Linux 4.19.133
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / gvt / gtt.c
blob40b32b4d1d98be60f842466ab44a06bfe778cd46
1 /*
2 * GTT virtualization
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
51 * validate a gm address and related range size,
52 * translate it to host gm address
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
56 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 addr, size);
60 return false;
62 return true;
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
68 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 "invalid guest gmadr %llx\n", g_addr))
70 return -EACCES;
72 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 *h_addr = vgpu_aperture_gmadr_base(vgpu)
74 + (g_addr - vgpu_aperture_offset(vgpu));
75 else
76 *h_addr = vgpu_hidden_gmadr_base(vgpu)
77 + (g_addr - vgpu_hidden_offset(vgpu));
78 return 0;
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
84 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 "invalid host gmadr %llx\n", h_addr))
86 return -EACCES;
88 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 *g_addr = vgpu_aperture_gmadr_base(vgpu)
90 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 else
92 *g_addr = vgpu_hidden_gmadr_base(vgpu)
93 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 return 0;
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 unsigned long *h_index)
100 u64 h_addr;
101 int ret;
103 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 &h_addr);
105 if (ret)
106 return ret;
108 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 return 0;
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 unsigned long *g_index)
115 u64 g_addr;
116 int ret;
118 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 &g_addr);
120 if (ret)
121 return ret;
123 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 return 0;
127 #define gtt_type_is_entry(type) \
128 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
132 #define gtt_type_is_pt(type) \
133 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
135 #define gtt_type_is_pte_pt(type) \
136 (type == GTT_TYPE_PPGTT_PTE_PT)
138 #define gtt_type_is_root_pointer(type) \
139 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
141 #define gtt_init_entry(e, t, p, v) do { \
142 (e)->type = t; \
143 (e)->pdev = p; \
144 memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
148 * Mappings between GTT_TYPE* enumerations.
149 * Following information can be found according to the given type:
150 * - type of next level page table
151 * - type of entry inside this level page table
152 * - type of entry with PSE set
154 * If the given type doesn't have such a kind of information,
155 * e.g. give a l4 root entry type, then request to get its PSE type,
156 * give a PTE page table type, then request to get its next level page
157 * table type, as we know l4 root entry doesn't have a PSE bit,
158 * and a PTE page table doesn't have a next level page table type,
159 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160 * page table.
163 struct gtt_type_table_entry {
164 int entry_type;
165 int pt_type;
166 int next_pt_type;
167 int pse_entry_type;
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 [type] = { \
172 .entry_type = e_type, \
173 .pt_type = cpt_type, \
174 .next_pt_type = npt_type, \
175 .pse_entry_type = pse_type, \
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 GTT_TYPE_INVALID,
182 GTT_TYPE_PPGTT_PML4_PT,
183 GTT_TYPE_INVALID),
184 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 GTT_TYPE_PPGTT_PML4_ENTRY,
186 GTT_TYPE_PPGTT_PML4_PT,
187 GTT_TYPE_PPGTT_PDP_PT,
188 GTT_TYPE_INVALID),
189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 GTT_TYPE_PPGTT_PML4_ENTRY,
191 GTT_TYPE_PPGTT_PML4_PT,
192 GTT_TYPE_PPGTT_PDP_PT,
193 GTT_TYPE_INVALID),
194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 GTT_TYPE_PPGTT_PDP_ENTRY,
196 GTT_TYPE_PPGTT_PDP_PT,
197 GTT_TYPE_PPGTT_PDE_PT,
198 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 GTT_TYPE_INVALID,
202 GTT_TYPE_PPGTT_PDE_PT,
203 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 GTT_TYPE_PPGTT_PDP_ENTRY,
206 GTT_TYPE_PPGTT_PDP_PT,
207 GTT_TYPE_PPGTT_PDE_PT,
208 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 GTT_TYPE_PPGTT_PDE_ENTRY,
211 GTT_TYPE_PPGTT_PDE_PT,
212 GTT_TYPE_PPGTT_PTE_PT,
213 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 GTT_TYPE_PPGTT_PDE_ENTRY,
216 GTT_TYPE_PPGTT_PDE_PT,
217 GTT_TYPE_PPGTT_PTE_PT,
218 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 /* We take IPS bit as 'PSE' for PTE level. */
220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222 GTT_TYPE_PPGTT_PTE_PT,
223 GTT_TYPE_INVALID,
224 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227 GTT_TYPE_PPGTT_PTE_PT,
228 GTT_TYPE_INVALID,
229 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 GTT_TYPE_PPGTT_PTE_PT,
233 GTT_TYPE_INVALID,
234 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236 GTT_TYPE_PPGTT_PDE_ENTRY,
237 GTT_TYPE_PPGTT_PDE_PT,
238 GTT_TYPE_INVALID,
239 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241 GTT_TYPE_PPGTT_PDP_ENTRY,
242 GTT_TYPE_PPGTT_PDP_PT,
243 GTT_TYPE_INVALID,
244 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246 GTT_TYPE_GGTT_PTE,
247 GTT_TYPE_INVALID,
248 GTT_TYPE_INVALID,
249 GTT_TYPE_INVALID),
252 static inline int get_next_pt_type(int type)
254 return gtt_type_table[type].next_pt_type;
257 static inline int get_pt_type(int type)
259 return gtt_type_table[type].pt_type;
262 static inline int get_entry_type(int type)
264 return gtt_type_table[type].entry_type;
267 static inline int get_pse_type(int type)
269 return gtt_type_table[type].pse_entry_type;
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
274 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
276 return readq(addr);
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
281 mmio_hw_access_pre(dev_priv);
282 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283 mmio_hw_access_post(dev_priv);
286 static void write_pte64(struct drm_i915_private *dev_priv,
287 unsigned long index, u64 pte)
289 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
291 writeq(pte, addr);
294 static inline int gtt_get_entry64(void *pt,
295 struct intel_gvt_gtt_entry *e,
296 unsigned long index, bool hypervisor_access, unsigned long gpa,
297 struct intel_vgpu *vgpu)
299 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300 int ret;
302 if (WARN_ON(info->gtt_entry_size != 8))
303 return -EINVAL;
305 if (hypervisor_access) {
306 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307 (index << info->gtt_entry_size_shift),
308 &e->val64, 8);
309 if (WARN_ON(ret))
310 return ret;
311 } else if (!pt) {
312 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313 } else {
314 e->val64 = *((u64 *)pt + index);
316 return 0;
319 static inline int gtt_set_entry64(void *pt,
320 struct intel_gvt_gtt_entry *e,
321 unsigned long index, bool hypervisor_access, unsigned long gpa,
322 struct intel_vgpu *vgpu)
324 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325 int ret;
327 if (WARN_ON(info->gtt_entry_size != 8))
328 return -EINVAL;
330 if (hypervisor_access) {
331 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332 (index << info->gtt_entry_size_shift),
333 &e->val64, 8);
334 if (WARN_ON(ret))
335 return ret;
336 } else if (!pt) {
337 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338 } else {
339 *((u64 *)pt + index) = e->val64;
341 return 0;
344 #define GTT_HAW 46
346 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
354 #define GTT_64K_PTE_STRIDE 16
356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
358 unsigned long pfn;
360 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
366 else
367 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
368 return pfn;
371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
373 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374 e->val64 &= ~ADDR_1G_MASK;
375 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377 e->val64 &= ~ADDR_2M_MASK;
378 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380 e->val64 &= ~ADDR_64K_MASK;
381 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
382 } else {
383 e->val64 &= ~ADDR_4K_MASK;
384 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
387 e->val64 |= (pfn << PAGE_SHIFT);
390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
392 return !!(e->val64 & _PAGE_PSE);
395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
397 if (gen8_gtt_test_pse(e)) {
398 switch (e->type) {
399 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400 e->val64 &= ~_PAGE_PSE;
401 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
402 break;
403 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405 e->val64 &= ~_PAGE_PSE;
406 break;
407 default:
408 WARN_ON(1);
413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
415 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
416 return false;
418 return !!(e->val64 & GEN8_PDE_IPS_64K);
421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
423 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424 return;
426 e->val64 &= ~GEN8_PDE_IPS_64K;
429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
432 * i915 writes PDP root pointer registers without present bit,
433 * it also works, so we need to treat root pointer entry
434 * specifically.
436 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438 return (e->val64 != 0);
439 else
440 return (e->val64 & _PAGE_PRESENT);
443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
445 e->val64 &= ~_PAGE_PRESENT;
448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
450 e->val64 |= _PAGE_PRESENT;
453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
455 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
460 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
465 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
469 * Per-platform GMA routines.
471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
473 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
475 trace_gma_index(__func__, gma, x);
476 return x;
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
482 unsigned long x = (exp); \
483 trace_gma_index(__func__, gma, x); \
484 return x; \
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494 .get_entry = gtt_get_entry64,
495 .set_entry = gtt_set_entry64,
496 .clear_present = gtt_entry_clear_present,
497 .set_present = gtt_entry_set_present,
498 .test_present = gen8_gtt_test_present,
499 .test_pse = gen8_gtt_test_pse,
500 .clear_pse = gen8_gtt_clear_pse,
501 .clear_ips = gen8_gtt_clear_ips,
502 .test_ips = gen8_gtt_test_ips,
503 .clear_64k_splited = gen8_gtt_clear_64k_splited,
504 .set_64k_splited = gen8_gtt_set_64k_splited,
505 .test_64k_splited = gen8_gtt_test_64k_splited,
506 .get_pfn = gen8_gtt_get_pfn,
507 .set_pfn = gen8_gtt_set_pfn,
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512 .gma_to_pte_index = gen8_gma_to_pte_index,
513 .gma_to_pde_index = gen8_gma_to_pde_index,
514 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516 .gma_to_pml4_index = gen8_gma_to_pml4_index,
519 /* Update entry type per pse and ips bit. */
520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521 struct intel_gvt_gtt_entry *entry, bool ips)
523 switch (entry->type) {
524 case GTT_TYPE_PPGTT_PDE_ENTRY:
525 case GTT_TYPE_PPGTT_PDP_ENTRY:
526 if (pte_ops->test_pse(entry))
527 entry->type = get_pse_type(entry->type);
528 break;
529 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
530 if (ips)
531 entry->type = get_pse_type(entry->type);
532 break;
533 default:
534 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
537 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
541 * MM helpers.
543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544 struct intel_gvt_gtt_entry *entry, unsigned long index,
545 bool guest)
547 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
549 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
551 entry->type = mm->ppgtt_mm.root_entry_type;
552 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553 mm->ppgtt_mm.shadow_pdps,
554 entry, index, false, 0, mm->vgpu);
555 update_entry_type_for_real(pte_ops, entry, false);
558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559 struct intel_gvt_gtt_entry *entry, unsigned long index)
561 _ppgtt_get_root_entry(mm, entry, index, true);
564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565 struct intel_gvt_gtt_entry *entry, unsigned long index)
567 _ppgtt_get_root_entry(mm, entry, index, false);
570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571 struct intel_gvt_gtt_entry *entry, unsigned long index,
572 bool guest)
574 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
576 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577 mm->ppgtt_mm.shadow_pdps,
578 entry, index, false, 0, mm->vgpu);
581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582 struct intel_gvt_gtt_entry *entry, unsigned long index)
584 _ppgtt_set_root_entry(mm, entry, index, true);
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 struct intel_gvt_gtt_entry *entry, unsigned long index)
590 _ppgtt_set_root_entry(mm, entry, index, false);
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 struct intel_gvt_gtt_entry *entry, unsigned long index)
596 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
598 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
600 entry->type = GTT_TYPE_GGTT_PTE;
601 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602 false, 0, mm->vgpu);
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 struct intel_gvt_gtt_entry *entry, unsigned long index)
608 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
610 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
612 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 false, 0, mm->vgpu);
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 struct intel_gvt_gtt_entry *entry, unsigned long index)
619 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
621 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
623 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 struct intel_gvt_gtt_entry *entry, unsigned long index)
629 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
631 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
633 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
637 * PPGTT shadow page table helpers.
639 static inline int ppgtt_spt_get_entry(
640 struct intel_vgpu_ppgtt_spt *spt,
641 void *page_table, int type,
642 struct intel_gvt_gtt_entry *e, unsigned long index,
643 bool guest)
645 struct intel_gvt *gvt = spt->vgpu->gvt;
646 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
647 int ret;
649 e->type = get_entry_type(type);
651 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
652 return -EINVAL;
654 ret = ops->get_entry(page_table, e, index, guest,
655 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
656 spt->vgpu);
657 if (ret)
658 return ret;
660 update_entry_type_for_real(ops, e, guest ?
661 spt->guest_page.pde_ips : false);
663 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664 type, e->type, index, e->val64);
665 return 0;
668 static inline int ppgtt_spt_set_entry(
669 struct intel_vgpu_ppgtt_spt *spt,
670 void *page_table, int type,
671 struct intel_gvt_gtt_entry *e, unsigned long index,
672 bool guest)
674 struct intel_gvt *gvt = spt->vgpu->gvt;
675 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
677 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
678 return -EINVAL;
680 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681 type, e->type, index, e->val64);
683 return ops->set_entry(page_table, e, index, guest,
684 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
685 spt->vgpu);
688 #define ppgtt_get_guest_entry(spt, e, index) \
689 ppgtt_spt_get_entry(spt, NULL, \
690 spt->guest_page.type, e, index, true)
692 #define ppgtt_set_guest_entry(spt, e, index) \
693 ppgtt_spt_set_entry(spt, NULL, \
694 spt->guest_page.type, e, index, true)
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698 spt->shadow_page.type, e, index, false)
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702 spt->shadow_page.type, e, index, false)
704 static void *alloc_spt(gfp_t gfp_mask)
706 struct intel_vgpu_ppgtt_spt *spt;
708 spt = kzalloc(sizeof(*spt), gfp_mask);
709 if (!spt)
710 return NULL;
712 spt->shadow_page.page = alloc_page(gfp_mask);
713 if (!spt->shadow_page.page) {
714 kfree(spt);
715 return NULL;
717 return spt;
720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
722 __free_page(spt->shadow_page.page);
723 kfree(spt);
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727 struct intel_vgpu_oos_page *oos_page);
729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
731 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
733 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
735 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736 PCI_DMA_BIDIRECTIONAL);
738 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
740 if (spt->guest_page.gfn) {
741 if (spt->guest_page.oos_page)
742 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
744 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
747 list_del_init(&spt->post_shadow_list);
748 free_spt(spt);
751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
753 struct intel_vgpu_ppgtt_spt *spt;
754 struct radix_tree_iter iter;
755 void **slot;
757 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
758 spt = radix_tree_deref_slot(slot);
759 ppgtt_free_spt(spt);
763 static int ppgtt_handle_guest_write_page_table_bytes(
764 struct intel_vgpu_ppgtt_spt *spt,
765 u64 pa, void *p_data, int bytes);
767 static int ppgtt_write_protection_handler(
768 struct intel_vgpu_page_track *page_track,
769 u64 gpa, void *data, int bytes)
771 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
773 int ret;
775 if (bytes != 4 && bytes != 8)
776 return -EINVAL;
778 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
779 if (ret)
780 return ret;
781 return ret;
784 /* Find a spt by guest gfn. */
785 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
786 struct intel_vgpu *vgpu, unsigned long gfn)
788 struct intel_vgpu_page_track *track;
790 track = intel_vgpu_find_page_track(vgpu, gfn);
791 if (track && track->handler == ppgtt_write_protection_handler)
792 return track->priv_data;
794 return NULL;
797 /* Find the spt by shadow page mfn. */
798 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
799 struct intel_vgpu *vgpu, unsigned long mfn)
801 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
804 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
806 /* Allocate shadow page table without guest page. */
807 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
808 struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type)
810 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
811 struct intel_vgpu_ppgtt_spt *spt = NULL;
812 dma_addr_t daddr;
813 int ret;
815 retry:
816 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
817 if (!spt) {
818 if (reclaim_one_ppgtt_mm(vgpu->gvt))
819 goto retry;
821 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
822 return ERR_PTR(-ENOMEM);
825 spt->vgpu = vgpu;
826 atomic_set(&spt->refcount, 1);
827 INIT_LIST_HEAD(&spt->post_shadow_list);
830 * Init shadow_page.
832 spt->shadow_page.type = type;
833 daddr = dma_map_page(kdev, spt->shadow_page.page,
834 0, 4096, PCI_DMA_BIDIRECTIONAL);
835 if (dma_mapping_error(kdev, daddr)) {
836 gvt_vgpu_err("fail to map dma addr\n");
837 ret = -EINVAL;
838 goto err_free_spt;
840 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
841 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
843 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
844 if (ret)
845 goto err_unmap_dma;
847 return spt;
849 err_unmap_dma:
850 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
851 err_free_spt:
852 free_spt(spt);
853 return ERR_PTR(ret);
856 /* Allocate shadow page table associated with specific gfn. */
857 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
858 struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type,
859 unsigned long gfn, bool guest_pde_ips)
861 struct intel_vgpu_ppgtt_spt *spt;
862 int ret;
864 spt = ppgtt_alloc_spt(vgpu, type);
865 if (IS_ERR(spt))
866 return spt;
869 * Init guest_page.
871 ret = intel_vgpu_register_page_track(vgpu, gfn,
872 ppgtt_write_protection_handler, spt);
873 if (ret) {
874 ppgtt_free_spt(spt);
875 return ERR_PTR(ret);
878 spt->guest_page.type = type;
879 spt->guest_page.gfn = gfn;
880 spt->guest_page.pde_ips = guest_pde_ips;
882 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
884 return spt;
887 #define pt_entry_size_shift(spt) \
888 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
890 #define pt_entries(spt) \
891 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
893 #define for_each_present_guest_entry(spt, e, i) \
894 for (i = 0; i < pt_entries(spt); \
895 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
896 if (!ppgtt_get_guest_entry(spt, e, i) && \
897 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
899 #define for_each_present_shadow_entry(spt, e, i) \
900 for (i = 0; i < pt_entries(spt); \
901 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902 if (!ppgtt_get_shadow_entry(spt, e, i) && \
903 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
905 #define for_each_shadow_entry(spt, e, i) \
906 for (i = 0; i < pt_entries(spt); \
907 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
908 if (!ppgtt_get_shadow_entry(spt, e, i))
910 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
912 int v = atomic_read(&spt->refcount);
914 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
915 atomic_inc(&spt->refcount);
918 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
920 int v = atomic_read(&spt->refcount);
922 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
923 return atomic_dec_return(&spt->refcount);
926 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
928 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
929 struct intel_gvt_gtt_entry *e)
931 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
932 struct intel_vgpu_ppgtt_spt *s;
933 intel_gvt_gtt_type_t cur_pt_type;
935 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
937 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
938 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
939 cur_pt_type = get_next_pt_type(e->type) + 1;
940 if (ops->get_pfn(e) ==
941 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
942 return 0;
944 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
945 if (!s) {
946 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
947 ops->get_pfn(e));
948 return -ENXIO;
950 return ppgtt_invalidate_spt(s);
953 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
954 struct intel_gvt_gtt_entry *entry)
956 struct intel_vgpu *vgpu = spt->vgpu;
957 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
958 unsigned long pfn;
959 int type;
961 pfn = ops->get_pfn(entry);
962 type = spt->shadow_page.type;
964 /* Uninitialized spte or unshadowed spte. */
965 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
966 return;
968 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
971 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
973 struct intel_vgpu *vgpu = spt->vgpu;
974 struct intel_gvt_gtt_entry e;
975 unsigned long index;
976 int ret;
978 trace_spt_change(spt->vgpu->id, "die", spt,
979 spt->guest_page.gfn, spt->shadow_page.type);
981 if (ppgtt_put_spt(spt) > 0)
982 return 0;
984 for_each_present_shadow_entry(spt, &e, index) {
985 switch (e.type) {
986 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
987 gvt_vdbg_mm("invalidate 4K entry\n");
988 ppgtt_invalidate_pte(spt, &e);
989 break;
990 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
991 /* We don't setup 64K shadow entry so far. */
992 WARN(1, "suspicious 64K gtt entry\n");
993 continue;
994 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
995 gvt_vdbg_mm("invalidate 2M entry\n");
996 continue;
997 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
998 WARN(1, "GVT doesn't support 1GB page\n");
999 continue;
1000 case GTT_TYPE_PPGTT_PML4_ENTRY:
1001 case GTT_TYPE_PPGTT_PDP_ENTRY:
1002 case GTT_TYPE_PPGTT_PDE_ENTRY:
1003 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1004 ret = ppgtt_invalidate_spt_by_shadow_entry(
1005 spt->vgpu, &e);
1006 if (ret)
1007 goto fail;
1008 break;
1009 default:
1010 GEM_BUG_ON(1);
1014 trace_spt_change(spt->vgpu->id, "release", spt,
1015 spt->guest_page.gfn, spt->shadow_page.type);
1016 ppgtt_free_spt(spt);
1017 return 0;
1018 fail:
1019 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1020 spt, e.val64, e.type);
1021 return ret;
1024 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1026 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1028 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1029 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1030 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1032 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1033 } else if (INTEL_GEN(dev_priv) >= 11) {
1034 /* 64K paging only controlled by IPS bit in PTE now. */
1035 return true;
1036 } else
1037 return false;
1040 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1042 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1043 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1045 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1046 struct intel_vgpu_ppgtt_spt *spt = NULL;
1047 bool ips = false;
1048 int ret;
1050 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1052 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1053 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1055 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1056 if (spt) {
1057 ppgtt_get_spt(spt);
1059 if (ips != spt->guest_page.pde_ips) {
1060 spt->guest_page.pde_ips = ips;
1062 gvt_dbg_mm("reshadow PDE since ips changed\n");
1063 clear_page(spt->shadow_page.vaddr);
1064 ret = ppgtt_populate_spt(spt);
1065 if (ret) {
1066 ppgtt_put_spt(spt);
1067 goto err;
1070 } else {
1071 int type = get_next_pt_type(we->type);
1073 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1074 if (IS_ERR(spt)) {
1075 ret = PTR_ERR(spt);
1076 goto err;
1079 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1080 if (ret)
1081 goto err_free_spt;
1083 ret = ppgtt_populate_spt(spt);
1084 if (ret)
1085 goto err_free_spt;
1087 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1088 spt->shadow_page.type);
1090 return spt;
1092 err_free_spt:
1093 ppgtt_free_spt(spt);
1094 err:
1095 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1096 spt, we->val64, we->type);
1097 return ERR_PTR(ret);
1100 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1101 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1103 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1105 se->type = ge->type;
1106 se->val64 = ge->val64;
1108 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1109 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1110 ops->clear_ips(se);
1112 ops->set_pfn(se, s->shadow_page.mfn);
1116 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1117 * negtive if found err.
1119 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1120 struct intel_gvt_gtt_entry *entry)
1122 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1123 unsigned long pfn;
1125 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1126 return 0;
1128 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1129 if (pfn == INTEL_GVT_INVALID_ADDR)
1130 return -EINVAL;
1132 return PageTransHuge(pfn_to_page(pfn));
1135 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1136 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1137 struct intel_gvt_gtt_entry *se)
1139 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1140 struct intel_vgpu_ppgtt_spt *sub_spt;
1141 struct intel_gvt_gtt_entry sub_se;
1142 unsigned long start_gfn;
1143 dma_addr_t dma_addr;
1144 unsigned long sub_index;
1145 int ret;
1147 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1149 start_gfn = ops->get_pfn(se);
1151 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1152 if (IS_ERR(sub_spt))
1153 return PTR_ERR(sub_spt);
1155 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1156 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1157 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1158 if (ret) {
1159 ppgtt_invalidate_spt(spt);
1160 return ret;
1162 sub_se.val64 = se->val64;
1164 /* Copy the PAT field from PDE. */
1165 sub_se.val64 &= ~_PAGE_PAT;
1166 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1168 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1169 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1172 /* Clear dirty field. */
1173 se->val64 &= ~_PAGE_DIRTY;
1175 ops->clear_pse(se);
1176 ops->clear_ips(se);
1177 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1178 ppgtt_set_shadow_entry(spt, se, index);
1179 return 0;
1182 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1183 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1184 struct intel_gvt_gtt_entry *se)
1186 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1187 struct intel_gvt_gtt_entry entry = *se;
1188 unsigned long start_gfn;
1189 dma_addr_t dma_addr;
1190 int i, ret;
1192 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1194 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1196 start_gfn = ops->get_pfn(se);
1198 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1199 ops->set_64k_splited(&entry);
1201 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1202 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1203 start_gfn + i, PAGE_SIZE, &dma_addr);
1204 if (ret)
1205 return ret;
1207 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1208 ppgtt_set_shadow_entry(spt, &entry, index + i);
1210 return 0;
1213 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1214 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1215 struct intel_gvt_gtt_entry *ge)
1217 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1218 struct intel_gvt_gtt_entry se = *ge;
1219 unsigned long gfn, page_size = PAGE_SIZE;
1220 dma_addr_t dma_addr;
1221 int ret;
1223 if (!pte_ops->test_present(ge))
1224 return 0;
1226 gfn = pte_ops->get_pfn(ge);
1228 switch (ge->type) {
1229 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1230 gvt_vdbg_mm("shadow 4K gtt entry\n");
1231 break;
1232 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1233 gvt_vdbg_mm("shadow 64K gtt entry\n");
1235 * The layout of 64K page is special, the page size is
1236 * controlled by uper PDE. To be simple, we always split
1237 * 64K page to smaller 4K pages in shadow PT.
1239 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1240 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1241 gvt_vdbg_mm("shadow 2M gtt entry\n");
1242 ret = is_2MB_gtt_possible(vgpu, ge);
1243 if (ret == 0)
1244 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1245 else if (ret < 0)
1246 return ret;
1247 page_size = I915_GTT_PAGE_SIZE_2M;
1248 break;
1249 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1250 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1251 return -EINVAL;
1252 default:
1253 GEM_BUG_ON(1);
1256 /* direct shadow */
1257 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1258 &dma_addr);
1259 if (ret)
1260 return -ENXIO;
1262 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1263 ppgtt_set_shadow_entry(spt, &se, index);
1264 return 0;
1267 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1269 struct intel_vgpu *vgpu = spt->vgpu;
1270 struct intel_gvt *gvt = vgpu->gvt;
1271 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1272 struct intel_vgpu_ppgtt_spt *s;
1273 struct intel_gvt_gtt_entry se, ge;
1274 unsigned long gfn, i;
1275 int ret;
1277 trace_spt_change(spt->vgpu->id, "born", spt,
1278 spt->guest_page.gfn, spt->shadow_page.type);
1280 for_each_present_guest_entry(spt, &ge, i) {
1281 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1282 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1283 if (IS_ERR(s)) {
1284 ret = PTR_ERR(s);
1285 goto fail;
1287 ppgtt_get_shadow_entry(spt, &se, i);
1288 ppgtt_generate_shadow_entry(&se, s, &ge);
1289 ppgtt_set_shadow_entry(spt, &se, i);
1290 } else {
1291 gfn = ops->get_pfn(&ge);
1292 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1293 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1294 ppgtt_set_shadow_entry(spt, &se, i);
1295 continue;
1298 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1299 if (ret)
1300 goto fail;
1303 return 0;
1304 fail:
1305 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1306 spt, ge.val64, ge.type);
1307 return ret;
1310 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1311 struct intel_gvt_gtt_entry *se, unsigned long index)
1313 struct intel_vgpu *vgpu = spt->vgpu;
1314 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1315 int ret;
1317 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1318 spt->shadow_page.type, se->val64, index);
1320 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1321 se->type, index, se->val64);
1323 if (!ops->test_present(se))
1324 return 0;
1326 if (ops->get_pfn(se) ==
1327 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1328 return 0;
1330 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1331 struct intel_vgpu_ppgtt_spt *s =
1332 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1333 if (!s) {
1334 gvt_vgpu_err("fail to find guest page\n");
1335 ret = -ENXIO;
1336 goto fail;
1338 ret = ppgtt_invalidate_spt(s);
1339 if (ret)
1340 goto fail;
1341 } else {
1342 /* We don't setup 64K shadow entry so far. */
1343 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1344 "suspicious 64K entry\n");
1345 ppgtt_invalidate_pte(spt, se);
1348 return 0;
1349 fail:
1350 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1351 spt, se->val64, se->type);
1352 return ret;
1355 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1356 struct intel_gvt_gtt_entry *we, unsigned long index)
1358 struct intel_vgpu *vgpu = spt->vgpu;
1359 struct intel_gvt_gtt_entry m;
1360 struct intel_vgpu_ppgtt_spt *s;
1361 int ret;
1363 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1364 we->val64, index);
1366 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1367 we->type, index, we->val64);
1369 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1370 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1371 if (IS_ERR(s)) {
1372 ret = PTR_ERR(s);
1373 goto fail;
1375 ppgtt_get_shadow_entry(spt, &m, index);
1376 ppgtt_generate_shadow_entry(&m, s, we);
1377 ppgtt_set_shadow_entry(spt, &m, index);
1378 } else {
1379 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1380 if (ret)
1381 goto fail;
1383 return 0;
1384 fail:
1385 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1386 spt, we->val64, we->type);
1387 return ret;
1390 static int sync_oos_page(struct intel_vgpu *vgpu,
1391 struct intel_vgpu_oos_page *oos_page)
1393 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1394 struct intel_gvt *gvt = vgpu->gvt;
1395 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1396 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1397 struct intel_gvt_gtt_entry old, new;
1398 int index;
1399 int ret;
1401 trace_oos_change(vgpu->id, "sync", oos_page->id,
1402 spt, spt->guest_page.type);
1404 old.type = new.type = get_entry_type(spt->guest_page.type);
1405 old.val64 = new.val64 = 0;
1407 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1408 info->gtt_entry_size_shift); index++) {
1409 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1410 ops->get_entry(NULL, &new, index, true,
1411 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1413 if (old.val64 == new.val64
1414 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1415 continue;
1417 trace_oos_sync(vgpu->id, oos_page->id,
1418 spt, spt->guest_page.type,
1419 new.val64, index);
1421 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1422 if (ret)
1423 return ret;
1425 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1428 spt->guest_page.write_cnt = 0;
1429 list_del_init(&spt->post_shadow_list);
1430 return 0;
1433 static int detach_oos_page(struct intel_vgpu *vgpu,
1434 struct intel_vgpu_oos_page *oos_page)
1436 struct intel_gvt *gvt = vgpu->gvt;
1437 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1439 trace_oos_change(vgpu->id, "detach", oos_page->id,
1440 spt, spt->guest_page.type);
1442 spt->guest_page.write_cnt = 0;
1443 spt->guest_page.oos_page = NULL;
1444 oos_page->spt = NULL;
1446 list_del_init(&oos_page->vm_list);
1447 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1449 return 0;
1452 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1453 struct intel_vgpu_ppgtt_spt *spt)
1455 struct intel_gvt *gvt = spt->vgpu->gvt;
1456 int ret;
1458 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1459 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1460 oos_page->mem, I915_GTT_PAGE_SIZE);
1461 if (ret)
1462 return ret;
1464 oos_page->spt = spt;
1465 spt->guest_page.oos_page = oos_page;
1467 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1469 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1470 spt, spt->guest_page.type);
1471 return 0;
1474 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1476 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1477 int ret;
1479 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1480 if (ret)
1481 return ret;
1483 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1484 spt, spt->guest_page.type);
1486 list_del_init(&oos_page->vm_list);
1487 return sync_oos_page(spt->vgpu, oos_page);
1490 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1492 struct intel_gvt *gvt = spt->vgpu->gvt;
1493 struct intel_gvt_gtt *gtt = &gvt->gtt;
1494 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1495 int ret;
1497 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1499 if (list_empty(&gtt->oos_page_free_list_head)) {
1500 oos_page = container_of(gtt->oos_page_use_list_head.next,
1501 struct intel_vgpu_oos_page, list);
1502 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1503 if (ret)
1504 return ret;
1505 ret = detach_oos_page(spt->vgpu, oos_page);
1506 if (ret)
1507 return ret;
1508 } else
1509 oos_page = container_of(gtt->oos_page_free_list_head.next,
1510 struct intel_vgpu_oos_page, list);
1511 return attach_oos_page(oos_page, spt);
1514 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1516 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1518 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1519 return -EINVAL;
1521 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1522 spt, spt->guest_page.type);
1524 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1525 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1529 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1530 * @vgpu: a vGPU
1532 * This function is called before submitting a guest workload to host,
1533 * to sync all the out-of-synced shadow for vGPU
1535 * Returns:
1536 * Zero on success, negative error code if failed.
1538 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1540 struct list_head *pos, *n;
1541 struct intel_vgpu_oos_page *oos_page;
1542 int ret;
1544 if (!enable_out_of_sync)
1545 return 0;
1547 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1548 oos_page = container_of(pos,
1549 struct intel_vgpu_oos_page, vm_list);
1550 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1551 if (ret)
1552 return ret;
1554 return 0;
1558 * The heart of PPGTT shadow page table.
1560 static int ppgtt_handle_guest_write_page_table(
1561 struct intel_vgpu_ppgtt_spt *spt,
1562 struct intel_gvt_gtt_entry *we, unsigned long index)
1564 struct intel_vgpu *vgpu = spt->vgpu;
1565 int type = spt->shadow_page.type;
1566 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1567 struct intel_gvt_gtt_entry old_se;
1568 int new_present;
1569 int i, ret;
1571 new_present = ops->test_present(we);
1574 * Adding the new entry first and then removing the old one, that can
1575 * guarantee the ppgtt table is validated during the window between
1576 * adding and removal.
1578 ppgtt_get_shadow_entry(spt, &old_se, index);
1580 if (new_present) {
1581 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1582 if (ret)
1583 goto fail;
1586 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1587 if (ret)
1588 goto fail;
1590 if (!new_present) {
1591 /* For 64KB splited entries, we need clear them all. */
1592 if (ops->test_64k_splited(&old_se) &&
1593 !(index % GTT_64K_PTE_STRIDE)) {
1594 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1595 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1596 ops->clear_64k_splited(&old_se);
1597 ops->set_pfn(&old_se,
1598 vgpu->gtt.scratch_pt[type].page_mfn);
1599 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1601 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1602 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1603 ops->clear_pse(&old_se);
1604 ops->set_pfn(&old_se,
1605 vgpu->gtt.scratch_pt[type].page_mfn);
1606 ppgtt_set_shadow_entry(spt, &old_se, index);
1607 } else {
1608 ops->set_pfn(&old_se,
1609 vgpu->gtt.scratch_pt[type].page_mfn);
1610 ppgtt_set_shadow_entry(spt, &old_se, index);
1614 return 0;
1615 fail:
1616 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1617 spt, we->val64, we->type);
1618 return ret;
1623 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1625 return enable_out_of_sync
1626 && gtt_type_is_pte_pt(spt->guest_page.type)
1627 && spt->guest_page.write_cnt >= 2;
1630 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1631 unsigned long index)
1633 set_bit(index, spt->post_shadow_bitmap);
1634 if (!list_empty(&spt->post_shadow_list))
1635 return;
1637 list_add_tail(&spt->post_shadow_list,
1638 &spt->vgpu->gtt.post_shadow_list_head);
1642 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1643 * @vgpu: a vGPU
1645 * This function is called before submitting a guest workload to host,
1646 * to flush all the post shadows for a vGPU.
1648 * Returns:
1649 * Zero on success, negative error code if failed.
1651 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1653 struct list_head *pos, *n;
1654 struct intel_vgpu_ppgtt_spt *spt;
1655 struct intel_gvt_gtt_entry ge;
1656 unsigned long index;
1657 int ret;
1659 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1660 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1661 post_shadow_list);
1663 for_each_set_bit(index, spt->post_shadow_bitmap,
1664 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1665 ppgtt_get_guest_entry(spt, &ge, index);
1667 ret = ppgtt_handle_guest_write_page_table(spt,
1668 &ge, index);
1669 if (ret)
1670 return ret;
1671 clear_bit(index, spt->post_shadow_bitmap);
1673 list_del_init(&spt->post_shadow_list);
1675 return 0;
1678 static int ppgtt_handle_guest_write_page_table_bytes(
1679 struct intel_vgpu_ppgtt_spt *spt,
1680 u64 pa, void *p_data, int bytes)
1682 struct intel_vgpu *vgpu = spt->vgpu;
1683 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1684 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1685 struct intel_gvt_gtt_entry we, se;
1686 unsigned long index;
1687 int ret;
1689 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1691 ppgtt_get_guest_entry(spt, &we, index);
1694 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1695 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1696 * ignored.
1698 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1699 (index % GTT_64K_PTE_STRIDE)) {
1700 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1701 index);
1702 return 0;
1705 if (bytes == info->gtt_entry_size) {
1706 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1707 if (ret)
1708 return ret;
1709 } else {
1710 if (!test_bit(index, spt->post_shadow_bitmap)) {
1711 int type = spt->shadow_page.type;
1713 ppgtt_get_shadow_entry(spt, &se, index);
1714 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1715 if (ret)
1716 return ret;
1717 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1718 ppgtt_set_shadow_entry(spt, &se, index);
1720 ppgtt_set_post_shadow(spt, index);
1723 if (!enable_out_of_sync)
1724 return 0;
1726 spt->guest_page.write_cnt++;
1728 if (spt->guest_page.oos_page)
1729 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1730 false, 0, vgpu);
1732 if (can_do_out_of_sync(spt)) {
1733 if (!spt->guest_page.oos_page)
1734 ppgtt_allocate_oos_page(spt);
1736 ret = ppgtt_set_guest_page_oos(spt);
1737 if (ret < 0)
1738 return ret;
1740 return 0;
1743 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1745 struct intel_vgpu *vgpu = mm->vgpu;
1746 struct intel_gvt *gvt = vgpu->gvt;
1747 struct intel_gvt_gtt *gtt = &gvt->gtt;
1748 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1749 struct intel_gvt_gtt_entry se;
1750 int index;
1752 if (!mm->ppgtt_mm.shadowed)
1753 return;
1755 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1756 ppgtt_get_shadow_root_entry(mm, &se, index);
1758 if (!ops->test_present(&se))
1759 continue;
1761 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1762 se.val64 = 0;
1763 ppgtt_set_shadow_root_entry(mm, &se, index);
1765 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1766 NULL, se.type, se.val64, index);
1769 mm->ppgtt_mm.shadowed = false;
1773 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1775 struct intel_vgpu *vgpu = mm->vgpu;
1776 struct intel_gvt *gvt = vgpu->gvt;
1777 struct intel_gvt_gtt *gtt = &gvt->gtt;
1778 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1779 struct intel_vgpu_ppgtt_spt *spt;
1780 struct intel_gvt_gtt_entry ge, se;
1781 int index, ret;
1783 if (mm->ppgtt_mm.shadowed)
1784 return 0;
1786 mm->ppgtt_mm.shadowed = true;
1788 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1789 ppgtt_get_guest_root_entry(mm, &ge, index);
1791 if (!ops->test_present(&ge))
1792 continue;
1794 trace_spt_guest_change(vgpu->id, __func__, NULL,
1795 ge.type, ge.val64, index);
1797 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1798 if (IS_ERR(spt)) {
1799 gvt_vgpu_err("fail to populate guest root pointer\n");
1800 ret = PTR_ERR(spt);
1801 goto fail;
1803 ppgtt_generate_shadow_entry(&se, spt, &ge);
1804 ppgtt_set_shadow_root_entry(mm, &se, index);
1806 trace_spt_guest_change(vgpu->id, "populate root pointer",
1807 NULL, se.type, se.val64, index);
1810 return 0;
1811 fail:
1812 invalidate_ppgtt_mm(mm);
1813 return ret;
1816 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1818 struct intel_vgpu_mm *mm;
1820 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1821 if (!mm)
1822 return NULL;
1824 mm->vgpu = vgpu;
1825 kref_init(&mm->ref);
1826 atomic_set(&mm->pincount, 0);
1828 return mm;
1831 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1833 kfree(mm);
1837 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1838 * @vgpu: a vGPU
1839 * @root_entry_type: ppgtt root entry type
1840 * @pdps: guest pdps.
1842 * This function is used to create a ppgtt mm object for a vGPU.
1844 * Returns:
1845 * Zero on success, negative error code in pointer if failed.
1847 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1848 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1850 struct intel_gvt *gvt = vgpu->gvt;
1851 struct intel_vgpu_mm *mm;
1852 int ret;
1854 mm = vgpu_alloc_mm(vgpu);
1855 if (!mm)
1856 return ERR_PTR(-ENOMEM);
1858 mm->type = INTEL_GVT_MM_PPGTT;
1860 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1861 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1862 mm->ppgtt_mm.root_entry_type = root_entry_type;
1864 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1865 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1867 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1868 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1869 else
1870 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1871 sizeof(mm->ppgtt_mm.guest_pdps));
1873 ret = shadow_ppgtt_mm(mm);
1874 if (ret) {
1875 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1876 vgpu_free_mm(mm);
1877 return ERR_PTR(ret);
1880 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1881 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1882 return mm;
1885 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1887 struct intel_vgpu_mm *mm;
1888 unsigned long nr_entries;
1890 mm = vgpu_alloc_mm(vgpu);
1891 if (!mm)
1892 return ERR_PTR(-ENOMEM);
1894 mm->type = INTEL_GVT_MM_GGTT;
1896 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1897 mm->ggtt_mm.virtual_ggtt =
1898 vzalloc(array_size(nr_entries,
1899 vgpu->gvt->device_info.gtt_entry_size));
1900 if (!mm->ggtt_mm.virtual_ggtt) {
1901 vgpu_free_mm(mm);
1902 return ERR_PTR(-ENOMEM);
1904 mm->ggtt_mm.last_partial_off = -1UL;
1906 return mm;
1910 * _intel_vgpu_mm_release - destroy a mm object
1911 * @mm_ref: a kref object
1913 * This function is used to destroy a mm object for vGPU
1916 void _intel_vgpu_mm_release(struct kref *mm_ref)
1918 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1920 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1921 gvt_err("vgpu mm pin count bug detected\n");
1923 if (mm->type == INTEL_GVT_MM_PPGTT) {
1924 list_del(&mm->ppgtt_mm.list);
1925 list_del(&mm->ppgtt_mm.lru_list);
1926 invalidate_ppgtt_mm(mm);
1927 } else {
1928 vfree(mm->ggtt_mm.virtual_ggtt);
1929 mm->ggtt_mm.last_partial_off = -1UL;
1932 vgpu_free_mm(mm);
1936 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1937 * @mm: a vGPU mm object
1939 * This function is called when user doesn't want to use a vGPU mm object
1941 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1943 atomic_dec_if_positive(&mm->pincount);
1947 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1948 * @vgpu: a vGPU
1950 * This function is called when user wants to use a vGPU mm object. If this
1951 * mm object hasn't been shadowed yet, the shadow will be populated at this
1952 * time.
1954 * Returns:
1955 * Zero on success, negative error code if failed.
1957 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1959 int ret;
1961 atomic_inc(&mm->pincount);
1963 if (mm->type == INTEL_GVT_MM_PPGTT) {
1964 ret = shadow_ppgtt_mm(mm);
1965 if (ret)
1966 return ret;
1968 list_move_tail(&mm->ppgtt_mm.lru_list,
1969 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1973 return 0;
1976 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1978 struct intel_vgpu_mm *mm;
1979 struct list_head *pos, *n;
1981 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1982 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1984 if (atomic_read(&mm->pincount))
1985 continue;
1987 list_del_init(&mm->ppgtt_mm.lru_list);
1988 invalidate_ppgtt_mm(mm);
1989 return 1;
1991 return 0;
1995 * GMA translation APIs.
1997 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1998 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2000 struct intel_vgpu *vgpu = mm->vgpu;
2001 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2002 struct intel_vgpu_ppgtt_spt *s;
2004 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2005 if (!s)
2006 return -ENXIO;
2008 if (!guest)
2009 ppgtt_get_shadow_entry(s, e, index);
2010 else
2011 ppgtt_get_guest_entry(s, e, index);
2012 return 0;
2016 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2017 * @mm: mm object. could be a PPGTT or GGTT mm object
2018 * @gma: graphics memory address in this mm object
2020 * This function is used to translate a graphics memory address in specific
2021 * graphics memory space to guest physical address.
2023 * Returns:
2024 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2026 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2028 struct intel_vgpu *vgpu = mm->vgpu;
2029 struct intel_gvt *gvt = vgpu->gvt;
2030 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2031 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2032 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2033 unsigned long gma_index[4];
2034 struct intel_gvt_gtt_entry e;
2035 int i, levels = 0;
2036 int ret;
2038 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2039 mm->type != INTEL_GVT_MM_PPGTT);
2041 if (mm->type == INTEL_GVT_MM_GGTT) {
2042 if (!vgpu_gmadr_is_valid(vgpu, gma))
2043 goto err;
2045 ggtt_get_guest_entry(mm, &e,
2046 gma_ops->gma_to_ggtt_pte_index(gma));
2048 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2049 + (gma & ~I915_GTT_PAGE_MASK);
2051 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2052 } else {
2053 switch (mm->ppgtt_mm.root_entry_type) {
2054 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2055 ppgtt_get_shadow_root_entry(mm, &e, 0);
2057 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2058 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2059 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2060 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2061 levels = 4;
2062 break;
2063 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2064 ppgtt_get_shadow_root_entry(mm, &e,
2065 gma_ops->gma_to_l3_pdp_index(gma));
2067 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2068 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2069 levels = 2;
2070 break;
2071 default:
2072 GEM_BUG_ON(1);
2075 /* walk the shadow page table and get gpa from guest entry */
2076 for (i = 0; i < levels; i++) {
2077 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2078 (i == levels - 1));
2079 if (ret)
2080 goto err;
2082 if (!pte_ops->test_present(&e)) {
2083 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2084 goto err;
2088 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2089 (gma & ~I915_GTT_PAGE_MASK);
2090 trace_gma_translate(vgpu->id, "ppgtt", 0,
2091 mm->ppgtt_mm.root_entry_type, gma, gpa);
2094 return gpa;
2095 err:
2096 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2097 return INTEL_GVT_INVALID_ADDR;
2100 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2101 unsigned int off, void *p_data, unsigned int bytes)
2103 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2104 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2105 unsigned long index = off >> info->gtt_entry_size_shift;
2106 struct intel_gvt_gtt_entry e;
2108 if (bytes != 4 && bytes != 8)
2109 return -EINVAL;
2111 ggtt_get_guest_entry(ggtt_mm, &e, index);
2112 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2113 bytes);
2114 return 0;
2118 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2119 * @vgpu: a vGPU
2120 * @off: register offset
2121 * @p_data: data will be returned to guest
2122 * @bytes: data length
2124 * This function is used to emulate the GTT MMIO register read
2126 * Returns:
2127 * Zero on success, error code if failed.
2129 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2130 void *p_data, unsigned int bytes)
2132 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2133 int ret;
2135 if (bytes != 4 && bytes != 8)
2136 return -EINVAL;
2138 off -= info->gtt_start_offset;
2139 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2140 return ret;
2143 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2144 struct intel_gvt_gtt_entry *entry)
2146 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2147 unsigned long pfn;
2149 pfn = pte_ops->get_pfn(entry);
2150 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2151 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2152 pfn << PAGE_SHIFT);
2155 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2156 void *p_data, unsigned int bytes)
2158 struct intel_gvt *gvt = vgpu->gvt;
2159 const struct intel_gvt_device_info *info = &gvt->device_info;
2160 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2161 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2162 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2163 unsigned long gma, gfn;
2164 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2165 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2166 dma_addr_t dma_addr;
2167 int ret;
2169 if (bytes != 4 && bytes != 8)
2170 return -EINVAL;
2172 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2174 /* the VM may configure the whole GM space when ballooning is used */
2175 if (!vgpu_gmadr_is_valid(vgpu, gma))
2176 return 0;
2178 ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
2180 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2181 bytes);
2183 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2184 * write, we assume the two 4 bytes writes are consecutive.
2185 * Otherwise, we abort and report error
2187 if (bytes < info->gtt_entry_size) {
2188 if (ggtt_mm->ggtt_mm.last_partial_off == -1UL) {
2189 /* the first partial part*/
2190 ggtt_mm->ggtt_mm.last_partial_off = off;
2191 ggtt_mm->ggtt_mm.last_partial_data = e.val64;
2192 return 0;
2193 } else if ((g_gtt_index ==
2194 (ggtt_mm->ggtt_mm.last_partial_off >>
2195 info->gtt_entry_size_shift)) &&
2196 (off != ggtt_mm->ggtt_mm.last_partial_off)) {
2197 /* the second partial part */
2199 int last_off = ggtt_mm->ggtt_mm.last_partial_off &
2200 (info->gtt_entry_size - 1);
2202 memcpy((void *)&e.val64 + last_off,
2203 (void *)&ggtt_mm->ggtt_mm.last_partial_data +
2204 last_off, bytes);
2206 ggtt_mm->ggtt_mm.last_partial_off = -1UL;
2207 } else {
2208 int last_offset;
2210 gvt_vgpu_err("failed to populate guest ggtt entry: abnormal ggtt entry write sequence, last_partial_off=%lx, offset=%x, bytes=%d, ggtt entry size=%d\n",
2211 ggtt_mm->ggtt_mm.last_partial_off, off,
2212 bytes, info->gtt_entry_size);
2214 /* set host ggtt entry to scratch page and clear
2215 * virtual ggtt entry as not present for last
2216 * partially write offset
2218 last_offset = ggtt_mm->ggtt_mm.last_partial_off &
2219 (~(info->gtt_entry_size - 1));
2221 ggtt_get_host_entry(ggtt_mm, &m, last_offset);
2222 ggtt_invalidate_pte(vgpu, &m);
2223 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2224 ops->clear_present(&m);
2225 ggtt_set_host_entry(ggtt_mm, &m, last_offset);
2226 ggtt_invalidate(gvt->dev_priv);
2228 ggtt_get_guest_entry(ggtt_mm, &e, last_offset);
2229 ops->clear_present(&e);
2230 ggtt_set_guest_entry(ggtt_mm, &e, last_offset);
2232 ggtt_mm->ggtt_mm.last_partial_off = off;
2233 ggtt_mm->ggtt_mm.last_partial_data = e.val64;
2235 return 0;
2239 if (ops->test_present(&e)) {
2240 gfn = ops->get_pfn(&e);
2241 m.val64 = e.val64;
2242 m.type = e.type;
2244 /* one PTE update may be issued in multiple writes and the
2245 * first write may not construct a valid gfn
2247 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2248 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2249 goto out;
2252 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2253 PAGE_SIZE, &dma_addr);
2254 if (ret) {
2255 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2256 /* guest driver may read/write the entry when partial
2257 * update the entry in this situation p2m will fail
2258 * settting the shadow entry to point to a scratch page
2260 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2261 } else
2262 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2263 } else {
2264 ggtt_get_host_entry(ggtt_mm, &m, g_gtt_index);
2265 ggtt_invalidate_pte(vgpu, &m);
2266 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2267 ops->clear_present(&m);
2270 out:
2271 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2272 ggtt_invalidate(gvt->dev_priv);
2273 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2274 return 0;
2278 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2279 * @vgpu: a vGPU
2280 * @off: register offset
2281 * @p_data: data from guest write
2282 * @bytes: data length
2284 * This function is used to emulate the GTT MMIO register write
2286 * Returns:
2287 * Zero on success, error code if failed.
2289 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2290 unsigned int off, void *p_data, unsigned int bytes)
2292 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2293 int ret;
2295 if (bytes != 4 && bytes != 8)
2296 return -EINVAL;
2298 off -= info->gtt_start_offset;
2299 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2300 return ret;
2303 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2304 intel_gvt_gtt_type_t type)
2306 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2307 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2308 int page_entry_num = I915_GTT_PAGE_SIZE >>
2309 vgpu->gvt->device_info.gtt_entry_size_shift;
2310 void *scratch_pt;
2311 int i;
2312 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2313 dma_addr_t daddr;
2315 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2316 return -EINVAL;
2318 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2319 if (!scratch_pt) {
2320 gvt_vgpu_err("fail to allocate scratch page\n");
2321 return -ENOMEM;
2324 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2325 4096, PCI_DMA_BIDIRECTIONAL);
2326 if (dma_mapping_error(dev, daddr)) {
2327 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2328 __free_page(virt_to_page(scratch_pt));
2329 return -ENOMEM;
2331 gtt->scratch_pt[type].page_mfn =
2332 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2333 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2334 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2335 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2337 /* Build the tree by full filled the scratch pt with the entries which
2338 * point to the next level scratch pt or scratch page. The
2339 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2340 * 'type' pt.
2341 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2342 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2343 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2345 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2346 struct intel_gvt_gtt_entry se;
2348 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2349 se.type = get_entry_type(type - 1);
2350 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2352 /* The entry parameters like present/writeable/cache type
2353 * set to the same as i915's scratch page tree.
2355 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2356 if (type == GTT_TYPE_PPGTT_PDE_PT)
2357 se.val64 |= PPAT_CACHED;
2359 for (i = 0; i < page_entry_num; i++)
2360 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2363 return 0;
2366 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2368 int i;
2369 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2370 dma_addr_t daddr;
2372 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2373 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2374 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2375 I915_GTT_PAGE_SHIFT);
2376 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2377 __free_page(vgpu->gtt.scratch_pt[i].page);
2378 vgpu->gtt.scratch_pt[i].page = NULL;
2379 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2383 return 0;
2386 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2388 int i, ret;
2390 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2391 ret = alloc_scratch_pages(vgpu, i);
2392 if (ret)
2393 goto err;
2396 return 0;
2398 err:
2399 release_scratch_page_tree(vgpu);
2400 return ret;
2404 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2405 * @vgpu: a vGPU
2407 * This function is used to initialize per-vGPU graphics memory virtualization
2408 * components.
2410 * Returns:
2411 * Zero on success, error code if failed.
2413 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2415 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2417 INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2419 INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2420 INIT_LIST_HEAD(&gtt->oos_page_list_head);
2421 INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2423 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2424 if (IS_ERR(gtt->ggtt_mm)) {
2425 gvt_vgpu_err("fail to create mm for ggtt.\n");
2426 return PTR_ERR(gtt->ggtt_mm);
2429 intel_vgpu_reset_ggtt(vgpu, false);
2431 return create_scratch_page_tree(vgpu);
2434 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2436 struct list_head *pos, *n;
2437 struct intel_vgpu_mm *mm;
2439 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2440 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2441 intel_vgpu_destroy_mm(mm);
2444 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2445 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2447 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2448 gvt_err("Why we still has spt not freed?\n");
2449 ppgtt_free_all_spt(vgpu);
2453 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2455 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2456 vgpu->gtt.ggtt_mm = NULL;
2460 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2461 * @vgpu: a vGPU
2463 * This function is used to clean up per-vGPU graphics memory virtualization
2464 * components.
2466 * Returns:
2467 * Zero on success, error code if failed.
2469 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2471 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2472 intel_vgpu_destroy_ggtt_mm(vgpu);
2473 release_scratch_page_tree(vgpu);
2476 static void clean_spt_oos(struct intel_gvt *gvt)
2478 struct intel_gvt_gtt *gtt = &gvt->gtt;
2479 struct list_head *pos, *n;
2480 struct intel_vgpu_oos_page *oos_page;
2482 WARN(!list_empty(&gtt->oos_page_use_list_head),
2483 "someone is still using oos page\n");
2485 list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2486 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2487 list_del(&oos_page->list);
2488 kfree(oos_page);
2492 static int setup_spt_oos(struct intel_gvt *gvt)
2494 struct intel_gvt_gtt *gtt = &gvt->gtt;
2495 struct intel_vgpu_oos_page *oos_page;
2496 int i;
2497 int ret;
2499 INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2500 INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2502 for (i = 0; i < preallocated_oos_pages; i++) {
2503 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2504 if (!oos_page) {
2505 ret = -ENOMEM;
2506 goto fail;
2509 INIT_LIST_HEAD(&oos_page->list);
2510 INIT_LIST_HEAD(&oos_page->vm_list);
2511 oos_page->id = i;
2512 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2515 gvt_dbg_mm("%d oos pages preallocated\n", i);
2517 return 0;
2518 fail:
2519 clean_spt_oos(gvt);
2520 return ret;
2524 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2525 * @vgpu: a vGPU
2526 * @page_table_level: PPGTT page table level
2527 * @root_entry: PPGTT page table root pointers
2529 * This function is used to find a PPGTT mm object from mm object pool
2531 * Returns:
2532 * pointer to mm object on success, NULL if failed.
2534 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2535 u64 pdps[])
2537 struct intel_vgpu_mm *mm;
2538 struct list_head *pos;
2540 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2541 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2543 switch (mm->ppgtt_mm.root_entry_type) {
2544 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2545 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2546 return mm;
2547 break;
2548 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2549 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2550 sizeof(mm->ppgtt_mm.guest_pdps)))
2551 return mm;
2552 break;
2553 default:
2554 GEM_BUG_ON(1);
2557 return NULL;
2561 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2562 * @vgpu: a vGPU
2563 * @root_entry_type: ppgtt root entry type
2564 * @pdps: guest pdps
2566 * This function is used to find or create a PPGTT mm object from a guest.
2568 * Returns:
2569 * Zero on success, negative error code if failed.
2571 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2572 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2574 struct intel_vgpu_mm *mm;
2576 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2577 if (mm) {
2578 intel_vgpu_mm_get(mm);
2579 } else {
2580 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2581 if (IS_ERR(mm))
2582 gvt_vgpu_err("fail to create mm\n");
2584 return mm;
2588 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2589 * @vgpu: a vGPU
2590 * @pdps: guest pdps
2592 * This function is used to find a PPGTT mm object from a guest and destroy it.
2594 * Returns:
2595 * Zero on success, negative error code if failed.
2597 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2599 struct intel_vgpu_mm *mm;
2601 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2602 if (!mm) {
2603 gvt_vgpu_err("fail to find ppgtt instance.\n");
2604 return -EINVAL;
2606 intel_vgpu_mm_put(mm);
2607 return 0;
2611 * intel_gvt_init_gtt - initialize mm components of a GVT device
2612 * @gvt: GVT device
2614 * This function is called at the initialization stage, to initialize
2615 * the mm components of a GVT device.
2617 * Returns:
2618 * zero on success, negative error code if failed.
2620 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2622 int ret;
2623 void *page;
2624 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2625 dma_addr_t daddr;
2627 gvt_dbg_core("init gtt\n");
2629 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2630 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2632 page = (void *)get_zeroed_page(GFP_KERNEL);
2633 if (!page) {
2634 gvt_err("fail to allocate scratch ggtt page\n");
2635 return -ENOMEM;
2638 daddr = dma_map_page(dev, virt_to_page(page), 0,
2639 4096, PCI_DMA_BIDIRECTIONAL);
2640 if (dma_mapping_error(dev, daddr)) {
2641 gvt_err("fail to dmamap scratch ggtt page\n");
2642 __free_page(virt_to_page(page));
2643 return -ENOMEM;
2646 gvt->gtt.scratch_page = virt_to_page(page);
2647 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2649 if (enable_out_of_sync) {
2650 ret = setup_spt_oos(gvt);
2651 if (ret) {
2652 gvt_err("fail to initialize SPT oos\n");
2653 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2654 __free_page(gvt->gtt.scratch_page);
2655 return ret;
2658 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2659 return 0;
2663 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2664 * @gvt: GVT device
2666 * This function is called at the driver unloading stage, to clean up the
2667 * the mm components of a GVT device.
2670 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2672 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2673 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2674 I915_GTT_PAGE_SHIFT);
2676 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2678 __free_page(gvt->gtt.scratch_page);
2680 if (enable_out_of_sync)
2681 clean_spt_oos(gvt);
2685 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2686 * @vgpu: a vGPU
2688 * This function is called when invalidate all PPGTT instances of a vGPU.
2691 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2693 struct list_head *pos, *n;
2694 struct intel_vgpu_mm *mm;
2696 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2697 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2698 if (mm->type == INTEL_GVT_MM_PPGTT) {
2699 list_del_init(&mm->ppgtt_mm.lru_list);
2700 if (mm->ppgtt_mm.shadowed)
2701 invalidate_ppgtt_mm(mm);
2707 * intel_vgpu_reset_ggtt - reset the GGTT entry
2708 * @vgpu: a vGPU
2709 * @invalidate_old: invalidate old entries
2711 * This function is called at the vGPU create stage
2712 * to reset all the GGTT entries.
2715 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2717 struct intel_gvt *gvt = vgpu->gvt;
2718 struct drm_i915_private *dev_priv = gvt->dev_priv;
2719 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2720 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2721 struct intel_gvt_gtt_entry old_entry;
2722 u32 index;
2723 u32 num_entries;
2725 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2726 pte_ops->set_present(&entry);
2728 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2729 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2730 while (num_entries--) {
2731 if (invalidate_old) {
2732 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2733 ggtt_invalidate_pte(vgpu, &old_entry);
2735 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2738 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2739 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2740 while (num_entries--) {
2741 if (invalidate_old) {
2742 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2743 ggtt_invalidate_pte(vgpu, &old_entry);
2745 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2748 ggtt_invalidate(dev_priv);
2752 * intel_vgpu_reset_gtt - reset the all GTT related status
2753 * @vgpu: a vGPU
2755 * This function is called from vfio core to reset reset all
2756 * GTT related status, including GGTT, PPGTT, scratch page.
2759 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2761 /* Shadow pages are only created when there is no page
2762 * table tracking data, so remove page tracking data after
2763 * removing the shadow pages.
2765 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2766 intel_vgpu_reset_ggtt(vgpu, true);