Linux 4.19.133
[linux/fpc-iii.git] / drivers / gpu / drm / amd / powerplay / smumgr / fiji_smumgr.c
blob40df5c2706ccedf3554c5410797a0c23c0c35360
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
24 #include "pp_debug.h"
25 #include "smumgr.h"
26 #include "smu7_dyn_defaults.h"
27 #include "smu73.h"
28 #include "smu_ucode_xfer_vi.h"
29 #include "fiji_smumgr.h"
30 #include "fiji_ppsmc.h"
31 #include "smu73_discrete.h"
32 #include "ppatomctrl.h"
33 #include "smu/smu_7_1_3_d.h"
34 #include "smu/smu_7_1_3_sh_mask.h"
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 #include "oss/oss_3_0_d.h"
38 #include "gca/gfx_8_0_d.h"
39 #include "bif/bif_5_0_d.h"
40 #include "bif/bif_5_0_sh_mask.h"
41 #include "dce/dce_10_0_d.h"
42 #include "dce/dce_10_0_sh_mask.h"
43 #include "hardwaremanager.h"
44 #include "cgs_common.h"
45 #include "atombios.h"
46 #include "pppcielanes.h"
47 #include "hwmgr.h"
48 #include "smu7_hwmgr.h"
51 #define AVFS_EN_MSB 1568
52 #define AVFS_EN_LSB 1568
54 #define FIJI_SMC_SIZE 0x20000
56 #define POWERTUNE_DEFAULT_SET_MAX 1
57 #define VDDC_VDDCI_DELTA 300
58 #define MC_CG_ARB_FREQ_F1 0x0b
60 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
61 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
63 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
64 {600, 1050, 3, 0}, {600, 1050, 6, 1} };
66 /* [FF, SS] type, [] 4 voltage ranges, and
67 * [Floor Freq, Boundary Freq, VID min , VID max]
69 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
70 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
71 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
73 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
74 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
76 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
77 {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
79 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
80 /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
81 {1, 0xF, 0xFD,
82 /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
83 0x19, 5, 45}
86 static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
87 /* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */
88 /* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
89 { 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
90 { 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
91 { 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
92 { 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
93 { 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
94 { 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
95 { 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 },
96 { 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }
99 static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
101 int result = 0;
103 /* Wait for smc boot up */
104 /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
105 RCU_UC_EVENTS, boot_seq_done, 0); */
107 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
108 SMC_SYSCON_RESET_CNTL, rst_reg, 1);
110 result = smu7_upload_smu_firmware_image(hwmgr);
111 if (result)
112 return result;
114 /* Clear status */
115 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
116 ixSMU_STATUS, 0);
118 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
121 /* De-assert reset */
122 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
125 /* Wait for ROM firmware to initialize interrupt hendler */
126 /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
127 SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
129 /* Set SMU Auto Start */
130 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
131 SMU_INPUT_DATA, AUTO_START, 1);
133 /* Clear firmware interrupt enable flag */
134 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
135 ixFIRMWARE_FLAGS, 0);
137 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
138 INTERRUPTS_ENABLED, 1);
140 cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, 0x20000);
141 cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
142 PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
144 /* Wait for done bit to be set */
145 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
146 SMU_STATUS, SMU_DONE, 0);
148 /* Check pass/failed indicator */
149 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
150 SMU_STATUS, SMU_PASS) != 1) {
151 PP_ASSERT_WITH_CODE(false,
152 "SMU Firmware start failed!", return -1);
155 /* Wait for firmware to initialize */
156 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
157 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
159 return result;
162 static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
164 int result = 0;
166 /* wait for smc boot up */
167 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
168 RCU_UC_EVENTS, boot_seq_done, 0);
170 /* Clear firmware interrupt enable flag */
171 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
172 ixFIRMWARE_FLAGS, 0);
174 /* Assert reset */
175 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
176 SMC_SYSCON_RESET_CNTL, rst_reg, 1);
178 result = smu7_upload_smu_firmware_image(hwmgr);
179 if (result)
180 return result;
182 /* Set smc instruct start point at 0x0 */
183 smu7_program_jump_on_start(hwmgr);
185 /* Enable clock */
186 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
187 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
189 /* De-assert reset */
190 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
191 SMC_SYSCON_RESET_CNTL, rst_reg, 0);
193 /* Wait for firmware to initialize */
194 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
195 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
197 return result;
200 static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
202 int result = 0;
203 struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
205 if (0 != smu_data->avfs_btc_param) {
206 if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr,
207 PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param)) {
208 pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
209 result = -EINVAL;
212 /* Soft-Reset to reset the engine before loading uCode */
213 /* halt */
214 cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
215 /* reset everything */
216 cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
217 /* clear reset */
218 cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
220 return result;
223 static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
225 int32_t vr_config;
226 uint32_t table_start;
227 uint32_t level_addr, vr_config_addr;
228 uint32_t level_size = sizeof(avfs_graphics_level);
230 PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
231 SMU7_FIRMWARE_HEADER_LOCATION +
232 offsetof(SMU73_Firmware_Header, DpmTable),
233 &table_start, 0x40000),
234 "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
235 "communicate starting address of DPM table",
236 return -1;);
238 /* Default value for vr_config =
239 * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
240 vr_config = 0x01000500; /* Real value:0x50001 */
242 vr_config_addr = table_start +
243 offsetof(SMU73_Discrete_DpmTable, VRConfig);
245 PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
246 (uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
247 "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
248 "vr_config value over to SMC",
249 return -1;);
251 level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
253 PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
254 (uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
255 "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
256 return -1;);
258 return 0;
261 static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
263 if (!hwmgr->avfs_supported)
264 return 0;
266 PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
267 "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
268 " table over to SMU",
269 return -EINVAL);
270 PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
271 "[AVFS][fiji_avfs_event_mgr] Could not setup "
272 "Pwr Virus for AVFS ",
273 return -EINVAL);
274 PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
275 "[AVFS][fiji_avfs_event_mgr] Failure at "
276 "fiji_start_avfs_btc. AVFS Disabled",
277 return -EINVAL);
279 return 0;
282 static int fiji_start_smu(struct pp_hwmgr *hwmgr)
284 int result = 0;
285 struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
287 /* Only start SMC if SMC RAM is not running */
288 if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
289 /* Check if SMU is running in protected mode */
290 if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
291 CGS_IND_REG__SMC,
292 SMU_FIRMWARE, SMU_MODE)) {
293 result = fiji_start_smu_in_non_protection_mode(hwmgr);
294 if (result)
295 return result;
296 } else {
297 result = fiji_start_smu_in_protection_mode(hwmgr);
298 if (result)
299 return result;
301 if (fiji_avfs_event_mgr(hwmgr))
302 hwmgr->avfs_supported = false;
305 /* To initialize all clock gating before RLC loaded and running.*/
306 amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
307 AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_GATE);
308 amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
309 AMD_IP_BLOCK_TYPE_GMC, AMD_CG_STATE_GATE);
310 amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
311 AMD_IP_BLOCK_TYPE_SDMA, AMD_CG_STATE_GATE);
312 amdgpu_device_ip_set_clockgating_state(hwmgr->adev,
313 AMD_IP_BLOCK_TYPE_COMMON, AMD_CG_STATE_GATE);
315 /* Setup SoftRegsStart here for register lookup in case
316 * DummyBackEnd is used and ProcessFirmwareHeader is not executed
318 smu7_read_smc_sram_dword(hwmgr,
319 SMU7_FIRMWARE_HEADER_LOCATION +
320 offsetof(SMU73_Firmware_Header, SoftRegisters),
321 &(priv->smu7_data.soft_regs_start), 0x40000);
323 result = smu7_request_smu_load_fw(hwmgr);
325 return result;
328 static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
331 uint32_t efuse = 0;
332 uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1;
334 if (!hwmgr->not_vf)
335 return false;
337 if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
338 mask, &efuse)) {
339 if (efuse)
340 return true;
342 return false;
345 static int fiji_smu_init(struct pp_hwmgr *hwmgr)
347 struct fiji_smumgr *fiji_priv = NULL;
349 fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
351 if (fiji_priv == NULL)
352 return -ENOMEM;
354 hwmgr->smu_backend = fiji_priv;
356 if (smu7_init(hwmgr)) {
357 kfree(fiji_priv);
358 return -EINVAL;
361 return 0;
364 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
365 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
366 uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
368 uint32_t i;
369 uint16_t vddci;
370 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
371 *voltage = *mvdd = 0;
374 /* clock - voltage dependency table is empty table */
375 if (dep_table->count == 0)
376 return -EINVAL;
378 for (i = 0; i < dep_table->count; i++) {
379 /* find first sclk bigger than request */
380 if (dep_table->entries[i].clk >= clock) {
381 *voltage |= (dep_table->entries[i].vddc *
382 VOLTAGE_SCALE) << VDDC_SHIFT;
383 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
384 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
385 VOLTAGE_SCALE) << VDDCI_SHIFT;
386 else if (dep_table->entries[i].vddci)
387 *voltage |= (dep_table->entries[i].vddci *
388 VOLTAGE_SCALE) << VDDCI_SHIFT;
389 else {
390 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
391 (dep_table->entries[i].vddc -
392 VDDC_VDDCI_DELTA));
393 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
396 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
397 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
398 VOLTAGE_SCALE;
399 else if (dep_table->entries[i].mvdd)
400 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
401 VOLTAGE_SCALE;
403 *voltage |= 1 << PHASES_SHIFT;
404 return 0;
408 /* sclk is bigger than max sclk in the dependence table */
409 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
411 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
412 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
413 VOLTAGE_SCALE) << VDDCI_SHIFT;
414 else if (dep_table->entries[i-1].vddci) {
415 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
416 (dep_table->entries[i].vddc -
417 VDDC_VDDCI_DELTA));
418 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
421 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
422 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
423 else if (dep_table->entries[i].mvdd)
424 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
426 return 0;
430 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
432 uint32_t tmp;
433 tmp = raw_setting * 4096 / 100;
434 return (uint16_t)tmp;
437 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
439 switch (line) {
440 case SMU7_I2CLineID_DDC1:
441 *scl = SMU7_I2C_DDC1CLK;
442 *sda = SMU7_I2C_DDC1DATA;
443 break;
444 case SMU7_I2CLineID_DDC2:
445 *scl = SMU7_I2C_DDC2CLK;
446 *sda = SMU7_I2C_DDC2DATA;
447 break;
448 case SMU7_I2CLineID_DDC3:
449 *scl = SMU7_I2C_DDC3CLK;
450 *sda = SMU7_I2C_DDC3DATA;
451 break;
452 case SMU7_I2CLineID_DDC4:
453 *scl = SMU7_I2C_DDC4CLK;
454 *sda = SMU7_I2C_DDC4DATA;
455 break;
456 case SMU7_I2CLineID_DDC5:
457 *scl = SMU7_I2C_DDC5CLK;
458 *sda = SMU7_I2C_DDC5DATA;
459 break;
460 case SMU7_I2CLineID_DDC6:
461 *scl = SMU7_I2C_DDC6CLK;
462 *sda = SMU7_I2C_DDC6DATA;
463 break;
464 case SMU7_I2CLineID_SCLSDA:
465 *scl = SMU7_I2C_SCL;
466 *sda = SMU7_I2C_SDA;
467 break;
468 case SMU7_I2CLineID_DDCVGA:
469 *scl = SMU7_I2C_DDCVGACLK;
470 *sda = SMU7_I2C_DDCVGADATA;
471 break;
472 default:
473 *scl = 0;
474 *sda = 0;
475 break;
479 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
481 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
482 struct phm_ppt_v1_information *table_info =
483 (struct phm_ppt_v1_information *)(hwmgr->pptable);
485 if (table_info &&
486 table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
487 table_info->cac_dtp_table->usPowerTuneDataSetID)
488 smu_data->power_tune_defaults =
489 &fiji_power_tune_data_set_array
490 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
491 else
492 smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
496 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
499 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
500 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
502 SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
504 struct phm_ppt_v1_information *table_info =
505 (struct phm_ppt_v1_information *)(hwmgr->pptable);
506 struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
507 struct pp_advance_fan_control_parameters *fan_table =
508 &hwmgr->thermal_controller.advanceFanControlParameters;
509 uint8_t uc_scl, uc_sda;
511 /* TDP number of fraction bits are changed from 8 to 7 for Fiji
512 * as requested by SMC team
514 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
515 (uint16_t)(cac_dtp_table->usTDP * 128));
516 dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
517 (uint16_t)(cac_dtp_table->usTDP * 128));
519 PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
520 "Target Operating Temp is out of Range!",
523 dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
524 dpm_table->GpuTjHyst = 8;
526 dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
528 /* The following are for new Fiji Multi-input fan/thermal control */
529 dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
530 cac_dtp_table->usTargetOperatingTemp * 256);
531 dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
532 cac_dtp_table->usTemperatureLimitHotspot * 256);
533 dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
534 cac_dtp_table->usTemperatureLimitLiquid1 * 256);
535 dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
536 cac_dtp_table->usTemperatureLimitLiquid2 * 256);
537 dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
538 cac_dtp_table->usTemperatureLimitVrVddc * 256);
539 dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
540 cac_dtp_table->usTemperatureLimitVrMvdd * 256);
541 dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
542 cac_dtp_table->usTemperatureLimitPlx * 256);
544 dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
545 scale_fan_gain_settings(fan_table->usFanGainEdge));
546 dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
547 scale_fan_gain_settings(fan_table->usFanGainHotspot));
548 dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
549 scale_fan_gain_settings(fan_table->usFanGainLiquid));
550 dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
551 scale_fan_gain_settings(fan_table->usFanGainVrVddc));
552 dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
553 scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
554 dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
555 scale_fan_gain_settings(fan_table->usFanGainPlx));
556 dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
557 scale_fan_gain_settings(fan_table->usFanGainHbm));
559 dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
560 dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
561 dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
562 dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
564 get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
565 dpm_table->Liquid_I2C_LineSCL = uc_scl;
566 dpm_table->Liquid_I2C_LineSDA = uc_sda;
568 get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
569 dpm_table->Vr_I2C_LineSCL = uc_scl;
570 dpm_table->Vr_I2C_LineSDA = uc_sda;
572 get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
573 dpm_table->Plx_I2C_LineSCL = uc_scl;
574 dpm_table->Plx_I2C_LineSDA = uc_sda;
576 return 0;
580 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
582 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
583 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
585 smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
586 smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
587 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
588 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
590 return 0;
594 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
596 uint16_t tdc_limit;
597 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
598 struct phm_ppt_v1_information *table_info =
599 (struct phm_ppt_v1_information *)(hwmgr->pptable);
600 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
602 /* TDC number of fraction bits are changed from 8 to 7
603 * for Fiji as requested by SMC team
605 tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
606 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
607 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
608 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
609 defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
610 smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
612 return 0;
615 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
617 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
618 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
619 uint32_t temp;
621 if (smu7_read_smc_sram_dword(hwmgr,
622 fuse_table_offset +
623 offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
624 (uint32_t *)&temp, SMC_RAM_END))
625 PP_ASSERT_WITH_CODE(false,
626 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
627 return -EINVAL);
628 else {
629 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
630 smu_data->power_tune_table.LPMLTemperatureMin =
631 (uint8_t)((temp >> 16) & 0xff);
632 smu_data->power_tune_table.LPMLTemperatureMax =
633 (uint8_t)((temp >> 8) & 0xff);
634 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
636 return 0;
639 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
641 int i;
642 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
644 /* Currently not used. Set all to zero. */
645 for (i = 0; i < 16; i++)
646 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
648 return 0;
651 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
653 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
655 if ((hwmgr->thermal_controller.advanceFanControlParameters.
656 usFanOutputSensitivity & (1 << 15)) ||
657 0 == hwmgr->thermal_controller.advanceFanControlParameters.
658 usFanOutputSensitivity)
659 hwmgr->thermal_controller.advanceFanControlParameters.
660 usFanOutputSensitivity = hwmgr->thermal_controller.
661 advanceFanControlParameters.usDefaultFanOutputSensitivity;
663 smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
664 PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
665 advanceFanControlParameters.usFanOutputSensitivity);
666 return 0;
669 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
671 int i;
672 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
674 /* Currently not used. Set all to zero. */
675 for (i = 0; i < 16; i++)
676 smu_data->power_tune_table.GnbLPML[i] = 0;
678 return 0;
681 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
683 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
684 struct phm_ppt_v1_information *table_info =
685 (struct phm_ppt_v1_information *)(hwmgr->pptable);
686 uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
687 uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
688 struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
690 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
691 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
693 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
694 CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
695 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
696 CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
698 return 0;
701 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
703 uint32_t pm_fuse_table_offset;
704 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
706 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
707 PHM_PlatformCaps_PowerContainment)) {
708 if (smu7_read_smc_sram_dword(hwmgr,
709 SMU7_FIRMWARE_HEADER_LOCATION +
710 offsetof(SMU73_Firmware_Header, PmFuseTable),
711 &pm_fuse_table_offset, SMC_RAM_END))
712 PP_ASSERT_WITH_CODE(false,
713 "Attempt to get pm_fuse_table_offset Failed!",
714 return -EINVAL);
716 /* DW6 */
717 if (fiji_populate_svi_load_line(hwmgr))
718 PP_ASSERT_WITH_CODE(false,
719 "Attempt to populate SviLoadLine Failed!",
720 return -EINVAL);
721 /* DW7 */
722 if (fiji_populate_tdc_limit(hwmgr))
723 PP_ASSERT_WITH_CODE(false,
724 "Attempt to populate TDCLimit Failed!", return -EINVAL);
725 /* DW8 */
726 if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
727 PP_ASSERT_WITH_CODE(false,
728 "Attempt to populate TdcWaterfallCtl, "
729 "LPMLTemperature Min and Max Failed!",
730 return -EINVAL);
732 /* DW9-DW12 */
733 if (0 != fiji_populate_temperature_scaler(hwmgr))
734 PP_ASSERT_WITH_CODE(false,
735 "Attempt to populate LPMLTemperatureScaler Failed!",
736 return -EINVAL);
738 /* DW13-DW14 */
739 if (fiji_populate_fuzzy_fan(hwmgr))
740 PP_ASSERT_WITH_CODE(false,
741 "Attempt to populate Fuzzy Fan Control parameters Failed!",
742 return -EINVAL);
744 /* DW15-DW18 */
745 if (fiji_populate_gnb_lpml(hwmgr))
746 PP_ASSERT_WITH_CODE(false,
747 "Attempt to populate GnbLPML Failed!",
748 return -EINVAL);
750 /* DW20 */
751 if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
752 PP_ASSERT_WITH_CODE(false,
753 "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
754 "Sidd Failed!", return -EINVAL);
756 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
757 (uint8_t *)&smu_data->power_tune_table,
758 sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
759 PP_ASSERT_WITH_CODE(false,
760 "Attempt to download PmFuseTable Failed!",
761 return -EINVAL);
763 return 0;
766 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
767 struct SMU73_Discrete_DpmTable *table)
769 uint32_t count;
770 uint8_t index;
771 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
772 struct phm_ppt_v1_information *table_info =
773 (struct phm_ppt_v1_information *)(hwmgr->pptable);
774 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
775 table_info->vddc_lookup_table;
776 /* tables is already swapped, so in order to use the value from it,
777 * we need to swap it back.
778 * We are populating vddc CAC data to BapmVddc table
779 * in split and merged mode
782 for (count = 0; count < lookup_table->count; count++) {
783 index = phm_get_voltage_index(lookup_table,
784 data->vddc_voltage_table.entries[count].value);
785 table->BapmVddcVidLoSidd[count] =
786 convert_to_vid(lookup_table->entries[index].us_cac_low);
787 table->BapmVddcVidHiSidd[count] =
788 convert_to_vid(lookup_table->entries[index].us_cac_high);
791 return 0;
794 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
795 struct SMU73_Discrete_DpmTable *table)
797 int result;
799 result = fiji_populate_cac_table(hwmgr, table);
800 PP_ASSERT_WITH_CODE(0 == result,
801 "can not populate CAC voltage tables to SMC",
802 return -EINVAL);
804 return 0;
807 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
808 struct SMU73_Discrete_Ulv *state)
810 int result = 0;
812 struct phm_ppt_v1_information *table_info =
813 (struct phm_ppt_v1_information *)(hwmgr->pptable);
815 state->CcPwrDynRm = 0;
816 state->CcPwrDynRm1 = 0;
818 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
819 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
820 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
822 state->VddcPhase = 1;
824 if (!result) {
825 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
826 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
827 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
829 return result;
832 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
833 struct SMU73_Discrete_DpmTable *table)
835 return fiji_populate_ulv_level(hwmgr, &table->Ulv);
838 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
839 struct SMU73_Discrete_DpmTable *table)
841 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
842 struct smu7_dpm_table *dpm_table = &data->dpm_table;
843 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
844 int i;
846 /* Index (dpm_table->pcie_speed_table.count)
847 * is reserved for PCIE boot level. */
848 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
849 table->LinkLevel[i].PcieGenSpeed =
850 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
851 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
852 dpm_table->pcie_speed_table.dpm_levels[i].param1);
853 table->LinkLevel[i].EnabledForActivity = 1;
854 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
855 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
856 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
859 smu_data->smc_state_table.LinkLevelCount =
860 (uint8_t)dpm_table->pcie_speed_table.count;
861 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
862 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
864 return 0;
867 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
868 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
870 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
871 struct pp_atomctrl_clock_dividers_vi dividers;
872 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
873 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
874 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
875 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
876 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
877 uint32_t ref_clock;
878 uint32_t ref_divider;
879 uint32_t fbdiv;
880 int result;
882 /* get the engine clock dividers for this clock value */
883 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
885 PP_ASSERT_WITH_CODE(result == 0,
886 "Error retrieving Engine Clock dividers from VBIOS.",
887 return result);
889 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
890 ref_clock = atomctrl_get_reference_clock(hwmgr);
891 ref_divider = 1 + dividers.uc_pll_ref_div;
893 /* low 14 bits is fraction and high 12 bits is divider */
894 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
896 /* SPLL_FUNC_CNTL setup */
897 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
898 SPLL_REF_DIV, dividers.uc_pll_ref_div);
899 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
900 SPLL_PDIV_A, dividers.uc_pll_post_div);
902 /* SPLL_FUNC_CNTL_3 setup*/
903 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
904 SPLL_FB_DIV, fbdiv);
906 /* set to use fractional accumulation*/
907 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
908 SPLL_DITHEN, 1);
910 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
911 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
912 struct pp_atomctrl_internal_ss_info ssInfo;
914 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
915 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
916 vco_freq, &ssInfo)) {
918 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
919 * ss_info.speed_spectrum_rate -- in unit of khz
921 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
923 uint32_t clk_s = ref_clock * 5 /
924 (ref_divider * ssInfo.speed_spectrum_rate);
925 /* clkv = 2 * D * fbdiv / NS */
926 uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
927 fbdiv / (clk_s * 10000);
929 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
930 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
931 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
932 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
933 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
934 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
938 sclk->SclkFrequency = clock;
939 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
940 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
941 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
942 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
943 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
945 return 0;
948 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
949 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
951 int result;
952 /* PP_Clocks minClocks; */
953 uint32_t threshold, mvdd;
954 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
955 struct phm_ppt_v1_information *table_info =
956 (struct phm_ppt_v1_information *)(hwmgr->pptable);
957 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
959 result = fiji_calculate_sclk_params(hwmgr, clock, level);
961 if (hwmgr->od_enabled)
962 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
963 else
964 vdd_dep_table = table_info->vdd_dep_on_sclk;
966 /* populate graphics levels */
967 result = fiji_get_dependency_volt_by_clk(hwmgr,
968 vdd_dep_table, clock,
969 (uint32_t *)(&level->MinVoltage), &mvdd);
970 PP_ASSERT_WITH_CODE((0 == result),
971 "can not find VDDC voltage value for "
972 "VDDC engine clock dependency table",
973 return result);
975 level->SclkFrequency = clock;
976 level->ActivityLevel = data->current_profile_setting.sclk_activity;
977 level->CcPwrDynRm = 0;
978 level->CcPwrDynRm1 = 0;
979 level->EnabledForActivity = 0;
980 level->EnabledForThrottle = 1;
981 level->UpHyst = data->current_profile_setting.sclk_up_hyst;
982 level->DownHyst = data->current_profile_setting.sclk_down_hyst;
983 level->VoltageDownHyst = 0;
984 level->PowerThrottle = 0;
986 threshold = clock * data->fast_watermark_threshold / 100;
988 data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
990 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
991 level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
992 hwmgr->display_config->min_core_set_clock_in_sr);
995 /* Default to slow, highest DPM level will be
996 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
998 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1000 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
1001 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
1002 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
1003 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
1004 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
1005 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
1006 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
1007 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
1008 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
1010 return 0;
1013 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1015 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1016 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1018 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1019 struct phm_ppt_v1_information *table_info =
1020 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1021 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1022 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1023 int result = 0;
1024 uint32_t array = smu_data->smu7_data.dpm_table_start +
1025 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1026 uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1027 SMU73_MAX_LEVELS_GRAPHICS;
1028 struct SMU73_Discrete_GraphicsLevel *levels =
1029 smu_data->smc_state_table.GraphicsLevel;
1030 uint32_t i, max_entry;
1031 uint8_t hightest_pcie_level_enabled = 0,
1032 lowest_pcie_level_enabled = 0,
1033 mid_pcie_level_enabled = 0,
1034 count = 0;
1036 for (i = 0; i < dpm_table->sclk_table.count; i++) {
1037 result = fiji_populate_single_graphic_level(hwmgr,
1038 dpm_table->sclk_table.dpm_levels[i].value,
1039 &levels[i]);
1040 if (result)
1041 return result;
1043 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1044 if (i > 1)
1045 levels[i].DeepSleepDivId = 0;
1048 /* Only enable level 0 for now.*/
1049 levels[0].EnabledForActivity = 1;
1051 /* set highest level watermark to high */
1052 levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1053 PPSMC_DISPLAY_WATERMARK_HIGH;
1055 smu_data->smc_state_table.GraphicsDpmLevelCount =
1056 (uint8_t)dpm_table->sclk_table.count;
1057 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1058 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1060 if (pcie_table != NULL) {
1061 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1062 "There must be 1 or more PCIE levels defined in PPTable.",
1063 return -EINVAL);
1064 max_entry = pcie_entry_cnt - 1;
1065 for (i = 0; i < dpm_table->sclk_table.count; i++)
1066 levels[i].pcieDpmLevel =
1067 (uint8_t) ((i < max_entry) ? i : max_entry);
1068 } else {
1069 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1070 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1071 (1 << (hightest_pcie_level_enabled + 1))) != 0))
1072 hightest_pcie_level_enabled++;
1074 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1075 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1076 (1 << lowest_pcie_level_enabled)) == 0))
1077 lowest_pcie_level_enabled++;
1079 while ((count < hightest_pcie_level_enabled) &&
1080 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1081 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1082 count++;
1084 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1085 hightest_pcie_level_enabled ?
1086 (lowest_pcie_level_enabled + 1 + count) :
1087 hightest_pcie_level_enabled;
1089 /* set pcieDpmLevel to hightest_pcie_level_enabled */
1090 for (i = 2; i < dpm_table->sclk_table.count; i++)
1091 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1093 /* set pcieDpmLevel to lowest_pcie_level_enabled */
1094 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1096 /* set pcieDpmLevel to mid_pcie_level_enabled */
1097 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1099 /* level count will send to smc once at init smc table and never change */
1100 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1101 (uint32_t)array_size, SMC_RAM_END);
1103 return result;
1108 * MCLK Frequency Ratio
1109 * SEQ_CG_RESP Bit[31:24] - 0x0
1110 * Bit[27:24] \96 DDR3 Frequency ratio
1111 * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
1112 * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
1113 * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
1114 * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
1115 * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
1116 * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
1117 * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
1118 * 400 < 0x7 <= 450MHz, 800 < 0xF
1120 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
1122 if (mem_clock <= 10000)
1123 return 0x0;
1124 if (mem_clock <= 15000)
1125 return 0x1;
1126 if (mem_clock <= 20000)
1127 return 0x2;
1128 if (mem_clock <= 25000)
1129 return 0x3;
1130 if (mem_clock <= 30000)
1131 return 0x4;
1132 if (mem_clock <= 35000)
1133 return 0x5;
1134 if (mem_clock <= 40000)
1135 return 0x6;
1136 if (mem_clock <= 45000)
1137 return 0x7;
1138 if (mem_clock <= 50000)
1139 return 0x8;
1140 if (mem_clock <= 55000)
1141 return 0x9;
1142 if (mem_clock <= 60000)
1143 return 0xa;
1144 if (mem_clock <= 65000)
1145 return 0xb;
1146 if (mem_clock <= 70000)
1147 return 0xc;
1148 if (mem_clock <= 75000)
1149 return 0xd;
1150 if (mem_clock <= 80000)
1151 return 0xe;
1152 /* mem_clock > 800MHz */
1153 return 0xf;
1156 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
1157 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
1159 struct pp_atomctrl_memory_clock_param mem_param;
1160 int result;
1162 result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
1163 PP_ASSERT_WITH_CODE((0 == result),
1164 "Failed to get Memory PLL Dividers.",
1167 /* Save the result data to outpupt memory level structure */
1168 mclk->MclkFrequency = clock;
1169 mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
1170 mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
1172 return result;
1175 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1176 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
1178 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1179 struct phm_ppt_v1_information *table_info =
1180 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1181 int result = 0;
1182 uint32_t mclk_stutter_mode_threshold = 60000;
1183 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
1185 if (hwmgr->od_enabled)
1186 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
1187 else
1188 vdd_dep_table = table_info->vdd_dep_on_mclk;
1190 if (vdd_dep_table) {
1191 result = fiji_get_dependency_volt_by_clk(hwmgr,
1192 vdd_dep_table, clock,
1193 (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
1194 PP_ASSERT_WITH_CODE((0 == result),
1195 "can not find MinVddc voltage value from memory "
1196 "VDDC voltage dependency table", return result);
1199 mem_level->EnabledForThrottle = 1;
1200 mem_level->EnabledForActivity = 0;
1201 mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1202 mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1203 mem_level->VoltageDownHyst = 0;
1204 mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1205 mem_level->StutterEnable = false;
1207 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1209 /* enable stutter mode if all the follow condition applied
1210 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
1211 * &(data->DisplayTiming.numExistingDisplays));
1213 data->display_timing.num_existing_displays = 1;
1215 if (mclk_stutter_mode_threshold &&
1216 (clock <= mclk_stutter_mode_threshold) &&
1217 (!data->is_uvd_enabled) &&
1218 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1219 STUTTER_ENABLE) & 0x1))
1220 mem_level->StutterEnable = true;
1222 result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
1223 if (!result) {
1224 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1225 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1226 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1227 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1229 return result;
1232 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1234 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1235 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1236 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1237 int result;
1238 /* populate MCLK dpm table to SMU7 */
1239 uint32_t array = smu_data->smu7_data.dpm_table_start +
1240 offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1241 uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1242 SMU73_MAX_LEVELS_MEMORY;
1243 struct SMU73_Discrete_MemoryLevel *levels =
1244 smu_data->smc_state_table.MemoryLevel;
1245 uint32_t i;
1247 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1248 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1249 "can not populate memory level as memory clock is zero",
1250 return -EINVAL);
1251 result = fiji_populate_single_memory_level(hwmgr,
1252 dpm_table->mclk_table.dpm_levels[i].value,
1253 &levels[i]);
1254 if (result)
1255 return result;
1258 /* Only enable level 0 for now. */
1259 levels[0].EnabledForActivity = 1;
1261 /* in order to prevent MC activity from stutter mode to push DPM up.
1262 * the UVD change complements this by putting the MCLK in
1263 * a higher state by default such that we are not effected by
1264 * up threshold or and MCLK DPM latency.
1266 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1267 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1269 smu_data->smc_state_table.MemoryDpmLevelCount =
1270 (uint8_t)dpm_table->mclk_table.count;
1271 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1272 phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1273 /* set highest level watermark to high */
1274 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1275 PPSMC_DISPLAY_WATERMARK_HIGH;
1277 /* level count will send to smc once at init smc table and never change */
1278 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1279 (uint32_t)array_size, SMC_RAM_END);
1281 return result;
1284 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1285 uint32_t mclk, SMIO_Pattern *smio_pat)
1287 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1288 struct phm_ppt_v1_information *table_info =
1289 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1290 uint32_t i = 0;
1292 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1293 /* find mvdd value which clock is more than request */
1294 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1295 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1296 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1297 break;
1300 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1301 "MVDD Voltage is outside the supported range.",
1302 return -EINVAL);
1303 } else
1304 return -EINVAL;
1306 return 0;
1309 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1310 SMU73_Discrete_DpmTable *table)
1312 int result = 0;
1313 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1314 struct phm_ppt_v1_information *table_info =
1315 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1316 struct pp_atomctrl_clock_dividers_vi dividers;
1317 SMIO_Pattern vol_level;
1318 uint32_t mvdd;
1319 uint16_t us_mvdd;
1320 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1321 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1323 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1325 if (!data->sclk_dpm_key_disabled) {
1326 /* Get MinVoltage and Frequency from DPM0,
1327 * already converted to SMC_UL */
1328 table->ACPILevel.SclkFrequency =
1329 data->dpm_table.sclk_table.dpm_levels[0].value;
1330 result = fiji_get_dependency_volt_by_clk(hwmgr,
1331 table_info->vdd_dep_on_sclk,
1332 table->ACPILevel.SclkFrequency,
1333 (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1334 PP_ASSERT_WITH_CODE((0 == result),
1335 "Cannot find ACPI VDDC voltage value " \
1336 "in Clock Dependency Table",
1338 } else {
1339 table->ACPILevel.SclkFrequency =
1340 data->vbios_boot_state.sclk_bootup_value;
1341 table->ACPILevel.MinVoltage =
1342 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1345 /* get the engine clock dividers for this clock value */
1346 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1347 table->ACPILevel.SclkFrequency, &dividers);
1348 PP_ASSERT_WITH_CODE(result == 0,
1349 "Error retrieving Engine Clock dividers from VBIOS.",
1350 return result);
1352 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1353 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1354 table->ACPILevel.DeepSleepDivId = 0;
1356 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1357 SPLL_PWRON, 0);
1358 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1359 SPLL_RESET, 1);
1360 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1361 SCLK_MUX_SEL, 4);
1363 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1364 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1365 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1366 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1367 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1368 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1369 table->ACPILevel.CcPwrDynRm = 0;
1370 table->ACPILevel.CcPwrDynRm1 = 0;
1372 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1373 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1374 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1375 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1376 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1377 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1378 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1379 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1380 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1381 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1382 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1384 if (!data->mclk_dpm_key_disabled) {
1385 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1386 table->MemoryACPILevel.MclkFrequency =
1387 data->dpm_table.mclk_table.dpm_levels[0].value;
1388 result = fiji_get_dependency_volt_by_clk(hwmgr,
1389 table_info->vdd_dep_on_mclk,
1390 table->MemoryACPILevel.MclkFrequency,
1391 (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1392 PP_ASSERT_WITH_CODE((0 == result),
1393 "Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1395 } else {
1396 table->MemoryACPILevel.MclkFrequency =
1397 data->vbios_boot_state.mclk_bootup_value;
1398 table->MemoryACPILevel.MinVoltage =
1399 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1402 us_mvdd = 0;
1403 if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1404 (data->mclk_dpm_key_disabled))
1405 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1406 else {
1407 if (!fiji_populate_mvdd_value(hwmgr,
1408 data->dpm_table.mclk_table.dpm_levels[0].value,
1409 &vol_level))
1410 us_mvdd = vol_level.Voltage;
1413 table->MemoryACPILevel.MinMvdd =
1414 PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1416 table->MemoryACPILevel.EnabledForThrottle = 0;
1417 table->MemoryACPILevel.EnabledForActivity = 0;
1418 table->MemoryACPILevel.UpHyst = 0;
1419 table->MemoryACPILevel.DownHyst = 100;
1420 table->MemoryACPILevel.VoltageDownHyst = 0;
1421 table->MemoryACPILevel.ActivityLevel =
1422 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1424 table->MemoryACPILevel.StutterEnable = false;
1425 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1426 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1428 return result;
1431 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1432 SMU73_Discrete_DpmTable *table)
1434 int result = -EINVAL;
1435 uint8_t count;
1436 struct pp_atomctrl_clock_dividers_vi dividers;
1437 struct phm_ppt_v1_information *table_info =
1438 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1439 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1440 table_info->mm_dep_table;
1442 table->VceLevelCount = (uint8_t)(mm_table->count);
1443 table->VceBootLevel = 0;
1445 for (count = 0; count < table->VceLevelCount; count++) {
1446 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1447 table->VceLevel[count].MinVoltage = 0;
1448 table->VceLevel[count].MinVoltage |=
1449 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1450 table->VceLevel[count].MinVoltage |=
1451 ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1452 VOLTAGE_SCALE) << VDDCI_SHIFT;
1453 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1455 /*retrieve divider value for VBIOS */
1456 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1457 table->VceLevel[count].Frequency, &dividers);
1458 PP_ASSERT_WITH_CODE((0 == result),
1459 "can not find divide id for VCE engine clock",
1460 return result);
1462 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1464 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1465 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1467 return result;
1470 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1471 SMU73_Discrete_DpmTable *table)
1473 int result = -EINVAL;
1474 uint8_t count;
1475 struct pp_atomctrl_clock_dividers_vi dividers;
1476 struct phm_ppt_v1_information *table_info =
1477 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1478 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1479 table_info->mm_dep_table;
1481 table->AcpLevelCount = (uint8_t)(mm_table->count);
1482 table->AcpBootLevel = 0;
1484 for (count = 0; count < table->AcpLevelCount; count++) {
1485 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1486 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1487 VOLTAGE_SCALE) << VDDC_SHIFT;
1488 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1489 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1490 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1492 /* retrieve divider value for VBIOS */
1493 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1494 table->AcpLevel[count].Frequency, &dividers);
1495 PP_ASSERT_WITH_CODE((0 == result),
1496 "can not find divide id for engine clock", return result);
1498 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1500 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1501 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1503 return result;
1506 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1507 int32_t eng_clock, int32_t mem_clock,
1508 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1510 uint32_t dram_timing;
1511 uint32_t dram_timing2;
1512 uint32_t burstTime;
1513 ULONG state, trrds, trrdl;
1514 int result;
1516 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1517 eng_clock, mem_clock);
1518 PP_ASSERT_WITH_CODE(result == 0,
1519 "Error calling VBIOS to set DRAM_TIMING.", return result);
1521 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1522 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1523 burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1525 state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
1526 trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1527 trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1529 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
1530 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1531 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1532 arb_regs->TRRDS = (uint8_t)trrds;
1533 arb_regs->TRRDL = (uint8_t)trrdl;
1535 return 0;
1538 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1540 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1541 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1542 struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1543 uint32_t i, j;
1544 int result = 0;
1546 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1547 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1548 result = fiji_populate_memory_timing_parameters(hwmgr,
1549 data->dpm_table.sclk_table.dpm_levels[i].value,
1550 data->dpm_table.mclk_table.dpm_levels[j].value,
1551 &arb_regs.entries[i][j]);
1552 if (result)
1553 break;
1557 if (!result)
1558 result = smu7_copy_bytes_to_smc(
1559 hwmgr,
1560 smu_data->smu7_data.arb_table_start,
1561 (uint8_t *)&arb_regs,
1562 sizeof(SMU73_Discrete_MCArbDramTimingTable),
1563 SMC_RAM_END);
1564 return result;
1567 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1568 struct SMU73_Discrete_DpmTable *table)
1570 int result = -EINVAL;
1571 uint8_t count;
1572 struct pp_atomctrl_clock_dividers_vi dividers;
1573 struct phm_ppt_v1_information *table_info =
1574 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1575 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1576 table_info->mm_dep_table;
1578 table->UvdLevelCount = (uint8_t)(mm_table->count);
1579 table->UvdBootLevel = 0;
1581 for (count = 0; count < table->UvdLevelCount; count++) {
1582 table->UvdLevel[count].MinVoltage = 0;
1583 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1584 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1585 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1586 VOLTAGE_SCALE) << VDDC_SHIFT;
1587 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1588 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1589 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1591 /* retrieve divider value for VBIOS */
1592 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1593 table->UvdLevel[count].VclkFrequency, &dividers);
1594 PP_ASSERT_WITH_CODE((0 == result),
1595 "can not find divide id for Vclk clock", return result);
1597 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1599 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1600 table->UvdLevel[count].DclkFrequency, &dividers);
1601 PP_ASSERT_WITH_CODE((0 == result),
1602 "can not find divide id for Dclk clock", return result);
1604 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1606 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1607 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1608 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1611 return result;
1614 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1615 struct SMU73_Discrete_DpmTable *table)
1617 int result = 0;
1618 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1620 table->GraphicsBootLevel = 0;
1621 table->MemoryBootLevel = 0;
1623 /* find boot level from dpm table */
1624 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1625 data->vbios_boot_state.sclk_bootup_value,
1626 (uint32_t *)&(table->GraphicsBootLevel));
1628 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1629 data->vbios_boot_state.mclk_bootup_value,
1630 (uint32_t *)&(table->MemoryBootLevel));
1632 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
1633 VOLTAGE_SCALE;
1634 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1635 VOLTAGE_SCALE;
1636 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
1637 VOLTAGE_SCALE;
1639 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1640 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1641 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1643 return 0;
1646 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1648 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1649 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1650 struct phm_ppt_v1_information *table_info =
1651 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1652 uint8_t count, level;
1654 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1655 for (level = 0; level < count; level++) {
1656 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1657 data->vbios_boot_state.sclk_bootup_value) {
1658 smu_data->smc_state_table.GraphicsBootLevel = level;
1659 break;
1663 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1664 for (level = 0; level < count; level++) {
1665 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1666 data->vbios_boot_state.mclk_bootup_value) {
1667 smu_data->smc_state_table.MemoryBootLevel = level;
1668 break;
1672 return 0;
1675 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1677 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1678 volt_with_cks, value;
1679 uint16_t clock_freq_u16;
1680 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1681 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1682 volt_offset = 0;
1683 struct phm_ppt_v1_information *table_info =
1684 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1685 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1686 table_info->vdd_dep_on_sclk;
1688 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1690 /* Read SMU_Eefuse to read and calculate RO and determine
1691 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1693 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1694 ixSMU_EFUSE_0 + (146 * 4));
1695 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1696 ixSMU_EFUSE_0 + (148 * 4));
1697 efuse &= 0xFF000000;
1698 efuse = efuse >> 24;
1699 efuse2 &= 0xF;
1701 if (efuse2 == 1)
1702 ro = (2300 - 1350) * efuse / 255 + 1350;
1703 else
1704 ro = (2500 - 1000) * efuse / 255 + 1000;
1706 if (ro >= 1660)
1707 type = 0;
1708 else
1709 type = 1;
1711 /* Populate Stretch amount */
1712 smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1714 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1715 for (i = 0; i < sclk_table->count; i++) {
1716 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1717 sclk_table->entries[i].cks_enable << i;
1718 volt_without_cks = (uint32_t)((14041 *
1719 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1720 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1721 volt_with_cks = (uint32_t)((13946 *
1722 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1723 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1724 if (volt_without_cks >= volt_with_cks)
1725 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1726 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1727 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1730 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1731 STRETCH_ENABLE, 0x0);
1732 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1733 masterReset, 0x1);
1734 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1735 staticEnable, 0x1);
1736 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1737 masterReset, 0x0);
1739 /* Populate CKS Lookup Table */
1740 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1741 stretch_amount2 = 0;
1742 else if (stretch_amount == 3 || stretch_amount == 4)
1743 stretch_amount2 = 1;
1744 else {
1745 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1746 PHM_PlatformCaps_ClockStretcher);
1747 PP_ASSERT_WITH_CODE(false,
1748 "Stretch Amount in PPTable not supported",
1749 return -EINVAL);
1752 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1753 ixPWR_CKS_CNTL);
1754 value &= 0xFFC2FF87;
1755 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1756 fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1757 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1758 fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1759 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1760 GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1761 SclkFrequency) / 100);
1762 if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1763 clock_freq_u16 &&
1764 fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1765 clock_freq_u16) {
1766 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1767 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1768 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1769 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1770 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1771 value |= (fiji_clock_stretch_amount_conversion
1772 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1773 [stretch_amount]) << 3;
1775 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1776 CKS_LOOKUPTableEntry[0].minFreq);
1777 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1778 CKS_LOOKUPTableEntry[0].maxFreq);
1779 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1780 fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1781 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1782 (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1784 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1785 ixPWR_CKS_CNTL, value);
1787 /* Populate DDT Lookup Table */
1788 for (i = 0; i < 4; i++) {
1789 /* Assign the minimum and maximum VID stored
1790 * in the last row of Clock Stretcher Voltage Table.
1792 smu_data->smc_state_table.ClockStretcherDataTable.
1793 ClockStretcherDataTableEntry[i].minVID =
1794 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1795 smu_data->smc_state_table.ClockStretcherDataTable.
1796 ClockStretcherDataTableEntry[i].maxVID =
1797 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1798 /* Loop through each SCLK and check the frequency
1799 * to see if it lies within the frequency for clock stretcher.
1801 for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1802 cks_setting = 0;
1803 clock_freq = PP_SMC_TO_HOST_UL(
1804 smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1805 /* Check the allowed frequency against the sclk level[j].
1806 * Sclk's endianness has already been converted,
1807 * and it's in 10Khz unit,
1808 * as opposed to Data table, which is in Mhz unit.
1810 if (clock_freq >=
1811 (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1812 cks_setting |= 0x2;
1813 if (clock_freq <
1814 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1815 cks_setting |= 0x1;
1817 smu_data->smc_state_table.ClockStretcherDataTable.
1818 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1820 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1821 ClockStretcherDataTable.
1822 ClockStretcherDataTableEntry[i].setting);
1825 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1826 value &= 0xFFFFFFFE;
1827 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1829 return 0;
1832 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1833 struct SMU73_Discrete_DpmTable *table)
1835 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1836 uint16_t config;
1838 config = VR_MERGED_WITH_VDDC;
1839 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1841 /* Set Vddc Voltage Controller */
1842 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1843 config = VR_SVI2_PLANE_1;
1844 table->VRConfig |= config;
1845 } else {
1846 PP_ASSERT_WITH_CODE(false,
1847 "VDDC should be on SVI2 control in merged mode!",
1850 /* Set Vddci Voltage Controller */
1851 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1852 config = VR_SVI2_PLANE_2; /* only in merged mode */
1853 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1854 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1855 config = VR_SMIO_PATTERN_1;
1856 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1857 } else {
1858 config = VR_STATIC_VOLTAGE;
1859 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1861 /* Set Mvdd Voltage Controller */
1862 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1863 config = VR_SVI2_PLANE_2;
1864 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1865 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1866 config = VR_SMIO_PATTERN_2;
1867 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1868 } else {
1869 config = VR_STATIC_VOLTAGE;
1870 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1873 return 0;
1876 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
1878 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1879 uint32_t tmp;
1880 int result;
1882 /* This is a read-modify-write on the first byte of the ARB table.
1883 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1884 * is the field 'current'.
1885 * This solution is ugly, but we never write the whole table only
1886 * individual fields in it.
1887 * In reality this field should not be in that structure
1888 * but in a soft register.
1890 result = smu7_read_smc_sram_dword(hwmgr,
1891 smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1893 if (result)
1894 return result;
1896 tmp &= 0x00FFFFFF;
1897 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1899 return smu7_write_smc_sram_dword(hwmgr,
1900 smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
1903 static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
1905 pp_atomctrl_voltage_table param_led_dpm;
1906 int result = 0;
1907 u32 mask = 0;
1909 result = atomctrl_get_voltage_table_v3(hwmgr,
1910 VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
1911 &param_led_dpm);
1912 if (result == 0) {
1913 int i, j;
1914 u32 tmp = param_led_dpm.mask_low;
1916 for (i = 0, j = 0; i < 32; i++) {
1917 if (tmp & 1) {
1918 mask |= (i << (8 * j));
1919 if (++j >= 3)
1920 break;
1922 tmp >>= 1;
1925 if (mask)
1926 smum_send_msg_to_smc_with_parameter(hwmgr,
1927 PPSMC_MSG_LedConfig,
1928 mask);
1929 return 0;
1932 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1934 int result;
1935 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1936 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1937 struct phm_ppt_v1_information *table_info =
1938 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1939 struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1940 uint8_t i;
1941 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1943 fiji_initialize_power_tune_defaults(hwmgr);
1945 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1946 fiji_populate_smc_voltage_tables(hwmgr, table);
1948 table->SystemFlags = 0;
1950 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1951 PHM_PlatformCaps_AutomaticDCTransition))
1952 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1954 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1955 PHM_PlatformCaps_StepVddc))
1956 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1958 if (data->is_memory_gddr5)
1959 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1961 if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1962 result = fiji_populate_ulv_state(hwmgr, table);
1963 PP_ASSERT_WITH_CODE(0 == result,
1964 "Failed to initialize ULV state!", return result);
1965 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1966 ixCG_ULV_PARAMETER, 0x40035);
1969 result = fiji_populate_smc_link_level(hwmgr, table);
1970 PP_ASSERT_WITH_CODE(0 == result,
1971 "Failed to initialize Link Level!", return result);
1973 result = fiji_populate_all_graphic_levels(hwmgr);
1974 PP_ASSERT_WITH_CODE(0 == result,
1975 "Failed to initialize Graphics Level!", return result);
1977 result = fiji_populate_all_memory_levels(hwmgr);
1978 PP_ASSERT_WITH_CODE(0 == result,
1979 "Failed to initialize Memory Level!", return result);
1981 result = fiji_populate_smc_acpi_level(hwmgr, table);
1982 PP_ASSERT_WITH_CODE(0 == result,
1983 "Failed to initialize ACPI Level!", return result);
1985 result = fiji_populate_smc_vce_level(hwmgr, table);
1986 PP_ASSERT_WITH_CODE(0 == result,
1987 "Failed to initialize VCE Level!", return result);
1989 result = fiji_populate_smc_acp_level(hwmgr, table);
1990 PP_ASSERT_WITH_CODE(0 == result,
1991 "Failed to initialize ACP Level!", return result);
1993 /* Since only the initial state is completely set up at this point
1994 * (the other states are just copies of the boot state) we only
1995 * need to populate the ARB settings for the initial state.
1997 result = fiji_program_memory_timing_parameters(hwmgr);
1998 PP_ASSERT_WITH_CODE(0 == result,
1999 "Failed to Write ARB settings for the initial state.", return result);
2001 result = fiji_populate_smc_uvd_level(hwmgr, table);
2002 PP_ASSERT_WITH_CODE(0 == result,
2003 "Failed to initialize UVD Level!", return result);
2005 result = fiji_populate_smc_boot_level(hwmgr, table);
2006 PP_ASSERT_WITH_CODE(0 == result,
2007 "Failed to initialize Boot Level!", return result);
2009 result = fiji_populate_smc_initailial_state(hwmgr);
2010 PP_ASSERT_WITH_CODE(0 == result,
2011 "Failed to initialize Boot State!", return result);
2013 result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2014 PP_ASSERT_WITH_CODE(0 == result,
2015 "Failed to populate BAPM Parameters!", return result);
2017 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2018 PHM_PlatformCaps_ClockStretcher)) {
2019 result = fiji_populate_clock_stretcher_data_table(hwmgr);
2020 PP_ASSERT_WITH_CODE(0 == result,
2021 "Failed to populate Clock Stretcher Data Table!",
2022 return result);
2025 table->GraphicsVoltageChangeEnable = 1;
2026 table->GraphicsThermThrottleEnable = 1;
2027 table->GraphicsInterval = 1;
2028 table->VoltageInterval = 1;
2029 table->ThermalInterval = 1;
2030 table->TemperatureLimitHigh =
2031 table_info->cac_dtp_table->usTargetOperatingTemp *
2032 SMU7_Q88_FORMAT_CONVERSION_UNIT;
2033 table->TemperatureLimitLow =
2034 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2035 SMU7_Q88_FORMAT_CONVERSION_UNIT;
2036 table->MemoryVoltageChangeEnable = 1;
2037 table->MemoryInterval = 1;
2038 table->VoltageResponseTime = 0;
2039 table->PhaseResponseTime = 0;
2040 table->MemoryThermThrottleEnable = 1;
2041 table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
2042 table->PCIeGenInterval = 1;
2043 table->VRConfig = 0;
2045 result = fiji_populate_vr_config(hwmgr, table);
2046 PP_ASSERT_WITH_CODE(0 == result,
2047 "Failed to populate VRConfig setting!", return result);
2048 data->vr_config = table->VRConfig;
2049 table->ThermGpio = 17;
2050 table->SclkStepSize = 0x4000;
2052 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2053 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2054 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2055 PHM_PlatformCaps_RegulatorHot);
2056 } else {
2057 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2058 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2059 PHM_PlatformCaps_RegulatorHot);
2062 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2063 &gpio_pin)) {
2064 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2065 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2066 PHM_PlatformCaps_AutomaticDCTransition);
2067 } else {
2068 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2069 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2070 PHM_PlatformCaps_AutomaticDCTransition);
2073 /* Thermal Output GPIO */
2074 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2075 &gpio_pin)) {
2076 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2077 PHM_PlatformCaps_ThermalOutGPIO);
2079 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2081 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2082 * since VBIOS will program this register to set 'inactive state',
2083 * driver can then determine 'active state' from this and
2084 * program SMU with correct polarity
2086 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2087 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2088 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2090 /* if required, combine VRHot/PCC with thermal out GPIO */
2091 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2092 PHM_PlatformCaps_RegulatorHot) &&
2093 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2094 PHM_PlatformCaps_CombinePCCWithThermalSignal))
2095 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2096 } else {
2097 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2098 PHM_PlatformCaps_ThermalOutGPIO);
2099 table->ThermOutGpio = 17;
2100 table->ThermOutPolarity = 1;
2101 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2104 for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
2105 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2107 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2108 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2109 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2110 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2111 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2112 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2113 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2114 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2115 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2117 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2118 result = smu7_copy_bytes_to_smc(hwmgr,
2119 smu_data->smu7_data.dpm_table_start +
2120 offsetof(SMU73_Discrete_DpmTable, SystemFlags),
2121 (uint8_t *)&(table->SystemFlags),
2122 sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
2123 SMC_RAM_END);
2124 PP_ASSERT_WITH_CODE(0 == result,
2125 "Failed to upload dpm data to SMC memory!", return result);
2127 result = fiji_init_arb_table_index(hwmgr);
2128 PP_ASSERT_WITH_CODE(0 == result,
2129 "Failed to upload arb data to SMC memory!", return result);
2131 result = fiji_populate_pm_fuses(hwmgr);
2132 PP_ASSERT_WITH_CODE(0 == result,
2133 "Failed to populate PM fuses to SMC memory!", return result);
2135 result = fiji_setup_dpm_led_config(hwmgr);
2136 PP_ASSERT_WITH_CODE(0 == result,
2137 "Failed to setup dpm led config", return result);
2139 return 0;
2142 static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2144 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2146 SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2147 uint32_t duty100;
2148 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2149 uint16_t fdo_min, slope1, slope2;
2150 uint32_t reference_clock;
2151 int res;
2152 uint64_t tmp64;
2154 if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2155 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2156 PHM_PlatformCaps_MicrocodeFanControl);
2157 return 0;
2160 if (smu_data->smu7_data.fan_table_start == 0) {
2161 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2162 PHM_PlatformCaps_MicrocodeFanControl);
2163 return 0;
2166 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2167 CG_FDO_CTRL1, FMAX_DUTY100);
2169 if (duty100 == 0) {
2170 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2171 PHM_PlatformCaps_MicrocodeFanControl);
2172 return 0;
2175 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
2176 usPWMMin * duty100;
2177 do_div(tmp64, 10000);
2178 fdo_min = (uint16_t)tmp64;
2180 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2181 hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2182 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2183 hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2185 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2186 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2187 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2188 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2190 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2191 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2193 fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2194 thermal_controller.advanceFanControlParameters.usTMin) / 100);
2195 fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2196 thermal_controller.advanceFanControlParameters.usTMed) / 100);
2197 fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2198 thermal_controller.advanceFanControlParameters.usTMax) / 100);
2200 fan_table.Slope1 = cpu_to_be16(slope1);
2201 fan_table.Slope2 = cpu_to_be16(slope2);
2203 fan_table.FdoMin = cpu_to_be16(fdo_min);
2205 fan_table.HystDown = cpu_to_be16(hwmgr->
2206 thermal_controller.advanceFanControlParameters.ucTHyst);
2208 fan_table.HystUp = cpu_to_be16(1);
2210 fan_table.HystSlope = cpu_to_be16(1);
2212 fan_table.TempRespLim = cpu_to_be16(5);
2214 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2216 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2217 thermal_controller.advanceFanControlParameters.ulCycleDelay *
2218 reference_clock) / 1600);
2220 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2222 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2223 hwmgr->device, CGS_IND_REG__SMC,
2224 CG_MULT_THERMAL_CTRL, TEMP_SEL);
2226 res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
2227 (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2228 SMC_RAM_END);
2230 if (!res && hwmgr->thermal_controller.
2231 advanceFanControlParameters.ucMinimumPWMLimit)
2232 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2233 PPSMC_MSG_SetFanMinPwm,
2234 hwmgr->thermal_controller.
2235 advanceFanControlParameters.ucMinimumPWMLimit);
2237 if (!res && hwmgr->thermal_controller.
2238 advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2239 res = smum_send_msg_to_smc_with_parameter(hwmgr,
2240 PPSMC_MSG_SetFanSclkTarget,
2241 hwmgr->thermal_controller.
2242 advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
2244 if (res)
2245 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2246 PHM_PlatformCaps_MicrocodeFanControl);
2248 return 0;
2252 static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2254 if (!hwmgr->avfs_supported)
2255 return 0;
2257 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2259 return 0;
2262 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2264 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2266 if (data->need_update_smu7_dpm_table &
2267 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2268 return fiji_program_memory_timing_parameters(hwmgr);
2270 return 0;
2273 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2275 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2276 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2278 int result = 0;
2279 uint32_t low_sclk_interrupt_threshold = 0;
2281 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2282 PHM_PlatformCaps_SclkThrottleLowNotification)
2283 && (data->low_sclk_interrupt_threshold != 0)) {
2284 low_sclk_interrupt_threshold =
2285 data->low_sclk_interrupt_threshold;
2287 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2289 result = smu7_copy_bytes_to_smc(
2290 hwmgr,
2291 smu_data->smu7_data.dpm_table_start +
2292 offsetof(SMU73_Discrete_DpmTable,
2293 LowSclkInterruptThreshold),
2294 (uint8_t *)&low_sclk_interrupt_threshold,
2295 sizeof(uint32_t),
2296 SMC_RAM_END);
2298 result = fiji_program_mem_timing_parameters(hwmgr);
2299 PP_ASSERT_WITH_CODE((result == 0),
2300 "Failed to program memory timing parameters!",
2302 return result;
2305 static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2307 switch (type) {
2308 case SMU_SoftRegisters:
2309 switch (member) {
2310 case HandshakeDisables:
2311 return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2312 case VoltageChangeTimeout:
2313 return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2314 case AverageGraphicsActivity:
2315 return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2316 case PreVBlankGap:
2317 return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2318 case VBlankTimeout:
2319 return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2320 case UcodeLoadStatus:
2321 return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2322 case DRAM_LOG_ADDR_H:
2323 return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
2324 case DRAM_LOG_ADDR_L:
2325 return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
2326 case DRAM_LOG_PHY_ADDR_H:
2327 return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2328 case DRAM_LOG_PHY_ADDR_L:
2329 return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2330 case DRAM_LOG_BUFF_SIZE:
2331 return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2333 break;
2334 case SMU_Discrete_DpmTable:
2335 switch (member) {
2336 case UvdBootLevel:
2337 return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2338 case VceBootLevel:
2339 return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2340 case LowSclkInterruptThreshold:
2341 return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2343 break;
2345 pr_warn("can't get the offset of type %x member %x\n", type, member);
2346 return 0;
2349 static uint32_t fiji_get_mac_definition(uint32_t value)
2351 switch (value) {
2352 case SMU_MAX_LEVELS_GRAPHICS:
2353 return SMU73_MAX_LEVELS_GRAPHICS;
2354 case SMU_MAX_LEVELS_MEMORY:
2355 return SMU73_MAX_LEVELS_MEMORY;
2356 case SMU_MAX_LEVELS_LINK:
2357 return SMU73_MAX_LEVELS_LINK;
2358 case SMU_MAX_ENTRIES_SMIO:
2359 return SMU73_MAX_ENTRIES_SMIO;
2360 case SMU_MAX_LEVELS_VDDC:
2361 return SMU73_MAX_LEVELS_VDDC;
2362 case SMU_MAX_LEVELS_VDDGFX:
2363 return SMU73_MAX_LEVELS_VDDGFX;
2364 case SMU_MAX_LEVELS_VDDCI:
2365 return SMU73_MAX_LEVELS_VDDCI;
2366 case SMU_MAX_LEVELS_MVDD:
2367 return SMU73_MAX_LEVELS_MVDD;
2370 pr_warn("can't get the mac of %x\n", value);
2371 return 0;
2375 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2377 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2378 uint32_t mm_boot_level_offset, mm_boot_level_value;
2379 struct phm_ppt_v1_information *table_info =
2380 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2382 smu_data->smc_state_table.UvdBootLevel = 0;
2383 if (table_info->mm_dep_table->count > 0)
2384 smu_data->smc_state_table.UvdBootLevel =
2385 (uint8_t) (table_info->mm_dep_table->count - 1);
2386 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2387 UvdBootLevel);
2388 mm_boot_level_offset /= 4;
2389 mm_boot_level_offset *= 4;
2390 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2391 CGS_IND_REG__SMC, mm_boot_level_offset);
2392 mm_boot_level_value &= 0x00FFFFFF;
2393 mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2394 cgs_write_ind_register(hwmgr->device,
2395 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2397 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2398 PHM_PlatformCaps_UVDDPM) ||
2399 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2400 PHM_PlatformCaps_StablePState))
2401 smum_send_msg_to_smc_with_parameter(hwmgr,
2402 PPSMC_MSG_UVDDPM_SetEnabledMask,
2403 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
2404 return 0;
2407 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2409 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2410 uint32_t mm_boot_level_offset, mm_boot_level_value;
2411 struct phm_ppt_v1_information *table_info =
2412 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2414 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2415 PHM_PlatformCaps_StablePState))
2416 smu_data->smc_state_table.VceBootLevel =
2417 (uint8_t) (table_info->mm_dep_table->count - 1);
2418 else
2419 smu_data->smc_state_table.VceBootLevel = 0;
2421 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2422 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2423 mm_boot_level_offset /= 4;
2424 mm_boot_level_offset *= 4;
2425 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2426 CGS_IND_REG__SMC, mm_boot_level_offset);
2427 mm_boot_level_value &= 0xFF00FFFF;
2428 mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2429 cgs_write_ind_register(hwmgr->device,
2430 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2432 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2433 smum_send_msg_to_smc_with_parameter(hwmgr,
2434 PPSMC_MSG_VCEDPM_SetEnabledMask,
2435 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
2436 return 0;
2439 static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2441 switch (type) {
2442 case SMU_UVD_TABLE:
2443 fiji_update_uvd_smc_table(hwmgr);
2444 break;
2445 case SMU_VCE_TABLE:
2446 fiji_update_vce_smc_table(hwmgr);
2447 break;
2448 default:
2449 break;
2451 return 0;
2454 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2456 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2457 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2458 uint32_t tmp;
2459 int result;
2460 bool error = false;
2462 result = smu7_read_smc_sram_dword(hwmgr,
2463 SMU7_FIRMWARE_HEADER_LOCATION +
2464 offsetof(SMU73_Firmware_Header, DpmTable),
2465 &tmp, SMC_RAM_END);
2467 if (0 == result)
2468 smu_data->smu7_data.dpm_table_start = tmp;
2470 error |= (0 != result);
2472 result = smu7_read_smc_sram_dword(hwmgr,
2473 SMU7_FIRMWARE_HEADER_LOCATION +
2474 offsetof(SMU73_Firmware_Header, SoftRegisters),
2475 &tmp, SMC_RAM_END);
2477 if (!result) {
2478 data->soft_regs_start = tmp;
2479 smu_data->smu7_data.soft_regs_start = tmp;
2482 error |= (0 != result);
2484 result = smu7_read_smc_sram_dword(hwmgr,
2485 SMU7_FIRMWARE_HEADER_LOCATION +
2486 offsetof(SMU73_Firmware_Header, mcRegisterTable),
2487 &tmp, SMC_RAM_END);
2489 if (!result)
2490 smu_data->smu7_data.mc_reg_table_start = tmp;
2492 result = smu7_read_smc_sram_dword(hwmgr,
2493 SMU7_FIRMWARE_HEADER_LOCATION +
2494 offsetof(SMU73_Firmware_Header, FanTable),
2495 &tmp, SMC_RAM_END);
2497 if (!result)
2498 smu_data->smu7_data.fan_table_start = tmp;
2500 error |= (0 != result);
2502 result = smu7_read_smc_sram_dword(hwmgr,
2503 SMU7_FIRMWARE_HEADER_LOCATION +
2504 offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2505 &tmp, SMC_RAM_END);
2507 if (!result)
2508 smu_data->smu7_data.arb_table_start = tmp;
2510 error |= (0 != result);
2512 result = smu7_read_smc_sram_dword(hwmgr,
2513 SMU7_FIRMWARE_HEADER_LOCATION +
2514 offsetof(SMU73_Firmware_Header, Version),
2515 &tmp, SMC_RAM_END);
2517 if (!result)
2518 hwmgr->microcode_version_info.SMC = tmp;
2520 error |= (0 != result);
2522 return error ? -1 : 0;
2525 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2528 /* Program additional LP registers
2529 * that are no longer programmed by VBIOS
2531 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2532 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2533 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2534 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2535 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2536 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2537 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2538 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2539 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2540 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2541 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2542 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2543 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2544 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2546 return 0;
2549 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2551 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2552 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2553 ? true : false;
2556 static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
2557 void *profile_setting)
2559 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2560 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
2561 (hwmgr->smu_backend);
2562 struct profile_mode_setting *setting;
2563 struct SMU73_Discrete_GraphicsLevel *levels =
2564 smu_data->smc_state_table.GraphicsLevel;
2565 uint32_t array = smu_data->smu7_data.dpm_table_start +
2566 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2568 uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
2569 offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2570 struct SMU73_Discrete_MemoryLevel *mclk_levels =
2571 smu_data->smc_state_table.MemoryLevel;
2572 uint32_t i;
2573 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2575 if (profile_setting == NULL)
2576 return -EINVAL;
2578 setting = (struct profile_mode_setting *)profile_setting;
2580 if (setting->bupdate_sclk) {
2581 if (!data->sclk_dpm_key_disabled)
2582 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2583 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2584 if (levels[i].ActivityLevel !=
2585 cpu_to_be16(setting->sclk_activity)) {
2586 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2588 clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2589 + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
2590 offset = clk_activity_offset & ~0x3;
2591 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2592 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2593 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2596 if (levels[i].UpHyst != setting->sclk_up_hyst ||
2597 levels[i].DownHyst != setting->sclk_down_hyst) {
2598 levels[i].UpHyst = setting->sclk_up_hyst;
2599 levels[i].DownHyst = setting->sclk_down_hyst;
2600 up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2601 + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
2602 down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2603 + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
2604 offset = up_hyst_offset & ~0x3;
2605 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2606 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
2607 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
2608 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2611 if (!data->sclk_dpm_key_disabled)
2612 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2615 if (setting->bupdate_mclk) {
2616 if (!data->mclk_dpm_key_disabled)
2617 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2618 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2619 if (mclk_levels[i].ActivityLevel !=
2620 cpu_to_be16(setting->mclk_activity)) {
2621 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2623 clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2624 + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
2625 offset = clk_activity_offset & ~0x3;
2626 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2627 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2628 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2631 if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
2632 mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
2633 mclk_levels[i].UpHyst = setting->mclk_up_hyst;
2634 mclk_levels[i].DownHyst = setting->mclk_down_hyst;
2635 up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2636 + offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
2637 down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2638 + offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
2639 offset = up_hyst_offset & ~0x3;
2640 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2641 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
2642 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
2643 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2646 if (!data->mclk_dpm_key_disabled)
2647 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2649 return 0;
2652 const struct pp_smumgr_func fiji_smu_funcs = {
2653 .smu_init = &fiji_smu_init,
2654 .smu_fini = &smu7_smu_fini,
2655 .start_smu = &fiji_start_smu,
2656 .check_fw_load_finish = &smu7_check_fw_load_finish,
2657 .request_smu_load_fw = &smu7_reload_firmware,
2658 .request_smu_load_specific_fw = NULL,
2659 .send_msg_to_smc = &smu7_send_msg_to_smc,
2660 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2661 .download_pptable_settings = NULL,
2662 .upload_pptable_settings = NULL,
2663 .update_smc_table = fiji_update_smc_table,
2664 .get_offsetof = fiji_get_offsetof,
2665 .process_firmware_header = fiji_process_firmware_header,
2666 .init_smc_table = fiji_init_smc_table,
2667 .update_sclk_threshold = fiji_update_sclk_threshold,
2668 .thermal_setup_fan_table = fiji_thermal_setup_fan_table,
2669 .thermal_avfs_enable = fiji_thermal_avfs_enable,
2670 .populate_all_graphic_levels = fiji_populate_all_graphic_levels,
2671 .populate_all_memory_levels = fiji_populate_all_memory_levels,
2672 .get_mac_definition = fiji_get_mac_definition,
2673 .initialize_mc_reg_table = fiji_initialize_mc_reg_table,
2674 .is_dpm_running = fiji_is_dpm_running,
2675 .is_hw_avfs_present = fiji_is_hw_avfs_present,
2676 .update_dpm_settings = fiji_update_dpm_settings,