WTF error";
2430 edac_mc_handle_error(err_type
, mci
, 1,
2431 err
->page
, err
->offset
, err
->syndrome
,
2432 err
->csrow
, err
->channel
, -1,
2436 static inline void decode_bus_error(int node_id
, struct mce
*m
)
2438 struct mem_ctl_info
*mci
;
2439 struct amd64_pvt
*pvt
;
2440 u8 ecc_type
= (m
->status
>> 45) & 0x3;
2441 u8 xec
= XEC(m
->status
, 0x1f);
2442 u16 ec
= EC(m
->status
);
2444 struct err_info err
;
2446 mci
= edac_mc_find(node_id
);
2450 pvt
= mci
->pvt_info
;
2452 /* Bail out early if this was an 'observed' error */
2453 if (PP(ec
) == NBSL_PP_OBS
)
2456 /* Do only ECC errors */
2457 if (xec
&& xec
!= F10_NBSL_EXT_ERR_ECC
)
2460 memset(&err
, 0, sizeof(err
));
2462 sys_addr
= get_error_address(pvt
, m
);
2465 err
.syndrome
= extract_syndrome(m
->status
);
2467 pvt
->ops
->map_sysaddr_to_csrow(mci
, sys_addr
, &err
);
2469 __log_ecc_error(mci
, &err
, ecc_type
);
2473 * To find the UMC channel represented by this bank we need to match on its
2474 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2477 static int find_umc_channel(struct amd64_pvt
*pvt
, struct mce
*m
)
2479 u32 umc_instance_id
[] = {0x50f00, 0x150f00};
2480 u32 instance_id
= m
->ipid
& GENMASK(31, 0);
2481 int i
, channel
= -1;
2483 for (i
= 0; i
< ARRAY_SIZE(umc_instance_id
); i
++)
2484 if (umc_instance_id
[i
] == instance_id
)
2490 static void decode_umc_error(int node_id
, struct mce
*m
)
2492 u8 ecc_type
= (m
->status
>> 45) & 0x3;
2493 struct mem_ctl_info
*mci
;
2494 struct amd64_pvt
*pvt
;
2495 struct err_info err
;
2498 mci
= edac_mc_find(node_id
);
2502 pvt
= mci
->pvt_info
;
2504 memset(&err
, 0, sizeof(err
));
2506 if (m
->status
& MCI_STATUS_DEFERRED
)
2509 err
.channel
= find_umc_channel(pvt
, m
);
2510 if (err
.channel
< 0) {
2511 err
.err_code
= ERR_CHANNEL
;
2515 if (!(m
->status
& MCI_STATUS_SYNDV
)) {
2516 err
.err_code
= ERR_SYND
;
2520 if (ecc_type
== 2) {
2521 u8 length
= (m
->synd
>> 18) & 0x3f;
2524 err
.syndrome
= (m
->synd
>> 32) & GENMASK(length
- 1, 0);
2526 err
.err_code
= ERR_CHANNEL
;
2529 err
.csrow
= m
->synd
& 0x7;
2531 if (umc_normaddr_to_sysaddr(m
->addr
, pvt
->mc_node_id
, err
.channel
, &sys_addr
)) {
2532 err
.err_code
= ERR_NORM_ADDR
;
2536 error_address_to_page_and_offset(sys_addr
, &err
);
2539 __log_ecc_error(mci
, &err
, ecc_type
);
2543 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2544 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2545 * Reserve F0 and F6 on systems with a UMC.
2548 reserve_mc_sibling_devs(struct amd64_pvt
*pvt
, u16 pci_id1
, u16 pci_id2
)
2551 pvt
->F0
= pci_get_related_function(pvt
->F3
->vendor
, pci_id1
, pvt
->F3
);
2553 amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1
);
2557 pvt
->F6
= pci_get_related_function(pvt
->F3
->vendor
, pci_id2
, pvt
->F3
);
2559 pci_dev_put(pvt
->F0
);
2562 amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2
);
2566 edac_dbg(1, "F0: %s\n", pci_name(pvt
->F0
));
2567 edac_dbg(1, "F3: %s\n", pci_name(pvt
->F3
));
2568 edac_dbg(1, "F6: %s\n", pci_name(pvt
->F6
));
2573 /* Reserve the ADDRESS MAP Device */
2574 pvt
->F1
= pci_get_related_function(pvt
->F3
->vendor
, pci_id1
, pvt
->F3
);
2576 amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1
);
2580 /* Reserve the DCT Device */
2581 pvt
->F2
= pci_get_related_function(pvt
->F3
->vendor
, pci_id2
, pvt
->F3
);
2583 pci_dev_put(pvt
->F1
);
2586 amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2
);
2590 edac_dbg(1, "F1: %s\n", pci_name(pvt
->F1
));
2591 edac_dbg(1, "F2: %s\n", pci_name(pvt
->F2
));
2592 edac_dbg(1, "F3: %s\n", pci_name(pvt
->F3
));
2597 static void free_mc_sibling_devs(struct amd64_pvt
*pvt
)
2600 pci_dev_put(pvt
->F0
);
2601 pci_dev_put(pvt
->F6
);
2603 pci_dev_put(pvt
->F1
);
2604 pci_dev_put(pvt
->F2
);
2608 static void determine_ecc_sym_sz(struct amd64_pvt
*pvt
)
2610 pvt
->ecc_sym_sz
= 4;
2615 for (i
= 0; i
< NUM_UMCS
; i
++) {
2616 /* Check enabled channels only: */
2617 if ((pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
) &&
2618 (pvt
->umc
[i
].ecc_ctrl
& BIT(7))) {
2619 pvt
->ecc_sym_sz
= 8;
2627 if (pvt
->fam
>= 0x10) {
2630 amd64_read_pci_cfg(pvt
->F3
, EXT_NB_MCA_CFG
, &tmp
);
2631 /* F16h has only DCT0, so no need to read dbam1. */
2632 if (pvt
->fam
!= 0x16)
2633 amd64_read_dct_pci_cfg(pvt
, 1, DBAM0
, &pvt
->dbam1
);
2635 /* F10h, revD and later can do x8 ECC too. */
2636 if ((pvt
->fam
> 0x10 || pvt
->model
> 7) && tmp
& BIT(25))
2637 pvt
->ecc_sym_sz
= 8;
2642 * Retrieve the hardware registers of the memory controller.
2644 static void __read_mc_regs_df(struct amd64_pvt
*pvt
)
2646 u8 nid
= pvt
->mc_node_id
;
2647 struct amd64_umc
*umc
;
2650 /* Read registers from each UMC */
2651 for (i
= 0; i
< NUM_UMCS
; i
++) {
2653 umc_base
= get_umc_base(i
);
2656 amd_smn_read(nid
, umc_base
+ UMCCH_DIMM_CFG
, &umc
->dimm_cfg
);
2657 amd_smn_read(nid
, umc_base
+ UMCCH_UMC_CFG
, &umc
->umc_cfg
);
2658 amd_smn_read(nid
, umc_base
+ UMCCH_SDP_CTRL
, &umc
->sdp_ctrl
);
2659 amd_smn_read(nid
, umc_base
+ UMCCH_ECC_CTRL
, &umc
->ecc_ctrl
);
2660 amd_smn_read(nid
, umc_base
+ UMCCH_UMC_CAP_HI
, &umc
->umc_cap_hi
);
2665 * Retrieve the hardware registers of the memory controller (this includes the
2666 * 'Address Map' and 'Misc' device regs)
2668 static void read_mc_regs(struct amd64_pvt
*pvt
)
2674 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2675 * those are Read-As-Zero.
2677 rdmsrl(MSR_K8_TOP_MEM1
, pvt
->top_mem
);
2678 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt
->top_mem
);
2680 /* Check first whether TOP_MEM2 is enabled: */
2681 rdmsrl(MSR_K8_SYSCFG
, msr_val
);
2682 if (msr_val
& BIT(21)) {
2683 rdmsrl(MSR_K8_TOP_MEM2
, pvt
->top_mem2
);
2684 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt
->top_mem2
);
2686 edac_dbg(0, " TOP_MEM2 disabled\n");
2690 __read_mc_regs_df(pvt
);
2691 amd64_read_pci_cfg(pvt
->F0
, DF_DHAR
, &pvt
->dhar
);
2696 amd64_read_pci_cfg(pvt
->F3
, NBCAP
, &pvt
->nbcap
);
2698 read_dram_ctl_register(pvt
);
2700 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2703 /* read settings for this DRAM range */
2704 read_dram_base_limit_regs(pvt
, range
);
2706 rw
= dram_rw(pvt
, range
);
2710 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2712 get_dram_base(pvt
, range
),
2713 get_dram_limit(pvt
, range
));
2715 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2716 dram_intlv_en(pvt
, range
) ? "Enabled" : "Disabled",
2717 (rw
& 0x1) ? "R" : "-",
2718 (rw
& 0x2) ? "W" : "-",
2719 dram_intlv_sel(pvt
, range
),
2720 dram_dst_node(pvt
, range
));
2723 amd64_read_pci_cfg(pvt
->F1
, DHAR
, &pvt
->dhar
);
2724 amd64_read_dct_pci_cfg(pvt
, 0, DBAM0
, &pvt
->dbam0
);
2726 amd64_read_pci_cfg(pvt
->F3
, F10_ONLINE_SPARE
, &pvt
->online_spare
);
2728 amd64_read_dct_pci_cfg(pvt
, 0, DCLR0
, &pvt
->dclr0
);
2729 amd64_read_dct_pci_cfg(pvt
, 0, DCHR0
, &pvt
->dchr0
);
2731 if (!dct_ganging_enabled(pvt
)) {
2732 amd64_read_dct_pci_cfg(pvt
, 1, DCLR0
, &pvt
->dclr1
);
2733 amd64_read_dct_pci_cfg(pvt
, 1, DCHR0
, &pvt
->dchr1
);
2737 read_dct_base_mask(pvt
);
2739 determine_memory_type(pvt
);
2740 edac_dbg(1, " DIMM type: %s\n", edac_mem_types
[pvt
->dram_type
]);
2742 determine_ecc_sym_sz(pvt
);
2744 dump_misc_regs(pvt
);
2748 * NOTE: CPU Revision Dependent code
2751 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2752 * k8 private pointer to -->
2753 * DRAM Bank Address mapping register
2755 * DCL register where dual_channel_active is
2757 * The DBAM register consists of 4 sets of 4 bits each definitions:
2760 * 0-3 CSROWs 0 and 1
2761 * 4-7 CSROWs 2 and 3
2762 * 8-11 CSROWs 4 and 5
2763 * 12-15 CSROWs 6 and 7
2765 * Values range from: 0 to 15
2766 * The meaning of the values depends on CPU revision and dual-channel state,
2767 * see relevant BKDG more info.
2769 * The memory controller provides for total of only 8 CSROWs in its current
2770 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2771 * single channel or two (2) DIMMs in dual channel mode.
2773 * The following code logic collapses the various tables for CSROW based on CPU
2777 * The number of PAGE_SIZE pages on the specified CSROW number it
2781 static u32
get_csrow_nr_pages(struct amd64_pvt
*pvt
, u8 dct
, int csrow_nr_orig
)
2783 u32 dbam
= dct
? pvt
->dbam1
: pvt
->dbam0
;
2784 int csrow_nr
= csrow_nr_orig
;
2785 u32 cs_mode
, nr_pages
;
2790 cs_mode
= DBAM_DIMM(csrow_nr
, dbam
);
2792 nr_pages
= pvt
->ops
->dbam_to_cs(pvt
, dct
, cs_mode
, csrow_nr
);
2793 nr_pages
<<= 20 - PAGE_SHIFT
;
2795 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2796 csrow_nr_orig
, dct
, cs_mode
);
2797 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages
);
2803 * Initialize the array of csrow attribute instances, based on the values
2804 * from pci config hardware registers.
2806 static int init_csrows(struct mem_ctl_info
*mci
)
2808 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2809 enum edac_type edac_mode
= EDAC_NONE
;
2810 struct csrow_info
*csrow
;
2811 struct dimm_info
*dimm
;
2812 int i
, j
, empty
= 1;
2817 amd64_read_pci_cfg(pvt
->F3
, NBCFG
, &val
);
2821 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2822 pvt
->mc_node_id
, val
,
2823 !!(val
& NBCFG_CHIPKILL
), !!(val
& NBCFG_ECC_ENABLE
));
2827 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2829 for_each_chip_select(i
, 0, pvt
) {
2830 bool row_dct0
= !!csrow_enabled(i
, 0, pvt
);
2831 bool row_dct1
= false;
2833 if (pvt
->fam
!= 0xf)
2834 row_dct1
= !!csrow_enabled(i
, 1, pvt
);
2836 if (!row_dct0
&& !row_dct1
)
2839 csrow
= mci
->csrows
[i
];
2842 edac_dbg(1, "MC node: %d, csrow: %d\n",
2843 pvt
->mc_node_id
, i
);
2846 nr_pages
= get_csrow_nr_pages(pvt
, 0, i
);
2847 csrow
->channels
[0]->dimm
->nr_pages
= nr_pages
;
2850 /* K8 has only one DCT */
2851 if (pvt
->fam
!= 0xf && row_dct1
) {
2852 int row_dct1_pages
= get_csrow_nr_pages(pvt
, 1, i
);
2854 csrow
->channels
[1]->dimm
->nr_pages
= row_dct1_pages
;
2855 nr_pages
+= row_dct1_pages
;
2858 edac_dbg(1, "Total csrow%d pages: %u\n", i
, nr_pages
);
2860 /* Determine DIMM ECC mode: */
2862 if (mci
->edac_ctl_cap
& EDAC_FLAG_S4ECD4ED
)
2863 edac_mode
= EDAC_S4ECD4ED
;
2864 else if (mci
->edac_ctl_cap
& EDAC_FLAG_SECDED
)
2865 edac_mode
= EDAC_SECDED
;
2867 } else if (pvt
->nbcfg
& NBCFG_ECC_ENABLE
) {
2868 edac_mode
= (pvt
->nbcfg
& NBCFG_CHIPKILL
)
2873 for (j
= 0; j
< pvt
->channel_count
; j
++) {
2874 dimm
= csrow
->channels
[j
]->dimm
;
2875 dimm
->mtype
= pvt
->dram_type
;
2876 dimm
->edac_mode
= edac_mode
;
2884 /* get all cores on this DCT */
2885 static void get_cpus_on_this_dct_cpumask(struct cpumask
*mask
, u16 nid
)
2889 for_each_online_cpu(cpu
)
2890 if (amd_get_nb_id(cpu
) == nid
)
2891 cpumask_set_cpu(cpu
, mask
);
2894 /* check MCG_CTL on all the cpus on this node */
2895 static bool nb_mce_bank_enabled_on_node(u16 nid
)
2901 if (!zalloc_cpumask_var(&mask
, GFP_KERNEL
)) {
2902 amd64_warn("%s: Error allocating mask\n", __func__
);
2906 get_cpus_on_this_dct_cpumask(mask
, nid
);
2908 rdmsr_on_cpus(mask
, MSR_IA32_MCG_CTL
, msrs
);
2910 for_each_cpu(cpu
, mask
) {
2911 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2912 nbe
= reg
->l
& MSR_MCGCTL_NBE
;
2914 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2916 (nbe
? "enabled" : "disabled"));
2924 free_cpumask_var(mask
);
2928 static int toggle_ecc_err_reporting(struct ecc_settings
*s
, u16 nid
, bool on
)
2930 cpumask_var_t cmask
;
2933 if (!zalloc_cpumask_var(&cmask
, GFP_KERNEL
)) {
2934 amd64_warn("%s: error allocating mask\n", __func__
);
2938 get_cpus_on_this_dct_cpumask(cmask
, nid
);
2940 rdmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2942 for_each_cpu(cpu
, cmask
) {
2944 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
2947 if (reg
->l
& MSR_MCGCTL_NBE
)
2948 s
->flags
.nb_mce_enable
= 1;
2950 reg
->l
|= MSR_MCGCTL_NBE
;
2953 * Turn off NB MCE reporting only when it was off before
2955 if (!s
->flags
.nb_mce_enable
)
2956 reg
->l
&= ~MSR_MCGCTL_NBE
;
2959 wrmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
2961 free_cpumask_var(cmask
);
2966 static bool enable_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
2970 u32 value
, mask
= 0x3; /* UECC/CECC enable */
2972 if (toggle_ecc_err_reporting(s
, nid
, ON
)) {
2973 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2977 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
2979 s
->old_nbctl
= value
& mask
;
2980 s
->nbctl_valid
= true;
2983 amd64_write_pci_cfg(F3
, NBCTL
, value
);
2985 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
2987 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2988 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
2990 if (!(value
& NBCFG_ECC_ENABLE
)) {
2991 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2993 s
->flags
.nb_ecc_prev
= 0;
2995 /* Attempt to turn on DRAM ECC Enable */
2996 value
|= NBCFG_ECC_ENABLE
;
2997 amd64_write_pci_cfg(F3
, NBCFG
, value
);
2999 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3001 if (!(value
& NBCFG_ECC_ENABLE
)) {
3002 amd64_warn("Hardware rejected DRAM ECC enable,"
3003 "check memory DIMM configuration.\n");
3006 amd64_info("Hardware accepted DRAM ECC Enable\n");
3009 s
->flags
.nb_ecc_prev
= 1;
3012 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3013 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
3018 static void restore_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
3021 u32 value
, mask
= 0x3; /* UECC/CECC enable */
3023 if (!s
->nbctl_valid
)
3026 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
3028 value
|= s
->old_nbctl
;
3030 amd64_write_pci_cfg(F3
, NBCTL
, value
);
3032 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3033 if (!s
->flags
.nb_ecc_prev
) {
3034 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3035 value
&= ~NBCFG_ECC_ENABLE
;
3036 amd64_write_pci_cfg(F3
, NBCFG
, value
);
3039 /* restore the NB Enable MCGCTL bit */
3040 if (toggle_ecc_err_reporting(s
, nid
, OFF
))
3041 amd64_warn("Error restoring NB MCGCTL settings!\n");
3045 * EDAC requires that the BIOS have ECC enabled before
3046 * taking over the processing of ECC errors. A command line
3047 * option allows to force-enable hardware ECC later in
3048 * enable_ecc_error_reporting().
3050 static const char *ecc_msg
=
3051 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
3052 " Either enable ECC checking or force module loading by setting "
3053 "'ecc_enable_override'.\n"
3054 " (Note that use of the override may cause unknown side effects.)\n";
3056 static bool ecc_enabled(struct pci_dev
*F3
, u16 nid
)
3058 bool nb_mce_en
= false;
3062 if (boot_cpu_data
.x86
>= 0x17) {
3063 u8 umc_en_mask
= 0, ecc_en_mask
= 0;
3065 for (i
= 0; i
< NUM_UMCS
; i
++) {
3066 u32 base
= get_umc_base(i
);
3068 /* Only check enabled UMCs. */
3069 if (amd_smn_read(nid
, base
+ UMCCH_SDP_CTRL
, &value
))
3072 if (!(value
& UMC_SDP_INIT
))
3075 umc_en_mask
|= BIT(i
);
3077 if (amd_smn_read(nid
, base
+ UMCCH_UMC_CAP_HI
, &value
))
3080 if (value
& UMC_ECC_ENABLED
)
3081 ecc_en_mask
|= BIT(i
);
3084 /* Check whether at least one UMC is enabled: */
3086 ecc_en
= umc_en_mask
== ecc_en_mask
;
3088 edac_dbg(0, "Node %d: No enabled UMCs.\n", nid
);
3090 /* Assume UMC MCA banks are enabled. */
3093 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3095 ecc_en
= !!(value
& NBCFG_ECC_ENABLE
);
3097 nb_mce_en
= nb_mce_bank_enabled_on_node(nid
);
3099 edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3100 MSR_IA32_MCG_CTL
, nid
);
3103 amd64_info("Node %d: DRAM ECC %s.\n",
3104 nid
, (ecc_en
? "enabled" : "disabled"));
3106 if (!ecc_en
|| !nb_mce_en
) {
3107 amd64_info("%s", ecc_msg
);
3114 f17h_determine_edac_ctl_cap(struct mem_ctl_info
*mci
, struct amd64_pvt
*pvt
)
3116 u8 i
, ecc_en
= 1, cpk_en
= 1, dev_x4
= 1, dev_x16
= 1;
3118 for (i
= 0; i
< NUM_UMCS
; i
++) {
3119 if (pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
) {
3120 ecc_en
&= !!(pvt
->umc
[i
].umc_cap_hi
& UMC_ECC_ENABLED
);
3121 cpk_en
&= !!(pvt
->umc
[i
].umc_cap_hi
& UMC_ECC_CHIPKILL_CAP
);
3123 dev_x4
&= !!(pvt
->umc
[i
].dimm_cfg
& BIT(6));
3124 dev_x16
&= !!(pvt
->umc
[i
].dimm_cfg
& BIT(7));
3128 /* Set chipkill only if ECC is enabled: */
3130 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
3136 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
3138 mci
->edac_ctl_cap
|= EDAC_FLAG_S16ECD16ED
;
3140 mci
->edac_ctl_cap
|= EDAC_FLAG_S8ECD8ED
;
3144 static void setup_mci_misc_attrs(struct mem_ctl_info
*mci
,
3145 struct amd64_family_type
*fam
)
3147 struct amd64_pvt
*pvt
= mci
->pvt_info
;
3149 mci
->mtype_cap
= MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
;
3150 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3153 f17h_determine_edac_ctl_cap(mci
, pvt
);
3155 if (pvt
->nbcap
& NBCAP_SECDED
)
3156 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
3158 if (pvt
->nbcap
& NBCAP_CHIPKILL
)
3159 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
3162 mci
->edac_cap
= determine_edac_cap(pvt
);
3163 mci
->mod_name
= EDAC_MOD_STR
;
3164 mci
->ctl_name
= fam
->ctl_name
;
3165 mci
->dev_name
= pci_name(pvt
->F3
);
3166 mci
->ctl_page_to_phys
= NULL
;
3168 /* memory scrubber interface */
3169 mci
->set_sdram_scrub_rate
= set_scrub_rate
;
3170 mci
->get_sdram_scrub_rate
= get_scrub_rate
;
3174 * returns a pointer to the family descriptor on success, NULL otherwise.
3176 static struct amd64_family_type
*per_family_init(struct amd64_pvt
*pvt
)
3178 struct amd64_family_type
*fam_type
= NULL
;
3180 pvt
->ext_model
= boot_cpu_data
.x86_model
>> 4;
3181 pvt
->stepping
= boot_cpu_data
.x86_stepping
;
3182 pvt
->model
= boot_cpu_data
.x86_model
;
3183 pvt
->fam
= boot_cpu_data
.x86
;
3187 fam_type
= &family_types
[K8_CPUS
];
3188 pvt
->ops
= &family_types
[K8_CPUS
].ops
;
3192 fam_type
= &family_types
[F10_CPUS
];
3193 pvt
->ops
= &family_types
[F10_CPUS
].ops
;
3197 if (pvt
->model
== 0x30) {
3198 fam_type
= &family_types
[F15_M30H_CPUS
];
3199 pvt
->ops
= &family_types
[F15_M30H_CPUS
].ops
;
3201 } else if (pvt
->model
== 0x60) {
3202 fam_type
= &family_types
[F15_M60H_CPUS
];
3203 pvt
->ops
= &family_types
[F15_M60H_CPUS
].ops
;
3207 fam_type
= &family_types
[F15_CPUS
];
3208 pvt
->ops
= &family_types
[F15_CPUS
].ops
;
3212 if (pvt
->model
== 0x30) {
3213 fam_type
= &family_types
[F16_M30H_CPUS
];
3214 pvt
->ops
= &family_types
[F16_M30H_CPUS
].ops
;
3217 fam_type
= &family_types
[F16_CPUS
];
3218 pvt
->ops
= &family_types
[F16_CPUS
].ops
;
3222 if (pvt
->model
>= 0x10 && pvt
->model
<= 0x2f) {
3223 fam_type
= &family_types
[F17_M10H_CPUS
];
3224 pvt
->ops
= &family_types
[F17_M10H_CPUS
].ops
;
3226 } else if (pvt
->model
>= 0x30 && pvt
->model
<= 0x3f) {
3227 fam_type
= &family_types
[F17_M30H_CPUS
];
3228 pvt
->ops
= &family_types
[F17_M30H_CPUS
].ops
;
3231 fam_type
= &family_types
[F17_CPUS
];
3232 pvt
->ops
= &family_types
[F17_CPUS
].ops
;
3236 amd64_err("Unsupported family!\n");
3240 amd64_info("%s %sdetected (node %d).\n", fam_type
->ctl_name
,
3242 (pvt
->ext_model
>= K8_REV_F
? "revF or later "
3243 : "revE or earlier ")
3244 : ""), pvt
->mc_node_id
);
3248 static const struct attribute_group
*amd64_edac_attr_groups
[] = {
3249 #ifdef CONFIG_EDAC_DEBUG
3250 &amd64_edac_dbg_group
,
3252 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
3253 &amd64_edac_inj_group
,
3258 static int init_one_instance(unsigned int nid
)
3260 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
3261 struct amd64_family_type
*fam_type
= NULL
;
3262 struct mem_ctl_info
*mci
= NULL
;
3263 struct edac_mc_layer layers
[2];
3264 struct amd64_pvt
*pvt
= NULL
;
3265 u16 pci_id1
, pci_id2
;
3269 pvt
= kzalloc(sizeof(struct amd64_pvt
), GFP_KERNEL
);
3273 pvt
->mc_node_id
= nid
;
3277 fam_type
= per_family_init(pvt
);
3281 if (pvt
->fam
>= 0x17) {
3282 pvt
->umc
= kcalloc(NUM_UMCS
, sizeof(struct amd64_umc
), GFP_KERNEL
);
3288 pci_id1
= fam_type
->f0_id
;
3289 pci_id2
= fam_type
->f6_id
;
3291 pci_id1
= fam_type
->f1_id
;
3292 pci_id2
= fam_type
->f2_id
;
3295 err
= reserve_mc_sibling_devs(pvt
, pci_id1
, pci_id2
);
3302 * We need to determine how many memory channels there are. Then use
3303 * that information for calculating the size of the dynamic instance
3304 * tables in the 'mci' structure.
3307 pvt
->channel_count
= pvt
->ops
->early_channel_count(pvt
);
3308 if (pvt
->channel_count
< 0)
3312 layers
[0].type
= EDAC_MC_LAYER_CHIP_SELECT
;
3313 layers
[0].size
= pvt
->csels
[0].b_cnt
;
3314 layers
[0].is_virt_csrow
= true;
3315 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
3318 * Always allocate two channels since we can have setups with DIMMs on
3319 * only one channel. Also, this simplifies handling later for the price
3320 * of a couple of KBs tops.
3323 layers
[1].is_virt_csrow
= false;
3325 mci
= edac_mc_alloc(nid
, ARRAY_SIZE(layers
), layers
, 0);
3329 mci
->pvt_info
= pvt
;
3330 mci
->pdev
= &pvt
->F3
->dev
;
3332 setup_mci_misc_attrs(mci
, fam_type
);
3334 if (init_csrows(mci
))
3335 mci
->edac_cap
= EDAC_FLAG_NONE
;
3338 if (edac_mc_add_mc_with_groups(mci
, amd64_edac_attr_groups
)) {
3339 edac_dbg(1, "failed edac_mc_add_mc()\n");
3349 free_mc_sibling_devs(pvt
);
3352 if (pvt
->fam
>= 0x17)
3362 static int probe_one_instance(unsigned int nid
)
3364 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
3365 struct ecc_settings
*s
;
3369 s
= kzalloc(sizeof(struct ecc_settings
), GFP_KERNEL
);
3375 if (!ecc_enabled(F3
, nid
)) {
3378 if (!ecc_enable_override
)
3381 if (boot_cpu_data
.x86
>= 0x17) {
3382 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3385 amd64_warn("Forcing ECC on!\n");
3387 if (!enable_ecc_error_reporting(s
, nid
, F3
))
3391 ret
= init_one_instance(nid
);
3393 amd64_err("Error probing instance: %d\n", nid
);
3395 if (boot_cpu_data
.x86
< 0x17)
3396 restore_ecc_error_reporting(s
, nid
, F3
);
3405 ecc_stngs
[nid
] = NULL
;
3411 static void remove_one_instance(unsigned int nid
)
3413 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
3414 struct ecc_settings
*s
= ecc_stngs
[nid
];
3415 struct mem_ctl_info
*mci
;
3416 struct amd64_pvt
*pvt
;
3418 mci
= find_mci_by_dev(&F3
->dev
);
3421 /* Remove from EDAC CORE tracking list */
3422 mci
= edac_mc_del_mc(&F3
->dev
);
3426 pvt
= mci
->pvt_info
;
3428 restore_ecc_error_reporting(s
, nid
, F3
);
3430 free_mc_sibling_devs(pvt
);
3432 kfree(ecc_stngs
[nid
]);
3433 ecc_stngs
[nid
] = NULL
;
3435 /* Free the EDAC CORE resources */
3436 mci
->pvt_info
= NULL
;
3442 static void setup_pci_device(void)
3444 struct mem_ctl_info
*mci
;
3445 struct amd64_pvt
*pvt
;
3450 mci
= edac_mc_find(0);
3454 pvt
= mci
->pvt_info
;
3456 pci_ctl
= edac_pci_create_generic_ctl(&pvt
->F0
->dev
, EDAC_MOD_STR
);
3458 pci_ctl
= edac_pci_create_generic_ctl(&pvt
->F2
->dev
, EDAC_MOD_STR
);
3460 pr_warn("%s(): Unable to create PCI control\n", __func__
);
3461 pr_warn("%s(): PCI error report via EDAC not set\n", __func__
);
3465 static const struct x86_cpu_id amd64_cpuids
[] = {
3466 { X86_VENDOR_AMD
, 0xF, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3467 { X86_VENDOR_AMD
, 0x10, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3468 { X86_VENDOR_AMD
, 0x15, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3469 { X86_VENDOR_AMD
, 0x16, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3470 { X86_VENDOR_AMD
, 0x17, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3473 MODULE_DEVICE_TABLE(x86cpu
, amd64_cpuids
);
3475 static int __init
amd64_edac_init(void)
3481 owner
= edac_get_owner();
3482 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
3485 if (!x86_match_cpu(amd64_cpuids
))
3488 if (amd_cache_northbridges() < 0)
3494 ecc_stngs
= kcalloc(amd_nb_num(), sizeof(ecc_stngs
[0]), GFP_KERNEL
);
3498 msrs
= msrs_alloc();
3502 for (i
= 0; i
< amd_nb_num(); i
++) {
3503 err
= probe_one_instance(i
);
3505 /* unwind properly */
3507 remove_one_instance(i
);
3513 if (!edac_has_mcs()) {
3518 /* register stuff with EDAC MCE */
3519 if (report_gart_errors
)
3520 amd_report_gart_errors(true);
3522 if (boot_cpu_data
.x86
>= 0x17)
3523 amd_register_ecc_decoder(decode_umc_error
);
3525 amd_register_ecc_decoder(decode_bus_error
);
3529 #ifdef CONFIG_X86_32
3530 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR
);
3533 printk(KERN_INFO
"AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION
);
3548 static void __exit
amd64_edac_exit(void)
3553 edac_pci_release_generic_ctl(pci_ctl
);
3555 /* unregister from EDAC MCE */
3556 amd_report_gart_errors(false);
3558 if (boot_cpu_data
.x86
>= 0x17)
3559 amd_unregister_ecc_decoder(decode_umc_error
);
3561 amd_unregister_ecc_decoder(decode_bus_error
);
3563 for (i
= 0; i
< amd_nb_num(); i
++)
3564 remove_one_instance(i
);
3573 module_init(amd64_edac_init
);
3574 module_exit(amd64_edac_exit
);
3576 MODULE_LICENSE("GPL");
3577 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3578 "Dave Peterson, Thayne Harbaugh");
3579 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3580 EDAC_AMD64_VERSION
);
3582 module_param(edac_op_state
, int, 0444);
3583 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");