Linux 4.19.133
[linux/fpc-iii.git] / drivers / firmware / dmi_scan.c
blob0dc0c78f1fdb2db40fd9dedb4b179999ac98fc60
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
21 static const char dmi_empty_string[] = "";
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
29 /* DMI system identification string used during boot */
30 static char dmi_ids_string[128] __initdata;
32 static struct dmi_memdev_info {
33 const char *device;
34 const char *bank;
35 u64 size; /* bytes */
36 u16 handle;
37 } *dmi_memdev;
38 static int dmi_memdev_nr;
40 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
42 const u8 *bp = ((u8 *) dm) + dm->length;
43 const u8 *nsp;
45 if (s) {
46 while (--s > 0 && *bp)
47 bp += strlen(bp) + 1;
49 /* Strings containing only spaces are considered empty */
50 nsp = bp;
51 while (*nsp == ' ')
52 nsp++;
53 if (*nsp != '\0')
54 return bp;
57 return dmi_empty_string;
60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
62 const char *bp = dmi_string_nosave(dm, s);
63 char *str;
64 size_t len;
66 if (bp == dmi_empty_string)
67 return dmi_empty_string;
69 len = strlen(bp) + 1;
70 str = dmi_alloc(len);
71 if (str != NULL)
72 strcpy(str, bp);
74 return str;
78 * We have to be cautious here. We have seen BIOSes with DMI pointers
79 * pointing to completely the wrong place for example
81 static void dmi_decode_table(u8 *buf,
82 void (*decode)(const struct dmi_header *, void *),
83 void *private_data)
85 u8 *data = buf;
86 int i = 0;
89 * Stop when we have seen all the items the table claimed to have
90 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
91 * >= 3.0 only) OR we run off the end of the table (should never
92 * happen but sometimes does on bogus implementations.)
94 while ((!dmi_num || i < dmi_num) &&
95 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
96 const struct dmi_header *dm = (const struct dmi_header *)data;
99 * We want to know the total length (formatted area and
100 * strings) before decoding to make sure we won't run off the
101 * table in dmi_decode or dmi_string
103 data += dm->length;
104 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
105 data++;
106 if (data - buf < dmi_len - 1)
107 decode(dm, private_data);
109 data += 2;
110 i++;
113 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
114 * For tables behind a 64-bit entry point, we have no item
115 * count and no exact table length, so stop on end-of-table
116 * marker. For tables behind a 32-bit entry point, we have
117 * seen OEM structures behind the end-of-table marker on
118 * some systems, so don't trust it.
120 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
121 break;
124 /* Trim DMI table length if needed */
125 if (dmi_len > data - buf)
126 dmi_len = data - buf;
129 static phys_addr_t dmi_base;
131 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
132 void *))
134 u8 *buf;
135 u32 orig_dmi_len = dmi_len;
137 buf = dmi_early_remap(dmi_base, orig_dmi_len);
138 if (buf == NULL)
139 return -ENOMEM;
141 dmi_decode_table(buf, decode, NULL);
143 add_device_randomness(buf, dmi_len);
145 dmi_early_unmap(buf, orig_dmi_len);
146 return 0;
149 static int __init dmi_checksum(const u8 *buf, u8 len)
151 u8 sum = 0;
152 int a;
154 for (a = 0; a < len; a++)
155 sum += buf[a];
157 return sum == 0;
160 static const char *dmi_ident[DMI_STRING_MAX];
161 static LIST_HEAD(dmi_devices);
162 int dmi_available;
165 * Save a DMI string
167 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
168 int string)
170 const char *d = (const char *) dm;
171 const char *p;
173 if (dmi_ident[slot] || dm->length <= string)
174 return;
176 p = dmi_string(dm, d[string]);
177 if (p == NULL)
178 return;
180 dmi_ident[slot] = p;
183 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
184 int index)
186 const u8 *d;
187 char *s;
188 int is_ff = 1, is_00 = 1, i;
190 if (dmi_ident[slot] || dm->length < index + 16)
191 return;
193 d = (u8 *) dm + index;
194 for (i = 0; i < 16 && (is_ff || is_00); i++) {
195 if (d[i] != 0x00)
196 is_00 = 0;
197 if (d[i] != 0xFF)
198 is_ff = 0;
201 if (is_ff || is_00)
202 return;
204 s = dmi_alloc(16*2+4+1);
205 if (!s)
206 return;
209 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
210 * the UUID are supposed to be little-endian encoded. The specification
211 * says that this is the defacto standard.
213 if (dmi_ver >= 0x020600)
214 sprintf(s, "%pUl", d);
215 else
216 sprintf(s, "%pUb", d);
218 dmi_ident[slot] = s;
221 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
222 int index)
224 const u8 *d;
225 char *s;
227 if (dmi_ident[slot] || dm->length <= index)
228 return;
230 s = dmi_alloc(4);
231 if (!s)
232 return;
234 d = (u8 *) dm + index;
235 sprintf(s, "%u", *d & 0x7F);
236 dmi_ident[slot] = s;
239 static void __init dmi_save_one_device(int type, const char *name)
241 struct dmi_device *dev;
243 /* No duplicate device */
244 if (dmi_find_device(type, name, NULL))
245 return;
247 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
248 if (!dev)
249 return;
251 dev->type = type;
252 strcpy((char *)(dev + 1), name);
253 dev->name = (char *)(dev + 1);
254 dev->device_data = NULL;
255 list_add(&dev->list, &dmi_devices);
258 static void __init dmi_save_devices(const struct dmi_header *dm)
260 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
262 for (i = 0; i < count; i++) {
263 const char *d = (char *)(dm + 1) + (i * 2);
265 /* Skip disabled device */
266 if ((*d & 0x80) == 0)
267 continue;
269 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
273 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
275 int i, count;
276 struct dmi_device *dev;
278 if (dm->length < 0x05)
279 return;
281 count = *(u8 *)(dm + 1);
282 for (i = 1; i <= count; i++) {
283 const char *devname = dmi_string(dm, i);
285 if (devname == dmi_empty_string)
286 continue;
288 dev = dmi_alloc(sizeof(*dev));
289 if (!dev)
290 break;
292 dev->type = DMI_DEV_TYPE_OEM_STRING;
293 dev->name = devname;
294 dev->device_data = NULL;
296 list_add(&dev->list, &dmi_devices);
300 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
302 struct dmi_device *dev;
303 void *data;
305 data = dmi_alloc(dm->length);
306 if (data == NULL)
307 return;
309 memcpy(data, dm, dm->length);
311 dev = dmi_alloc(sizeof(*dev));
312 if (!dev)
313 return;
315 dev->type = DMI_DEV_TYPE_IPMI;
316 dev->name = "IPMI controller";
317 dev->device_data = data;
319 list_add_tail(&dev->list, &dmi_devices);
322 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
323 int devfn, const char *name, int type)
325 struct dmi_dev_onboard *dev;
327 /* Ignore invalid values */
328 if (type == DMI_DEV_TYPE_DEV_SLOT &&
329 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
330 return;
332 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
333 if (!dev)
334 return;
336 dev->instance = instance;
337 dev->segment = segment;
338 dev->bus = bus;
339 dev->devfn = devfn;
341 strcpy((char *)&dev[1], name);
342 dev->dev.type = type;
343 dev->dev.name = (char *)&dev[1];
344 dev->dev.device_data = dev;
346 list_add(&dev->dev.list, &dmi_devices);
349 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
351 const char *name;
352 const u8 *d = (u8 *)dm;
354 if (dm->length < 0x0B)
355 return;
357 /* Skip disabled device */
358 if ((d[0x5] & 0x80) == 0)
359 return;
361 name = dmi_string_nosave(dm, d[0x4]);
362 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
363 DMI_DEV_TYPE_DEV_ONBOARD);
364 dmi_save_one_device(d[0x5] & 0x7f, name);
367 static void __init dmi_save_system_slot(const struct dmi_header *dm)
369 const u8 *d = (u8 *)dm;
371 /* Need SMBIOS 2.6+ structure */
372 if (dm->length < 0x11)
373 return;
374 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
375 d[0x10], dmi_string_nosave(dm, d[0x4]),
376 DMI_DEV_TYPE_DEV_SLOT);
379 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
381 if (dm->type != DMI_ENTRY_MEM_DEVICE)
382 return;
383 dmi_memdev_nr++;
386 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
388 const char *d = (const char *)dm;
389 static int nr;
390 u64 bytes;
391 u16 size;
393 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
394 return;
395 if (nr >= dmi_memdev_nr) {
396 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
397 return;
399 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
400 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
401 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
403 size = get_unaligned((u16 *)&d[0xC]);
404 if (size == 0)
405 bytes = 0;
406 else if (size == 0xffff)
407 bytes = ~0ull;
408 else if (size & 0x8000)
409 bytes = (u64)(size & 0x7fff) << 10;
410 else if (size != 0x7fff || dm->length < 0x20)
411 bytes = (u64)size << 20;
412 else
413 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
415 dmi_memdev[nr].size = bytes;
416 nr++;
419 void __init dmi_memdev_walk(void)
421 if (!dmi_available)
422 return;
424 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
425 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
426 if (dmi_memdev)
427 dmi_walk_early(save_mem_devices);
432 * Process a DMI table entry. Right now all we care about are the BIOS
433 * and machine entries. For 2.5 we should pull the smbus controller info
434 * out of here.
436 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
438 switch (dm->type) {
439 case 0: /* BIOS Information */
440 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
441 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
442 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
443 break;
444 case 1: /* System Information */
445 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
446 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
447 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
448 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
449 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
450 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
451 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
452 break;
453 case 2: /* Base Board Information */
454 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
455 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
456 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
457 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
458 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
459 break;
460 case 3: /* Chassis Information */
461 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
462 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
463 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
464 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
465 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
466 break;
467 case 9: /* System Slots */
468 dmi_save_system_slot(dm);
469 break;
470 case 10: /* Onboard Devices Information */
471 dmi_save_devices(dm);
472 break;
473 case 11: /* OEM Strings */
474 dmi_save_oem_strings_devices(dm);
475 break;
476 case 38: /* IPMI Device Information */
477 dmi_save_ipmi_device(dm);
478 break;
479 case 41: /* Onboard Devices Extended Information */
480 dmi_save_extended_devices(dm);
484 static int __init print_filtered(char *buf, size_t len, const char *info)
486 int c = 0;
487 const char *p;
489 if (!info)
490 return c;
492 for (p = info; *p; p++)
493 if (isprint(*p))
494 c += scnprintf(buf + c, len - c, "%c", *p);
495 else
496 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
497 return c;
500 static void __init dmi_format_ids(char *buf, size_t len)
502 int c = 0;
503 const char *board; /* Board Name is optional */
505 c += print_filtered(buf + c, len - c,
506 dmi_get_system_info(DMI_SYS_VENDOR));
507 c += scnprintf(buf + c, len - c, " ");
508 c += print_filtered(buf + c, len - c,
509 dmi_get_system_info(DMI_PRODUCT_NAME));
511 board = dmi_get_system_info(DMI_BOARD_NAME);
512 if (board) {
513 c += scnprintf(buf + c, len - c, "/");
514 c += print_filtered(buf + c, len - c, board);
516 c += scnprintf(buf + c, len - c, ", BIOS ");
517 c += print_filtered(buf + c, len - c,
518 dmi_get_system_info(DMI_BIOS_VERSION));
519 c += scnprintf(buf + c, len - c, " ");
520 c += print_filtered(buf + c, len - c,
521 dmi_get_system_info(DMI_BIOS_DATE));
525 * Check for DMI/SMBIOS headers in the system firmware image. Any
526 * SMBIOS header must start 16 bytes before the DMI header, so take a
527 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
528 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
529 * takes precedence) and return 0. Otherwise return 1.
531 static int __init dmi_present(const u8 *buf)
533 u32 smbios_ver;
535 if (memcmp(buf, "_SM_", 4) == 0 &&
536 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
537 smbios_ver = get_unaligned_be16(buf + 6);
538 smbios_entry_point_size = buf[5];
539 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
541 /* Some BIOS report weird SMBIOS version, fix that up */
542 switch (smbios_ver) {
543 case 0x021F:
544 case 0x0221:
545 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
546 smbios_ver & 0xFF, 3);
547 smbios_ver = 0x0203;
548 break;
549 case 0x0233:
550 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
551 smbios_ver = 0x0206;
552 break;
554 } else {
555 smbios_ver = 0;
558 buf += 16;
560 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
561 if (smbios_ver)
562 dmi_ver = smbios_ver;
563 else
564 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
565 dmi_ver <<= 8;
566 dmi_num = get_unaligned_le16(buf + 12);
567 dmi_len = get_unaligned_le16(buf + 6);
568 dmi_base = get_unaligned_le32(buf + 8);
570 if (dmi_walk_early(dmi_decode) == 0) {
571 if (smbios_ver) {
572 pr_info("SMBIOS %d.%d present.\n",
573 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
574 } else {
575 smbios_entry_point_size = 15;
576 memcpy(smbios_entry_point, buf,
577 smbios_entry_point_size);
578 pr_info("Legacy DMI %d.%d present.\n",
579 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
581 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
582 pr_info("DMI: %s\n", dmi_ids_string);
583 return 0;
587 return 1;
591 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
592 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
594 static int __init dmi_smbios3_present(const u8 *buf)
596 if (memcmp(buf, "_SM3_", 5) == 0 &&
597 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
598 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
599 dmi_num = 0; /* No longer specified */
600 dmi_len = get_unaligned_le32(buf + 12);
601 dmi_base = get_unaligned_le64(buf + 16);
602 smbios_entry_point_size = buf[6];
603 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
605 if (dmi_walk_early(dmi_decode) == 0) {
606 pr_info("SMBIOS %d.%d.%d present.\n",
607 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
608 dmi_ver & 0xFF);
609 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
610 pr_info("DMI: %s\n", dmi_ids_string);
611 return 0;
614 return 1;
617 void __init dmi_scan_machine(void)
619 char __iomem *p, *q;
620 char buf[32];
622 if (efi_enabled(EFI_CONFIG_TABLES)) {
624 * According to the DMTF SMBIOS reference spec v3.0.0, it is
625 * allowed to define both the 64-bit entry point (smbios3) and
626 * the 32-bit entry point (smbios), in which case they should
627 * either both point to the same SMBIOS structure table, or the
628 * table pointed to by the 64-bit entry point should contain a
629 * superset of the table contents pointed to by the 32-bit entry
630 * point (section 5.2)
631 * This implies that the 64-bit entry point should have
632 * precedence if it is defined and supported by the OS. If we
633 * have the 64-bit entry point, but fail to decode it, fall
634 * back to the legacy one (if available)
636 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
637 p = dmi_early_remap(efi.smbios3, 32);
638 if (p == NULL)
639 goto error;
640 memcpy_fromio(buf, p, 32);
641 dmi_early_unmap(p, 32);
643 if (!dmi_smbios3_present(buf)) {
644 dmi_available = 1;
645 return;
648 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
649 goto error;
651 /* This is called as a core_initcall() because it isn't
652 * needed during early boot. This also means we can
653 * iounmap the space when we're done with it.
655 p = dmi_early_remap(efi.smbios, 32);
656 if (p == NULL)
657 goto error;
658 memcpy_fromio(buf, p, 32);
659 dmi_early_unmap(p, 32);
661 if (!dmi_present(buf)) {
662 dmi_available = 1;
663 return;
665 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
666 p = dmi_early_remap(0xF0000, 0x10000);
667 if (p == NULL)
668 goto error;
671 * Same logic as above, look for a 64-bit entry point
672 * first, and if not found, fall back to 32-bit entry point.
674 memcpy_fromio(buf, p, 16);
675 for (q = p + 16; q < p + 0x10000; q += 16) {
676 memcpy_fromio(buf + 16, q, 16);
677 if (!dmi_smbios3_present(buf)) {
678 dmi_available = 1;
679 dmi_early_unmap(p, 0x10000);
680 return;
682 memcpy(buf, buf + 16, 16);
686 * Iterate over all possible DMI header addresses q.
687 * Maintain the 32 bytes around q in buf. On the
688 * first iteration, substitute zero for the
689 * out-of-range bytes so there is no chance of falsely
690 * detecting an SMBIOS header.
692 memset(buf, 0, 16);
693 for (q = p; q < p + 0x10000; q += 16) {
694 memcpy_fromio(buf + 16, q, 16);
695 if (!dmi_present(buf)) {
696 dmi_available = 1;
697 dmi_early_unmap(p, 0x10000);
698 return;
700 memcpy(buf, buf + 16, 16);
702 dmi_early_unmap(p, 0x10000);
704 error:
705 pr_info("DMI not present or invalid.\n");
708 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
709 struct bin_attribute *attr, char *buf,
710 loff_t pos, size_t count)
712 memcpy(buf, attr->private + pos, count);
713 return count;
716 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
717 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
719 static int __init dmi_init(void)
721 struct kobject *tables_kobj;
722 u8 *dmi_table;
723 int ret = -ENOMEM;
725 if (!dmi_available)
726 return 0;
729 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
730 * even after farther error, as it can be used by other modules like
731 * dmi-sysfs.
733 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
734 if (!dmi_kobj)
735 goto err;
737 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
738 if (!tables_kobj)
739 goto err;
741 dmi_table = dmi_remap(dmi_base, dmi_len);
742 if (!dmi_table)
743 goto err_tables;
745 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
746 bin_attr_smbios_entry_point.private = smbios_entry_point;
747 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
748 if (ret)
749 goto err_unmap;
751 bin_attr_DMI.size = dmi_len;
752 bin_attr_DMI.private = dmi_table;
753 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
754 if (!ret)
755 return 0;
757 sysfs_remove_bin_file(tables_kobj,
758 &bin_attr_smbios_entry_point);
759 err_unmap:
760 dmi_unmap(dmi_table);
761 err_tables:
762 kobject_del(tables_kobj);
763 kobject_put(tables_kobj);
764 err:
765 pr_err("dmi: Firmware registration failed.\n");
767 return ret;
769 subsys_initcall(dmi_init);
772 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
774 * Invoke dump_stack_set_arch_desc() with DMI system information so that
775 * DMI identifiers are printed out on task dumps. Arch boot code should
776 * call this function after dmi_scan_machine() if it wants to print out DMI
777 * identifiers on task dumps.
779 void __init dmi_set_dump_stack_arch_desc(void)
781 dump_stack_set_arch_desc("%s", dmi_ids_string);
785 * dmi_matches - check if dmi_system_id structure matches system DMI data
786 * @dmi: pointer to the dmi_system_id structure to check
788 static bool dmi_matches(const struct dmi_system_id *dmi)
790 int i;
792 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
793 int s = dmi->matches[i].slot;
794 if (s == DMI_NONE)
795 break;
796 if (s == DMI_OEM_STRING) {
797 /* DMI_OEM_STRING must be exact match */
798 const struct dmi_device *valid;
800 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
801 dmi->matches[i].substr, NULL);
802 if (valid)
803 continue;
804 } else if (dmi_ident[s]) {
805 if (dmi->matches[i].exact_match) {
806 if (!strcmp(dmi_ident[s],
807 dmi->matches[i].substr))
808 continue;
809 } else {
810 if (strstr(dmi_ident[s],
811 dmi->matches[i].substr))
812 continue;
816 /* No match */
817 return false;
819 return true;
823 * dmi_is_end_of_table - check for end-of-table marker
824 * @dmi: pointer to the dmi_system_id structure to check
826 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
828 return dmi->matches[0].slot == DMI_NONE;
832 * dmi_check_system - check system DMI data
833 * @list: array of dmi_system_id structures to match against
834 * All non-null elements of the list must match
835 * their slot's (field index's) data (i.e., each
836 * list string must be a substring of the specified
837 * DMI slot's string data) to be considered a
838 * successful match.
840 * Walk the blacklist table running matching functions until someone
841 * returns non zero or we hit the end. Callback function is called for
842 * each successful match. Returns the number of matches.
844 * dmi_scan_machine must be called before this function is called.
846 int dmi_check_system(const struct dmi_system_id *list)
848 int count = 0;
849 const struct dmi_system_id *d;
851 for (d = list; !dmi_is_end_of_table(d); d++)
852 if (dmi_matches(d)) {
853 count++;
854 if (d->callback && d->callback(d))
855 break;
858 return count;
860 EXPORT_SYMBOL(dmi_check_system);
863 * dmi_first_match - find dmi_system_id structure matching system DMI data
864 * @list: array of dmi_system_id structures to match against
865 * All non-null elements of the list must match
866 * their slot's (field index's) data (i.e., each
867 * list string must be a substring of the specified
868 * DMI slot's string data) to be considered a
869 * successful match.
871 * Walk the blacklist table until the first match is found. Return the
872 * pointer to the matching entry or NULL if there's no match.
874 * dmi_scan_machine must be called before this function is called.
876 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
878 const struct dmi_system_id *d;
880 for (d = list; !dmi_is_end_of_table(d); d++)
881 if (dmi_matches(d))
882 return d;
884 return NULL;
886 EXPORT_SYMBOL(dmi_first_match);
889 * dmi_get_system_info - return DMI data value
890 * @field: data index (see enum dmi_field)
892 * Returns one DMI data value, can be used to perform
893 * complex DMI data checks.
895 const char *dmi_get_system_info(int field)
897 return dmi_ident[field];
899 EXPORT_SYMBOL(dmi_get_system_info);
902 * dmi_name_in_serial - Check if string is in the DMI product serial information
903 * @str: string to check for
905 int dmi_name_in_serial(const char *str)
907 int f = DMI_PRODUCT_SERIAL;
908 if (dmi_ident[f] && strstr(dmi_ident[f], str))
909 return 1;
910 return 0;
914 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
915 * @str: Case sensitive Name
917 int dmi_name_in_vendors(const char *str)
919 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
920 int i;
921 for (i = 0; fields[i] != DMI_NONE; i++) {
922 int f = fields[i];
923 if (dmi_ident[f] && strstr(dmi_ident[f], str))
924 return 1;
926 return 0;
928 EXPORT_SYMBOL(dmi_name_in_vendors);
931 * dmi_find_device - find onboard device by type/name
932 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
933 * @name: device name string or %NULL to match all
934 * @from: previous device found in search, or %NULL for new search.
936 * Iterates through the list of known onboard devices. If a device is
937 * found with a matching @type and @name, a pointer to its device
938 * structure is returned. Otherwise, %NULL is returned.
939 * A new search is initiated by passing %NULL as the @from argument.
940 * If @from is not %NULL, searches continue from next device.
942 const struct dmi_device *dmi_find_device(int type, const char *name,
943 const struct dmi_device *from)
945 const struct list_head *head = from ? &from->list : &dmi_devices;
946 struct list_head *d;
948 for (d = head->next; d != &dmi_devices; d = d->next) {
949 const struct dmi_device *dev =
950 list_entry(d, struct dmi_device, list);
952 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
953 ((name == NULL) || (strcmp(dev->name, name) == 0)))
954 return dev;
957 return NULL;
959 EXPORT_SYMBOL(dmi_find_device);
962 * dmi_get_date - parse a DMI date
963 * @field: data index (see enum dmi_field)
964 * @yearp: optional out parameter for the year
965 * @monthp: optional out parameter for the month
966 * @dayp: optional out parameter for the day
968 * The date field is assumed to be in the form resembling
969 * [mm[/dd]]/yy[yy] and the result is stored in the out
970 * parameters any or all of which can be omitted.
972 * If the field doesn't exist, all out parameters are set to zero
973 * and false is returned. Otherwise, true is returned with any
974 * invalid part of date set to zero.
976 * On return, year, month and day are guaranteed to be in the
977 * range of [0,9999], [0,12] and [0,31] respectively.
979 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
981 int year = 0, month = 0, day = 0;
982 bool exists;
983 const char *s, *y;
984 char *e;
986 s = dmi_get_system_info(field);
987 exists = s;
988 if (!exists)
989 goto out;
992 * Determine year first. We assume the date string resembles
993 * mm/dd/yy[yy] but the original code extracted only the year
994 * from the end. Keep the behavior in the spirit of no
995 * surprises.
997 y = strrchr(s, '/');
998 if (!y)
999 goto out;
1001 y++;
1002 year = simple_strtoul(y, &e, 10);
1003 if (y != e && year < 100) { /* 2-digit year */
1004 year += 1900;
1005 if (year < 1996) /* no dates < spec 1.0 */
1006 year += 100;
1008 if (year > 9999) /* year should fit in %04d */
1009 year = 0;
1011 /* parse the mm and dd */
1012 month = simple_strtoul(s, &e, 10);
1013 if (s == e || *e != '/' || !month || month > 12) {
1014 month = 0;
1015 goto out;
1018 s = e + 1;
1019 day = simple_strtoul(s, &e, 10);
1020 if (s == y || s == e || *e != '/' || day > 31)
1021 day = 0;
1022 out:
1023 if (yearp)
1024 *yearp = year;
1025 if (monthp)
1026 *monthp = month;
1027 if (dayp)
1028 *dayp = day;
1029 return exists;
1031 EXPORT_SYMBOL(dmi_get_date);
1034 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1036 * Returns year on success, -ENXIO if DMI is not selected,
1037 * or a different negative error code if DMI field is not present
1038 * or not parseable.
1040 int dmi_get_bios_year(void)
1042 bool exists;
1043 int year;
1045 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1046 if (!exists)
1047 return -ENODATA;
1049 return year ? year : -ERANGE;
1051 EXPORT_SYMBOL(dmi_get_bios_year);
1054 * dmi_walk - Walk the DMI table and get called back for every record
1055 * @decode: Callback function
1056 * @private_data: Private data to be passed to the callback function
1058 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1059 * or a different negative error code if DMI walking fails.
1061 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1062 void *private_data)
1064 u8 *buf;
1066 if (!dmi_available)
1067 return -ENXIO;
1069 buf = dmi_remap(dmi_base, dmi_len);
1070 if (buf == NULL)
1071 return -ENOMEM;
1073 dmi_decode_table(buf, decode, private_data);
1075 dmi_unmap(buf);
1076 return 0;
1078 EXPORT_SYMBOL_GPL(dmi_walk);
1081 * dmi_match - compare a string to the dmi field (if exists)
1082 * @f: DMI field identifier
1083 * @str: string to compare the DMI field to
1085 * Returns true if the requested field equals to the str (including NULL).
1087 bool dmi_match(enum dmi_field f, const char *str)
1089 const char *info = dmi_get_system_info(f);
1091 if (info == NULL || str == NULL)
1092 return info == str;
1094 return !strcmp(info, str);
1096 EXPORT_SYMBOL_GPL(dmi_match);
1098 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1100 int n;
1102 if (dmi_memdev == NULL)
1103 return;
1105 for (n = 0; n < dmi_memdev_nr; n++) {
1106 if (handle == dmi_memdev[n].handle) {
1107 *bank = dmi_memdev[n].bank;
1108 *device = dmi_memdev[n].device;
1109 break;
1113 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1115 u64 dmi_memdev_size(u16 handle)
1117 int n;
1119 if (dmi_memdev) {
1120 for (n = 0; n < dmi_memdev_nr; n++) {
1121 if (handle == dmi_memdev[n].handle)
1122 return dmi_memdev[n].size;
1125 return ~0ull;
1127 EXPORT_SYMBOL_GPL(dmi_memdev_size);