Linux 4.19.133
[linux/fpc-iii.git] / drivers / firmware / efi / libstub / arm-stub.c
blob6c09644d620e052d01f640c8df84e8d16bb05440
1 /*
2 * EFI stub implementation that is shared by arm and arm64 architectures.
3 * This should be #included by the EFI stub implementation files.
5 * Copyright (C) 2013,2014 Linaro Limited
6 * Roy Franz <roy.franz@linaro.org
7 * Copyright (C) 2013 Red Hat, Inc.
8 * Mark Salter <msalter@redhat.com>
10 * This file is part of the Linux kernel, and is made available under the
11 * terms of the GNU General Public License version 2.
15 #include <linux/efi.h>
16 #include <linux/sort.h>
17 #include <asm/efi.h>
19 #include "efistub.h"
22 * This is the base address at which to start allocating virtual memory ranges
23 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
24 * any allocation we choose, and eliminate the risk of a conflict after kexec.
25 * The value chosen is the largest non-zero power of 2 suitable for this purpose
26 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
27 * be mapped efficiently.
28 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
29 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
30 * entire footprint of the UEFI runtime services memory regions)
32 #define EFI_RT_VIRTUAL_BASE SZ_512M
33 #define EFI_RT_VIRTUAL_SIZE SZ_512M
35 #ifdef CONFIG_ARM64
36 # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_64
37 #else
38 # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
39 #endif
41 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
43 void efi_char16_printk(efi_system_table_t *sys_table_arg,
44 efi_char16_t *str)
46 struct efi_simple_text_output_protocol *out;
48 out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
49 out->output_string(out, str);
52 static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
54 efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
55 efi_status_t status;
56 unsigned long size;
57 void **gop_handle = NULL;
58 struct screen_info *si = NULL;
60 size = 0;
61 status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
62 &gop_proto, NULL, &size, gop_handle);
63 if (status == EFI_BUFFER_TOO_SMALL) {
64 si = alloc_screen_info(sys_table_arg);
65 if (!si)
66 return NULL;
67 efi_setup_gop(sys_table_arg, si, &gop_proto, size);
69 return si;
73 * This function handles the architcture specific differences between arm and
74 * arm64 regarding where the kernel image must be loaded and any memory that
75 * must be reserved. On failure it is required to free all
76 * all allocations it has made.
78 efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
79 unsigned long *image_addr,
80 unsigned long *image_size,
81 unsigned long *reserve_addr,
82 unsigned long *reserve_size,
83 unsigned long dram_base,
84 efi_loaded_image_t *image);
86 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
87 * that is described in the PE/COFF header. Most of the code is the same
88 * for both archictectures, with the arch-specific code provided in the
89 * handle_kernel_image() function.
91 unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
92 unsigned long *image_addr)
94 efi_loaded_image_t *image;
95 efi_status_t status;
96 unsigned long image_size = 0;
97 unsigned long dram_base;
98 /* addr/point and size pairs for memory management*/
99 unsigned long initrd_addr;
100 u64 initrd_size = 0;
101 unsigned long fdt_addr = 0; /* Original DTB */
102 unsigned long fdt_size = 0;
103 char *cmdline_ptr = NULL;
104 int cmdline_size = 0;
105 unsigned long new_fdt_addr;
106 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
107 unsigned long reserve_addr = 0;
108 unsigned long reserve_size = 0;
109 enum efi_secureboot_mode secure_boot;
110 struct screen_info *si;
112 /* Check if we were booted by the EFI firmware */
113 if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
114 goto fail;
116 status = check_platform_features(sys_table);
117 if (status != EFI_SUCCESS)
118 goto fail;
121 * Get a handle to the loaded image protocol. This is used to get
122 * information about the running image, such as size and the command
123 * line.
125 status = sys_table->boottime->handle_protocol(handle,
126 &loaded_image_proto, (void *)&image);
127 if (status != EFI_SUCCESS) {
128 pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
129 goto fail;
132 dram_base = get_dram_base(sys_table);
133 if (dram_base == EFI_ERROR) {
134 pr_efi_err(sys_table, "Failed to find DRAM base\n");
135 goto fail;
139 * Get the command line from EFI, using the LOADED_IMAGE
140 * protocol. We are going to copy the command line into the
141 * device tree, so this can be allocated anywhere.
143 cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
144 if (!cmdline_ptr) {
145 pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
146 goto fail;
149 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
150 IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
151 cmdline_size == 0)
152 efi_parse_options(CONFIG_CMDLINE);
154 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
155 efi_parse_options(cmdline_ptr);
157 pr_efi(sys_table, "Booting Linux Kernel...\n");
159 si = setup_graphics(sys_table);
161 status = handle_kernel_image(sys_table, image_addr, &image_size,
162 &reserve_addr,
163 &reserve_size,
164 dram_base, image);
165 if (status != EFI_SUCCESS) {
166 pr_efi_err(sys_table, "Failed to relocate kernel\n");
167 goto fail_free_cmdline;
170 /* Ask the firmware to clear memory on unclean shutdown */
171 efi_enable_reset_attack_mitigation(sys_table);
173 secure_boot = efi_get_secureboot(sys_table);
176 * Unauthenticated device tree data is a security hazard, so ignore
177 * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
178 * boot is enabled if we can't determine its state.
180 if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
181 secure_boot != efi_secureboot_mode_disabled) {
182 if (strstr(cmdline_ptr, "dtb="))
183 pr_efi(sys_table, "Ignoring DTB from command line.\n");
184 } else {
185 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
186 "dtb=",
187 ~0UL, &fdt_addr, &fdt_size);
189 if (status != EFI_SUCCESS) {
190 pr_efi_err(sys_table, "Failed to load device tree!\n");
191 goto fail_free_image;
195 if (fdt_addr) {
196 pr_efi(sys_table, "Using DTB from command line\n");
197 } else {
198 /* Look for a device tree configuration table entry. */
199 fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
200 if (fdt_addr)
201 pr_efi(sys_table, "Using DTB from configuration table\n");
204 if (!fdt_addr)
205 pr_efi(sys_table, "Generating empty DTB\n");
207 status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
208 efi_get_max_initrd_addr(dram_base,
209 *image_addr),
210 (unsigned long *)&initrd_addr,
211 (unsigned long *)&initrd_size);
212 if (status != EFI_SUCCESS)
213 pr_efi_err(sys_table, "Failed initrd from command line!\n");
215 efi_random_get_seed(sys_table);
217 /* hibernation expects the runtime regions to stay in the same place */
218 if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
220 * Randomize the base of the UEFI runtime services region.
221 * Preserve the 2 MB alignment of the region by taking a
222 * shift of 21 bit positions into account when scaling
223 * the headroom value using a 32-bit random value.
225 static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
226 EFI_RT_VIRTUAL_BASE -
227 EFI_RT_VIRTUAL_SIZE;
228 u32 rnd;
230 status = efi_get_random_bytes(sys_table, sizeof(rnd),
231 (u8 *)&rnd);
232 if (status == EFI_SUCCESS) {
233 virtmap_base = EFI_RT_VIRTUAL_BASE +
234 (((headroom >> 21) * rnd) >> (32 - 21));
238 new_fdt_addr = fdt_addr;
239 status = allocate_new_fdt_and_exit_boot(sys_table, handle,
240 &new_fdt_addr, efi_get_max_fdt_addr(dram_base),
241 initrd_addr, initrd_size, cmdline_ptr,
242 fdt_addr, fdt_size);
245 * If all went well, we need to return the FDT address to the
246 * calling function so it can be passed to kernel as part of
247 * the kernel boot protocol.
249 if (status == EFI_SUCCESS)
250 return new_fdt_addr;
252 pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
254 efi_free(sys_table, initrd_size, initrd_addr);
255 efi_free(sys_table, fdt_size, fdt_addr);
257 fail_free_image:
258 efi_free(sys_table, image_size, *image_addr);
259 efi_free(sys_table, reserve_size, reserve_addr);
260 fail_free_cmdline:
261 free_screen_info(sys_table, si);
262 efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
263 fail:
264 return EFI_ERROR;
267 static int cmp_mem_desc(const void *l, const void *r)
269 const efi_memory_desc_t *left = l, *right = r;
271 return (left->phys_addr > right->phys_addr) ? 1 : -1;
275 * Returns whether region @left ends exactly where region @right starts,
276 * or false if either argument is NULL.
278 static bool regions_are_adjacent(efi_memory_desc_t *left,
279 efi_memory_desc_t *right)
281 u64 left_end;
283 if (left == NULL || right == NULL)
284 return false;
286 left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
288 return left_end == right->phys_addr;
292 * Returns whether region @left and region @right have compatible memory type
293 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
295 static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
296 efi_memory_desc_t *right)
298 static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
299 EFI_MEMORY_WC | EFI_MEMORY_UC |
300 EFI_MEMORY_RUNTIME;
302 return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
306 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
308 * This function populates the virt_addr fields of all memory region descriptors
309 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
310 * are also copied to @runtime_map, and their total count is returned in @count.
312 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
313 unsigned long desc_size, efi_memory_desc_t *runtime_map,
314 int *count)
316 u64 efi_virt_base = virtmap_base;
317 efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
318 int l;
321 * To work around potential issues with the Properties Table feature
322 * introduced in UEFI 2.5, which may split PE/COFF executable images
323 * in memory into several RuntimeServicesCode and RuntimeServicesData
324 * regions, we need to preserve the relative offsets between adjacent
325 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
326 * The easiest way to find adjacent regions is to sort the memory map
327 * before traversing it.
329 if (IS_ENABLED(CONFIG_ARM64))
330 sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
331 NULL);
333 for (l = 0; l < map_size; l += desc_size, prev = in) {
334 u64 paddr, size;
336 in = (void *)memory_map + l;
337 if (!(in->attribute & EFI_MEMORY_RUNTIME))
338 continue;
340 paddr = in->phys_addr;
341 size = in->num_pages * EFI_PAGE_SIZE;
343 if (novamap()) {
344 in->virt_addr = in->phys_addr;
345 continue;
349 * Make the mapping compatible with 64k pages: this allows
350 * a 4k page size kernel to kexec a 64k page size kernel and
351 * vice versa.
353 if ((IS_ENABLED(CONFIG_ARM64) &&
354 !regions_are_adjacent(prev, in)) ||
355 !regions_have_compatible_memory_type_attrs(prev, in)) {
357 paddr = round_down(in->phys_addr, SZ_64K);
358 size += in->phys_addr - paddr;
361 * Avoid wasting memory on PTEs by choosing a virtual
362 * base that is compatible with section mappings if this
363 * region has the appropriate size and physical
364 * alignment. (Sections are 2 MB on 4k granule kernels)
366 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
367 efi_virt_base = round_up(efi_virt_base, SZ_2M);
368 else
369 efi_virt_base = round_up(efi_virt_base, SZ_64K);
372 in->virt_addr = efi_virt_base + in->phys_addr - paddr;
373 efi_virt_base += size;
375 memcpy(out, in, desc_size);
376 out = (void *)out + desc_size;
377 ++*count;