3 * Copyright (c) 2009, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/kernel.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/prefetch.h>
34 #include "hyperv_vmbus.h"
36 #define VMBUS_PKT_TRAILER 8
39 * When we write to the ring buffer, check if the host needs to
40 * be signaled. Here is the details of this protocol:
42 * 1. The host guarantees that while it is draining the
43 * ring buffer, it will set the interrupt_mask to
44 * indicate it does not need to be interrupted when
47 * 2. The host guarantees that it will completely drain
48 * the ring buffer before exiting the read loop. Further,
49 * once the ring buffer is empty, it will clear the
50 * interrupt_mask and re-check to see if new data has
54 * It looks like Windows hosts have logic to deal with DOS attacks that
55 * can be triggered if it receives interrupts when it is not expecting
56 * the interrupt. The host expects interrupts only when the ring
57 * transitions from empty to non-empty (or full to non full on the guest
59 * So, base the signaling decision solely on the ring state until the
60 * host logic is fixed.
63 static void hv_signal_on_write(u32 old_write
, struct vmbus_channel
*channel
)
65 struct hv_ring_buffer_info
*rbi
= &channel
->outbound
;
68 if (READ_ONCE(rbi
->ring_buffer
->interrupt_mask
))
71 /* check interrupt_mask before read_index */
74 * This is the only case we need to signal when the
75 * ring transitions from being empty to non-empty.
77 if (old_write
== READ_ONCE(rbi
->ring_buffer
->read_index
))
78 vmbus_setevent(channel
);
81 /* Get the next write location for the specified ring buffer. */
83 hv_get_next_write_location(struct hv_ring_buffer_info
*ring_info
)
85 u32 next
= ring_info
->ring_buffer
->write_index
;
90 /* Set the next write location for the specified ring buffer. */
92 hv_set_next_write_location(struct hv_ring_buffer_info
*ring_info
,
93 u32 next_write_location
)
95 ring_info
->ring_buffer
->write_index
= next_write_location
;
98 /* Set the next read location for the specified ring buffer. */
100 hv_set_next_read_location(struct hv_ring_buffer_info
*ring_info
,
101 u32 next_read_location
)
103 ring_info
->ring_buffer
->read_index
= next_read_location
;
104 ring_info
->priv_read_index
= next_read_location
;
107 /* Get the size of the ring buffer. */
109 hv_get_ring_buffersize(const struct hv_ring_buffer_info
*ring_info
)
111 return ring_info
->ring_datasize
;
114 /* Get the read and write indices as u64 of the specified ring buffer. */
116 hv_get_ring_bufferindices(struct hv_ring_buffer_info
*ring_info
)
118 return (u64
)ring_info
->ring_buffer
->write_index
<< 32;
122 * Helper routine to copy from source to ring buffer.
123 * Assume there is enough room. Handles wrap-around in dest case only!!
125 static u32
hv_copyto_ringbuffer(
126 struct hv_ring_buffer_info
*ring_info
,
127 u32 start_write_offset
,
131 void *ring_buffer
= hv_get_ring_buffer(ring_info
);
132 u32 ring_buffer_size
= hv_get_ring_buffersize(ring_info
);
134 memcpy(ring_buffer
+ start_write_offset
, src
, srclen
);
136 start_write_offset
+= srclen
;
137 if (start_write_offset
>= ring_buffer_size
)
138 start_write_offset
-= ring_buffer_size
;
140 return start_write_offset
;
145 * hv_get_ringbuffer_availbytes()
147 * Get number of bytes available to read and to write to
148 * for the specified ring buffer
151 hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info
*rbi
,
152 u32
*read
, u32
*write
)
154 u32 read_loc
, write_loc
, dsize
;
156 /* Capture the read/write indices before they changed */
157 read_loc
= READ_ONCE(rbi
->ring_buffer
->read_index
);
158 write_loc
= READ_ONCE(rbi
->ring_buffer
->write_index
);
159 dsize
= rbi
->ring_datasize
;
161 *write
= write_loc
>= read_loc
? dsize
- (write_loc
- read_loc
) :
162 read_loc
- write_loc
;
163 *read
= dsize
- *write
;
166 /* Get various debug metrics for the specified ring buffer. */
167 int hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info
*ring_info
,
168 struct hv_ring_buffer_debug_info
*debug_info
)
170 u32 bytes_avail_towrite
;
171 u32 bytes_avail_toread
;
173 if (!ring_info
->ring_buffer
)
176 hv_get_ringbuffer_availbytes(ring_info
,
178 &bytes_avail_towrite
);
179 debug_info
->bytes_avail_toread
= bytes_avail_toread
;
180 debug_info
->bytes_avail_towrite
= bytes_avail_towrite
;
181 debug_info
->current_read_index
= ring_info
->ring_buffer
->read_index
;
182 debug_info
->current_write_index
= ring_info
->ring_buffer
->write_index
;
183 debug_info
->current_interrupt_mask
184 = ring_info
->ring_buffer
->interrupt_mask
;
187 EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo
);
189 /* Initialize the ring buffer. */
190 int hv_ringbuffer_init(struct hv_ring_buffer_info
*ring_info
,
191 struct page
*pages
, u32 page_cnt
)
194 struct page
**pages_wraparound
;
196 BUILD_BUG_ON((sizeof(struct hv_ring_buffer
) != PAGE_SIZE
));
198 memset(ring_info
, 0, sizeof(struct hv_ring_buffer_info
));
201 * First page holds struct hv_ring_buffer, do wraparound mapping for
204 pages_wraparound
= kcalloc(page_cnt
* 2 - 1, sizeof(struct page
*),
206 if (!pages_wraparound
)
209 pages_wraparound
[0] = pages
;
210 for (i
= 0; i
< 2 * (page_cnt
- 1); i
++)
211 pages_wraparound
[i
+ 1] = &pages
[i
% (page_cnt
- 1) + 1];
213 ring_info
->ring_buffer
= (struct hv_ring_buffer
*)
214 vmap(pages_wraparound
, page_cnt
* 2 - 1, VM_MAP
, PAGE_KERNEL
);
216 kfree(pages_wraparound
);
219 if (!ring_info
->ring_buffer
)
222 ring_info
->ring_buffer
->read_index
=
223 ring_info
->ring_buffer
->write_index
= 0;
225 /* Set the feature bit for enabling flow control. */
226 ring_info
->ring_buffer
->feature_bits
.value
= 1;
228 ring_info
->ring_size
= page_cnt
<< PAGE_SHIFT
;
229 ring_info
->ring_size_div10_reciprocal
=
230 reciprocal_value(ring_info
->ring_size
/ 10);
231 ring_info
->ring_datasize
= ring_info
->ring_size
-
232 sizeof(struct hv_ring_buffer
);
234 spin_lock_init(&ring_info
->ring_lock
);
239 /* Cleanup the ring buffer. */
240 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info
*ring_info
)
242 vunmap(ring_info
->ring_buffer
);
245 /* Write to the ring buffer. */
246 int hv_ringbuffer_write(struct vmbus_channel
*channel
,
247 const struct kvec
*kv_list
, u32 kv_count
)
250 u32 bytes_avail_towrite
;
251 u32 totalbytes_towrite
= sizeof(u64
);
252 u32 next_write_location
;
256 struct hv_ring_buffer_info
*outring_info
= &channel
->outbound
;
258 if (channel
->rescind
)
261 for (i
= 0; i
< kv_count
; i
++)
262 totalbytes_towrite
+= kv_list
[i
].iov_len
;
264 spin_lock_irqsave(&outring_info
->ring_lock
, flags
);
266 bytes_avail_towrite
= hv_get_bytes_to_write(outring_info
);
269 * If there is only room for the packet, assume it is full.
270 * Otherwise, the next time around, we think the ring buffer
271 * is empty since the read index == write index.
273 if (bytes_avail_towrite
<= totalbytes_towrite
) {
274 spin_unlock_irqrestore(&outring_info
->ring_lock
, flags
);
278 /* Write to the ring buffer */
279 next_write_location
= hv_get_next_write_location(outring_info
);
281 old_write
= next_write_location
;
283 for (i
= 0; i
< kv_count
; i
++) {
284 next_write_location
= hv_copyto_ringbuffer(outring_info
,
290 /* Set previous packet start */
291 prev_indices
= hv_get_ring_bufferindices(outring_info
);
293 next_write_location
= hv_copyto_ringbuffer(outring_info
,
298 /* Issue a full memory barrier before updating the write index */
301 /* Now, update the write location */
302 hv_set_next_write_location(outring_info
, next_write_location
);
305 spin_unlock_irqrestore(&outring_info
->ring_lock
, flags
);
307 hv_signal_on_write(old_write
, channel
);
309 if (channel
->rescind
)
315 int hv_ringbuffer_read(struct vmbus_channel
*channel
,
316 void *buffer
, u32 buflen
, u32
*buffer_actual_len
,
317 u64
*requestid
, bool raw
)
319 struct vmpacket_descriptor
*desc
;
320 u32 packetlen
, offset
;
322 if (unlikely(buflen
== 0))
325 *buffer_actual_len
= 0;
328 /* Make sure there is something to read */
329 desc
= hv_pkt_iter_first(channel
);
332 * No error is set when there is even no header, drivers are
333 * supposed to analyze buffer_actual_len.
338 offset
= raw
? 0 : (desc
->offset8
<< 3);
339 packetlen
= (desc
->len8
<< 3) - offset
;
340 *buffer_actual_len
= packetlen
;
341 *requestid
= desc
->trans_id
;
343 if (unlikely(packetlen
> buflen
))
346 /* since ring is double mapped, only one copy is necessary */
347 memcpy(buffer
, (const char *)desc
+ offset
, packetlen
);
349 /* Advance ring index to next packet descriptor */
350 __hv_pkt_iter_next(channel
, desc
);
352 /* Notify host of update */
353 hv_pkt_iter_close(channel
);
359 * Determine number of bytes available in ring buffer after
360 * the current iterator (priv_read_index) location.
362 * This is similar to hv_get_bytes_to_read but with private
363 * read index instead.
365 static u32
hv_pkt_iter_avail(const struct hv_ring_buffer_info
*rbi
)
367 u32 priv_read_loc
= rbi
->priv_read_index
;
368 u32 write_loc
= READ_ONCE(rbi
->ring_buffer
->write_index
);
370 if (write_loc
>= priv_read_loc
)
371 return write_loc
- priv_read_loc
;
373 return (rbi
->ring_datasize
- priv_read_loc
) + write_loc
;
377 * Get first vmbus packet from ring buffer after read_index
379 * If ring buffer is empty, returns NULL and no other action needed.
381 struct vmpacket_descriptor
*hv_pkt_iter_first(struct vmbus_channel
*channel
)
383 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
384 struct vmpacket_descriptor
*desc
;
386 if (hv_pkt_iter_avail(rbi
) < sizeof(struct vmpacket_descriptor
))
389 desc
= hv_get_ring_buffer(rbi
) + rbi
->priv_read_index
;
391 prefetch((char *)desc
+ (desc
->len8
<< 3));
395 EXPORT_SYMBOL_GPL(hv_pkt_iter_first
);
398 * Get next vmbus packet from ring buffer.
400 * Advances the current location (priv_read_index) and checks for more
401 * data. If the end of the ring buffer is reached, then return NULL.
403 struct vmpacket_descriptor
*
404 __hv_pkt_iter_next(struct vmbus_channel
*channel
,
405 const struct vmpacket_descriptor
*desc
)
407 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
408 u32 packetlen
= desc
->len8
<< 3;
409 u32 dsize
= rbi
->ring_datasize
;
411 /* bump offset to next potential packet */
412 rbi
->priv_read_index
+= packetlen
+ VMBUS_PKT_TRAILER
;
413 if (rbi
->priv_read_index
>= dsize
)
414 rbi
->priv_read_index
-= dsize
;
417 return hv_pkt_iter_first(channel
);
419 EXPORT_SYMBOL_GPL(__hv_pkt_iter_next
);
421 /* How many bytes were read in this iterator cycle */
422 static u32
hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info
*rbi
,
423 u32 start_read_index
)
425 if (rbi
->priv_read_index
>= start_read_index
)
426 return rbi
->priv_read_index
- start_read_index
;
428 return rbi
->ring_datasize
- start_read_index
+
429 rbi
->priv_read_index
;
433 * Update host ring buffer after iterating over packets. If the host has
434 * stopped queuing new entries because it found the ring buffer full, and
435 * sufficient space is being freed up, signal the host. But be careful to
436 * only signal the host when necessary, both for performance reasons and
437 * because Hyper-V protects itself by throttling guests that signal
440 * Determining when to signal is tricky. There are three key data inputs
441 * that must be handled in this order to avoid race conditions:
443 * 1. Update the read_index
444 * 2. Read the pending_send_sz
445 * 3. Read the current write_index
447 * The interrupt_mask is not used to determine when to signal. The
448 * interrupt_mask is used only on the guest->host ring buffer when
449 * sending requests to the host. The host does not use it on the host->
450 * guest ring buffer to indicate whether it should be signaled.
452 void hv_pkt_iter_close(struct vmbus_channel
*channel
)
454 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
455 u32 curr_write_sz
, pending_sz
, bytes_read
, start_read_index
;
458 * Make sure all reads are done before we update the read index since
459 * the writer may start writing to the read area once the read index
463 start_read_index
= rbi
->ring_buffer
->read_index
;
464 rbi
->ring_buffer
->read_index
= rbi
->priv_read_index
;
467 * Older versions of Hyper-V (before WS2102 and Win8) do not
468 * implement pending_send_sz and simply poll if the host->guest
469 * ring buffer is full. No signaling is needed or expected.
471 if (!rbi
->ring_buffer
->feature_bits
.feat_pending_send_sz
)
475 * Issue a full memory barrier before making the signaling decision.
476 * If reading pending_send_sz were to be reordered and happen
477 * before we commit the new read_index, a race could occur. If the
478 * host were to set the pending_send_sz after we have sampled
479 * pending_send_sz, and the ring buffer blocks before we commit the
480 * read index, we could miss sending the interrupt. Issue a full
481 * memory barrier to address this.
486 * If the pending_send_sz is zero, then the ring buffer is not
487 * blocked and there is no need to signal. This is far by the
488 * most common case, so exit quickly for best performance.
490 pending_sz
= READ_ONCE(rbi
->ring_buffer
->pending_send_sz
);
495 * Ensure the read of write_index in hv_get_bytes_to_write()
496 * happens after the read of pending_send_sz.
499 curr_write_sz
= hv_get_bytes_to_write(rbi
);
500 bytes_read
= hv_pkt_iter_bytes_read(rbi
, start_read_index
);
503 * We want to signal the host only if we're transitioning
504 * from a "not enough free space" state to a "enough free
505 * space" state. For example, it's possible that this function
506 * could run and free up enough space to signal the host, and then
507 * run again and free up additional space before the host has a
508 * chance to clear the pending_send_sz. The 2nd invocation would
509 * be a null transition from "enough free space" to "enough free
510 * space", which doesn't warrant a signal.
512 * Exactly filling the ring buffer is treated as "not enough
513 * space". The ring buffer always must have at least one byte
514 * empty so the empty and full conditions are distinguishable.
515 * hv_get_bytes_to_write() doesn't fully tell the truth in
518 * So first check if we were in the "enough free space" state
519 * before we began the iteration. If so, the host was not
520 * blocked, and there's no need to signal.
522 if (curr_write_sz
- bytes_read
> pending_sz
)
526 * Similarly, if the new state is "not enough space", then
527 * there's no need to signal.
529 if (curr_write_sz
<= pending_sz
)
532 vmbus_setevent(channel
);
534 EXPORT_SYMBOL_GPL(hv_pkt_iter_close
);