Linux 4.19.133
[linux/fpc-iii.git] / drivers / hid / hid-core.c
blob2c85d075daee13186ad079eea20aba37eefb7ad0
1 /*
2 * HID support for Linux
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2012 Jiri Kosina
8 */
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
39 #include "hid-ids.h"
42 * Version Information
45 #define DRIVER_DESC "HID core driver"
47 int hid_debug = 0;
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
57 * Register a new report for a device.
60 struct hid_report *hid_register_report(struct hid_device *device,
61 unsigned int type, unsigned int id,
62 unsigned int application)
64 struct hid_report_enum *report_enum = device->report_enum + type;
65 struct hid_report *report;
67 if (id >= HID_MAX_IDS)
68 return NULL;
69 if (report_enum->report_id_hash[id])
70 return report_enum->report_id_hash[id];
72 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
73 if (!report)
74 return NULL;
76 if (id != 0)
77 report_enum->numbered = 1;
79 report->id = id;
80 report->type = type;
81 report->size = 0;
82 report->device = device;
83 report->application = application;
84 report_enum->report_id_hash[id] = report;
86 list_add_tail(&report->list, &report_enum->report_list);
88 return report;
90 EXPORT_SYMBOL_GPL(hid_register_report);
93 * Register a new field for this report.
96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
98 struct hid_field *field;
100 if (report->maxfield == HID_MAX_FIELDS) {
101 hid_err(report->device, "too many fields in report\n");
102 return NULL;
105 field = kzalloc((sizeof(struct hid_field) +
106 usages * sizeof(struct hid_usage) +
107 values * sizeof(unsigned)), GFP_KERNEL);
108 if (!field)
109 return NULL;
111 field->index = report->maxfield++;
112 report->field[field->index] = field;
113 field->usage = (struct hid_usage *)(field + 1);
114 field->value = (s32 *)(field->usage + usages);
115 field->report = report;
117 return field;
121 * Open a collection. The type/usage is pushed on the stack.
124 static int open_collection(struct hid_parser *parser, unsigned type)
126 struct hid_collection *collection;
127 unsigned usage;
129 usage = parser->local.usage[0];
131 if (parser->collection_stack_ptr == parser->collection_stack_size) {
132 unsigned int *collection_stack;
133 unsigned int new_size = parser->collection_stack_size +
134 HID_COLLECTION_STACK_SIZE;
136 collection_stack = krealloc(parser->collection_stack,
137 new_size * sizeof(unsigned int),
138 GFP_KERNEL);
139 if (!collection_stack)
140 return -ENOMEM;
142 parser->collection_stack = collection_stack;
143 parser->collection_stack_size = new_size;
146 if (parser->device->maxcollection == parser->device->collection_size) {
147 collection = kmalloc(
148 array3_size(sizeof(struct hid_collection),
149 parser->device->collection_size,
151 GFP_KERNEL);
152 if (collection == NULL) {
153 hid_err(parser->device, "failed to reallocate collection array\n");
154 return -ENOMEM;
156 memcpy(collection, parser->device->collection,
157 sizeof(struct hid_collection) *
158 parser->device->collection_size);
159 memset(collection + parser->device->collection_size, 0,
160 sizeof(struct hid_collection) *
161 parser->device->collection_size);
162 kfree(parser->device->collection);
163 parser->device->collection = collection;
164 parser->device->collection_size *= 2;
167 parser->collection_stack[parser->collection_stack_ptr++] =
168 parser->device->maxcollection;
170 collection = parser->device->collection +
171 parser->device->maxcollection++;
172 collection->type = type;
173 collection->usage = usage;
174 collection->level = parser->collection_stack_ptr - 1;
176 if (type == HID_COLLECTION_APPLICATION)
177 parser->device->maxapplication++;
179 return 0;
183 * Close a collection.
186 static int close_collection(struct hid_parser *parser)
188 if (!parser->collection_stack_ptr) {
189 hid_err(parser->device, "collection stack underflow\n");
190 return -EINVAL;
192 parser->collection_stack_ptr--;
193 return 0;
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
203 struct hid_collection *collection = parser->device->collection;
204 int n;
206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 unsigned index = parser->collection_stack[n];
208 if (collection[index].type == type)
209 return collection[index].usage;
211 return 0; /* we know nothing about this usage type */
215 * Concatenate usage which defines 16 bits or less with the
216 * currently defined usage page to form a 32 bit usage
219 static void complete_usage(struct hid_parser *parser, unsigned int index)
221 parser->local.usage[index] &= 0xFFFF;
222 parser->local.usage[index] |=
223 (parser->global.usage_page & 0xFFFF) << 16;
227 * Add a usage to the temporary parser table.
230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
232 if (parser->local.usage_index >= HID_MAX_USAGES) {
233 hid_err(parser->device, "usage index exceeded\n");
234 return -1;
236 parser->local.usage[parser->local.usage_index] = usage;
239 * If Usage item only includes usage id, concatenate it with
240 * currently defined usage page
242 if (size <= 2)
243 complete_usage(parser, parser->local.usage_index);
245 parser->local.usage_size[parser->local.usage_index] = size;
246 parser->local.collection_index[parser->local.usage_index] =
247 parser->collection_stack_ptr ?
248 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 parser->local.usage_index++;
250 return 0;
254 * Register a new field for this report.
257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
259 struct hid_report *report;
260 struct hid_field *field;
261 unsigned int usages;
262 unsigned int offset;
263 unsigned int i;
264 unsigned int application;
266 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
268 report = hid_register_report(parser->device, report_type,
269 parser->global.report_id, application);
270 if (!report) {
271 hid_err(parser->device, "hid_register_report failed\n");
272 return -1;
275 /* Handle both signed and unsigned cases properly */
276 if ((parser->global.logical_minimum < 0 &&
277 parser->global.logical_maximum <
278 parser->global.logical_minimum) ||
279 (parser->global.logical_minimum >= 0 &&
280 (__u32)parser->global.logical_maximum <
281 (__u32)parser->global.logical_minimum)) {
282 dbg_hid("logical range invalid 0x%x 0x%x\n",
283 parser->global.logical_minimum,
284 parser->global.logical_maximum);
285 return -1;
288 offset = report->size;
289 report->size += parser->global.report_size * parser->global.report_count;
291 /* Total size check: Allow for possible report index byte */
292 if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
293 hid_err(parser->device, "report is too long\n");
294 return -1;
297 if (!parser->local.usage_index) /* Ignore padding fields */
298 return 0;
300 usages = max_t(unsigned, parser->local.usage_index,
301 parser->global.report_count);
303 field = hid_register_field(report, usages, parser->global.report_count);
304 if (!field)
305 return 0;
307 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
308 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
309 field->application = application;
311 for (i = 0; i < usages; i++) {
312 unsigned j = i;
313 /* Duplicate the last usage we parsed if we have excess values */
314 if (i >= parser->local.usage_index)
315 j = parser->local.usage_index - 1;
316 field->usage[i].hid = parser->local.usage[j];
317 field->usage[i].collection_index =
318 parser->local.collection_index[j];
319 field->usage[i].usage_index = i;
322 field->maxusage = usages;
323 field->flags = flags;
324 field->report_offset = offset;
325 field->report_type = report_type;
326 field->report_size = parser->global.report_size;
327 field->report_count = parser->global.report_count;
328 field->logical_minimum = parser->global.logical_minimum;
329 field->logical_maximum = parser->global.logical_maximum;
330 field->physical_minimum = parser->global.physical_minimum;
331 field->physical_maximum = parser->global.physical_maximum;
332 field->unit_exponent = parser->global.unit_exponent;
333 field->unit = parser->global.unit;
335 return 0;
339 * Read data value from item.
342 static u32 item_udata(struct hid_item *item)
344 switch (item->size) {
345 case 1: return item->data.u8;
346 case 2: return item->data.u16;
347 case 4: return item->data.u32;
349 return 0;
352 static s32 item_sdata(struct hid_item *item)
354 switch (item->size) {
355 case 1: return item->data.s8;
356 case 2: return item->data.s16;
357 case 4: return item->data.s32;
359 return 0;
363 * Process a global item.
366 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
368 __s32 raw_value;
369 switch (item->tag) {
370 case HID_GLOBAL_ITEM_TAG_PUSH:
372 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
373 hid_err(parser->device, "global environment stack overflow\n");
374 return -1;
377 memcpy(parser->global_stack + parser->global_stack_ptr++,
378 &parser->global, sizeof(struct hid_global));
379 return 0;
381 case HID_GLOBAL_ITEM_TAG_POP:
383 if (!parser->global_stack_ptr) {
384 hid_err(parser->device, "global environment stack underflow\n");
385 return -1;
388 memcpy(&parser->global, parser->global_stack +
389 --parser->global_stack_ptr, sizeof(struct hid_global));
390 return 0;
392 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
393 parser->global.usage_page = item_udata(item);
394 return 0;
396 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
397 parser->global.logical_minimum = item_sdata(item);
398 return 0;
400 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
401 if (parser->global.logical_minimum < 0)
402 parser->global.logical_maximum = item_sdata(item);
403 else
404 parser->global.logical_maximum = item_udata(item);
405 return 0;
407 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
408 parser->global.physical_minimum = item_sdata(item);
409 return 0;
411 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
412 if (parser->global.physical_minimum < 0)
413 parser->global.physical_maximum = item_sdata(item);
414 else
415 parser->global.physical_maximum = item_udata(item);
416 return 0;
418 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
419 /* Many devices provide unit exponent as a two's complement
420 * nibble due to the common misunderstanding of HID
421 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
422 * both this and the standard encoding. */
423 raw_value = item_sdata(item);
424 if (!(raw_value & 0xfffffff0))
425 parser->global.unit_exponent = hid_snto32(raw_value, 4);
426 else
427 parser->global.unit_exponent = raw_value;
428 return 0;
430 case HID_GLOBAL_ITEM_TAG_UNIT:
431 parser->global.unit = item_udata(item);
432 return 0;
434 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
435 parser->global.report_size = item_udata(item);
436 if (parser->global.report_size > 128) {
437 hid_err(parser->device, "invalid report_size %d\n",
438 parser->global.report_size);
439 return -1;
441 return 0;
443 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
444 parser->global.report_count = item_udata(item);
445 if (parser->global.report_count > HID_MAX_USAGES) {
446 hid_err(parser->device, "invalid report_count %d\n",
447 parser->global.report_count);
448 return -1;
450 return 0;
452 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
453 parser->global.report_id = item_udata(item);
454 if (parser->global.report_id == 0 ||
455 parser->global.report_id >= HID_MAX_IDS) {
456 hid_err(parser->device, "report_id %u is invalid\n",
457 parser->global.report_id);
458 return -1;
460 return 0;
462 default:
463 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
464 return -1;
469 * Process a local item.
472 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
474 __u32 data;
475 unsigned n;
476 __u32 count;
478 data = item_udata(item);
480 switch (item->tag) {
481 case HID_LOCAL_ITEM_TAG_DELIMITER:
483 if (data) {
485 * We treat items before the first delimiter
486 * as global to all usage sets (branch 0).
487 * In the moment we process only these global
488 * items and the first delimiter set.
490 if (parser->local.delimiter_depth != 0) {
491 hid_err(parser->device, "nested delimiters\n");
492 return -1;
494 parser->local.delimiter_depth++;
495 parser->local.delimiter_branch++;
496 } else {
497 if (parser->local.delimiter_depth < 1) {
498 hid_err(parser->device, "bogus close delimiter\n");
499 return -1;
501 parser->local.delimiter_depth--;
503 return 0;
505 case HID_LOCAL_ITEM_TAG_USAGE:
507 if (parser->local.delimiter_branch > 1) {
508 dbg_hid("alternative usage ignored\n");
509 return 0;
512 return hid_add_usage(parser, data, item->size);
514 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
516 if (parser->local.delimiter_branch > 1) {
517 dbg_hid("alternative usage ignored\n");
518 return 0;
521 parser->local.usage_minimum = data;
522 return 0;
524 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
526 if (parser->local.delimiter_branch > 1) {
527 dbg_hid("alternative usage ignored\n");
528 return 0;
531 count = data - parser->local.usage_minimum;
532 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
534 * We do not warn if the name is not set, we are
535 * actually pre-scanning the device.
537 if (dev_name(&parser->device->dev))
538 hid_warn(parser->device,
539 "ignoring exceeding usage max\n");
540 data = HID_MAX_USAGES - parser->local.usage_index +
541 parser->local.usage_minimum - 1;
542 if (data <= 0) {
543 hid_err(parser->device,
544 "no more usage index available\n");
545 return -1;
549 for (n = parser->local.usage_minimum; n <= data; n++)
550 if (hid_add_usage(parser, n, item->size)) {
551 dbg_hid("hid_add_usage failed\n");
552 return -1;
554 return 0;
556 default:
558 dbg_hid("unknown local item tag 0x%x\n", item->tag);
559 return 0;
561 return 0;
565 * Concatenate Usage Pages into Usages where relevant:
566 * As per specification, 6.2.2.8: "When the parser encounters a main item it
567 * concatenates the last declared Usage Page with a Usage to form a complete
568 * usage value."
571 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
573 int i;
574 unsigned int usage_page;
575 unsigned int current_page;
577 if (!parser->local.usage_index)
578 return;
580 usage_page = parser->global.usage_page;
583 * Concatenate usage page again only if last declared Usage Page
584 * has not been already used in previous usages concatenation
586 for (i = parser->local.usage_index - 1; i >= 0; i--) {
587 if (parser->local.usage_size[i] > 2)
588 /* Ignore extended usages */
589 continue;
591 current_page = parser->local.usage[i] >> 16;
592 if (current_page == usage_page)
593 break;
595 complete_usage(parser, i);
600 * Process a main item.
603 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
605 __u32 data;
606 int ret;
608 hid_concatenate_last_usage_page(parser);
610 data = item_udata(item);
612 switch (item->tag) {
613 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
614 ret = open_collection(parser, data & 0xff);
615 break;
616 case HID_MAIN_ITEM_TAG_END_COLLECTION:
617 ret = close_collection(parser);
618 break;
619 case HID_MAIN_ITEM_TAG_INPUT:
620 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
621 break;
622 case HID_MAIN_ITEM_TAG_OUTPUT:
623 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
624 break;
625 case HID_MAIN_ITEM_TAG_FEATURE:
626 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
627 break;
628 default:
629 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
630 ret = 0;
633 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
635 return ret;
639 * Process a reserved item.
642 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
644 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
645 return 0;
649 * Free a report and all registered fields. The field->usage and
650 * field->value table's are allocated behind the field, so we need
651 * only to free(field) itself.
654 static void hid_free_report(struct hid_report *report)
656 unsigned n;
658 for (n = 0; n < report->maxfield; n++)
659 kfree(report->field[n]);
660 kfree(report);
664 * Close report. This function returns the device
665 * state to the point prior to hid_open_report().
667 static void hid_close_report(struct hid_device *device)
669 unsigned i, j;
671 for (i = 0; i < HID_REPORT_TYPES; i++) {
672 struct hid_report_enum *report_enum = device->report_enum + i;
674 for (j = 0; j < HID_MAX_IDS; j++) {
675 struct hid_report *report = report_enum->report_id_hash[j];
676 if (report)
677 hid_free_report(report);
679 memset(report_enum, 0, sizeof(*report_enum));
680 INIT_LIST_HEAD(&report_enum->report_list);
683 kfree(device->rdesc);
684 device->rdesc = NULL;
685 device->rsize = 0;
687 kfree(device->collection);
688 device->collection = NULL;
689 device->collection_size = 0;
690 device->maxcollection = 0;
691 device->maxapplication = 0;
693 device->status &= ~HID_STAT_PARSED;
697 * Free a device structure, all reports, and all fields.
700 static void hid_device_release(struct device *dev)
702 struct hid_device *hid = to_hid_device(dev);
704 hid_close_report(hid);
705 kfree(hid->dev_rdesc);
706 kfree(hid);
710 * Fetch a report description item from the data stream. We support long
711 * items, though they are not used yet.
714 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716 u8 b;
718 if ((end - start) <= 0)
719 return NULL;
721 b = *start++;
723 item->type = (b >> 2) & 3;
724 item->tag = (b >> 4) & 15;
726 if (item->tag == HID_ITEM_TAG_LONG) {
728 item->format = HID_ITEM_FORMAT_LONG;
730 if ((end - start) < 2)
731 return NULL;
733 item->size = *start++;
734 item->tag = *start++;
736 if ((end - start) < item->size)
737 return NULL;
739 item->data.longdata = start;
740 start += item->size;
741 return start;
744 item->format = HID_ITEM_FORMAT_SHORT;
745 item->size = b & 3;
747 switch (item->size) {
748 case 0:
749 return start;
751 case 1:
752 if ((end - start) < 1)
753 return NULL;
754 item->data.u8 = *start++;
755 return start;
757 case 2:
758 if ((end - start) < 2)
759 return NULL;
760 item->data.u16 = get_unaligned_le16(start);
761 start = (__u8 *)((__le16 *)start + 1);
762 return start;
764 case 3:
765 item->size++;
766 if ((end - start) < 4)
767 return NULL;
768 item->data.u32 = get_unaligned_le32(start);
769 start = (__u8 *)((__le32 *)start + 1);
770 return start;
773 return NULL;
776 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778 struct hid_device *hid = parser->device;
780 if (usage == HID_DG_CONTACTID)
781 hid->group = HID_GROUP_MULTITOUCH;
784 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
787 parser->global.report_size == 8)
788 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
791 parser->global.report_size == 8)
792 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
795 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797 struct hid_device *hid = parser->device;
798 int i;
800 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
801 type == HID_COLLECTION_PHYSICAL)
802 hid->group = HID_GROUP_SENSOR_HUB;
804 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
805 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
806 hid->group == HID_GROUP_MULTITOUCH)
807 hid->group = HID_GROUP_GENERIC;
809 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
810 for (i = 0; i < parser->local.usage_index; i++)
811 if (parser->local.usage[i] == HID_GD_POINTER)
812 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
814 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
815 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
818 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
820 __u32 data;
821 int i;
823 hid_concatenate_last_usage_page(parser);
825 data = item_udata(item);
827 switch (item->tag) {
828 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
829 hid_scan_collection(parser, data & 0xff);
830 break;
831 case HID_MAIN_ITEM_TAG_END_COLLECTION:
832 break;
833 case HID_MAIN_ITEM_TAG_INPUT:
834 /* ignore constant inputs, they will be ignored by hid-input */
835 if (data & HID_MAIN_ITEM_CONSTANT)
836 break;
837 for (i = 0; i < parser->local.usage_index; i++)
838 hid_scan_input_usage(parser, parser->local.usage[i]);
839 break;
840 case HID_MAIN_ITEM_TAG_OUTPUT:
841 break;
842 case HID_MAIN_ITEM_TAG_FEATURE:
843 for (i = 0; i < parser->local.usage_index; i++)
844 hid_scan_feature_usage(parser, parser->local.usage[i]);
845 break;
848 /* Reset the local parser environment */
849 memset(&parser->local, 0, sizeof(parser->local));
851 return 0;
855 * Scan a report descriptor before the device is added to the bus.
856 * Sets device groups and other properties that determine what driver
857 * to load.
859 static int hid_scan_report(struct hid_device *hid)
861 struct hid_parser *parser;
862 struct hid_item item;
863 __u8 *start = hid->dev_rdesc;
864 __u8 *end = start + hid->dev_rsize;
865 static int (*dispatch_type[])(struct hid_parser *parser,
866 struct hid_item *item) = {
867 hid_scan_main,
868 hid_parser_global,
869 hid_parser_local,
870 hid_parser_reserved
873 parser = vzalloc(sizeof(struct hid_parser));
874 if (!parser)
875 return -ENOMEM;
877 parser->device = hid;
878 hid->group = HID_GROUP_GENERIC;
881 * The parsing is simpler than the one in hid_open_report() as we should
882 * be robust against hid errors. Those errors will be raised by
883 * hid_open_report() anyway.
885 while ((start = fetch_item(start, end, &item)) != NULL)
886 dispatch_type[item.type](parser, &item);
889 * Handle special flags set during scanning.
891 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
892 (hid->group == HID_GROUP_MULTITOUCH))
893 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
896 * Vendor specific handlings
898 switch (hid->vendor) {
899 case USB_VENDOR_ID_WACOM:
900 hid->group = HID_GROUP_WACOM;
901 break;
902 case USB_VENDOR_ID_SYNAPTICS:
903 if (hid->group == HID_GROUP_GENERIC)
904 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
905 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
907 * hid-rmi should take care of them,
908 * not hid-generic
910 hid->group = HID_GROUP_RMI;
911 break;
914 kfree(parser->collection_stack);
915 vfree(parser);
916 return 0;
920 * hid_parse_report - parse device report
922 * @device: hid device
923 * @start: report start
924 * @size: report size
926 * Allocate the device report as read by the bus driver. This function should
927 * only be called from parse() in ll drivers.
929 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
931 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
932 if (!hid->dev_rdesc)
933 return -ENOMEM;
934 hid->dev_rsize = size;
935 return 0;
937 EXPORT_SYMBOL_GPL(hid_parse_report);
939 static const char * const hid_report_names[] = {
940 "HID_INPUT_REPORT",
941 "HID_OUTPUT_REPORT",
942 "HID_FEATURE_REPORT",
945 * hid_validate_values - validate existing device report's value indexes
947 * @device: hid device
948 * @type: which report type to examine
949 * @id: which report ID to examine (0 for first)
950 * @field_index: which report field to examine
951 * @report_counts: expected number of values
953 * Validate the number of values in a given field of a given report, after
954 * parsing.
956 struct hid_report *hid_validate_values(struct hid_device *hid,
957 unsigned int type, unsigned int id,
958 unsigned int field_index,
959 unsigned int report_counts)
961 struct hid_report *report;
963 if (type > HID_FEATURE_REPORT) {
964 hid_err(hid, "invalid HID report type %u\n", type);
965 return NULL;
968 if (id >= HID_MAX_IDS) {
969 hid_err(hid, "invalid HID report id %u\n", id);
970 return NULL;
974 * Explicitly not using hid_get_report() here since it depends on
975 * ->numbered being checked, which may not always be the case when
976 * drivers go to access report values.
978 if (id == 0) {
980 * Validating on id 0 means we should examine the first
981 * report in the list.
983 report = list_entry(
984 hid->report_enum[type].report_list.next,
985 struct hid_report, list);
986 } else {
987 report = hid->report_enum[type].report_id_hash[id];
989 if (!report) {
990 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
991 return NULL;
993 if (report->maxfield <= field_index) {
994 hid_err(hid, "not enough fields in %s %u\n",
995 hid_report_names[type], id);
996 return NULL;
998 if (report->field[field_index]->report_count < report_counts) {
999 hid_err(hid, "not enough values in %s %u field %u\n",
1000 hid_report_names[type], id, field_index);
1001 return NULL;
1003 return report;
1005 EXPORT_SYMBOL_GPL(hid_validate_values);
1008 * hid_open_report - open a driver-specific device report
1010 * @device: hid device
1012 * Parse a report description into a hid_device structure. Reports are
1013 * enumerated, fields are attached to these reports.
1014 * 0 returned on success, otherwise nonzero error value.
1016 * This function (or the equivalent hid_parse() macro) should only be
1017 * called from probe() in drivers, before starting the device.
1019 int hid_open_report(struct hid_device *device)
1021 struct hid_parser *parser;
1022 struct hid_item item;
1023 unsigned int size;
1024 __u8 *start;
1025 __u8 *buf;
1026 __u8 *end;
1027 __u8 *next;
1028 int ret;
1029 static int (*dispatch_type[])(struct hid_parser *parser,
1030 struct hid_item *item) = {
1031 hid_parser_main,
1032 hid_parser_global,
1033 hid_parser_local,
1034 hid_parser_reserved
1037 if (WARN_ON(device->status & HID_STAT_PARSED))
1038 return -EBUSY;
1040 start = device->dev_rdesc;
1041 if (WARN_ON(!start))
1042 return -ENODEV;
1043 size = device->dev_rsize;
1045 buf = kmemdup(start, size, GFP_KERNEL);
1046 if (buf == NULL)
1047 return -ENOMEM;
1049 if (device->driver->report_fixup)
1050 start = device->driver->report_fixup(device, buf, &size);
1051 else
1052 start = buf;
1054 start = kmemdup(start, size, GFP_KERNEL);
1055 kfree(buf);
1056 if (start == NULL)
1057 return -ENOMEM;
1059 device->rdesc = start;
1060 device->rsize = size;
1062 parser = vzalloc(sizeof(struct hid_parser));
1063 if (!parser) {
1064 ret = -ENOMEM;
1065 goto alloc_err;
1068 parser->device = device;
1070 end = start + size;
1072 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1073 sizeof(struct hid_collection), GFP_KERNEL);
1074 if (!device->collection) {
1075 ret = -ENOMEM;
1076 goto err;
1078 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1080 ret = -EINVAL;
1081 while ((next = fetch_item(start, end, &item)) != NULL) {
1082 start = next;
1084 if (item.format != HID_ITEM_FORMAT_SHORT) {
1085 hid_err(device, "unexpected long global item\n");
1086 goto err;
1089 if (dispatch_type[item.type](parser, &item)) {
1090 hid_err(device, "item %u %u %u %u parsing failed\n",
1091 item.format, (unsigned)item.size,
1092 (unsigned)item.type, (unsigned)item.tag);
1093 goto err;
1096 if (start == end) {
1097 if (parser->collection_stack_ptr) {
1098 hid_err(device, "unbalanced collection at end of report description\n");
1099 goto err;
1101 if (parser->local.delimiter_depth) {
1102 hid_err(device, "unbalanced delimiter at end of report description\n");
1103 goto err;
1105 kfree(parser->collection_stack);
1106 vfree(parser);
1107 device->status |= HID_STAT_PARSED;
1108 return 0;
1112 hid_err(device, "item fetching failed at offset %u/%u\n",
1113 size - (unsigned int)(end - start), size);
1114 err:
1115 kfree(parser->collection_stack);
1116 alloc_err:
1117 vfree(parser);
1118 hid_close_report(device);
1119 return ret;
1121 EXPORT_SYMBOL_GPL(hid_open_report);
1124 * Convert a signed n-bit integer to signed 32-bit integer. Common
1125 * cases are done through the compiler, the screwed things has to be
1126 * done by hand.
1129 static s32 snto32(__u32 value, unsigned n)
1131 switch (n) {
1132 case 8: return ((__s8)value);
1133 case 16: return ((__s16)value);
1134 case 32: return ((__s32)value);
1136 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1139 s32 hid_snto32(__u32 value, unsigned n)
1141 return snto32(value, n);
1143 EXPORT_SYMBOL_GPL(hid_snto32);
1146 * Convert a signed 32-bit integer to a signed n-bit integer.
1149 static u32 s32ton(__s32 value, unsigned n)
1151 s32 a = value >> (n - 1);
1152 if (a && a != -1)
1153 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1154 return value & ((1 << n) - 1);
1158 * Extract/implement a data field from/to a little endian report (bit array).
1160 * Code sort-of follows HID spec:
1161 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1163 * While the USB HID spec allows unlimited length bit fields in "report
1164 * descriptors", most devices never use more than 16 bits.
1165 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1166 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1169 static u32 __extract(u8 *report, unsigned offset, int n)
1171 unsigned int idx = offset / 8;
1172 unsigned int bit_nr = 0;
1173 unsigned int bit_shift = offset % 8;
1174 int bits_to_copy = 8 - bit_shift;
1175 u32 value = 0;
1176 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1178 while (n > 0) {
1179 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1180 n -= bits_to_copy;
1181 bit_nr += bits_to_copy;
1182 bits_to_copy = 8;
1183 bit_shift = 0;
1184 idx++;
1187 return value & mask;
1190 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1191 unsigned offset, unsigned n)
1193 if (n > 32) {
1194 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1195 n, current->comm);
1196 n = 32;
1199 return __extract(report, offset, n);
1201 EXPORT_SYMBOL_GPL(hid_field_extract);
1204 * "implement" : set bits in a little endian bit stream.
1205 * Same concepts as "extract" (see comments above).
1206 * The data mangled in the bit stream remains in little endian
1207 * order the whole time. It make more sense to talk about
1208 * endianness of register values by considering a register
1209 * a "cached" copy of the little endian bit stream.
1212 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1214 unsigned int idx = offset / 8;
1215 unsigned int bit_shift = offset % 8;
1216 int bits_to_set = 8 - bit_shift;
1218 while (n - bits_to_set >= 0) {
1219 report[idx] &= ~(0xff << bit_shift);
1220 report[idx] |= value << bit_shift;
1221 value >>= bits_to_set;
1222 n -= bits_to_set;
1223 bits_to_set = 8;
1224 bit_shift = 0;
1225 idx++;
1228 /* last nibble */
1229 if (n) {
1230 u8 bit_mask = ((1U << n) - 1);
1231 report[idx] &= ~(bit_mask << bit_shift);
1232 report[idx] |= value << bit_shift;
1236 static void implement(const struct hid_device *hid, u8 *report,
1237 unsigned offset, unsigned n, u32 value)
1239 if (unlikely(n > 32)) {
1240 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1241 __func__, n, current->comm);
1242 n = 32;
1243 } else if (n < 32) {
1244 u32 m = (1U << n) - 1;
1246 if (unlikely(value > m)) {
1247 hid_warn(hid,
1248 "%s() called with too large value %d (n: %d)! (%s)\n",
1249 __func__, value, n, current->comm);
1250 WARN_ON(1);
1251 value &= m;
1255 __implement(report, offset, n, value);
1259 * Search an array for a value.
1262 static int search(__s32 *array, __s32 value, unsigned n)
1264 while (n--) {
1265 if (*array++ == value)
1266 return 0;
1268 return -1;
1272 * hid_match_report - check if driver's raw_event should be called
1274 * @hid: hid device
1275 * @report_type: type to match against
1277 * compare hid->driver->report_table->report_type to report->type
1279 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1281 const struct hid_report_id *id = hid->driver->report_table;
1283 if (!id) /* NULL means all */
1284 return 1;
1286 for (; id->report_type != HID_TERMINATOR; id++)
1287 if (id->report_type == HID_ANY_ID ||
1288 id->report_type == report->type)
1289 return 1;
1290 return 0;
1294 * hid_match_usage - check if driver's event should be called
1296 * @hid: hid device
1297 * @usage: usage to match against
1299 * compare hid->driver->usage_table->usage_{type,code} to
1300 * usage->usage_{type,code}
1302 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1304 const struct hid_usage_id *id = hid->driver->usage_table;
1306 if (!id) /* NULL means all */
1307 return 1;
1309 for (; id->usage_type != HID_ANY_ID - 1; id++)
1310 if ((id->usage_hid == HID_ANY_ID ||
1311 id->usage_hid == usage->hid) &&
1312 (id->usage_type == HID_ANY_ID ||
1313 id->usage_type == usage->type) &&
1314 (id->usage_code == HID_ANY_ID ||
1315 id->usage_code == usage->code))
1316 return 1;
1317 return 0;
1320 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1321 struct hid_usage *usage, __s32 value, int interrupt)
1323 struct hid_driver *hdrv = hid->driver;
1324 int ret;
1326 if (!list_empty(&hid->debug_list))
1327 hid_dump_input(hid, usage, value);
1329 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1330 ret = hdrv->event(hid, field, usage, value);
1331 if (ret != 0) {
1332 if (ret < 0)
1333 hid_err(hid, "%s's event failed with %d\n",
1334 hdrv->name, ret);
1335 return;
1339 if (hid->claimed & HID_CLAIMED_INPUT)
1340 hidinput_hid_event(hid, field, usage, value);
1341 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1342 hid->hiddev_hid_event(hid, field, usage, value);
1346 * Analyse a received field, and fetch the data from it. The field
1347 * content is stored for next report processing (we do differential
1348 * reporting to the layer).
1351 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1352 __u8 *data, int interrupt)
1354 unsigned n;
1355 unsigned count = field->report_count;
1356 unsigned offset = field->report_offset;
1357 unsigned size = field->report_size;
1358 __s32 min = field->logical_minimum;
1359 __s32 max = field->logical_maximum;
1360 __s32 *value;
1362 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1363 if (!value)
1364 return;
1366 for (n = 0; n < count; n++) {
1368 value[n] = min < 0 ?
1369 snto32(hid_field_extract(hid, data, offset + n * size,
1370 size), size) :
1371 hid_field_extract(hid, data, offset + n * size, size);
1373 /* Ignore report if ErrorRollOver */
1374 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1375 value[n] >= min && value[n] <= max &&
1376 value[n] - min < field->maxusage &&
1377 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1378 goto exit;
1381 for (n = 0; n < count; n++) {
1383 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1384 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1385 continue;
1388 if (field->value[n] >= min && field->value[n] <= max
1389 && field->value[n] - min < field->maxusage
1390 && field->usage[field->value[n] - min].hid
1391 && search(value, field->value[n], count))
1392 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1394 if (value[n] >= min && value[n] <= max
1395 && value[n] - min < field->maxusage
1396 && field->usage[value[n] - min].hid
1397 && search(field->value, value[n], count))
1398 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1401 memcpy(field->value, value, count * sizeof(__s32));
1402 exit:
1403 kfree(value);
1407 * Output the field into the report.
1410 static void hid_output_field(const struct hid_device *hid,
1411 struct hid_field *field, __u8 *data)
1413 unsigned count = field->report_count;
1414 unsigned offset = field->report_offset;
1415 unsigned size = field->report_size;
1416 unsigned n;
1418 for (n = 0; n < count; n++) {
1419 if (field->logical_minimum < 0) /* signed values */
1420 implement(hid, data, offset + n * size, size,
1421 s32ton(field->value[n], size));
1422 else /* unsigned values */
1423 implement(hid, data, offset + n * size, size,
1424 field->value[n]);
1429 * Create a report. 'data' has to be allocated using
1430 * hid_alloc_report_buf() so that it has proper size.
1433 void hid_output_report(struct hid_report *report, __u8 *data)
1435 unsigned n;
1437 if (report->id > 0)
1438 *data++ = report->id;
1440 memset(data, 0, ((report->size - 1) >> 3) + 1);
1441 for (n = 0; n < report->maxfield; n++)
1442 hid_output_field(report->device, report->field[n], data);
1444 EXPORT_SYMBOL_GPL(hid_output_report);
1447 * Allocator for buffer that is going to be passed to hid_output_report()
1449 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1452 * 7 extra bytes are necessary to achieve proper functionality
1453 * of implement() working on 8 byte chunks
1456 u32 len = hid_report_len(report) + 7;
1458 return kmalloc(len, flags);
1460 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1463 * Set a field value. The report this field belongs to has to be
1464 * created and transferred to the device, to set this value in the
1465 * device.
1468 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1470 unsigned size;
1472 if (!field)
1473 return -1;
1475 size = field->report_size;
1477 hid_dump_input(field->report->device, field->usage + offset, value);
1479 if (offset >= field->report_count) {
1480 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1481 offset, field->report_count);
1482 return -1;
1484 if (field->logical_minimum < 0) {
1485 if (value != snto32(s32ton(value, size), size)) {
1486 hid_err(field->report->device, "value %d is out of range\n", value);
1487 return -1;
1490 field->value[offset] = value;
1491 return 0;
1493 EXPORT_SYMBOL_GPL(hid_set_field);
1495 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1496 const u8 *data)
1498 struct hid_report *report;
1499 unsigned int n = 0; /* Normally report number is 0 */
1501 /* Device uses numbered reports, data[0] is report number */
1502 if (report_enum->numbered)
1503 n = *data;
1505 report = report_enum->report_id_hash[n];
1506 if (report == NULL)
1507 dbg_hid("undefined report_id %u received\n", n);
1509 return report;
1513 * Implement a generic .request() callback, using .raw_request()
1514 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1516 void __hid_request(struct hid_device *hid, struct hid_report *report,
1517 int reqtype)
1519 char *buf;
1520 int ret;
1521 u32 len;
1523 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1524 if (!buf)
1525 return;
1527 len = hid_report_len(report);
1529 if (reqtype == HID_REQ_SET_REPORT)
1530 hid_output_report(report, buf);
1532 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1533 report->type, reqtype);
1534 if (ret < 0) {
1535 dbg_hid("unable to complete request: %d\n", ret);
1536 goto out;
1539 if (reqtype == HID_REQ_GET_REPORT)
1540 hid_input_report(hid, report->type, buf, ret, 0);
1542 out:
1543 kfree(buf);
1545 EXPORT_SYMBOL_GPL(__hid_request);
1547 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1548 int interrupt)
1550 struct hid_report_enum *report_enum = hid->report_enum + type;
1551 struct hid_report *report;
1552 struct hid_driver *hdrv;
1553 unsigned int a;
1554 u32 rsize, csize = size;
1555 u8 *cdata = data;
1556 int ret = 0;
1558 report = hid_get_report(report_enum, data);
1559 if (!report)
1560 goto out;
1562 if (report_enum->numbered) {
1563 cdata++;
1564 csize--;
1567 rsize = ((report->size - 1) >> 3) + 1;
1569 if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1570 rsize = HID_MAX_BUFFER_SIZE - 1;
1571 else if (rsize > HID_MAX_BUFFER_SIZE)
1572 rsize = HID_MAX_BUFFER_SIZE;
1574 if (csize < rsize) {
1575 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1576 csize, rsize);
1577 memset(cdata + csize, 0, rsize - csize);
1580 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1581 hid->hiddev_report_event(hid, report);
1582 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1583 ret = hidraw_report_event(hid, data, size);
1584 if (ret)
1585 goto out;
1588 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1589 for (a = 0; a < report->maxfield; a++)
1590 hid_input_field(hid, report->field[a], cdata, interrupt);
1591 hdrv = hid->driver;
1592 if (hdrv && hdrv->report)
1593 hdrv->report(hid, report);
1596 if (hid->claimed & HID_CLAIMED_INPUT)
1597 hidinput_report_event(hid, report);
1598 out:
1599 return ret;
1601 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1604 * hid_input_report - report data from lower layer (usb, bt...)
1606 * @hid: hid device
1607 * @type: HID report type (HID_*_REPORT)
1608 * @data: report contents
1609 * @size: size of data parameter
1610 * @interrupt: distinguish between interrupt and control transfers
1612 * This is data entry for lower layers.
1614 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1616 struct hid_report_enum *report_enum;
1617 struct hid_driver *hdrv;
1618 struct hid_report *report;
1619 int ret = 0;
1621 if (!hid)
1622 return -ENODEV;
1624 if (down_trylock(&hid->driver_input_lock))
1625 return -EBUSY;
1627 if (!hid->driver) {
1628 ret = -ENODEV;
1629 goto unlock;
1631 report_enum = hid->report_enum + type;
1632 hdrv = hid->driver;
1634 if (!size) {
1635 dbg_hid("empty report\n");
1636 ret = -1;
1637 goto unlock;
1640 /* Avoid unnecessary overhead if debugfs is disabled */
1641 if (!list_empty(&hid->debug_list))
1642 hid_dump_report(hid, type, data, size);
1644 report = hid_get_report(report_enum, data);
1646 if (!report) {
1647 ret = -1;
1648 goto unlock;
1651 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1652 ret = hdrv->raw_event(hid, report, data, size);
1653 if (ret < 0)
1654 goto unlock;
1657 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1659 unlock:
1660 up(&hid->driver_input_lock);
1661 return ret;
1663 EXPORT_SYMBOL_GPL(hid_input_report);
1665 bool hid_match_one_id(const struct hid_device *hdev,
1666 const struct hid_device_id *id)
1668 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1669 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1670 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1671 (id->product == HID_ANY_ID || id->product == hdev->product);
1674 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1675 const struct hid_device_id *id)
1677 for (; id->bus; id++)
1678 if (hid_match_one_id(hdev, id))
1679 return id;
1681 return NULL;
1684 static const struct hid_device_id hid_hiddev_list[] = {
1685 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1686 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1690 static bool hid_hiddev(struct hid_device *hdev)
1692 return !!hid_match_id(hdev, hid_hiddev_list);
1696 static ssize_t
1697 read_report_descriptor(struct file *filp, struct kobject *kobj,
1698 struct bin_attribute *attr,
1699 char *buf, loff_t off, size_t count)
1701 struct device *dev = kobj_to_dev(kobj);
1702 struct hid_device *hdev = to_hid_device(dev);
1704 if (off >= hdev->rsize)
1705 return 0;
1707 if (off + count > hdev->rsize)
1708 count = hdev->rsize - off;
1710 memcpy(buf, hdev->rdesc + off, count);
1712 return count;
1715 static ssize_t
1716 show_country(struct device *dev, struct device_attribute *attr,
1717 char *buf)
1719 struct hid_device *hdev = to_hid_device(dev);
1721 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1724 static struct bin_attribute dev_bin_attr_report_desc = {
1725 .attr = { .name = "report_descriptor", .mode = 0444 },
1726 .read = read_report_descriptor,
1727 .size = HID_MAX_DESCRIPTOR_SIZE,
1730 static const struct device_attribute dev_attr_country = {
1731 .attr = { .name = "country", .mode = 0444 },
1732 .show = show_country,
1735 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1737 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1738 "Joystick", "Gamepad", "Keyboard", "Keypad",
1739 "Multi-Axis Controller"
1741 const char *type, *bus;
1742 char buf[64] = "";
1743 unsigned int i;
1744 int len;
1745 int ret;
1747 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1748 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1749 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1750 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1751 if (hdev->bus != BUS_USB)
1752 connect_mask &= ~HID_CONNECT_HIDDEV;
1753 if (hid_hiddev(hdev))
1754 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1756 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1757 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1758 hdev->claimed |= HID_CLAIMED_INPUT;
1760 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1761 !hdev->hiddev_connect(hdev,
1762 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1763 hdev->claimed |= HID_CLAIMED_HIDDEV;
1764 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1765 hdev->claimed |= HID_CLAIMED_HIDRAW;
1767 if (connect_mask & HID_CONNECT_DRIVER)
1768 hdev->claimed |= HID_CLAIMED_DRIVER;
1770 /* Drivers with the ->raw_event callback set are not required to connect
1771 * to any other listener. */
1772 if (!hdev->claimed && !hdev->driver->raw_event) {
1773 hid_err(hdev, "device has no listeners, quitting\n");
1774 return -ENODEV;
1777 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1778 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1779 hdev->ff_init(hdev);
1781 len = 0;
1782 if (hdev->claimed & HID_CLAIMED_INPUT)
1783 len += sprintf(buf + len, "input");
1784 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1785 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1786 ((struct hiddev *)hdev->hiddev)->minor);
1787 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1788 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1789 ((struct hidraw *)hdev->hidraw)->minor);
1791 type = "Device";
1792 for (i = 0; i < hdev->maxcollection; i++) {
1793 struct hid_collection *col = &hdev->collection[i];
1794 if (col->type == HID_COLLECTION_APPLICATION &&
1795 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1796 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1797 type = types[col->usage & 0xffff];
1798 break;
1802 switch (hdev->bus) {
1803 case BUS_USB:
1804 bus = "USB";
1805 break;
1806 case BUS_BLUETOOTH:
1807 bus = "BLUETOOTH";
1808 break;
1809 case BUS_I2C:
1810 bus = "I2C";
1811 break;
1812 default:
1813 bus = "<UNKNOWN>";
1816 ret = device_create_file(&hdev->dev, &dev_attr_country);
1817 if (ret)
1818 hid_warn(hdev,
1819 "can't create sysfs country code attribute err: %d\n", ret);
1821 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1822 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1823 type, hdev->name, hdev->phys);
1825 return 0;
1827 EXPORT_SYMBOL_GPL(hid_connect);
1829 void hid_disconnect(struct hid_device *hdev)
1831 device_remove_file(&hdev->dev, &dev_attr_country);
1832 if (hdev->claimed & HID_CLAIMED_INPUT)
1833 hidinput_disconnect(hdev);
1834 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1835 hdev->hiddev_disconnect(hdev);
1836 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1837 hidraw_disconnect(hdev);
1838 hdev->claimed = 0;
1840 EXPORT_SYMBOL_GPL(hid_disconnect);
1843 * hid_hw_start - start underlying HW
1844 * @hdev: hid device
1845 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1847 * Call this in probe function *after* hid_parse. This will setup HW
1848 * buffers and start the device (if not defeirred to device open).
1849 * hid_hw_stop must be called if this was successful.
1851 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1853 int error;
1855 error = hdev->ll_driver->start(hdev);
1856 if (error)
1857 return error;
1859 if (connect_mask) {
1860 error = hid_connect(hdev, connect_mask);
1861 if (error) {
1862 hdev->ll_driver->stop(hdev);
1863 return error;
1867 return 0;
1869 EXPORT_SYMBOL_GPL(hid_hw_start);
1872 * hid_hw_stop - stop underlying HW
1873 * @hdev: hid device
1875 * This is usually called from remove function or from probe when something
1876 * failed and hid_hw_start was called already.
1878 void hid_hw_stop(struct hid_device *hdev)
1880 hid_disconnect(hdev);
1881 hdev->ll_driver->stop(hdev);
1883 EXPORT_SYMBOL_GPL(hid_hw_stop);
1886 * hid_hw_open - signal underlying HW to start delivering events
1887 * @hdev: hid device
1889 * Tell underlying HW to start delivering events from the device.
1890 * This function should be called sometime after successful call
1891 * to hid_hw_start().
1893 int hid_hw_open(struct hid_device *hdev)
1895 int ret;
1897 ret = mutex_lock_killable(&hdev->ll_open_lock);
1898 if (ret)
1899 return ret;
1901 if (!hdev->ll_open_count++) {
1902 ret = hdev->ll_driver->open(hdev);
1903 if (ret)
1904 hdev->ll_open_count--;
1907 mutex_unlock(&hdev->ll_open_lock);
1908 return ret;
1910 EXPORT_SYMBOL_GPL(hid_hw_open);
1913 * hid_hw_close - signal underlaying HW to stop delivering events
1915 * @hdev: hid device
1917 * This function indicates that we are not interested in the events
1918 * from this device anymore. Delivery of events may or may not stop,
1919 * depending on the number of users still outstanding.
1921 void hid_hw_close(struct hid_device *hdev)
1923 mutex_lock(&hdev->ll_open_lock);
1924 if (!--hdev->ll_open_count)
1925 hdev->ll_driver->close(hdev);
1926 mutex_unlock(&hdev->ll_open_lock);
1928 EXPORT_SYMBOL_GPL(hid_hw_close);
1930 struct hid_dynid {
1931 struct list_head list;
1932 struct hid_device_id id;
1936 * store_new_id - add a new HID device ID to this driver and re-probe devices
1937 * @driver: target device driver
1938 * @buf: buffer for scanning device ID data
1939 * @count: input size
1941 * Adds a new dynamic hid device ID to this driver,
1942 * and causes the driver to probe for all devices again.
1944 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1945 size_t count)
1947 struct hid_driver *hdrv = to_hid_driver(drv);
1948 struct hid_dynid *dynid;
1949 __u32 bus, vendor, product;
1950 unsigned long driver_data = 0;
1951 int ret;
1953 ret = sscanf(buf, "%x %x %x %lx",
1954 &bus, &vendor, &product, &driver_data);
1955 if (ret < 3)
1956 return -EINVAL;
1958 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1959 if (!dynid)
1960 return -ENOMEM;
1962 dynid->id.bus = bus;
1963 dynid->id.group = HID_GROUP_ANY;
1964 dynid->id.vendor = vendor;
1965 dynid->id.product = product;
1966 dynid->id.driver_data = driver_data;
1968 spin_lock(&hdrv->dyn_lock);
1969 list_add_tail(&dynid->list, &hdrv->dyn_list);
1970 spin_unlock(&hdrv->dyn_lock);
1972 ret = driver_attach(&hdrv->driver);
1974 return ret ? : count;
1976 static DRIVER_ATTR_WO(new_id);
1978 static struct attribute *hid_drv_attrs[] = {
1979 &driver_attr_new_id.attr,
1980 NULL,
1982 ATTRIBUTE_GROUPS(hid_drv);
1984 static void hid_free_dynids(struct hid_driver *hdrv)
1986 struct hid_dynid *dynid, *n;
1988 spin_lock(&hdrv->dyn_lock);
1989 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1990 list_del(&dynid->list);
1991 kfree(dynid);
1993 spin_unlock(&hdrv->dyn_lock);
1996 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1997 struct hid_driver *hdrv)
1999 struct hid_dynid *dynid;
2001 spin_lock(&hdrv->dyn_lock);
2002 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2003 if (hid_match_one_id(hdev, &dynid->id)) {
2004 spin_unlock(&hdrv->dyn_lock);
2005 return &dynid->id;
2008 spin_unlock(&hdrv->dyn_lock);
2010 return hid_match_id(hdev, hdrv->id_table);
2012 EXPORT_SYMBOL_GPL(hid_match_device);
2014 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2016 struct hid_driver *hdrv = to_hid_driver(drv);
2017 struct hid_device *hdev = to_hid_device(dev);
2019 return hid_match_device(hdev, hdrv) != NULL;
2023 * hid_compare_device_paths - check if both devices share the same path
2024 * @hdev_a: hid device
2025 * @hdev_b: hid device
2026 * @separator: char to use as separator
2028 * Check if two devices share the same path up to the last occurrence of
2029 * the separator char. Both paths must exist (i.e., zero-length paths
2030 * don't match).
2032 bool hid_compare_device_paths(struct hid_device *hdev_a,
2033 struct hid_device *hdev_b, char separator)
2035 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2036 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2038 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2039 return false;
2041 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2043 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2045 static int hid_device_probe(struct device *dev)
2047 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2048 struct hid_device *hdev = to_hid_device(dev);
2049 const struct hid_device_id *id;
2050 int ret = 0;
2052 if (down_interruptible(&hdev->driver_input_lock)) {
2053 ret = -EINTR;
2054 goto end;
2056 hdev->io_started = false;
2058 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2060 if (!hdev->driver) {
2061 id = hid_match_device(hdev, hdrv);
2062 if (id == NULL) {
2063 ret = -ENODEV;
2064 goto unlock;
2067 if (hdrv->match) {
2068 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2069 ret = -ENODEV;
2070 goto unlock;
2072 } else {
2074 * hid-generic implements .match(), so if
2075 * hid_ignore_special_drivers is set, we can safely
2076 * return.
2078 if (hid_ignore_special_drivers) {
2079 ret = -ENODEV;
2080 goto unlock;
2084 /* reset the quirks that has been previously set */
2085 hdev->quirks = hid_lookup_quirk(hdev);
2086 hdev->driver = hdrv;
2087 if (hdrv->probe) {
2088 ret = hdrv->probe(hdev, id);
2089 } else { /* default probe */
2090 ret = hid_open_report(hdev);
2091 if (!ret)
2092 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2094 if (ret) {
2095 hid_close_report(hdev);
2096 hdev->driver = NULL;
2099 unlock:
2100 if (!hdev->io_started)
2101 up(&hdev->driver_input_lock);
2102 end:
2103 return ret;
2106 static int hid_device_remove(struct device *dev)
2108 struct hid_device *hdev = to_hid_device(dev);
2109 struct hid_driver *hdrv;
2110 int ret = 0;
2112 if (down_interruptible(&hdev->driver_input_lock)) {
2113 ret = -EINTR;
2114 goto end;
2116 hdev->io_started = false;
2118 hdrv = hdev->driver;
2119 if (hdrv) {
2120 if (hdrv->remove)
2121 hdrv->remove(hdev);
2122 else /* default remove */
2123 hid_hw_stop(hdev);
2124 hid_close_report(hdev);
2125 hdev->driver = NULL;
2128 if (!hdev->io_started)
2129 up(&hdev->driver_input_lock);
2130 end:
2131 return ret;
2134 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2135 char *buf)
2137 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2139 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2140 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2142 static DEVICE_ATTR_RO(modalias);
2144 static struct attribute *hid_dev_attrs[] = {
2145 &dev_attr_modalias.attr,
2146 NULL,
2148 static struct bin_attribute *hid_dev_bin_attrs[] = {
2149 &dev_bin_attr_report_desc,
2150 NULL
2152 static const struct attribute_group hid_dev_group = {
2153 .attrs = hid_dev_attrs,
2154 .bin_attrs = hid_dev_bin_attrs,
2156 __ATTRIBUTE_GROUPS(hid_dev);
2158 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2160 struct hid_device *hdev = to_hid_device(dev);
2162 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2163 hdev->bus, hdev->vendor, hdev->product))
2164 return -ENOMEM;
2166 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2167 return -ENOMEM;
2169 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2170 return -ENOMEM;
2172 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2173 return -ENOMEM;
2175 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2176 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2177 return -ENOMEM;
2179 return 0;
2182 struct bus_type hid_bus_type = {
2183 .name = "hid",
2184 .dev_groups = hid_dev_groups,
2185 .drv_groups = hid_drv_groups,
2186 .match = hid_bus_match,
2187 .probe = hid_device_probe,
2188 .remove = hid_device_remove,
2189 .uevent = hid_uevent,
2191 EXPORT_SYMBOL(hid_bus_type);
2193 int hid_add_device(struct hid_device *hdev)
2195 static atomic_t id = ATOMIC_INIT(0);
2196 int ret;
2198 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2199 return -EBUSY;
2201 hdev->quirks = hid_lookup_quirk(hdev);
2203 /* we need to kill them here, otherwise they will stay allocated to
2204 * wait for coming driver */
2205 if (hid_ignore(hdev))
2206 return -ENODEV;
2209 * Check for the mandatory transport channel.
2211 if (!hdev->ll_driver->raw_request) {
2212 hid_err(hdev, "transport driver missing .raw_request()\n");
2213 return -EINVAL;
2217 * Read the device report descriptor once and use as template
2218 * for the driver-specific modifications.
2220 ret = hdev->ll_driver->parse(hdev);
2221 if (ret)
2222 return ret;
2223 if (!hdev->dev_rdesc)
2224 return -ENODEV;
2227 * Scan generic devices for group information
2229 if (hid_ignore_special_drivers) {
2230 hdev->group = HID_GROUP_GENERIC;
2231 } else if (!hdev->group &&
2232 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2233 ret = hid_scan_report(hdev);
2234 if (ret)
2235 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2238 /* XXX hack, any other cleaner solution after the driver core
2239 * is converted to allow more than 20 bytes as the device name? */
2240 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2241 hdev->vendor, hdev->product, atomic_inc_return(&id));
2243 hid_debug_register(hdev, dev_name(&hdev->dev));
2244 ret = device_add(&hdev->dev);
2245 if (!ret)
2246 hdev->status |= HID_STAT_ADDED;
2247 else
2248 hid_debug_unregister(hdev);
2250 return ret;
2252 EXPORT_SYMBOL_GPL(hid_add_device);
2255 * hid_allocate_device - allocate new hid device descriptor
2257 * Allocate and initialize hid device, so that hid_destroy_device might be
2258 * used to free it.
2260 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2261 * error value.
2263 struct hid_device *hid_allocate_device(void)
2265 struct hid_device *hdev;
2266 int ret = -ENOMEM;
2268 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2269 if (hdev == NULL)
2270 return ERR_PTR(ret);
2272 device_initialize(&hdev->dev);
2273 hdev->dev.release = hid_device_release;
2274 hdev->dev.bus = &hid_bus_type;
2275 device_enable_async_suspend(&hdev->dev);
2277 hid_close_report(hdev);
2279 init_waitqueue_head(&hdev->debug_wait);
2280 INIT_LIST_HEAD(&hdev->debug_list);
2281 spin_lock_init(&hdev->debug_list_lock);
2282 sema_init(&hdev->driver_input_lock, 1);
2283 mutex_init(&hdev->ll_open_lock);
2285 return hdev;
2287 EXPORT_SYMBOL_GPL(hid_allocate_device);
2289 static void hid_remove_device(struct hid_device *hdev)
2291 if (hdev->status & HID_STAT_ADDED) {
2292 device_del(&hdev->dev);
2293 hid_debug_unregister(hdev);
2294 hdev->status &= ~HID_STAT_ADDED;
2296 kfree(hdev->dev_rdesc);
2297 hdev->dev_rdesc = NULL;
2298 hdev->dev_rsize = 0;
2302 * hid_destroy_device - free previously allocated device
2304 * @hdev: hid device
2306 * If you allocate hid_device through hid_allocate_device, you should ever
2307 * free by this function.
2309 void hid_destroy_device(struct hid_device *hdev)
2311 hid_remove_device(hdev);
2312 put_device(&hdev->dev);
2314 EXPORT_SYMBOL_GPL(hid_destroy_device);
2317 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2319 struct hid_driver *hdrv = data;
2320 struct hid_device *hdev = to_hid_device(dev);
2322 if (hdev->driver == hdrv &&
2323 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2324 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2325 return device_reprobe(dev);
2327 return 0;
2330 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2332 struct hid_driver *hdrv = to_hid_driver(drv);
2334 if (hdrv->match) {
2335 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2336 __hid_bus_reprobe_drivers);
2339 return 0;
2342 static int __bus_removed_driver(struct device_driver *drv, void *data)
2344 return bus_rescan_devices(&hid_bus_type);
2347 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2348 const char *mod_name)
2350 int ret;
2352 hdrv->driver.name = hdrv->name;
2353 hdrv->driver.bus = &hid_bus_type;
2354 hdrv->driver.owner = owner;
2355 hdrv->driver.mod_name = mod_name;
2357 INIT_LIST_HEAD(&hdrv->dyn_list);
2358 spin_lock_init(&hdrv->dyn_lock);
2360 ret = driver_register(&hdrv->driver);
2362 if (ret == 0)
2363 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2364 __hid_bus_driver_added);
2366 return ret;
2368 EXPORT_SYMBOL_GPL(__hid_register_driver);
2370 void hid_unregister_driver(struct hid_driver *hdrv)
2372 driver_unregister(&hdrv->driver);
2373 hid_free_dynids(hdrv);
2375 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2377 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2379 int hid_check_keys_pressed(struct hid_device *hid)
2381 struct hid_input *hidinput;
2382 int i;
2384 if (!(hid->claimed & HID_CLAIMED_INPUT))
2385 return 0;
2387 list_for_each_entry(hidinput, &hid->inputs, list) {
2388 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2389 if (hidinput->input->key[i])
2390 return 1;
2393 return 0;
2396 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2398 static int __init hid_init(void)
2400 int ret;
2402 if (hid_debug)
2403 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2404 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2406 ret = bus_register(&hid_bus_type);
2407 if (ret) {
2408 pr_err("can't register hid bus\n");
2409 goto err;
2412 ret = hidraw_init();
2413 if (ret)
2414 goto err_bus;
2416 hid_debug_init();
2418 return 0;
2419 err_bus:
2420 bus_unregister(&hid_bus_type);
2421 err:
2422 return ret;
2425 static void __exit hid_exit(void)
2427 hid_debug_exit();
2428 hidraw_exit();
2429 bus_unregister(&hid_bus_type);
2430 hid_quirks_exit(HID_BUS_ANY);
2433 module_init(hid_init);
2434 module_exit(hid_exit);
2436 MODULE_AUTHOR("Andreas Gal");
2437 MODULE_AUTHOR("Vojtech Pavlik");
2438 MODULE_AUTHOR("Jiri Kosina");
2439 MODULE_LICENSE("GPL");