Linux 4.19.133
[linux/fpc-iii.git] / drivers / gpu / drm / udl / udl_transfer.c
blobce87661e544f7a4cc37bb6a03d89104d3ea97e72
1 /*
2 * Copyright (C) 2012 Red Hat
3 * based in parts on udlfb.c:
4 * Copyright (C) 2009 Roberto De Ioris <roberto@unbit.it>
5 * Copyright (C) 2009 Jaya Kumar <jayakumar.lkml@gmail.com>
6 * Copyright (C) 2009 Bernie Thompson <bernie@plugable.com>
8 * This file is subject to the terms and conditions of the GNU General Public
9 * License v2. See the file COPYING in the main directory of this archive for
10 * more details.
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/fb.h>
16 #include <asm/unaligned.h>
18 #include <drm/drmP.h>
19 #include "udl_drv.h"
21 #define MAX_CMD_PIXELS 255
23 #define RLX_HEADER_BYTES 7
24 #define MIN_RLX_PIX_BYTES 4
25 #define MIN_RLX_CMD_BYTES (RLX_HEADER_BYTES + MIN_RLX_PIX_BYTES)
27 #define RLE_HEADER_BYTES 6
28 #define MIN_RLE_PIX_BYTES 3
29 #define MIN_RLE_CMD_BYTES (RLE_HEADER_BYTES + MIN_RLE_PIX_BYTES)
31 #define RAW_HEADER_BYTES 6
32 #define MIN_RAW_PIX_BYTES 2
33 #define MIN_RAW_CMD_BYTES (RAW_HEADER_BYTES + MIN_RAW_PIX_BYTES)
36 * Trims identical data from front and back of line
37 * Sets new front buffer address and width
38 * And returns byte count of identical pixels
39 * Assumes CPU natural alignment (unsigned long)
40 * for back and front buffer ptrs and width
42 #if 0
43 static int udl_trim_hline(const u8 *bback, const u8 **bfront, int *width_bytes)
45 int j, k;
46 const unsigned long *back = (const unsigned long *) bback;
47 const unsigned long *front = (const unsigned long *) *bfront;
48 const int width = *width_bytes / sizeof(unsigned long);
49 int identical = width;
50 int start = width;
51 int end = width;
53 for (j = 0; j < width; j++) {
54 if (back[j] != front[j]) {
55 start = j;
56 break;
60 for (k = width - 1; k > j; k--) {
61 if (back[k] != front[k]) {
62 end = k+1;
63 break;
67 identical = start + (width - end);
68 *bfront = (u8 *) &front[start];
69 *width_bytes = (end - start) * sizeof(unsigned long);
71 return identical * sizeof(unsigned long);
73 #endif
75 static inline u16 pixel32_to_be16(const uint32_t pixel)
77 return (((pixel >> 3) & 0x001f) |
78 ((pixel >> 5) & 0x07e0) |
79 ((pixel >> 8) & 0xf800));
82 static inline u16 get_pixel_val16(const uint8_t *pixel, int log_bpp)
84 u16 pixel_val16;
85 if (log_bpp == 1)
86 pixel_val16 = *(const uint16_t *)pixel;
87 else
88 pixel_val16 = pixel32_to_be16(*(const uint32_t *)pixel);
89 return pixel_val16;
93 * Render a command stream for an encoded horizontal line segment of pixels.
95 * A command buffer holds several commands.
96 * It always begins with a fresh command header
97 * (the protocol doesn't require this, but we enforce it to allow
98 * multiple buffers to be potentially encoded and sent in parallel).
99 * A single command encodes one contiguous horizontal line of pixels
101 * The function relies on the client to do all allocation, so that
102 * rendering can be done directly to output buffers (e.g. USB URBs).
103 * The function fills the supplied command buffer, providing information
104 * on where it left off, so the client may call in again with additional
105 * buffers if the line will take several buffers to complete.
107 * A single command can transmit a maximum of 256 pixels,
108 * regardless of the compression ratio (protocol design limit).
109 * To the hardware, 0 for a size byte means 256
111 * Rather than 256 pixel commands which are either rl or raw encoded,
112 * the rlx command simply assumes alternating raw and rl spans within one cmd.
113 * This has a slightly larger header overhead, but produces more even results.
114 * It also processes all data (read and write) in a single pass.
115 * Performance benchmarks of common cases show it having just slightly better
116 * compression than 256 pixel raw or rle commands, with similar CPU consumpion.
117 * But for very rl friendly data, will compress not quite as well.
119 static void udl_compress_hline16(
120 const u8 **pixel_start_ptr,
121 const u8 *const pixel_end,
122 uint32_t *device_address_ptr,
123 uint8_t **command_buffer_ptr,
124 const uint8_t *const cmd_buffer_end, int log_bpp)
126 const int bpp = 1 << log_bpp;
127 const u8 *pixel = *pixel_start_ptr;
128 uint32_t dev_addr = *device_address_ptr;
129 uint8_t *cmd = *command_buffer_ptr;
131 while ((pixel_end > pixel) &&
132 (cmd_buffer_end - MIN_RLX_CMD_BYTES > cmd)) {
133 uint8_t *raw_pixels_count_byte = NULL;
134 uint8_t *cmd_pixels_count_byte = NULL;
135 const u8 *raw_pixel_start = NULL;
136 const u8 *cmd_pixel_start, *cmd_pixel_end = NULL;
137 uint16_t pixel_val16;
139 *cmd++ = 0xaf;
140 *cmd++ = 0x6b;
141 *cmd++ = (uint8_t) ((dev_addr >> 16) & 0xFF);
142 *cmd++ = (uint8_t) ((dev_addr >> 8) & 0xFF);
143 *cmd++ = (uint8_t) ((dev_addr) & 0xFF);
145 cmd_pixels_count_byte = cmd++; /* we'll know this later */
146 cmd_pixel_start = pixel;
148 raw_pixels_count_byte = cmd++; /* we'll know this later */
149 raw_pixel_start = pixel;
151 cmd_pixel_end = pixel + (min3(MAX_CMD_PIXELS + 1UL,
152 (unsigned long)(pixel_end - pixel) >> log_bpp,
153 (unsigned long)(cmd_buffer_end - 1 - cmd) / 2) << log_bpp);
155 pixel_val16 = get_pixel_val16(pixel, log_bpp);
157 while (pixel < cmd_pixel_end) {
158 const u8 *const start = pixel;
159 const uint16_t repeating_pixel_val16 = pixel_val16;
161 put_unaligned_be16(pixel_val16, cmd);
163 cmd += 2;
164 pixel += bpp;
166 while (pixel < cmd_pixel_end) {
167 pixel_val16 = get_pixel_val16(pixel, log_bpp);
168 if (pixel_val16 != repeating_pixel_val16)
169 break;
170 pixel += bpp;
173 if (unlikely(pixel > start + bpp)) {
174 /* go back and fill in raw pixel count */
175 *raw_pixels_count_byte = (((start -
176 raw_pixel_start) >> log_bpp) + 1) & 0xFF;
178 /* immediately after raw data is repeat byte */
179 *cmd++ = (((pixel - start) >> log_bpp) - 1) & 0xFF;
181 /* Then start another raw pixel span */
182 raw_pixel_start = pixel;
183 raw_pixels_count_byte = cmd++;
187 if (pixel > raw_pixel_start) {
188 /* finalize last RAW span */
189 *raw_pixels_count_byte = ((pixel - raw_pixel_start) >> log_bpp) & 0xFF;
190 } else {
191 /* undo unused byte */
192 cmd--;
195 *cmd_pixels_count_byte = ((pixel - cmd_pixel_start) >> log_bpp) & 0xFF;
196 dev_addr += ((pixel - cmd_pixel_start) >> log_bpp) * 2;
199 if (cmd_buffer_end <= MIN_RLX_CMD_BYTES + cmd) {
200 /* Fill leftover bytes with no-ops */
201 if (cmd_buffer_end > cmd)
202 memset(cmd, 0xAF, cmd_buffer_end - cmd);
203 cmd = (uint8_t *) cmd_buffer_end;
206 *command_buffer_ptr = cmd;
207 *pixel_start_ptr = pixel;
208 *device_address_ptr = dev_addr;
210 return;
214 * There are 3 copies of every pixel: The front buffer that the fbdev
215 * client renders to, the actual framebuffer across the USB bus in hardware
216 * (that we can only write to, slowly, and can never read), and (optionally)
217 * our shadow copy that tracks what's been sent to that hardware buffer.
219 int udl_render_hline(struct drm_device *dev, int log_bpp, struct urb **urb_ptr,
220 const char *front, char **urb_buf_ptr,
221 u32 byte_offset, u32 device_byte_offset,
222 u32 byte_width,
223 int *ident_ptr, int *sent_ptr)
225 const u8 *line_start, *line_end, *next_pixel;
226 u32 base16 = 0 + (device_byte_offset >> log_bpp) * 2;
227 struct urb *urb = *urb_ptr;
228 u8 *cmd = *urb_buf_ptr;
229 u8 *cmd_end = (u8 *) urb->transfer_buffer + urb->transfer_buffer_length;
231 BUG_ON(!(log_bpp == 1 || log_bpp == 2));
233 line_start = (u8 *) (front + byte_offset);
234 next_pixel = line_start;
235 line_end = next_pixel + byte_width;
237 while (next_pixel < line_end) {
239 udl_compress_hline16(&next_pixel,
240 line_end, &base16,
241 (u8 **) &cmd, (u8 *) cmd_end, log_bpp);
243 if (cmd >= cmd_end) {
244 int len = cmd - (u8 *) urb->transfer_buffer;
245 if (udl_submit_urb(dev, urb, len))
246 return 1; /* lost pixels is set */
247 *sent_ptr += len;
248 urb = udl_get_urb(dev);
249 if (!urb)
250 return 1; /* lost_pixels is set */
251 *urb_ptr = urb;
252 cmd = urb->transfer_buffer;
253 cmd_end = &cmd[urb->transfer_buffer_length];
257 *urb_buf_ptr = cmd;
259 return 0;