2 * Copyright (C) 2011-2013 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 #include <linux/errno.h>
25 #include <linux/export.h>
26 #include <linux/kernel.h>
28 #include <drm/drm_rect.h>
31 * drm_rect_intersect - intersect two rectangles
32 * @r1: first rectangle
33 * @r2: second rectangle
35 * Calculate the intersection of rectangles @r1 and @r2.
36 * @r1 will be overwritten with the intersection.
39 * %true if rectangle @r1 is still visible after the operation,
42 bool drm_rect_intersect(struct drm_rect
*r1
, const struct drm_rect
*r2
)
44 r1
->x1
= max(r1
->x1
, r2
->x1
);
45 r1
->y1
= max(r1
->y1
, r2
->y1
);
46 r1
->x2
= min(r1
->x2
, r2
->x2
);
47 r1
->y2
= min(r1
->y2
, r2
->y2
);
49 return drm_rect_visible(r1
);
51 EXPORT_SYMBOL(drm_rect_intersect
);
53 static u32
clip_scaled(u32 src
, u32 dst
, u32 clip
)
60 tmp
= mul_u32_u32(src
, dst
- clip
);
63 * Round toward 1.0 when clipping so that we don't accidentally
64 * change upscaling to downscaling or vice versa.
66 if (src
< (dst
<< 16))
67 return DIV_ROUND_UP_ULL(tmp
, dst
);
69 return DIV_ROUND_DOWN_ULL(tmp
, dst
);
73 * drm_rect_clip_scaled - perform a scaled clip operation
74 * @src: source window rectangle
75 * @dst: destination window rectangle
76 * @clip: clip rectangle
78 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
79 * same amounts multiplied by @hscale and @vscale.
82 * %true if rectangle @dst is still visible after being clipped,
85 bool drm_rect_clip_scaled(struct drm_rect
*src
, struct drm_rect
*dst
,
86 const struct drm_rect
*clip
)
90 diff
= clip
->x1
- dst
->x1
;
92 u32 new_src_w
= clip_scaled(drm_rect_width(src
),
93 drm_rect_width(dst
), diff
);
95 src
->x1
= clamp_t(int64_t, src
->x2
- new_src_w
, INT_MIN
, INT_MAX
);
98 diff
= clip
->y1
- dst
->y1
;
100 u32 new_src_h
= clip_scaled(drm_rect_height(src
),
101 drm_rect_height(dst
), diff
);
103 src
->y1
= clamp_t(int64_t, src
->y2
- new_src_h
, INT_MIN
, INT_MAX
);
106 diff
= dst
->x2
- clip
->x2
;
108 u32 new_src_w
= clip_scaled(drm_rect_width(src
),
109 drm_rect_width(dst
), diff
);
111 src
->x2
= clamp_t(int64_t, src
->x1
+ new_src_w
, INT_MIN
, INT_MAX
);
114 diff
= dst
->y2
- clip
->y2
;
116 u32 new_src_h
= clip_scaled(drm_rect_height(src
),
117 drm_rect_height(dst
), diff
);
119 src
->y2
= clamp_t(int64_t, src
->y1
+ new_src_h
, INT_MIN
, INT_MAX
);
123 return drm_rect_visible(dst
);
125 EXPORT_SYMBOL(drm_rect_clip_scaled
);
127 static int drm_calc_scale(int src
, int dst
)
131 if (WARN_ON(src
< 0 || dst
< 0))
137 if (src
> (dst
<< 16))
138 return DIV_ROUND_UP(src
, dst
);
146 * drm_rect_calc_hscale - calculate the horizontal scaling factor
147 * @src: source window rectangle
148 * @dst: destination window rectangle
149 * @min_hscale: minimum allowed horizontal scaling factor
150 * @max_hscale: maximum allowed horizontal scaling factor
152 * Calculate the horizontal scaling factor as
153 * (@src width) / (@dst width).
155 * If the scale is below 1 << 16, round down. If the scale is above
156 * 1 << 16, round up. This will calculate the scale with the most
157 * pessimistic limit calculation.
160 * The horizontal scaling factor, or errno of out of limits.
162 int drm_rect_calc_hscale(const struct drm_rect
*src
,
163 const struct drm_rect
*dst
,
164 int min_hscale
, int max_hscale
)
166 int src_w
= drm_rect_width(src
);
167 int dst_w
= drm_rect_width(dst
);
168 int hscale
= drm_calc_scale(src_w
, dst_w
);
170 if (hscale
< 0 || dst_w
== 0)
173 if (hscale
< min_hscale
|| hscale
> max_hscale
)
178 EXPORT_SYMBOL(drm_rect_calc_hscale
);
181 * drm_rect_calc_vscale - calculate the vertical scaling factor
182 * @src: source window rectangle
183 * @dst: destination window rectangle
184 * @min_vscale: minimum allowed vertical scaling factor
185 * @max_vscale: maximum allowed vertical scaling factor
187 * Calculate the vertical scaling factor as
188 * (@src height) / (@dst height).
190 * If the scale is below 1 << 16, round down. If the scale is above
191 * 1 << 16, round up. This will calculate the scale with the most
192 * pessimistic limit calculation.
195 * The vertical scaling factor, or errno of out of limits.
197 int drm_rect_calc_vscale(const struct drm_rect
*src
,
198 const struct drm_rect
*dst
,
199 int min_vscale
, int max_vscale
)
201 int src_h
= drm_rect_height(src
);
202 int dst_h
= drm_rect_height(dst
);
203 int vscale
= drm_calc_scale(src_h
, dst_h
);
205 if (vscale
< 0 || dst_h
== 0)
208 if (vscale
< min_vscale
|| vscale
> max_vscale
)
213 EXPORT_SYMBOL(drm_rect_calc_vscale
);
216 * drm_calc_hscale_relaxed - calculate the horizontal scaling factor
217 * @src: source window rectangle
218 * @dst: destination window rectangle
219 * @min_hscale: minimum allowed horizontal scaling factor
220 * @max_hscale: maximum allowed horizontal scaling factor
222 * Calculate the horizontal scaling factor as
223 * (@src width) / (@dst width).
225 * If the calculated scaling factor is below @min_vscale,
226 * decrease the height of rectangle @dst to compensate.
228 * If the calculated scaling factor is above @max_vscale,
229 * decrease the height of rectangle @src to compensate.
231 * If the scale is below 1 << 16, round down. If the scale is above
232 * 1 << 16, round up. This will calculate the scale with the most
233 * pessimistic limit calculation.
236 * The horizontal scaling factor.
238 int drm_rect_calc_hscale_relaxed(struct drm_rect
*src
,
239 struct drm_rect
*dst
,
240 int min_hscale
, int max_hscale
)
242 int src_w
= drm_rect_width(src
);
243 int dst_w
= drm_rect_width(dst
);
244 int hscale
= drm_calc_scale(src_w
, dst_w
);
246 if (hscale
< 0 || dst_w
== 0)
249 if (hscale
< min_hscale
) {
250 int max_dst_w
= src_w
/ min_hscale
;
252 drm_rect_adjust_size(dst
, max_dst_w
- dst_w
, 0);
257 if (hscale
> max_hscale
) {
258 int max_src_w
= dst_w
* max_hscale
;
260 drm_rect_adjust_size(src
, max_src_w
- src_w
, 0);
267 EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed
);
270 * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor
271 * @src: source window rectangle
272 * @dst: destination window rectangle
273 * @min_vscale: minimum allowed vertical scaling factor
274 * @max_vscale: maximum allowed vertical scaling factor
276 * Calculate the vertical scaling factor as
277 * (@src height) / (@dst height).
279 * If the calculated scaling factor is below @min_vscale,
280 * decrease the height of rectangle @dst to compensate.
282 * If the calculated scaling factor is above @max_vscale,
283 * decrease the height of rectangle @src to compensate.
285 * If the scale is below 1 << 16, round down. If the scale is above
286 * 1 << 16, round up. This will calculate the scale with the most
287 * pessimistic limit calculation.
290 * The vertical scaling factor.
292 int drm_rect_calc_vscale_relaxed(struct drm_rect
*src
,
293 struct drm_rect
*dst
,
294 int min_vscale
, int max_vscale
)
296 int src_h
= drm_rect_height(src
);
297 int dst_h
= drm_rect_height(dst
);
298 int vscale
= drm_calc_scale(src_h
, dst_h
);
300 if (vscale
< 0 || dst_h
== 0)
303 if (vscale
< min_vscale
) {
304 int max_dst_h
= src_h
/ min_vscale
;
306 drm_rect_adjust_size(dst
, 0, max_dst_h
- dst_h
);
311 if (vscale
> max_vscale
) {
312 int max_src_h
= dst_h
* max_vscale
;
314 drm_rect_adjust_size(src
, 0, max_src_h
- src_h
);
321 EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed
);
324 * drm_rect_debug_print - print the rectangle information
325 * @prefix: prefix string
326 * @r: rectangle to print
327 * @fixed_point: rectangle is in 16.16 fixed point format
329 void drm_rect_debug_print(const char *prefix
, const struct drm_rect
*r
, bool fixed_point
)
332 DRM_DEBUG_KMS("%s" DRM_RECT_FP_FMT
"\n", prefix
, DRM_RECT_FP_ARG(r
));
334 DRM_DEBUG_KMS("%s" DRM_RECT_FMT
"\n", prefix
, DRM_RECT_ARG(r
));
336 EXPORT_SYMBOL(drm_rect_debug_print
);
339 * drm_rect_rotate - Rotate the rectangle
340 * @r: rectangle to be rotated
341 * @width: Width of the coordinate space
342 * @height: Height of the coordinate space
343 * @rotation: Transformation to be applied
345 * Apply @rotation to the coordinates of rectangle @r.
347 * @width and @height combined with @rotation define
348 * the location of the new origin.
350 * @width correcsponds to the horizontal and @height
351 * to the vertical axis of the untransformed coordinate
354 void drm_rect_rotate(struct drm_rect
*r
,
355 int width
, int height
,
356 unsigned int rotation
)
360 if (rotation
& (DRM_MODE_REFLECT_X
| DRM_MODE_REFLECT_Y
)) {
363 if (rotation
& DRM_MODE_REFLECT_X
) {
364 r
->x1
= width
- tmp
.x2
;
365 r
->x2
= width
- tmp
.x1
;
368 if (rotation
& DRM_MODE_REFLECT_Y
) {
369 r
->y1
= height
- tmp
.y2
;
370 r
->y2
= height
- tmp
.y1
;
374 switch (rotation
& DRM_MODE_ROTATE_MASK
) {
375 case DRM_MODE_ROTATE_0
:
377 case DRM_MODE_ROTATE_90
:
381 r
->y1
= width
- tmp
.x2
;
382 r
->y2
= width
- tmp
.x1
;
384 case DRM_MODE_ROTATE_180
:
386 r
->x1
= width
- tmp
.x2
;
387 r
->x2
= width
- tmp
.x1
;
388 r
->y1
= height
- tmp
.y2
;
389 r
->y2
= height
- tmp
.y1
;
391 case DRM_MODE_ROTATE_270
:
393 r
->x1
= height
- tmp
.y2
;
394 r
->x2
= height
- tmp
.y1
;
402 EXPORT_SYMBOL(drm_rect_rotate
);
405 * drm_rect_rotate_inv - Inverse rotate the rectangle
406 * @r: rectangle to be rotated
407 * @width: Width of the coordinate space
408 * @height: Height of the coordinate space
409 * @rotation: Transformation whose inverse is to be applied
411 * Apply the inverse of @rotation to the coordinates
414 * @width and @height combined with @rotation define
415 * the location of the new origin.
417 * @width correcsponds to the horizontal and @height
418 * to the vertical axis of the original untransformed
419 * coordinate space, so that you never have to flip
420 * them when doing a rotatation and its inverse.
421 * That is, if you do ::
423 * drm_rect_rotate(&r, width, height, rotation);
424 * drm_rect_rotate_inv(&r, width, height, rotation);
426 * you will always get back the original rectangle.
428 void drm_rect_rotate_inv(struct drm_rect
*r
,
429 int width
, int height
,
430 unsigned int rotation
)
434 switch (rotation
& DRM_MODE_ROTATE_MASK
) {
435 case DRM_MODE_ROTATE_0
:
437 case DRM_MODE_ROTATE_90
:
439 r
->x1
= width
- tmp
.y2
;
440 r
->x2
= width
- tmp
.y1
;
444 case DRM_MODE_ROTATE_180
:
446 r
->x1
= width
- tmp
.x2
;
447 r
->x2
= width
- tmp
.x1
;
448 r
->y1
= height
- tmp
.y2
;
449 r
->y2
= height
- tmp
.y1
;
451 case DRM_MODE_ROTATE_270
:
455 r
->y1
= height
- tmp
.x2
;
456 r
->y2
= height
- tmp
.x1
;
462 if (rotation
& (DRM_MODE_REFLECT_X
| DRM_MODE_REFLECT_Y
)) {
465 if (rotation
& DRM_MODE_REFLECT_X
) {
466 r
->x1
= width
- tmp
.x2
;
467 r
->x2
= width
- tmp
.x1
;
470 if (rotation
& DRM_MODE_REFLECT_Y
) {
471 r
->y1
= height
- tmp
.y2
;
472 r
->y2
= height
- tmp
.y1
;
476 EXPORT_SYMBOL(drm_rect_rotate_inv
);