Linux 4.19.133
[linux/fpc-iii.git] / drivers / firmware / efi / libstub / arm32-stub.c
blobbecbda44591355bf5c43c4ead2ccc54cc64a2adc
1 /*
2 * Copyright (C) 2013 Linaro Ltd; <roy.franz@linaro.org>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 */
9 #include <linux/efi.h>
10 #include <asm/efi.h>
12 #include "efistub.h"
14 efi_status_t check_platform_features(efi_system_table_t *sys_table_arg)
16 int block;
18 /* non-LPAE kernels can run anywhere */
19 if (!IS_ENABLED(CONFIG_ARM_LPAE))
20 return EFI_SUCCESS;
22 /* LPAE kernels need compatible hardware */
23 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
24 if (block < 5) {
25 pr_efi_err(sys_table_arg, "This LPAE kernel is not supported by your CPU\n");
26 return EFI_UNSUPPORTED;
28 return EFI_SUCCESS;
31 static efi_guid_t screen_info_guid = LINUX_EFI_ARM_SCREEN_INFO_TABLE_GUID;
33 struct screen_info *alloc_screen_info(efi_system_table_t *sys_table_arg)
35 struct screen_info *si;
36 efi_status_t status;
39 * Unlike on arm64, where we can directly fill out the screen_info
40 * structure from the stub, we need to allocate a buffer to hold
41 * its contents while we hand over to the kernel proper from the
42 * decompressor.
44 status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
45 sizeof(*si), (void **)&si);
47 if (status != EFI_SUCCESS)
48 return NULL;
50 status = efi_call_early(install_configuration_table,
51 &screen_info_guid, si);
52 if (status == EFI_SUCCESS)
53 return si;
55 efi_call_early(free_pool, si);
56 return NULL;
59 void free_screen_info(efi_system_table_t *sys_table_arg, struct screen_info *si)
61 if (!si)
62 return;
64 efi_call_early(install_configuration_table, &screen_info_guid, NULL);
65 efi_call_early(free_pool, si);
68 static efi_status_t reserve_kernel_base(efi_system_table_t *sys_table_arg,
69 unsigned long dram_base,
70 unsigned long *reserve_addr,
71 unsigned long *reserve_size)
73 efi_physical_addr_t alloc_addr;
74 efi_memory_desc_t *memory_map;
75 unsigned long nr_pages, map_size, desc_size, buff_size;
76 efi_status_t status;
77 unsigned long l;
79 struct efi_boot_memmap map = {
80 .map = &memory_map,
81 .map_size = &map_size,
82 .desc_size = &desc_size,
83 .desc_ver = NULL,
84 .key_ptr = NULL,
85 .buff_size = &buff_size,
89 * Reserve memory for the uncompressed kernel image. This is
90 * all that prevents any future allocations from conflicting
91 * with the kernel. Since we can't tell from the compressed
92 * image how much DRAM the kernel actually uses (due to BSS
93 * size uncertainty) we allocate the maximum possible size.
94 * Do this very early, as prints can cause memory allocations
95 * that may conflict with this.
97 alloc_addr = dram_base + MAX_UNCOMP_KERNEL_SIZE;
98 nr_pages = MAX_UNCOMP_KERNEL_SIZE / EFI_PAGE_SIZE;
99 status = efi_call_early(allocate_pages, EFI_ALLOCATE_MAX_ADDRESS,
100 EFI_BOOT_SERVICES_DATA, nr_pages, &alloc_addr);
101 if (status == EFI_SUCCESS) {
102 if (alloc_addr == dram_base) {
103 *reserve_addr = alloc_addr;
104 *reserve_size = MAX_UNCOMP_KERNEL_SIZE;
105 return EFI_SUCCESS;
108 * If we end up here, the allocation succeeded but starts below
109 * dram_base. This can only occur if the real base of DRAM is
110 * not a multiple of 128 MB, in which case dram_base will have
111 * been rounded up. Since this implies that a part of the region
112 * was already occupied, we need to fall through to the code
113 * below to ensure that the existing allocations don't conflict.
114 * For this reason, we use EFI_BOOT_SERVICES_DATA above and not
115 * EFI_LOADER_DATA, which we wouldn't able to distinguish from
116 * allocations that we want to disallow.
121 * If the allocation above failed, we may still be able to proceed:
122 * if the only allocations in the region are of types that will be
123 * released to the OS after ExitBootServices(), the decompressor can
124 * safely overwrite them.
126 status = efi_get_memory_map(sys_table_arg, &map);
127 if (status != EFI_SUCCESS) {
128 pr_efi_err(sys_table_arg,
129 "reserve_kernel_base(): Unable to retrieve memory map.\n");
130 return status;
133 for (l = 0; l < map_size; l += desc_size) {
134 efi_memory_desc_t *desc;
135 u64 start, end;
137 desc = (void *)memory_map + l;
138 start = desc->phys_addr;
139 end = start + desc->num_pages * EFI_PAGE_SIZE;
141 /* Skip if entry does not intersect with region */
142 if (start >= dram_base + MAX_UNCOMP_KERNEL_SIZE ||
143 end <= dram_base)
144 continue;
146 switch (desc->type) {
147 case EFI_BOOT_SERVICES_CODE:
148 case EFI_BOOT_SERVICES_DATA:
149 /* Ignore types that are released to the OS anyway */
150 continue;
152 case EFI_CONVENTIONAL_MEMORY:
154 * Reserve the intersection between this entry and the
155 * region.
157 start = max(start, (u64)dram_base);
158 end = min(end, (u64)dram_base + MAX_UNCOMP_KERNEL_SIZE);
160 status = efi_call_early(allocate_pages,
161 EFI_ALLOCATE_ADDRESS,
162 EFI_LOADER_DATA,
163 (end - start) / EFI_PAGE_SIZE,
164 &start);
165 if (status != EFI_SUCCESS) {
166 pr_efi_err(sys_table_arg,
167 "reserve_kernel_base(): alloc failed.\n");
168 goto out;
170 break;
172 case EFI_LOADER_CODE:
173 case EFI_LOADER_DATA:
175 * These regions may be released and reallocated for
176 * another purpose (including EFI_RUNTIME_SERVICE_DATA)
177 * at any time during the execution of the OS loader,
178 * so we cannot consider them as safe.
180 default:
182 * Treat any other allocation in the region as unsafe */
183 status = EFI_OUT_OF_RESOURCES;
184 goto out;
188 status = EFI_SUCCESS;
189 out:
190 efi_call_early(free_pool, memory_map);
191 return status;
194 efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
195 unsigned long *image_addr,
196 unsigned long *image_size,
197 unsigned long *reserve_addr,
198 unsigned long *reserve_size,
199 unsigned long dram_base,
200 efi_loaded_image_t *image)
202 efi_status_t status;
205 * Verify that the DRAM base address is compatible with the ARM
206 * boot protocol, which determines the base of DRAM by masking
207 * off the low 27 bits of the address at which the zImage is
208 * loaded. These assumptions are made by the decompressor,
209 * before any memory map is available.
211 dram_base = round_up(dram_base, SZ_128M);
213 status = reserve_kernel_base(sys_table, dram_base, reserve_addr,
214 reserve_size);
215 if (status != EFI_SUCCESS) {
216 pr_efi_err(sys_table, "Unable to allocate memory for uncompressed kernel.\n");
217 return status;
221 * Relocate the zImage, so that it appears in the lowest 128 MB
222 * memory window.
224 *image_size = image->image_size;
225 status = efi_relocate_kernel(sys_table, image_addr, *image_size,
226 *image_size,
227 dram_base + MAX_UNCOMP_KERNEL_SIZE, 0);
228 if (status != EFI_SUCCESS) {
229 pr_efi_err(sys_table, "Failed to relocate kernel.\n");
230 efi_free(sys_table, *reserve_size, *reserve_addr);
231 *reserve_size = 0;
232 return status;
236 * Check to see if we were able to allocate memory low enough
237 * in memory. The kernel determines the base of DRAM from the
238 * address at which the zImage is loaded.
240 if (*image_addr + *image_size > dram_base + ZIMAGE_OFFSET_LIMIT) {
241 pr_efi_err(sys_table, "Failed to relocate kernel, no low memory available.\n");
242 efi_free(sys_table, *reserve_size, *reserve_addr);
243 *reserve_size = 0;
244 efi_free(sys_table, *image_size, *image_addr);
245 *image_size = 0;
246 return EFI_LOAD_ERROR;
248 return EFI_SUCCESS;