Linux 4.19.133
[linux/fpc-iii.git] / drivers / hv / hv_balloon.c
blob9ca0706a9d4029a79bd14047f8b9de6c91e126f9
1 /*
2 * Copyright (c) 2012, Microsoft Corporation.
4 * Author:
5 * K. Y. Srinivasan <kys@microsoft.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
15 * details.
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
35 #include <linux/hyperv.h>
37 #define CREATE_TRACE_POINTS
38 #include "hv_trace_balloon.h"
41 * We begin with definitions supporting the Dynamic Memory protocol
42 * with the host.
44 * Begin protocol definitions.
50 * Protocol versions. The low word is the minor version, the high word the major
51 * version.
53 * History:
54 * Initial version 1.0
55 * Changed to 0.1 on 2009/03/25
56 * Changes to 0.2 on 2009/05/14
57 * Changes to 0.3 on 2009/12/03
58 * Changed to 1.0 on 2011/04/05
61 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
62 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
63 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
65 enum {
66 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
67 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
68 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
70 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
71 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
72 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
74 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
80 * Message Types
83 enum dm_message_type {
85 * Version 0.3
87 DM_ERROR = 0,
88 DM_VERSION_REQUEST = 1,
89 DM_VERSION_RESPONSE = 2,
90 DM_CAPABILITIES_REPORT = 3,
91 DM_CAPABILITIES_RESPONSE = 4,
92 DM_STATUS_REPORT = 5,
93 DM_BALLOON_REQUEST = 6,
94 DM_BALLOON_RESPONSE = 7,
95 DM_UNBALLOON_REQUEST = 8,
96 DM_UNBALLOON_RESPONSE = 9,
97 DM_MEM_HOT_ADD_REQUEST = 10,
98 DM_MEM_HOT_ADD_RESPONSE = 11,
99 DM_VERSION_03_MAX = 11,
101 * Version 1.0.
103 DM_INFO_MESSAGE = 12,
104 DM_VERSION_1_MAX = 12
109 * Structures defining the dynamic memory management
110 * protocol.
113 union dm_version {
114 struct {
115 __u16 minor_version;
116 __u16 major_version;
118 __u32 version;
119 } __packed;
122 union dm_caps {
123 struct {
124 __u64 balloon:1;
125 __u64 hot_add:1;
127 * To support guests that may have alignment
128 * limitations on hot-add, the guest can specify
129 * its alignment requirements; a value of n
130 * represents an alignment of 2^n in mega bytes.
132 __u64 hot_add_alignment:4;
133 __u64 reservedz:58;
134 } cap_bits;
135 __u64 caps;
136 } __packed;
138 union dm_mem_page_range {
139 struct {
141 * The PFN number of the first page in the range.
142 * 40 bits is the architectural limit of a PFN
143 * number for AMD64.
145 __u64 start_page:40;
147 * The number of pages in the range.
149 __u64 page_cnt:24;
150 } finfo;
151 __u64 page_range;
152 } __packed;
157 * The header for all dynamic memory messages:
159 * type: Type of the message.
160 * size: Size of the message in bytes; including the header.
161 * trans_id: The guest is responsible for manufacturing this ID.
164 struct dm_header {
165 __u16 type;
166 __u16 size;
167 __u32 trans_id;
168 } __packed;
171 * A generic message format for dynamic memory.
172 * Specific message formats are defined later in the file.
175 struct dm_message {
176 struct dm_header hdr;
177 __u8 data[]; /* enclosed message */
178 } __packed;
182 * Specific message types supporting the dynamic memory protocol.
186 * Version negotiation message. Sent from the guest to the host.
187 * The guest is free to try different versions until the host
188 * accepts the version.
190 * dm_version: The protocol version requested.
191 * is_last_attempt: If TRUE, this is the last version guest will request.
192 * reservedz: Reserved field, set to zero.
195 struct dm_version_request {
196 struct dm_header hdr;
197 union dm_version version;
198 __u32 is_last_attempt:1;
199 __u32 reservedz:31;
200 } __packed;
203 * Version response message; Host to Guest and indicates
204 * if the host has accepted the version sent by the guest.
206 * is_accepted: If TRUE, host has accepted the version and the guest
207 * should proceed to the next stage of the protocol. FALSE indicates that
208 * guest should re-try with a different version.
210 * reservedz: Reserved field, set to zero.
213 struct dm_version_response {
214 struct dm_header hdr;
215 __u64 is_accepted:1;
216 __u64 reservedz:63;
217 } __packed;
220 * Message reporting capabilities. This is sent from the guest to the
221 * host.
224 struct dm_capabilities {
225 struct dm_header hdr;
226 union dm_caps caps;
227 __u64 min_page_cnt;
228 __u64 max_page_number;
229 } __packed;
232 * Response to the capabilities message. This is sent from the host to the
233 * guest. This message notifies if the host has accepted the guest's
234 * capabilities. If the host has not accepted, the guest must shutdown
235 * the service.
237 * is_accepted: Indicates if the host has accepted guest's capabilities.
238 * reservedz: Must be 0.
241 struct dm_capabilities_resp_msg {
242 struct dm_header hdr;
243 __u64 is_accepted:1;
244 __u64 reservedz:63;
245 } __packed;
248 * This message is used to report memory pressure from the guest.
249 * This message is not part of any transaction and there is no
250 * response to this message.
252 * num_avail: Available memory in pages.
253 * num_committed: Committed memory in pages.
254 * page_file_size: The accumulated size of all page files
255 * in the system in pages.
256 * zero_free: The nunber of zero and free pages.
257 * page_file_writes: The writes to the page file in pages.
258 * io_diff: An indicator of file cache efficiency or page file activity,
259 * calculated as File Cache Page Fault Count - Page Read Count.
260 * This value is in pages.
262 * Some of these metrics are Windows specific and fortunately
263 * the algorithm on the host side that computes the guest memory
264 * pressure only uses num_committed value.
267 struct dm_status {
268 struct dm_header hdr;
269 __u64 num_avail;
270 __u64 num_committed;
271 __u64 page_file_size;
272 __u64 zero_free;
273 __u32 page_file_writes;
274 __u32 io_diff;
275 } __packed;
279 * Message to ask the guest to allocate memory - balloon up message.
280 * This message is sent from the host to the guest. The guest may not be
281 * able to allocate as much memory as requested.
283 * num_pages: number of pages to allocate.
286 struct dm_balloon {
287 struct dm_header hdr;
288 __u32 num_pages;
289 __u32 reservedz;
290 } __packed;
294 * Balloon response message; this message is sent from the guest
295 * to the host in response to the balloon message.
297 * reservedz: Reserved; must be set to zero.
298 * more_pages: If FALSE, this is the last message of the transaction.
299 * if TRUE there will atleast one more message from the guest.
301 * range_count: The number of ranges in the range array.
303 * range_array: An array of page ranges returned to the host.
307 struct dm_balloon_response {
308 struct dm_header hdr;
309 __u32 reservedz;
310 __u32 more_pages:1;
311 __u32 range_count:31;
312 union dm_mem_page_range range_array[];
313 } __packed;
316 * Un-balloon message; this message is sent from the host
317 * to the guest to give guest more memory.
319 * more_pages: If FALSE, this is the last message of the transaction.
320 * if TRUE there will atleast one more message from the guest.
322 * reservedz: Reserved; must be set to zero.
324 * range_count: The number of ranges in the range array.
326 * range_array: An array of page ranges returned to the host.
330 struct dm_unballoon_request {
331 struct dm_header hdr;
332 __u32 more_pages:1;
333 __u32 reservedz:31;
334 __u32 range_count;
335 union dm_mem_page_range range_array[];
336 } __packed;
339 * Un-balloon response message; this message is sent from the guest
340 * to the host in response to an unballoon request.
344 struct dm_unballoon_response {
345 struct dm_header hdr;
346 } __packed;
350 * Hot add request message. Message sent from the host to the guest.
352 * mem_range: Memory range to hot add.
354 * On Linux we currently don't support this since we cannot hot add
355 * arbitrary granularity of memory.
358 struct dm_hot_add {
359 struct dm_header hdr;
360 union dm_mem_page_range range;
361 } __packed;
364 * Hot add response message.
365 * This message is sent by the guest to report the status of a hot add request.
366 * If page_count is less than the requested page count, then the host should
367 * assume all further hot add requests will fail, since this indicates that
368 * the guest has hit an upper physical memory barrier.
370 * Hot adds may also fail due to low resources; in this case, the guest must
371 * not complete this message until the hot add can succeed, and the host must
372 * not send a new hot add request until the response is sent.
373 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
374 * times it fails the request.
377 * page_count: number of pages that were successfully hot added.
379 * result: result of the operation 1: success, 0: failure.
383 struct dm_hot_add_response {
384 struct dm_header hdr;
385 __u32 page_count;
386 __u32 result;
387 } __packed;
390 * Types of information sent from host to the guest.
393 enum dm_info_type {
394 INFO_TYPE_MAX_PAGE_CNT = 0,
395 MAX_INFO_TYPE
400 * Header for the information message.
403 struct dm_info_header {
404 enum dm_info_type type;
405 __u32 data_size;
406 } __packed;
409 * This message is sent from the host to the guest to pass
410 * some relevant information (win8 addition).
412 * reserved: no used.
413 * info_size: size of the information blob.
414 * info: information blob.
417 struct dm_info_msg {
418 struct dm_header hdr;
419 __u32 reserved;
420 __u32 info_size;
421 __u8 info[];
425 * End protocol definitions.
429 * State to manage hot adding memory into the guest.
430 * The range start_pfn : end_pfn specifies the range
431 * that the host has asked us to hot add. The range
432 * start_pfn : ha_end_pfn specifies the range that we have
433 * currently hot added. We hot add in multiples of 128M
434 * chunks; it is possible that we may not be able to bring
435 * online all the pages in the region. The range
436 * covered_start_pfn:covered_end_pfn defines the pages that can
437 * be brough online.
440 struct hv_hotadd_state {
441 struct list_head list;
442 unsigned long start_pfn;
443 unsigned long covered_start_pfn;
444 unsigned long covered_end_pfn;
445 unsigned long ha_end_pfn;
446 unsigned long end_pfn;
448 * A list of gaps.
450 struct list_head gap_list;
453 struct hv_hotadd_gap {
454 struct list_head list;
455 unsigned long start_pfn;
456 unsigned long end_pfn;
459 struct balloon_state {
460 __u32 num_pages;
461 struct work_struct wrk;
464 struct hot_add_wrk {
465 union dm_mem_page_range ha_page_range;
466 union dm_mem_page_range ha_region_range;
467 struct work_struct wrk;
470 static bool hot_add = true;
471 static bool do_hot_add;
473 * Delay reporting memory pressure by
474 * the specified number of seconds.
476 static uint pressure_report_delay = 45;
479 * The last time we posted a pressure report to host.
481 static unsigned long last_post_time;
483 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
486 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
487 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
488 static atomic_t trans_id = ATOMIC_INIT(0);
490 static int dm_ring_size = (5 * PAGE_SIZE);
493 * Driver specific state.
496 enum hv_dm_state {
497 DM_INITIALIZING = 0,
498 DM_INITIALIZED,
499 DM_BALLOON_UP,
500 DM_BALLOON_DOWN,
501 DM_HOT_ADD,
502 DM_INIT_ERROR
506 static __u8 recv_buffer[PAGE_SIZE];
507 static __u8 *send_buffer;
508 #define PAGES_IN_2M 512
509 #define HA_CHUNK (32 * 1024)
511 struct hv_dynmem_device {
512 struct hv_device *dev;
513 enum hv_dm_state state;
514 struct completion host_event;
515 struct completion config_event;
518 * Number of pages we have currently ballooned out.
520 unsigned int num_pages_ballooned;
521 unsigned int num_pages_onlined;
522 unsigned int num_pages_added;
525 * State to manage the ballooning (up) operation.
527 struct balloon_state balloon_wrk;
530 * State to execute the "hot-add" operation.
532 struct hot_add_wrk ha_wrk;
535 * This state tracks if the host has specified a hot-add
536 * region.
538 bool host_specified_ha_region;
541 * State to synchronize hot-add.
543 struct completion ol_waitevent;
544 bool ha_waiting;
546 * This thread handles hot-add
547 * requests from the host as well as notifying
548 * the host with regards to memory pressure in
549 * the guest.
551 struct task_struct *thread;
554 * Protects ha_region_list, num_pages_onlined counter and individual
555 * regions from ha_region_list.
557 spinlock_t ha_lock;
560 * A list of hot-add regions.
562 struct list_head ha_region_list;
565 * We start with the highest version we can support
566 * and downgrade based on the host; we save here the
567 * next version to try.
569 __u32 next_version;
572 * The negotiated version agreed by host.
574 __u32 version;
577 static struct hv_dynmem_device dm_device;
579 static void post_status(struct hv_dynmem_device *dm);
581 #ifdef CONFIG_MEMORY_HOTPLUG
582 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
583 unsigned long pfn)
585 struct hv_hotadd_gap *gap;
587 /* The page is not backed. */
588 if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
589 return false;
591 /* Check for gaps. */
592 list_for_each_entry(gap, &has->gap_list, list) {
593 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
594 return false;
597 return true;
600 static unsigned long hv_page_offline_check(unsigned long start_pfn,
601 unsigned long nr_pages)
603 unsigned long pfn = start_pfn, count = 0;
604 struct hv_hotadd_state *has;
605 bool found;
607 while (pfn < start_pfn + nr_pages) {
609 * Search for HAS which covers the pfn and when we find one
610 * count how many consequitive PFNs are covered.
612 found = false;
613 list_for_each_entry(has, &dm_device.ha_region_list, list) {
614 while ((pfn >= has->start_pfn) &&
615 (pfn < has->end_pfn) &&
616 (pfn < start_pfn + nr_pages)) {
617 found = true;
618 if (has_pfn_is_backed(has, pfn))
619 count++;
620 pfn++;
625 * This PFN is not in any HAS (e.g. we're offlining a region
626 * which was present at boot), no need to account for it. Go
627 * to the next one.
629 if (!found)
630 pfn++;
633 return count;
636 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
637 void *v)
639 struct memory_notify *mem = (struct memory_notify *)v;
640 unsigned long flags, pfn_count;
642 switch (val) {
643 case MEM_ONLINE:
644 case MEM_CANCEL_ONLINE:
645 if (dm_device.ha_waiting) {
646 dm_device.ha_waiting = false;
647 complete(&dm_device.ol_waitevent);
649 break;
651 case MEM_OFFLINE:
652 spin_lock_irqsave(&dm_device.ha_lock, flags);
653 pfn_count = hv_page_offline_check(mem->start_pfn,
654 mem->nr_pages);
655 if (pfn_count <= dm_device.num_pages_onlined) {
656 dm_device.num_pages_onlined -= pfn_count;
657 } else {
659 * We're offlining more pages than we managed to online.
660 * This is unexpected. In any case don't let
661 * num_pages_onlined wrap around zero.
663 WARN_ON_ONCE(1);
664 dm_device.num_pages_onlined = 0;
666 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
667 break;
668 case MEM_GOING_ONLINE:
669 case MEM_GOING_OFFLINE:
670 case MEM_CANCEL_OFFLINE:
671 break;
673 return NOTIFY_OK;
676 static struct notifier_block hv_memory_nb = {
677 .notifier_call = hv_memory_notifier,
678 .priority = 0
681 /* Check if the particular page is backed and can be onlined and online it. */
682 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
684 if (!has_pfn_is_backed(has, page_to_pfn(pg)))
685 return;
687 /* This frame is currently backed; online the page. */
688 __online_page_set_limits(pg);
689 __online_page_increment_counters(pg);
690 __online_page_free(pg);
692 WARN_ON_ONCE(!spin_is_locked(&dm_device.ha_lock));
693 dm_device.num_pages_onlined++;
696 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
697 unsigned long start_pfn, unsigned long size)
699 int i;
701 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
702 for (i = 0; i < size; i++)
703 hv_page_online_one(has, pfn_to_page(start_pfn + i));
706 static void hv_mem_hot_add(unsigned long start, unsigned long size,
707 unsigned long pfn_count,
708 struct hv_hotadd_state *has)
710 int ret = 0;
711 int i, nid;
712 unsigned long start_pfn;
713 unsigned long processed_pfn;
714 unsigned long total_pfn = pfn_count;
715 unsigned long flags;
717 for (i = 0; i < (size/HA_CHUNK); i++) {
718 start_pfn = start + (i * HA_CHUNK);
720 spin_lock_irqsave(&dm_device.ha_lock, flags);
721 has->ha_end_pfn += HA_CHUNK;
723 if (total_pfn > HA_CHUNK) {
724 processed_pfn = HA_CHUNK;
725 total_pfn -= HA_CHUNK;
726 } else {
727 processed_pfn = total_pfn;
728 total_pfn = 0;
731 has->covered_end_pfn += processed_pfn;
732 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
734 init_completion(&dm_device.ol_waitevent);
735 dm_device.ha_waiting = !memhp_auto_online;
737 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
738 ret = add_memory(nid, PFN_PHYS((start_pfn)),
739 (HA_CHUNK << PAGE_SHIFT));
741 if (ret) {
742 pr_err("hot_add memory failed error is %d\n", ret);
743 if (ret == -EEXIST) {
745 * This error indicates that the error
746 * is not a transient failure. This is the
747 * case where the guest's physical address map
748 * precludes hot adding memory. Stop all further
749 * memory hot-add.
751 do_hot_add = false;
753 spin_lock_irqsave(&dm_device.ha_lock, flags);
754 has->ha_end_pfn -= HA_CHUNK;
755 has->covered_end_pfn -= processed_pfn;
756 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
757 break;
761 * Wait for the memory block to be onlined when memory onlining
762 * is done outside of kernel (memhp_auto_online). Since the hot
763 * add has succeeded, it is ok to proceed even if the pages in
764 * the hot added region have not been "onlined" within the
765 * allowed time.
767 if (dm_device.ha_waiting)
768 wait_for_completion_timeout(&dm_device.ol_waitevent,
769 5*HZ);
770 post_status(&dm_device);
774 static void hv_online_page(struct page *pg)
776 struct hv_hotadd_state *has;
777 unsigned long flags;
778 unsigned long pfn = page_to_pfn(pg);
780 spin_lock_irqsave(&dm_device.ha_lock, flags);
781 list_for_each_entry(has, &dm_device.ha_region_list, list) {
782 /* The page belongs to a different HAS. */
783 if ((pfn < has->start_pfn) || (pfn >= has->end_pfn))
784 continue;
786 hv_page_online_one(has, pg);
787 break;
789 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
792 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
794 struct hv_hotadd_state *has;
795 struct hv_hotadd_gap *gap;
796 unsigned long residual, new_inc;
797 int ret = 0;
798 unsigned long flags;
800 spin_lock_irqsave(&dm_device.ha_lock, flags);
801 list_for_each_entry(has, &dm_device.ha_region_list, list) {
803 * If the pfn range we are dealing with is not in the current
804 * "hot add block", move on.
806 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
807 continue;
810 * If the current start pfn is not where the covered_end
811 * is, create a gap and update covered_end_pfn.
813 if (has->covered_end_pfn != start_pfn) {
814 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
815 if (!gap) {
816 ret = -ENOMEM;
817 break;
820 INIT_LIST_HEAD(&gap->list);
821 gap->start_pfn = has->covered_end_pfn;
822 gap->end_pfn = start_pfn;
823 list_add_tail(&gap->list, &has->gap_list);
825 has->covered_end_pfn = start_pfn;
829 * If the current hot add-request extends beyond
830 * our current limit; extend it.
832 if ((start_pfn + pfn_cnt) > has->end_pfn) {
833 residual = (start_pfn + pfn_cnt - has->end_pfn);
835 * Extend the region by multiples of HA_CHUNK.
837 new_inc = (residual / HA_CHUNK) * HA_CHUNK;
838 if (residual % HA_CHUNK)
839 new_inc += HA_CHUNK;
841 has->end_pfn += new_inc;
844 ret = 1;
845 break;
847 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
849 return ret;
852 static unsigned long handle_pg_range(unsigned long pg_start,
853 unsigned long pg_count)
855 unsigned long start_pfn = pg_start;
856 unsigned long pfn_cnt = pg_count;
857 unsigned long size;
858 struct hv_hotadd_state *has;
859 unsigned long pgs_ol = 0;
860 unsigned long old_covered_state;
861 unsigned long res = 0, flags;
863 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
864 pg_start);
866 spin_lock_irqsave(&dm_device.ha_lock, flags);
867 list_for_each_entry(has, &dm_device.ha_region_list, list) {
869 * If the pfn range we are dealing with is not in the current
870 * "hot add block", move on.
872 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
873 continue;
875 old_covered_state = has->covered_end_pfn;
877 if (start_pfn < has->ha_end_pfn) {
879 * This is the case where we are backing pages
880 * in an already hot added region. Bring
881 * these pages online first.
883 pgs_ol = has->ha_end_pfn - start_pfn;
884 if (pgs_ol > pfn_cnt)
885 pgs_ol = pfn_cnt;
887 has->covered_end_pfn += pgs_ol;
888 pfn_cnt -= pgs_ol;
890 * Check if the corresponding memory block is already
891 * online. It is possible to observe struct pages still
892 * being uninitialized here so check section instead.
893 * In case the section is online we need to bring the
894 * rest of pfns (which were not backed previously)
895 * online too.
897 if (start_pfn > has->start_pfn &&
898 online_section_nr(pfn_to_section_nr(start_pfn)))
899 hv_bring_pgs_online(has, start_pfn, pgs_ol);
903 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
905 * We have some residual hot add range
906 * that needs to be hot added; hot add
907 * it now. Hot add a multiple of
908 * of HA_CHUNK that fully covers the pages
909 * we have.
911 size = (has->end_pfn - has->ha_end_pfn);
912 if (pfn_cnt <= size) {
913 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
914 if (pfn_cnt % HA_CHUNK)
915 size += HA_CHUNK;
916 } else {
917 pfn_cnt = size;
919 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
920 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
921 spin_lock_irqsave(&dm_device.ha_lock, flags);
924 * If we managed to online any pages that were given to us,
925 * we declare success.
927 res = has->covered_end_pfn - old_covered_state;
928 break;
930 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
932 return res;
935 static unsigned long process_hot_add(unsigned long pg_start,
936 unsigned long pfn_cnt,
937 unsigned long rg_start,
938 unsigned long rg_size)
940 struct hv_hotadd_state *ha_region = NULL;
941 int covered;
942 unsigned long flags;
944 if (pfn_cnt == 0)
945 return 0;
947 if (!dm_device.host_specified_ha_region) {
948 covered = pfn_covered(pg_start, pfn_cnt);
949 if (covered < 0)
950 return 0;
952 if (covered)
953 goto do_pg_range;
957 * If the host has specified a hot-add range; deal with it first.
960 if (rg_size != 0) {
961 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
962 if (!ha_region)
963 return 0;
965 INIT_LIST_HEAD(&ha_region->list);
966 INIT_LIST_HEAD(&ha_region->gap_list);
968 ha_region->start_pfn = rg_start;
969 ha_region->ha_end_pfn = rg_start;
970 ha_region->covered_start_pfn = pg_start;
971 ha_region->covered_end_pfn = pg_start;
972 ha_region->end_pfn = rg_start + rg_size;
974 spin_lock_irqsave(&dm_device.ha_lock, flags);
975 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
976 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
979 do_pg_range:
981 * Process the page range specified; bringing them
982 * online if possible.
984 return handle_pg_range(pg_start, pfn_cnt);
987 #endif
989 static void hot_add_req(struct work_struct *dummy)
991 struct dm_hot_add_response resp;
992 #ifdef CONFIG_MEMORY_HOTPLUG
993 unsigned long pg_start, pfn_cnt;
994 unsigned long rg_start, rg_sz;
995 #endif
996 struct hv_dynmem_device *dm = &dm_device;
998 memset(&resp, 0, sizeof(struct dm_hot_add_response));
999 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1000 resp.hdr.size = sizeof(struct dm_hot_add_response);
1002 #ifdef CONFIG_MEMORY_HOTPLUG
1003 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1004 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1006 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1007 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1009 if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1010 unsigned long region_size;
1011 unsigned long region_start;
1014 * The host has not specified the hot-add region.
1015 * Based on the hot-add page range being specified,
1016 * compute a hot-add region that can cover the pages
1017 * that need to be hot-added while ensuring the alignment
1018 * and size requirements of Linux as it relates to hot-add.
1020 region_start = pg_start;
1021 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1022 if (pfn_cnt % HA_CHUNK)
1023 region_size += HA_CHUNK;
1025 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1027 rg_start = region_start;
1028 rg_sz = region_size;
1031 if (do_hot_add)
1032 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1033 rg_start, rg_sz);
1035 dm->num_pages_added += resp.page_count;
1036 #endif
1038 * The result field of the response structure has the
1039 * following semantics:
1041 * 1. If all or some pages hot-added: Guest should return success.
1043 * 2. If no pages could be hot-added:
1045 * If the guest returns success, then the host
1046 * will not attempt any further hot-add operations. This
1047 * signifies a permanent failure.
1049 * If the guest returns failure, then this failure will be
1050 * treated as a transient failure and the host may retry the
1051 * hot-add operation after some delay.
1053 if (resp.page_count > 0)
1054 resp.result = 1;
1055 else if (!do_hot_add)
1056 resp.result = 1;
1057 else
1058 resp.result = 0;
1060 if (!do_hot_add || (resp.page_count == 0))
1061 pr_err("Memory hot add failed\n");
1063 dm->state = DM_INITIALIZED;
1064 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1065 vmbus_sendpacket(dm->dev->channel, &resp,
1066 sizeof(struct dm_hot_add_response),
1067 (unsigned long)NULL,
1068 VM_PKT_DATA_INBAND, 0);
1071 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1073 struct dm_info_header *info_hdr;
1075 info_hdr = (struct dm_info_header *)msg->info;
1077 switch (info_hdr->type) {
1078 case INFO_TYPE_MAX_PAGE_CNT:
1079 if (info_hdr->data_size == sizeof(__u64)) {
1080 __u64 *max_page_count = (__u64 *)&info_hdr[1];
1082 pr_info("Max. dynamic memory size: %llu MB\n",
1083 (*max_page_count) >> (20 - PAGE_SHIFT));
1086 break;
1087 default:
1088 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1092 static unsigned long compute_balloon_floor(void)
1094 unsigned long min_pages;
1095 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1096 /* Simple continuous piecewiese linear function:
1097 * max MiB -> min MiB gradient
1098 * 0 0
1099 * 16 16
1100 * 32 24
1101 * 128 72 (1/2)
1102 * 512 168 (1/4)
1103 * 2048 360 (1/8)
1104 * 8192 744 (1/16)
1105 * 32768 1512 (1/32)
1107 if (totalram_pages < MB2PAGES(128))
1108 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
1109 else if (totalram_pages < MB2PAGES(512))
1110 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
1111 else if (totalram_pages < MB2PAGES(2048))
1112 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
1113 else if (totalram_pages < MB2PAGES(8192))
1114 min_pages = MB2PAGES(232) + (totalram_pages >> 4);
1115 else
1116 min_pages = MB2PAGES(488) + (totalram_pages >> 5);
1117 #undef MB2PAGES
1118 return min_pages;
1122 * Post our status as it relates memory pressure to the
1123 * host. Host expects the guests to post this status
1124 * periodically at 1 second intervals.
1126 * The metrics specified in this protocol are very Windows
1127 * specific and so we cook up numbers here to convey our memory
1128 * pressure.
1131 static void post_status(struct hv_dynmem_device *dm)
1133 struct dm_status status;
1134 unsigned long now = jiffies;
1135 unsigned long last_post = last_post_time;
1137 if (pressure_report_delay > 0) {
1138 --pressure_report_delay;
1139 return;
1142 if (!time_after(now, (last_post_time + HZ)))
1143 return;
1145 memset(&status, 0, sizeof(struct dm_status));
1146 status.hdr.type = DM_STATUS_REPORT;
1147 status.hdr.size = sizeof(struct dm_status);
1148 status.hdr.trans_id = atomic_inc_return(&trans_id);
1151 * The host expects the guest to report free and committed memory.
1152 * Furthermore, the host expects the pressure information to include
1153 * the ballooned out pages. For a given amount of memory that we are
1154 * managing we need to compute a floor below which we should not
1155 * balloon. Compute this and add it to the pressure report.
1156 * We also need to report all offline pages (num_pages_added -
1157 * num_pages_onlined) as committed to the host, otherwise it can try
1158 * asking us to balloon them out.
1160 status.num_avail = si_mem_available();
1161 status.num_committed = vm_memory_committed() +
1162 dm->num_pages_ballooned +
1163 (dm->num_pages_added > dm->num_pages_onlined ?
1164 dm->num_pages_added - dm->num_pages_onlined : 0) +
1165 compute_balloon_floor();
1167 trace_balloon_status(status.num_avail, status.num_committed,
1168 vm_memory_committed(), dm->num_pages_ballooned,
1169 dm->num_pages_added, dm->num_pages_onlined);
1171 * If our transaction ID is no longer current, just don't
1172 * send the status. This can happen if we were interrupted
1173 * after we picked our transaction ID.
1175 if (status.hdr.trans_id != atomic_read(&trans_id))
1176 return;
1179 * If the last post time that we sampled has changed,
1180 * we have raced, don't post the status.
1182 if (last_post != last_post_time)
1183 return;
1185 last_post_time = jiffies;
1186 vmbus_sendpacket(dm->dev->channel, &status,
1187 sizeof(struct dm_status),
1188 (unsigned long)NULL,
1189 VM_PKT_DATA_INBAND, 0);
1193 static void free_balloon_pages(struct hv_dynmem_device *dm,
1194 union dm_mem_page_range *range_array)
1196 int num_pages = range_array->finfo.page_cnt;
1197 __u64 start_frame = range_array->finfo.start_page;
1198 struct page *pg;
1199 int i;
1201 for (i = 0; i < num_pages; i++) {
1202 pg = pfn_to_page(i + start_frame);
1203 __free_page(pg);
1204 dm->num_pages_ballooned--;
1210 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1211 unsigned int num_pages,
1212 struct dm_balloon_response *bl_resp,
1213 int alloc_unit)
1215 unsigned int i = 0;
1216 struct page *pg;
1218 for (i = 0; i < num_pages / alloc_unit; i++) {
1219 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1220 PAGE_SIZE)
1221 return i * alloc_unit;
1224 * We execute this code in a thread context. Furthermore,
1225 * we don't want the kernel to try too hard.
1227 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1228 __GFP_NOMEMALLOC | __GFP_NOWARN,
1229 get_order(alloc_unit << PAGE_SHIFT));
1231 if (!pg)
1232 return i * alloc_unit;
1234 dm->num_pages_ballooned += alloc_unit;
1237 * If we allocatted 2M pages; split them so we
1238 * can free them in any order we get.
1241 if (alloc_unit != 1)
1242 split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1244 bl_resp->range_count++;
1245 bl_resp->range_array[i].finfo.start_page =
1246 page_to_pfn(pg);
1247 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1248 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1252 return i * alloc_unit;
1255 static void balloon_up(struct work_struct *dummy)
1257 unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1258 unsigned int num_ballooned = 0;
1259 struct dm_balloon_response *bl_resp;
1260 int alloc_unit;
1261 int ret;
1262 bool done = false;
1263 int i;
1264 long avail_pages;
1265 unsigned long floor;
1268 * We will attempt 2M allocations. However, if we fail to
1269 * allocate 2M chunks, we will go back to 4k allocations.
1271 alloc_unit = 512;
1273 avail_pages = si_mem_available();
1274 floor = compute_balloon_floor();
1276 /* Refuse to balloon below the floor. */
1277 if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1278 pr_warn("Balloon request will be partially fulfilled. %s\n",
1279 avail_pages < num_pages ? "Not enough memory." :
1280 "Balloon floor reached.");
1282 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1285 while (!done) {
1286 bl_resp = (struct dm_balloon_response *)send_buffer;
1287 memset(send_buffer, 0, PAGE_SIZE);
1288 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1289 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1290 bl_resp->more_pages = 1;
1292 num_pages -= num_ballooned;
1293 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1294 bl_resp, alloc_unit);
1296 if (alloc_unit != 1 && num_ballooned == 0) {
1297 alloc_unit = 1;
1298 continue;
1301 if (num_ballooned == 0 || num_ballooned == num_pages) {
1302 pr_debug("Ballooned %u out of %u requested pages.\n",
1303 num_pages, dm_device.balloon_wrk.num_pages);
1305 bl_resp->more_pages = 0;
1306 done = true;
1307 dm_device.state = DM_INITIALIZED;
1311 * We are pushing a lot of data through the channel;
1312 * deal with transient failures caused because of the
1313 * lack of space in the ring buffer.
1316 do {
1317 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1318 ret = vmbus_sendpacket(dm_device.dev->channel,
1319 bl_resp,
1320 bl_resp->hdr.size,
1321 (unsigned long)NULL,
1322 VM_PKT_DATA_INBAND, 0);
1324 if (ret == -EAGAIN)
1325 msleep(20);
1326 post_status(&dm_device);
1327 } while (ret == -EAGAIN);
1329 if (ret) {
1331 * Free up the memory we allocatted.
1333 pr_err("Balloon response failed\n");
1335 for (i = 0; i < bl_resp->range_count; i++)
1336 free_balloon_pages(&dm_device,
1337 &bl_resp->range_array[i]);
1339 done = true;
1345 static void balloon_down(struct hv_dynmem_device *dm,
1346 struct dm_unballoon_request *req)
1348 union dm_mem_page_range *range_array = req->range_array;
1349 int range_count = req->range_count;
1350 struct dm_unballoon_response resp;
1351 int i;
1352 unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1354 for (i = 0; i < range_count; i++) {
1355 free_balloon_pages(dm, &range_array[i]);
1356 complete(&dm_device.config_event);
1359 pr_debug("Freed %u ballooned pages.\n",
1360 prev_pages_ballooned - dm->num_pages_ballooned);
1362 if (req->more_pages == 1)
1363 return;
1365 memset(&resp, 0, sizeof(struct dm_unballoon_response));
1366 resp.hdr.type = DM_UNBALLOON_RESPONSE;
1367 resp.hdr.trans_id = atomic_inc_return(&trans_id);
1368 resp.hdr.size = sizeof(struct dm_unballoon_response);
1370 vmbus_sendpacket(dm_device.dev->channel, &resp,
1371 sizeof(struct dm_unballoon_response),
1372 (unsigned long)NULL,
1373 VM_PKT_DATA_INBAND, 0);
1375 dm->state = DM_INITIALIZED;
1378 static void balloon_onchannelcallback(void *context);
1380 static int dm_thread_func(void *dm_dev)
1382 struct hv_dynmem_device *dm = dm_dev;
1384 while (!kthread_should_stop()) {
1385 wait_for_completion_interruptible_timeout(
1386 &dm_device.config_event, 1*HZ);
1388 * The host expects us to post information on the memory
1389 * pressure every second.
1391 reinit_completion(&dm_device.config_event);
1392 post_status(dm);
1395 return 0;
1399 static void version_resp(struct hv_dynmem_device *dm,
1400 struct dm_version_response *vresp)
1402 struct dm_version_request version_req;
1403 int ret;
1405 if (vresp->is_accepted) {
1407 * We are done; wakeup the
1408 * context waiting for version
1409 * negotiation.
1411 complete(&dm->host_event);
1412 return;
1415 * If there are more versions to try, continue
1416 * with negotiations; if not
1417 * shutdown the service since we are not able
1418 * to negotiate a suitable version number
1419 * with the host.
1421 if (dm->next_version == 0)
1422 goto version_error;
1424 memset(&version_req, 0, sizeof(struct dm_version_request));
1425 version_req.hdr.type = DM_VERSION_REQUEST;
1426 version_req.hdr.size = sizeof(struct dm_version_request);
1427 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1428 version_req.version.version = dm->next_version;
1429 dm->version = version_req.version.version;
1432 * Set the next version to try in case current version fails.
1433 * Win7 protocol ought to be the last one to try.
1435 switch (version_req.version.version) {
1436 case DYNMEM_PROTOCOL_VERSION_WIN8:
1437 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1438 version_req.is_last_attempt = 0;
1439 break;
1440 default:
1441 dm->next_version = 0;
1442 version_req.is_last_attempt = 1;
1445 ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1446 sizeof(struct dm_version_request),
1447 (unsigned long)NULL,
1448 VM_PKT_DATA_INBAND, 0);
1450 if (ret)
1451 goto version_error;
1453 return;
1455 version_error:
1456 dm->state = DM_INIT_ERROR;
1457 complete(&dm->host_event);
1460 static void cap_resp(struct hv_dynmem_device *dm,
1461 struct dm_capabilities_resp_msg *cap_resp)
1463 if (!cap_resp->is_accepted) {
1464 pr_err("Capabilities not accepted by host\n");
1465 dm->state = DM_INIT_ERROR;
1467 complete(&dm->host_event);
1470 static void balloon_onchannelcallback(void *context)
1472 struct hv_device *dev = context;
1473 u32 recvlen;
1474 u64 requestid;
1475 struct dm_message *dm_msg;
1476 struct dm_header *dm_hdr;
1477 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1478 struct dm_balloon *bal_msg;
1479 struct dm_hot_add *ha_msg;
1480 union dm_mem_page_range *ha_pg_range;
1481 union dm_mem_page_range *ha_region;
1483 memset(recv_buffer, 0, sizeof(recv_buffer));
1484 vmbus_recvpacket(dev->channel, recv_buffer,
1485 PAGE_SIZE, &recvlen, &requestid);
1487 if (recvlen > 0) {
1488 dm_msg = (struct dm_message *)recv_buffer;
1489 dm_hdr = &dm_msg->hdr;
1491 switch (dm_hdr->type) {
1492 case DM_VERSION_RESPONSE:
1493 version_resp(dm,
1494 (struct dm_version_response *)dm_msg);
1495 break;
1497 case DM_CAPABILITIES_RESPONSE:
1498 cap_resp(dm,
1499 (struct dm_capabilities_resp_msg *)dm_msg);
1500 break;
1502 case DM_BALLOON_REQUEST:
1503 if (dm->state == DM_BALLOON_UP)
1504 pr_warn("Currently ballooning\n");
1505 bal_msg = (struct dm_balloon *)recv_buffer;
1506 dm->state = DM_BALLOON_UP;
1507 dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1508 schedule_work(&dm_device.balloon_wrk.wrk);
1509 break;
1511 case DM_UNBALLOON_REQUEST:
1512 dm->state = DM_BALLOON_DOWN;
1513 balloon_down(dm,
1514 (struct dm_unballoon_request *)recv_buffer);
1515 break;
1517 case DM_MEM_HOT_ADD_REQUEST:
1518 if (dm->state == DM_HOT_ADD)
1519 pr_warn("Currently hot-adding\n");
1520 dm->state = DM_HOT_ADD;
1521 ha_msg = (struct dm_hot_add *)recv_buffer;
1522 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1524 * This is a normal hot-add request specifying
1525 * hot-add memory.
1527 dm->host_specified_ha_region = false;
1528 ha_pg_range = &ha_msg->range;
1529 dm->ha_wrk.ha_page_range = *ha_pg_range;
1530 dm->ha_wrk.ha_region_range.page_range = 0;
1531 } else {
1533 * Host is specifying that we first hot-add
1534 * a region and then partially populate this
1535 * region.
1537 dm->host_specified_ha_region = true;
1538 ha_pg_range = &ha_msg->range;
1539 ha_region = &ha_pg_range[1];
1540 dm->ha_wrk.ha_page_range = *ha_pg_range;
1541 dm->ha_wrk.ha_region_range = *ha_region;
1543 schedule_work(&dm_device.ha_wrk.wrk);
1544 break;
1546 case DM_INFO_MESSAGE:
1547 process_info(dm, (struct dm_info_msg *)dm_msg);
1548 break;
1550 default:
1551 pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1558 static int balloon_probe(struct hv_device *dev,
1559 const struct hv_vmbus_device_id *dev_id)
1561 int ret;
1562 unsigned long t;
1563 struct dm_version_request version_req;
1564 struct dm_capabilities cap_msg;
1566 #ifdef CONFIG_MEMORY_HOTPLUG
1567 do_hot_add = hot_add;
1568 #else
1569 do_hot_add = false;
1570 #endif
1573 * First allocate a send buffer.
1576 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1577 if (!send_buffer)
1578 return -ENOMEM;
1580 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1581 balloon_onchannelcallback, dev);
1583 if (ret)
1584 goto probe_error0;
1586 dm_device.dev = dev;
1587 dm_device.state = DM_INITIALIZING;
1588 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1589 init_completion(&dm_device.host_event);
1590 init_completion(&dm_device.config_event);
1591 INIT_LIST_HEAD(&dm_device.ha_region_list);
1592 spin_lock_init(&dm_device.ha_lock);
1593 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1594 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1595 dm_device.host_specified_ha_region = false;
1597 dm_device.thread =
1598 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1599 if (IS_ERR(dm_device.thread)) {
1600 ret = PTR_ERR(dm_device.thread);
1601 goto probe_error1;
1604 #ifdef CONFIG_MEMORY_HOTPLUG
1605 set_online_page_callback(&hv_online_page);
1606 register_memory_notifier(&hv_memory_nb);
1607 #endif
1609 hv_set_drvdata(dev, &dm_device);
1611 * Initiate the hand shake with the host and negotiate
1612 * a version that the host can support. We start with the
1613 * highest version number and go down if the host cannot
1614 * support it.
1616 memset(&version_req, 0, sizeof(struct dm_version_request));
1617 version_req.hdr.type = DM_VERSION_REQUEST;
1618 version_req.hdr.size = sizeof(struct dm_version_request);
1619 version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1620 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1621 version_req.is_last_attempt = 0;
1622 dm_device.version = version_req.version.version;
1624 ret = vmbus_sendpacket(dev->channel, &version_req,
1625 sizeof(struct dm_version_request),
1626 (unsigned long)NULL,
1627 VM_PKT_DATA_INBAND, 0);
1628 if (ret)
1629 goto probe_error2;
1631 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1632 if (t == 0) {
1633 ret = -ETIMEDOUT;
1634 goto probe_error2;
1638 * If we could not negotiate a compatible version with the host
1639 * fail the probe function.
1641 if (dm_device.state == DM_INIT_ERROR) {
1642 ret = -ETIMEDOUT;
1643 goto probe_error2;
1646 pr_info("Using Dynamic Memory protocol version %u.%u\n",
1647 DYNMEM_MAJOR_VERSION(dm_device.version),
1648 DYNMEM_MINOR_VERSION(dm_device.version));
1651 * Now submit our capabilities to the host.
1653 memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1654 cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1655 cap_msg.hdr.size = sizeof(struct dm_capabilities);
1656 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1658 cap_msg.caps.cap_bits.balloon = 1;
1659 cap_msg.caps.cap_bits.hot_add = 1;
1662 * Specify our alignment requirements as it relates
1663 * memory hot-add. Specify 128MB alignment.
1665 cap_msg.caps.cap_bits.hot_add_alignment = 7;
1668 * Currently the host does not use these
1669 * values and we set them to what is done in the
1670 * Windows driver.
1672 cap_msg.min_page_cnt = 0;
1673 cap_msg.max_page_number = -1;
1675 ret = vmbus_sendpacket(dev->channel, &cap_msg,
1676 sizeof(struct dm_capabilities),
1677 (unsigned long)NULL,
1678 VM_PKT_DATA_INBAND, 0);
1679 if (ret)
1680 goto probe_error2;
1682 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1683 if (t == 0) {
1684 ret = -ETIMEDOUT;
1685 goto probe_error2;
1689 * If the host does not like our capabilities,
1690 * fail the probe function.
1692 if (dm_device.state == DM_INIT_ERROR) {
1693 ret = -ETIMEDOUT;
1694 goto probe_error2;
1697 dm_device.state = DM_INITIALIZED;
1698 last_post_time = jiffies;
1700 return 0;
1702 probe_error2:
1703 #ifdef CONFIG_MEMORY_HOTPLUG
1704 restore_online_page_callback(&hv_online_page);
1705 #endif
1706 kthread_stop(dm_device.thread);
1708 probe_error1:
1709 vmbus_close(dev->channel);
1710 probe_error0:
1711 kfree(send_buffer);
1712 return ret;
1715 static int balloon_remove(struct hv_device *dev)
1717 struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1718 struct hv_hotadd_state *has, *tmp;
1719 struct hv_hotadd_gap *gap, *tmp_gap;
1720 unsigned long flags;
1722 if (dm->num_pages_ballooned != 0)
1723 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1725 cancel_work_sync(&dm->balloon_wrk.wrk);
1726 cancel_work_sync(&dm->ha_wrk.wrk);
1728 vmbus_close(dev->channel);
1729 kthread_stop(dm->thread);
1730 kfree(send_buffer);
1731 #ifdef CONFIG_MEMORY_HOTPLUG
1732 restore_online_page_callback(&hv_online_page);
1733 unregister_memory_notifier(&hv_memory_nb);
1734 #endif
1735 spin_lock_irqsave(&dm_device.ha_lock, flags);
1736 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1737 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1738 list_del(&gap->list);
1739 kfree(gap);
1741 list_del(&has->list);
1742 kfree(has);
1744 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1746 return 0;
1749 static const struct hv_vmbus_device_id id_table[] = {
1750 /* Dynamic Memory Class ID */
1751 /* 525074DC-8985-46e2-8057-A307DC18A502 */
1752 { HV_DM_GUID, },
1753 { },
1756 MODULE_DEVICE_TABLE(vmbus, id_table);
1758 static struct hv_driver balloon_drv = {
1759 .name = "hv_balloon",
1760 .id_table = id_table,
1761 .probe = balloon_probe,
1762 .remove = balloon_remove,
1763 .driver = {
1764 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1768 static int __init init_balloon_drv(void)
1771 return vmbus_driver_register(&balloon_drv);
1774 module_init(init_balloon_drv);
1776 MODULE_DESCRIPTION("Hyper-V Balloon");
1777 MODULE_LICENSE("GPL");