Linux 4.19.133
[linux/fpc-iii.git] / drivers / hv / vmbus_drv.c
blobfb22b72fd535a6c780bf1b84268752bd8cb63823
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include <linux/kernel.h>
47 #include "hyperv_vmbus.h"
49 struct vmbus_dynid {
50 struct list_head node;
51 struct hv_vmbus_device_id id;
54 static struct acpi_device *hv_acpi_dev;
56 static struct completion probe_event;
58 static int hyperv_cpuhp_online;
60 static void *hv_panic_page;
63 * Boolean to control whether to report panic messages over Hyper-V.
65 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
67 static int sysctl_record_panic_msg = 1;
69 static int hyperv_report_reg(void)
71 return !sysctl_record_panic_msg || !hv_panic_page;
74 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
75 void *args)
77 struct pt_regs *regs;
79 vmbus_initiate_unload(true);
82 * Hyper-V should be notified only once about a panic. If we will be
83 * doing hyperv_report_panic_msg() later with kmsg data, don't do
84 * the notification here.
86 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
87 && hyperv_report_reg()) {
88 regs = current_pt_regs();
89 hyperv_report_panic(regs, val, false);
91 return NOTIFY_DONE;
94 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
95 void *args)
97 struct die_args *die = (struct die_args *)args;
98 struct pt_regs *regs = die->regs;
101 * Hyper-V should be notified only once about a panic. If we will be
102 * doing hyperv_report_panic_msg() later with kmsg data, don't do
103 * the notification here.
105 if (hyperv_report_reg())
106 hyperv_report_panic(regs, val, true);
107 return NOTIFY_DONE;
110 static struct notifier_block hyperv_die_block = {
111 .notifier_call = hyperv_die_event,
113 static struct notifier_block hyperv_panic_block = {
114 .notifier_call = hyperv_panic_event,
117 static const char *fb_mmio_name = "fb_range";
118 static struct resource *fb_mmio;
119 static struct resource *hyperv_mmio;
120 static DEFINE_SEMAPHORE(hyperv_mmio_lock);
122 static int vmbus_exists(void)
124 if (hv_acpi_dev == NULL)
125 return -ENODEV;
127 return 0;
130 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
131 static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
133 int i;
134 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
135 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
138 static u8 channel_monitor_group(const struct vmbus_channel *channel)
140 return (u8)channel->offermsg.monitorid / 32;
143 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
145 return (u8)channel->offermsg.monitorid % 32;
148 static u32 channel_pending(const struct vmbus_channel *channel,
149 const struct hv_monitor_page *monitor_page)
151 u8 monitor_group = channel_monitor_group(channel);
153 return monitor_page->trigger_group[monitor_group].pending;
156 static u32 channel_latency(const struct vmbus_channel *channel,
157 const struct hv_monitor_page *monitor_page)
159 u8 monitor_group = channel_monitor_group(channel);
160 u8 monitor_offset = channel_monitor_offset(channel);
162 return monitor_page->latency[monitor_group][monitor_offset];
165 static u32 channel_conn_id(struct vmbus_channel *channel,
166 struct hv_monitor_page *monitor_page)
168 u8 monitor_group = channel_monitor_group(channel);
169 u8 monitor_offset = channel_monitor_offset(channel);
170 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
173 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
174 char *buf)
176 struct hv_device *hv_dev = device_to_hv_device(dev);
178 if (!hv_dev->channel)
179 return -ENODEV;
180 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
182 static DEVICE_ATTR_RO(id);
184 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
185 char *buf)
187 struct hv_device *hv_dev = device_to_hv_device(dev);
189 if (!hv_dev->channel)
190 return -ENODEV;
191 return sprintf(buf, "%d\n", hv_dev->channel->state);
193 static DEVICE_ATTR_RO(state);
195 static ssize_t monitor_id_show(struct device *dev,
196 struct device_attribute *dev_attr, char *buf)
198 struct hv_device *hv_dev = device_to_hv_device(dev);
200 if (!hv_dev->channel)
201 return -ENODEV;
202 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
204 static DEVICE_ATTR_RO(monitor_id);
206 static ssize_t class_id_show(struct device *dev,
207 struct device_attribute *dev_attr, char *buf)
209 struct hv_device *hv_dev = device_to_hv_device(dev);
211 if (!hv_dev->channel)
212 return -ENODEV;
213 return sprintf(buf, "{%pUl}\n",
214 hv_dev->channel->offermsg.offer.if_type.b);
216 static DEVICE_ATTR_RO(class_id);
218 static ssize_t device_id_show(struct device *dev,
219 struct device_attribute *dev_attr, char *buf)
221 struct hv_device *hv_dev = device_to_hv_device(dev);
223 if (!hv_dev->channel)
224 return -ENODEV;
225 return sprintf(buf, "{%pUl}\n",
226 hv_dev->channel->offermsg.offer.if_instance.b);
228 static DEVICE_ATTR_RO(device_id);
230 static ssize_t modalias_show(struct device *dev,
231 struct device_attribute *dev_attr, char *buf)
233 struct hv_device *hv_dev = device_to_hv_device(dev);
234 char alias_name[VMBUS_ALIAS_LEN + 1];
236 print_alias_name(hv_dev, alias_name);
237 return sprintf(buf, "vmbus:%s\n", alias_name);
239 static DEVICE_ATTR_RO(modalias);
241 #ifdef CONFIG_NUMA
242 static ssize_t numa_node_show(struct device *dev,
243 struct device_attribute *attr, char *buf)
245 struct hv_device *hv_dev = device_to_hv_device(dev);
247 if (!hv_dev->channel)
248 return -ENODEV;
250 return sprintf(buf, "%d\n", hv_dev->channel->numa_node);
252 static DEVICE_ATTR_RO(numa_node);
253 #endif
255 static ssize_t server_monitor_pending_show(struct device *dev,
256 struct device_attribute *dev_attr,
257 char *buf)
259 struct hv_device *hv_dev = device_to_hv_device(dev);
261 if (!hv_dev->channel)
262 return -ENODEV;
263 return sprintf(buf, "%d\n",
264 channel_pending(hv_dev->channel,
265 vmbus_connection.monitor_pages[1]));
267 static DEVICE_ATTR_RO(server_monitor_pending);
269 static ssize_t client_monitor_pending_show(struct device *dev,
270 struct device_attribute *dev_attr,
271 char *buf)
273 struct hv_device *hv_dev = device_to_hv_device(dev);
275 if (!hv_dev->channel)
276 return -ENODEV;
277 return sprintf(buf, "%d\n",
278 channel_pending(hv_dev->channel,
279 vmbus_connection.monitor_pages[1]));
281 static DEVICE_ATTR_RO(client_monitor_pending);
283 static ssize_t server_monitor_latency_show(struct device *dev,
284 struct device_attribute *dev_attr,
285 char *buf)
287 struct hv_device *hv_dev = device_to_hv_device(dev);
289 if (!hv_dev->channel)
290 return -ENODEV;
291 return sprintf(buf, "%d\n",
292 channel_latency(hv_dev->channel,
293 vmbus_connection.monitor_pages[0]));
295 static DEVICE_ATTR_RO(server_monitor_latency);
297 static ssize_t client_monitor_latency_show(struct device *dev,
298 struct device_attribute *dev_attr,
299 char *buf)
301 struct hv_device *hv_dev = device_to_hv_device(dev);
303 if (!hv_dev->channel)
304 return -ENODEV;
305 return sprintf(buf, "%d\n",
306 channel_latency(hv_dev->channel,
307 vmbus_connection.monitor_pages[1]));
309 static DEVICE_ATTR_RO(client_monitor_latency);
311 static ssize_t server_monitor_conn_id_show(struct device *dev,
312 struct device_attribute *dev_attr,
313 char *buf)
315 struct hv_device *hv_dev = device_to_hv_device(dev);
317 if (!hv_dev->channel)
318 return -ENODEV;
319 return sprintf(buf, "%d\n",
320 channel_conn_id(hv_dev->channel,
321 vmbus_connection.monitor_pages[0]));
323 static DEVICE_ATTR_RO(server_monitor_conn_id);
325 static ssize_t client_monitor_conn_id_show(struct device *dev,
326 struct device_attribute *dev_attr,
327 char *buf)
329 struct hv_device *hv_dev = device_to_hv_device(dev);
331 if (!hv_dev->channel)
332 return -ENODEV;
333 return sprintf(buf, "%d\n",
334 channel_conn_id(hv_dev->channel,
335 vmbus_connection.monitor_pages[1]));
337 static DEVICE_ATTR_RO(client_monitor_conn_id);
339 static ssize_t out_intr_mask_show(struct device *dev,
340 struct device_attribute *dev_attr, char *buf)
342 struct hv_device *hv_dev = device_to_hv_device(dev);
343 struct hv_ring_buffer_debug_info outbound;
344 int ret;
346 if (!hv_dev->channel)
347 return -ENODEV;
349 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
350 &outbound);
351 if (ret < 0)
352 return ret;
354 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
356 static DEVICE_ATTR_RO(out_intr_mask);
358 static ssize_t out_read_index_show(struct device *dev,
359 struct device_attribute *dev_attr, char *buf)
361 struct hv_device *hv_dev = device_to_hv_device(dev);
362 struct hv_ring_buffer_debug_info outbound;
363 int ret;
365 if (!hv_dev->channel)
366 return -ENODEV;
368 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
369 &outbound);
370 if (ret < 0)
371 return ret;
372 return sprintf(buf, "%d\n", outbound.current_read_index);
374 static DEVICE_ATTR_RO(out_read_index);
376 static ssize_t out_write_index_show(struct device *dev,
377 struct device_attribute *dev_attr,
378 char *buf)
380 struct hv_device *hv_dev = device_to_hv_device(dev);
381 struct hv_ring_buffer_debug_info outbound;
382 int ret;
384 if (!hv_dev->channel)
385 return -ENODEV;
387 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
388 &outbound);
389 if (ret < 0)
390 return ret;
391 return sprintf(buf, "%d\n", outbound.current_write_index);
393 static DEVICE_ATTR_RO(out_write_index);
395 static ssize_t out_read_bytes_avail_show(struct device *dev,
396 struct device_attribute *dev_attr,
397 char *buf)
399 struct hv_device *hv_dev = device_to_hv_device(dev);
400 struct hv_ring_buffer_debug_info outbound;
401 int ret;
403 if (!hv_dev->channel)
404 return -ENODEV;
406 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
407 &outbound);
408 if (ret < 0)
409 return ret;
410 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
412 static DEVICE_ATTR_RO(out_read_bytes_avail);
414 static ssize_t out_write_bytes_avail_show(struct device *dev,
415 struct device_attribute *dev_attr,
416 char *buf)
418 struct hv_device *hv_dev = device_to_hv_device(dev);
419 struct hv_ring_buffer_debug_info outbound;
420 int ret;
422 if (!hv_dev->channel)
423 return -ENODEV;
425 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
426 &outbound);
427 if (ret < 0)
428 return ret;
429 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
431 static DEVICE_ATTR_RO(out_write_bytes_avail);
433 static ssize_t in_intr_mask_show(struct device *dev,
434 struct device_attribute *dev_attr, char *buf)
436 struct hv_device *hv_dev = device_to_hv_device(dev);
437 struct hv_ring_buffer_debug_info inbound;
438 int ret;
440 if (!hv_dev->channel)
441 return -ENODEV;
443 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
444 if (ret < 0)
445 return ret;
447 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
449 static DEVICE_ATTR_RO(in_intr_mask);
451 static ssize_t in_read_index_show(struct device *dev,
452 struct device_attribute *dev_attr, char *buf)
454 struct hv_device *hv_dev = device_to_hv_device(dev);
455 struct hv_ring_buffer_debug_info inbound;
456 int ret;
458 if (!hv_dev->channel)
459 return -ENODEV;
461 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
462 if (ret < 0)
463 return ret;
465 return sprintf(buf, "%d\n", inbound.current_read_index);
467 static DEVICE_ATTR_RO(in_read_index);
469 static ssize_t in_write_index_show(struct device *dev,
470 struct device_attribute *dev_attr, char *buf)
472 struct hv_device *hv_dev = device_to_hv_device(dev);
473 struct hv_ring_buffer_debug_info inbound;
474 int ret;
476 if (!hv_dev->channel)
477 return -ENODEV;
479 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
480 if (ret < 0)
481 return ret;
483 return sprintf(buf, "%d\n", inbound.current_write_index);
485 static DEVICE_ATTR_RO(in_write_index);
487 static ssize_t in_read_bytes_avail_show(struct device *dev,
488 struct device_attribute *dev_attr,
489 char *buf)
491 struct hv_device *hv_dev = device_to_hv_device(dev);
492 struct hv_ring_buffer_debug_info inbound;
493 int ret;
495 if (!hv_dev->channel)
496 return -ENODEV;
498 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
499 if (ret < 0)
500 return ret;
502 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
504 static DEVICE_ATTR_RO(in_read_bytes_avail);
506 static ssize_t in_write_bytes_avail_show(struct device *dev,
507 struct device_attribute *dev_attr,
508 char *buf)
510 struct hv_device *hv_dev = device_to_hv_device(dev);
511 struct hv_ring_buffer_debug_info inbound;
512 int ret;
514 if (!hv_dev->channel)
515 return -ENODEV;
517 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
518 if (ret < 0)
519 return ret;
521 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
523 static DEVICE_ATTR_RO(in_write_bytes_avail);
525 static ssize_t channel_vp_mapping_show(struct device *dev,
526 struct device_attribute *dev_attr,
527 char *buf)
529 struct hv_device *hv_dev = device_to_hv_device(dev);
530 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
531 unsigned long flags;
532 int buf_size = PAGE_SIZE, n_written, tot_written;
533 struct list_head *cur;
535 if (!channel)
536 return -ENODEV;
538 tot_written = snprintf(buf, buf_size, "%u:%u\n",
539 channel->offermsg.child_relid, channel->target_cpu);
541 spin_lock_irqsave(&channel->lock, flags);
543 list_for_each(cur, &channel->sc_list) {
544 if (tot_written >= buf_size - 1)
545 break;
547 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
548 n_written = scnprintf(buf + tot_written,
549 buf_size - tot_written,
550 "%u:%u\n",
551 cur_sc->offermsg.child_relid,
552 cur_sc->target_cpu);
553 tot_written += n_written;
556 spin_unlock_irqrestore(&channel->lock, flags);
558 return tot_written;
560 static DEVICE_ATTR_RO(channel_vp_mapping);
562 static ssize_t vendor_show(struct device *dev,
563 struct device_attribute *dev_attr,
564 char *buf)
566 struct hv_device *hv_dev = device_to_hv_device(dev);
567 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
569 static DEVICE_ATTR_RO(vendor);
571 static ssize_t device_show(struct device *dev,
572 struct device_attribute *dev_attr,
573 char *buf)
575 struct hv_device *hv_dev = device_to_hv_device(dev);
576 return sprintf(buf, "0x%x\n", hv_dev->device_id);
578 static DEVICE_ATTR_RO(device);
580 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
581 static struct attribute *vmbus_dev_attrs[] = {
582 &dev_attr_id.attr,
583 &dev_attr_state.attr,
584 &dev_attr_monitor_id.attr,
585 &dev_attr_class_id.attr,
586 &dev_attr_device_id.attr,
587 &dev_attr_modalias.attr,
588 #ifdef CONFIG_NUMA
589 &dev_attr_numa_node.attr,
590 #endif
591 &dev_attr_server_monitor_pending.attr,
592 &dev_attr_client_monitor_pending.attr,
593 &dev_attr_server_monitor_latency.attr,
594 &dev_attr_client_monitor_latency.attr,
595 &dev_attr_server_monitor_conn_id.attr,
596 &dev_attr_client_monitor_conn_id.attr,
597 &dev_attr_out_intr_mask.attr,
598 &dev_attr_out_read_index.attr,
599 &dev_attr_out_write_index.attr,
600 &dev_attr_out_read_bytes_avail.attr,
601 &dev_attr_out_write_bytes_avail.attr,
602 &dev_attr_in_intr_mask.attr,
603 &dev_attr_in_read_index.attr,
604 &dev_attr_in_write_index.attr,
605 &dev_attr_in_read_bytes_avail.attr,
606 &dev_attr_in_write_bytes_avail.attr,
607 &dev_attr_channel_vp_mapping.attr,
608 &dev_attr_vendor.attr,
609 &dev_attr_device.attr,
610 NULL,
612 ATTRIBUTE_GROUPS(vmbus_dev);
615 * vmbus_uevent - add uevent for our device
617 * This routine is invoked when a device is added or removed on the vmbus to
618 * generate a uevent to udev in the userspace. The udev will then look at its
619 * rule and the uevent generated here to load the appropriate driver
621 * The alias string will be of the form vmbus:guid where guid is the string
622 * representation of the device guid (each byte of the guid will be
623 * represented with two hex characters.
625 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
627 struct hv_device *dev = device_to_hv_device(device);
628 int ret;
629 char alias_name[VMBUS_ALIAS_LEN + 1];
631 print_alias_name(dev, alias_name);
632 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
633 return ret;
636 static const uuid_le null_guid;
638 static inline bool is_null_guid(const uuid_le *guid)
640 if (uuid_le_cmp(*guid, null_guid))
641 return false;
642 return true;
646 * Return a matching hv_vmbus_device_id pointer.
647 * If there is no match, return NULL.
649 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
650 const uuid_le *guid)
652 const struct hv_vmbus_device_id *id = NULL;
653 struct vmbus_dynid *dynid;
655 /* Look at the dynamic ids first, before the static ones */
656 spin_lock(&drv->dynids.lock);
657 list_for_each_entry(dynid, &drv->dynids.list, node) {
658 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
659 id = &dynid->id;
660 break;
663 spin_unlock(&drv->dynids.lock);
665 if (id)
666 return id;
668 id = drv->id_table;
669 if (id == NULL)
670 return NULL; /* empty device table */
672 for (; !is_null_guid(&id->guid); id++)
673 if (!uuid_le_cmp(id->guid, *guid))
674 return id;
676 return NULL;
679 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
680 static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
682 struct vmbus_dynid *dynid;
684 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
685 if (!dynid)
686 return -ENOMEM;
688 dynid->id.guid = *guid;
690 spin_lock(&drv->dynids.lock);
691 list_add_tail(&dynid->node, &drv->dynids.list);
692 spin_unlock(&drv->dynids.lock);
694 return driver_attach(&drv->driver);
697 static void vmbus_free_dynids(struct hv_driver *drv)
699 struct vmbus_dynid *dynid, *n;
701 spin_lock(&drv->dynids.lock);
702 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
703 list_del(&dynid->node);
704 kfree(dynid);
706 spin_unlock(&drv->dynids.lock);
710 * store_new_id - sysfs frontend to vmbus_add_dynid()
712 * Allow GUIDs to be added to an existing driver via sysfs.
714 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
715 size_t count)
717 struct hv_driver *drv = drv_to_hv_drv(driver);
718 uuid_le guid;
719 ssize_t retval;
721 retval = uuid_le_to_bin(buf, &guid);
722 if (retval)
723 return retval;
725 if (hv_vmbus_get_id(drv, &guid))
726 return -EEXIST;
728 retval = vmbus_add_dynid(drv, &guid);
729 if (retval)
730 return retval;
731 return count;
733 static DRIVER_ATTR_WO(new_id);
736 * store_remove_id - remove a PCI device ID from this driver
738 * Removes a dynamic pci device ID to this driver.
740 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
741 size_t count)
743 struct hv_driver *drv = drv_to_hv_drv(driver);
744 struct vmbus_dynid *dynid, *n;
745 uuid_le guid;
746 ssize_t retval;
748 retval = uuid_le_to_bin(buf, &guid);
749 if (retval)
750 return retval;
752 retval = -ENODEV;
753 spin_lock(&drv->dynids.lock);
754 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
755 struct hv_vmbus_device_id *id = &dynid->id;
757 if (!uuid_le_cmp(id->guid, guid)) {
758 list_del(&dynid->node);
759 kfree(dynid);
760 retval = count;
761 break;
764 spin_unlock(&drv->dynids.lock);
766 return retval;
768 static DRIVER_ATTR_WO(remove_id);
770 static struct attribute *vmbus_drv_attrs[] = {
771 &driver_attr_new_id.attr,
772 &driver_attr_remove_id.attr,
773 NULL,
775 ATTRIBUTE_GROUPS(vmbus_drv);
779 * vmbus_match - Attempt to match the specified device to the specified driver
781 static int vmbus_match(struct device *device, struct device_driver *driver)
783 struct hv_driver *drv = drv_to_hv_drv(driver);
784 struct hv_device *hv_dev = device_to_hv_device(device);
786 /* The hv_sock driver handles all hv_sock offers. */
787 if (is_hvsock_channel(hv_dev->channel))
788 return drv->hvsock;
790 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
791 return 1;
793 return 0;
797 * vmbus_probe - Add the new vmbus's child device
799 static int vmbus_probe(struct device *child_device)
801 int ret = 0;
802 struct hv_driver *drv =
803 drv_to_hv_drv(child_device->driver);
804 struct hv_device *dev = device_to_hv_device(child_device);
805 const struct hv_vmbus_device_id *dev_id;
807 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
808 if (drv->probe) {
809 ret = drv->probe(dev, dev_id);
810 if (ret != 0)
811 pr_err("probe failed for device %s (%d)\n",
812 dev_name(child_device), ret);
814 } else {
815 pr_err("probe not set for driver %s\n",
816 dev_name(child_device));
817 ret = -ENODEV;
819 return ret;
823 * vmbus_remove - Remove a vmbus device
825 static int vmbus_remove(struct device *child_device)
827 struct hv_driver *drv;
828 struct hv_device *dev = device_to_hv_device(child_device);
830 if (child_device->driver) {
831 drv = drv_to_hv_drv(child_device->driver);
832 if (drv->remove)
833 drv->remove(dev);
836 return 0;
841 * vmbus_shutdown - Shutdown a vmbus device
843 static void vmbus_shutdown(struct device *child_device)
845 struct hv_driver *drv;
846 struct hv_device *dev = device_to_hv_device(child_device);
849 /* The device may not be attached yet */
850 if (!child_device->driver)
851 return;
853 drv = drv_to_hv_drv(child_device->driver);
855 if (drv->shutdown)
856 drv->shutdown(dev);
861 * vmbus_device_release - Final callback release of the vmbus child device
863 static void vmbus_device_release(struct device *device)
865 struct hv_device *hv_dev = device_to_hv_device(device);
866 struct vmbus_channel *channel = hv_dev->channel;
868 mutex_lock(&vmbus_connection.channel_mutex);
869 hv_process_channel_removal(channel->offermsg.child_relid);
870 mutex_unlock(&vmbus_connection.channel_mutex);
871 kfree(hv_dev);
875 /* The one and only one */
876 static struct bus_type hv_bus = {
877 .name = "vmbus",
878 .match = vmbus_match,
879 .shutdown = vmbus_shutdown,
880 .remove = vmbus_remove,
881 .probe = vmbus_probe,
882 .uevent = vmbus_uevent,
883 .dev_groups = vmbus_dev_groups,
884 .drv_groups = vmbus_drv_groups,
887 struct onmessage_work_context {
888 struct work_struct work;
889 struct hv_message msg;
892 static void vmbus_onmessage_work(struct work_struct *work)
894 struct onmessage_work_context *ctx;
896 /* Do not process messages if we're in DISCONNECTED state */
897 if (vmbus_connection.conn_state == DISCONNECTED)
898 return;
900 ctx = container_of(work, struct onmessage_work_context,
901 work);
902 vmbus_onmessage(&ctx->msg);
903 kfree(ctx);
906 static void hv_process_timer_expiration(struct hv_message *msg,
907 struct hv_per_cpu_context *hv_cpu)
909 struct clock_event_device *dev = hv_cpu->clk_evt;
911 if (dev->event_handler)
912 dev->event_handler(dev);
914 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
917 void vmbus_on_msg_dpc(unsigned long data)
919 struct hv_per_cpu_context *hv_cpu = (void *)data;
920 void *page_addr = hv_cpu->synic_message_page;
921 struct hv_message *msg = (struct hv_message *)page_addr +
922 VMBUS_MESSAGE_SINT;
923 struct vmbus_channel_message_header *hdr;
924 const struct vmbus_channel_message_table_entry *entry;
925 struct onmessage_work_context *ctx;
926 u32 message_type = msg->header.message_type;
928 if (message_type == HVMSG_NONE)
929 /* no msg */
930 return;
932 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
934 trace_vmbus_on_msg_dpc(hdr);
936 if (hdr->msgtype >= CHANNELMSG_COUNT) {
937 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
938 goto msg_handled;
941 entry = &channel_message_table[hdr->msgtype];
942 if (entry->handler_type == VMHT_BLOCKING) {
943 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
944 if (ctx == NULL)
945 return;
947 INIT_WORK(&ctx->work, vmbus_onmessage_work);
948 memcpy(&ctx->msg, msg, sizeof(*msg));
951 * The host can generate a rescind message while we
952 * may still be handling the original offer. We deal with
953 * this condition by ensuring the processing is done on the
954 * same CPU.
956 switch (hdr->msgtype) {
957 case CHANNELMSG_RESCIND_CHANNELOFFER:
959 * If we are handling the rescind message;
960 * schedule the work on the global work queue.
962 schedule_work_on(vmbus_connection.connect_cpu,
963 &ctx->work);
964 break;
966 case CHANNELMSG_OFFERCHANNEL:
967 atomic_inc(&vmbus_connection.offer_in_progress);
968 queue_work_on(vmbus_connection.connect_cpu,
969 vmbus_connection.work_queue,
970 &ctx->work);
971 break;
973 default:
974 queue_work(vmbus_connection.work_queue, &ctx->work);
976 } else
977 entry->message_handler(hdr);
979 msg_handled:
980 vmbus_signal_eom(msg, message_type);
985 * Direct callback for channels using other deferred processing
987 static void vmbus_channel_isr(struct vmbus_channel *channel)
989 void (*callback_fn)(void *);
991 callback_fn = READ_ONCE(channel->onchannel_callback);
992 if (likely(callback_fn != NULL))
993 (*callback_fn)(channel->channel_callback_context);
997 * Schedule all channels with events pending
999 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1001 unsigned long *recv_int_page;
1002 u32 maxbits, relid;
1004 if (vmbus_proto_version < VERSION_WIN8) {
1005 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
1006 recv_int_page = vmbus_connection.recv_int_page;
1007 } else {
1009 * When the host is win8 and beyond, the event page
1010 * can be directly checked to get the id of the channel
1011 * that has the interrupt pending.
1013 void *page_addr = hv_cpu->synic_event_page;
1014 union hv_synic_event_flags *event
1015 = (union hv_synic_event_flags *)page_addr +
1016 VMBUS_MESSAGE_SINT;
1018 maxbits = HV_EVENT_FLAGS_COUNT;
1019 recv_int_page = event->flags;
1022 if (unlikely(!recv_int_page))
1023 return;
1025 for_each_set_bit(relid, recv_int_page, maxbits) {
1026 struct vmbus_channel *channel;
1028 if (!sync_test_and_clear_bit(relid, recv_int_page))
1029 continue;
1031 /* Special case - vmbus channel protocol msg */
1032 if (relid == 0)
1033 continue;
1035 rcu_read_lock();
1037 /* Find channel based on relid */
1038 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
1039 if (channel->offermsg.child_relid != relid)
1040 continue;
1042 if (channel->rescind)
1043 continue;
1045 trace_vmbus_chan_sched(channel);
1047 ++channel->interrupts;
1049 switch (channel->callback_mode) {
1050 case HV_CALL_ISR:
1051 vmbus_channel_isr(channel);
1052 break;
1054 case HV_CALL_BATCHED:
1055 hv_begin_read(&channel->inbound);
1056 /* fallthrough */
1057 case HV_CALL_DIRECT:
1058 tasklet_schedule(&channel->callback_event);
1062 rcu_read_unlock();
1066 static void vmbus_isr(void)
1068 struct hv_per_cpu_context *hv_cpu
1069 = this_cpu_ptr(hv_context.cpu_context);
1070 void *page_addr = hv_cpu->synic_event_page;
1071 struct hv_message *msg;
1072 union hv_synic_event_flags *event;
1073 bool handled = false;
1075 if (unlikely(page_addr == NULL))
1076 return;
1078 event = (union hv_synic_event_flags *)page_addr +
1079 VMBUS_MESSAGE_SINT;
1081 * Check for events before checking for messages. This is the order
1082 * in which events and messages are checked in Windows guests on
1083 * Hyper-V, and the Windows team suggested we do the same.
1086 if ((vmbus_proto_version == VERSION_WS2008) ||
1087 (vmbus_proto_version == VERSION_WIN7)) {
1089 /* Since we are a child, we only need to check bit 0 */
1090 if (sync_test_and_clear_bit(0, event->flags))
1091 handled = true;
1092 } else {
1094 * Our host is win8 or above. The signaling mechanism
1095 * has changed and we can directly look at the event page.
1096 * If bit n is set then we have an interrup on the channel
1097 * whose id is n.
1099 handled = true;
1102 if (handled)
1103 vmbus_chan_sched(hv_cpu);
1105 page_addr = hv_cpu->synic_message_page;
1106 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1108 /* Check if there are actual msgs to be processed */
1109 if (msg->header.message_type != HVMSG_NONE) {
1110 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1111 hv_process_timer_expiration(msg, hv_cpu);
1112 else
1113 tasklet_schedule(&hv_cpu->msg_dpc);
1116 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1120 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1121 * buffer and call into Hyper-V to transfer the data.
1123 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1124 enum kmsg_dump_reason reason)
1126 size_t bytes_written;
1127 phys_addr_t panic_pa;
1129 /* We are only interested in panics. */
1130 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1131 return;
1133 panic_pa = virt_to_phys(hv_panic_page);
1136 * Write dump contents to the page. No need to synchronize; panic should
1137 * be single-threaded.
1139 kmsg_dump_get_buffer(dumper, true, hv_panic_page, PAGE_SIZE,
1140 &bytes_written);
1141 if (bytes_written)
1142 hyperv_report_panic_msg(panic_pa, bytes_written);
1145 static struct kmsg_dumper hv_kmsg_dumper = {
1146 .dump = hv_kmsg_dump,
1149 static struct ctl_table_header *hv_ctl_table_hdr;
1150 static int zero;
1151 static int one = 1;
1154 * sysctl option to allow the user to control whether kmsg data should be
1155 * reported to Hyper-V on panic.
1157 static struct ctl_table hv_ctl_table[] = {
1159 .procname = "hyperv_record_panic_msg",
1160 .data = &sysctl_record_panic_msg,
1161 .maxlen = sizeof(int),
1162 .mode = 0644,
1163 .proc_handler = proc_dointvec_minmax,
1164 .extra1 = &zero,
1165 .extra2 = &one
1170 static struct ctl_table hv_root_table[] = {
1172 .procname = "kernel",
1173 .mode = 0555,
1174 .child = hv_ctl_table
1180 * vmbus_bus_init -Main vmbus driver initialization routine.
1182 * Here, we
1183 * - initialize the vmbus driver context
1184 * - invoke the vmbus hv main init routine
1185 * - retrieve the channel offers
1187 static int vmbus_bus_init(void)
1189 int ret;
1191 /* Hypervisor initialization...setup hypercall page..etc */
1192 ret = hv_init();
1193 if (ret != 0) {
1194 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1195 return ret;
1198 ret = bus_register(&hv_bus);
1199 if (ret)
1200 return ret;
1202 hv_setup_vmbus_irq(vmbus_isr);
1204 ret = hv_synic_alloc();
1205 if (ret)
1206 goto err_alloc;
1208 * Initialize the per-cpu interrupt state and
1209 * connect to the host.
1211 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1212 hv_synic_init, hv_synic_cleanup);
1213 if (ret < 0)
1214 goto err_alloc;
1215 hyperv_cpuhp_online = ret;
1217 ret = vmbus_connect();
1218 if (ret)
1219 goto err_connect;
1222 * Only register if the crash MSRs are available
1224 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1225 u64 hyperv_crash_ctl;
1227 * Sysctl registration is not fatal, since by default
1228 * reporting is enabled.
1230 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1231 if (!hv_ctl_table_hdr)
1232 pr_err("Hyper-V: sysctl table register error");
1235 * Register for panic kmsg callback only if the right
1236 * capability is supported by the hypervisor.
1238 hv_get_crash_ctl(hyperv_crash_ctl);
1239 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) {
1240 hv_panic_page = (void *)get_zeroed_page(GFP_KERNEL);
1241 if (hv_panic_page) {
1242 ret = kmsg_dump_register(&hv_kmsg_dumper);
1243 if (ret) {
1244 pr_err("Hyper-V: kmsg dump register "
1245 "error 0x%x\n", ret);
1246 free_page(
1247 (unsigned long)hv_panic_page);
1248 hv_panic_page = NULL;
1250 } else
1251 pr_err("Hyper-V: panic message page memory "
1252 "allocation failed");
1255 register_die_notifier(&hyperv_die_block);
1259 * Always register the panic notifier because we need to unload
1260 * the VMbus channel connection to prevent any VMbus
1261 * activity after the VM panics.
1263 atomic_notifier_chain_register(&panic_notifier_list,
1264 &hyperv_panic_block);
1266 vmbus_request_offers();
1268 return 0;
1270 err_connect:
1271 cpuhp_remove_state(hyperv_cpuhp_online);
1272 err_alloc:
1273 hv_synic_free();
1274 hv_remove_vmbus_irq();
1276 bus_unregister(&hv_bus);
1277 unregister_sysctl_table(hv_ctl_table_hdr);
1278 hv_ctl_table_hdr = NULL;
1279 return ret;
1283 * __vmbus_child_driver_register() - Register a vmbus's driver
1284 * @hv_driver: Pointer to driver structure you want to register
1285 * @owner: owner module of the drv
1286 * @mod_name: module name string
1288 * Registers the given driver with Linux through the 'driver_register()' call
1289 * and sets up the hyper-v vmbus handling for this driver.
1290 * It will return the state of the 'driver_register()' call.
1293 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1295 int ret;
1297 pr_info("registering driver %s\n", hv_driver->name);
1299 ret = vmbus_exists();
1300 if (ret < 0)
1301 return ret;
1303 hv_driver->driver.name = hv_driver->name;
1304 hv_driver->driver.owner = owner;
1305 hv_driver->driver.mod_name = mod_name;
1306 hv_driver->driver.bus = &hv_bus;
1308 spin_lock_init(&hv_driver->dynids.lock);
1309 INIT_LIST_HEAD(&hv_driver->dynids.list);
1311 ret = driver_register(&hv_driver->driver);
1313 return ret;
1315 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1318 * vmbus_driver_unregister() - Unregister a vmbus's driver
1319 * @hv_driver: Pointer to driver structure you want to
1320 * un-register
1322 * Un-register the given driver that was previous registered with a call to
1323 * vmbus_driver_register()
1325 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1327 pr_info("unregistering driver %s\n", hv_driver->name);
1329 if (!vmbus_exists()) {
1330 driver_unregister(&hv_driver->driver);
1331 vmbus_free_dynids(hv_driver);
1334 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1338 * Called when last reference to channel is gone.
1340 static void vmbus_chan_release(struct kobject *kobj)
1342 struct vmbus_channel *channel
1343 = container_of(kobj, struct vmbus_channel, kobj);
1345 kfree_rcu(channel, rcu);
1348 struct vmbus_chan_attribute {
1349 struct attribute attr;
1350 ssize_t (*show)(const struct vmbus_channel *chan, char *buf);
1351 ssize_t (*store)(struct vmbus_channel *chan,
1352 const char *buf, size_t count);
1354 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1355 struct vmbus_chan_attribute chan_attr_##_name \
1356 = __ATTR(_name, _mode, _show, _store)
1357 #define VMBUS_CHAN_ATTR_RW(_name) \
1358 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1359 #define VMBUS_CHAN_ATTR_RO(_name) \
1360 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1361 #define VMBUS_CHAN_ATTR_WO(_name) \
1362 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1364 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1365 struct attribute *attr, char *buf)
1367 const struct vmbus_chan_attribute *attribute
1368 = container_of(attr, struct vmbus_chan_attribute, attr);
1369 const struct vmbus_channel *chan
1370 = container_of(kobj, struct vmbus_channel, kobj);
1372 if (!attribute->show)
1373 return -EIO;
1375 if (chan->state != CHANNEL_OPENED_STATE)
1376 return -EINVAL;
1378 return attribute->show(chan, buf);
1381 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1382 .show = vmbus_chan_attr_show,
1385 static ssize_t out_mask_show(const struct vmbus_channel *channel, char *buf)
1387 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1389 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1391 static VMBUS_CHAN_ATTR_RO(out_mask);
1393 static ssize_t in_mask_show(const struct vmbus_channel *channel, char *buf)
1395 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1397 return sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1399 static VMBUS_CHAN_ATTR_RO(in_mask);
1401 static ssize_t read_avail_show(const struct vmbus_channel *channel, char *buf)
1403 const struct hv_ring_buffer_info *rbi = &channel->inbound;
1405 return sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1407 static VMBUS_CHAN_ATTR_RO(read_avail);
1409 static ssize_t write_avail_show(const struct vmbus_channel *channel, char *buf)
1411 const struct hv_ring_buffer_info *rbi = &channel->outbound;
1413 return sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1415 static VMBUS_CHAN_ATTR_RO(write_avail);
1417 static ssize_t show_target_cpu(const struct vmbus_channel *channel, char *buf)
1419 return sprintf(buf, "%u\n", channel->target_cpu);
1421 static VMBUS_CHAN_ATTR(cpu, S_IRUGO, show_target_cpu, NULL);
1423 static ssize_t channel_pending_show(const struct vmbus_channel *channel,
1424 char *buf)
1426 return sprintf(buf, "%d\n",
1427 channel_pending(channel,
1428 vmbus_connection.monitor_pages[1]));
1430 static VMBUS_CHAN_ATTR(pending, S_IRUGO, channel_pending_show, NULL);
1432 static ssize_t channel_latency_show(const struct vmbus_channel *channel,
1433 char *buf)
1435 return sprintf(buf, "%d\n",
1436 channel_latency(channel,
1437 vmbus_connection.monitor_pages[1]));
1439 static VMBUS_CHAN_ATTR(latency, S_IRUGO, channel_latency_show, NULL);
1441 static ssize_t channel_interrupts_show(const struct vmbus_channel *channel, char *buf)
1443 return sprintf(buf, "%llu\n", channel->interrupts);
1445 static VMBUS_CHAN_ATTR(interrupts, S_IRUGO, channel_interrupts_show, NULL);
1447 static ssize_t channel_events_show(const struct vmbus_channel *channel, char *buf)
1449 return sprintf(buf, "%llu\n", channel->sig_events);
1451 static VMBUS_CHAN_ATTR(events, S_IRUGO, channel_events_show, NULL);
1453 static ssize_t subchannel_monitor_id_show(const struct vmbus_channel *channel,
1454 char *buf)
1456 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1458 static VMBUS_CHAN_ATTR(monitor_id, S_IRUGO, subchannel_monitor_id_show, NULL);
1460 static ssize_t subchannel_id_show(const struct vmbus_channel *channel,
1461 char *buf)
1463 return sprintf(buf, "%u\n",
1464 channel->offermsg.offer.sub_channel_index);
1466 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1468 static struct attribute *vmbus_chan_attrs[] = {
1469 &chan_attr_out_mask.attr,
1470 &chan_attr_in_mask.attr,
1471 &chan_attr_read_avail.attr,
1472 &chan_attr_write_avail.attr,
1473 &chan_attr_cpu.attr,
1474 &chan_attr_pending.attr,
1475 &chan_attr_latency.attr,
1476 &chan_attr_interrupts.attr,
1477 &chan_attr_events.attr,
1478 &chan_attr_monitor_id.attr,
1479 &chan_attr_subchannel_id.attr,
1480 NULL
1483 static struct kobj_type vmbus_chan_ktype = {
1484 .sysfs_ops = &vmbus_chan_sysfs_ops,
1485 .release = vmbus_chan_release,
1486 .default_attrs = vmbus_chan_attrs,
1490 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1492 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1494 struct kobject *kobj = &channel->kobj;
1495 u32 relid = channel->offermsg.child_relid;
1496 int ret;
1498 kobj->kset = dev->channels_kset;
1499 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
1500 "%u", relid);
1501 if (ret)
1502 return ret;
1504 kobject_uevent(kobj, KOBJ_ADD);
1506 return 0;
1510 * vmbus_device_create - Creates and registers a new child device
1511 * on the vmbus.
1513 struct hv_device *vmbus_device_create(const uuid_le *type,
1514 const uuid_le *instance,
1515 struct vmbus_channel *channel)
1517 struct hv_device *child_device_obj;
1519 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1520 if (!child_device_obj) {
1521 pr_err("Unable to allocate device object for child device\n");
1522 return NULL;
1525 child_device_obj->channel = channel;
1526 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1527 memcpy(&child_device_obj->dev_instance, instance,
1528 sizeof(uuid_le));
1529 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1532 return child_device_obj;
1536 * vmbus_device_register - Register the child device
1538 int vmbus_device_register(struct hv_device *child_device_obj)
1540 struct kobject *kobj = &child_device_obj->device.kobj;
1541 int ret;
1543 dev_set_name(&child_device_obj->device, "%pUl",
1544 child_device_obj->channel->offermsg.offer.if_instance.b);
1546 child_device_obj->device.bus = &hv_bus;
1547 child_device_obj->device.parent = &hv_acpi_dev->dev;
1548 child_device_obj->device.release = vmbus_device_release;
1551 * Register with the LDM. This will kick off the driver/device
1552 * binding...which will eventually call vmbus_match() and vmbus_probe()
1554 ret = device_register(&child_device_obj->device);
1555 if (ret) {
1556 pr_err("Unable to register child device\n");
1557 return ret;
1560 child_device_obj->channels_kset = kset_create_and_add("channels",
1561 NULL, kobj);
1562 if (!child_device_obj->channels_kset) {
1563 ret = -ENOMEM;
1564 goto err_dev_unregister;
1567 ret = vmbus_add_channel_kobj(child_device_obj,
1568 child_device_obj->channel);
1569 if (ret) {
1570 pr_err("Unable to register primary channeln");
1571 goto err_kset_unregister;
1574 return 0;
1576 err_kset_unregister:
1577 kset_unregister(child_device_obj->channels_kset);
1579 err_dev_unregister:
1580 device_unregister(&child_device_obj->device);
1581 return ret;
1585 * vmbus_device_unregister - Remove the specified child device
1586 * from the vmbus.
1588 void vmbus_device_unregister(struct hv_device *device_obj)
1590 pr_debug("child device %s unregistered\n",
1591 dev_name(&device_obj->device));
1593 kset_unregister(device_obj->channels_kset);
1596 * Kick off the process of unregistering the device.
1597 * This will call vmbus_remove() and eventually vmbus_device_release()
1599 device_unregister(&device_obj->device);
1604 * VMBUS is an acpi enumerated device. Get the information we
1605 * need from DSDT.
1607 #define VTPM_BASE_ADDRESS 0xfed40000
1608 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1610 resource_size_t start = 0;
1611 resource_size_t end = 0;
1612 struct resource *new_res;
1613 struct resource **old_res = &hyperv_mmio;
1614 struct resource **prev_res = NULL;
1616 switch (res->type) {
1619 * "Address" descriptors are for bus windows. Ignore
1620 * "memory" descriptors, which are for registers on
1621 * devices.
1623 case ACPI_RESOURCE_TYPE_ADDRESS32:
1624 start = res->data.address32.address.minimum;
1625 end = res->data.address32.address.maximum;
1626 break;
1628 case ACPI_RESOURCE_TYPE_ADDRESS64:
1629 start = res->data.address64.address.minimum;
1630 end = res->data.address64.address.maximum;
1631 break;
1633 default:
1634 /* Unused resource type */
1635 return AE_OK;
1639 * Ignore ranges that are below 1MB, as they're not
1640 * necessary or useful here.
1642 if (end < 0x100000)
1643 return AE_OK;
1645 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1646 if (!new_res)
1647 return AE_NO_MEMORY;
1649 /* If this range overlaps the virtual TPM, truncate it. */
1650 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1651 end = VTPM_BASE_ADDRESS;
1653 new_res->name = "hyperv mmio";
1654 new_res->flags = IORESOURCE_MEM;
1655 new_res->start = start;
1656 new_res->end = end;
1659 * If two ranges are adjacent, merge them.
1661 do {
1662 if (!*old_res) {
1663 *old_res = new_res;
1664 break;
1667 if (((*old_res)->end + 1) == new_res->start) {
1668 (*old_res)->end = new_res->end;
1669 kfree(new_res);
1670 break;
1673 if ((*old_res)->start == new_res->end + 1) {
1674 (*old_res)->start = new_res->start;
1675 kfree(new_res);
1676 break;
1679 if ((*old_res)->start > new_res->end) {
1680 new_res->sibling = *old_res;
1681 if (prev_res)
1682 (*prev_res)->sibling = new_res;
1683 *old_res = new_res;
1684 break;
1687 prev_res = old_res;
1688 old_res = &(*old_res)->sibling;
1690 } while (1);
1692 return AE_OK;
1695 static int vmbus_acpi_remove(struct acpi_device *device)
1697 struct resource *cur_res;
1698 struct resource *next_res;
1700 if (hyperv_mmio) {
1701 if (fb_mmio) {
1702 __release_region(hyperv_mmio, fb_mmio->start,
1703 resource_size(fb_mmio));
1704 fb_mmio = NULL;
1707 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1708 next_res = cur_res->sibling;
1709 kfree(cur_res);
1713 return 0;
1716 static void vmbus_reserve_fb(void)
1718 int size;
1720 * Make a claim for the frame buffer in the resource tree under the
1721 * first node, which will be the one below 4GB. The length seems to
1722 * be underreported, particularly in a Generation 1 VM. So start out
1723 * reserving a larger area and make it smaller until it succeeds.
1726 if (screen_info.lfb_base) {
1727 if (efi_enabled(EFI_BOOT))
1728 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1729 else
1730 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1732 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1733 fb_mmio = __request_region(hyperv_mmio,
1734 screen_info.lfb_base, size,
1735 fb_mmio_name, 0);
1741 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1742 * @new: If successful, supplied a pointer to the
1743 * allocated MMIO space.
1744 * @device_obj: Identifies the caller
1745 * @min: Minimum guest physical address of the
1746 * allocation
1747 * @max: Maximum guest physical address
1748 * @size: Size of the range to be allocated
1749 * @align: Alignment of the range to be allocated
1750 * @fb_overlap_ok: Whether this allocation can be allowed
1751 * to overlap the video frame buffer.
1753 * This function walks the resources granted to VMBus by the
1754 * _CRS object in the ACPI namespace underneath the parent
1755 * "bridge" whether that's a root PCI bus in the Generation 1
1756 * case or a Module Device in the Generation 2 case. It then
1757 * attempts to allocate from the global MMIO pool in a way that
1758 * matches the constraints supplied in these parameters and by
1759 * that _CRS.
1761 * Return: 0 on success, -errno on failure
1763 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1764 resource_size_t min, resource_size_t max,
1765 resource_size_t size, resource_size_t align,
1766 bool fb_overlap_ok)
1768 struct resource *iter, *shadow;
1769 resource_size_t range_min, range_max, start;
1770 const char *dev_n = dev_name(&device_obj->device);
1771 int retval;
1773 retval = -ENXIO;
1774 down(&hyperv_mmio_lock);
1777 * If overlaps with frame buffers are allowed, then first attempt to
1778 * make the allocation from within the reserved region. Because it
1779 * is already reserved, no shadow allocation is necessary.
1781 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1782 !(max < fb_mmio->start)) {
1784 range_min = fb_mmio->start;
1785 range_max = fb_mmio->end;
1786 start = (range_min + align - 1) & ~(align - 1);
1787 for (; start + size - 1 <= range_max; start += align) {
1788 *new = request_mem_region_exclusive(start, size, dev_n);
1789 if (*new) {
1790 retval = 0;
1791 goto exit;
1796 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1797 if ((iter->start >= max) || (iter->end <= min))
1798 continue;
1800 range_min = iter->start;
1801 range_max = iter->end;
1802 start = (range_min + align - 1) & ~(align - 1);
1803 for (; start + size - 1 <= range_max; start += align) {
1804 shadow = __request_region(iter, start, size, NULL,
1805 IORESOURCE_BUSY);
1806 if (!shadow)
1807 continue;
1809 *new = request_mem_region_exclusive(start, size, dev_n);
1810 if (*new) {
1811 shadow->name = (char *)*new;
1812 retval = 0;
1813 goto exit;
1816 __release_region(iter, start, size);
1820 exit:
1821 up(&hyperv_mmio_lock);
1822 return retval;
1824 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1827 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1828 * @start: Base address of region to release.
1829 * @size: Size of the range to be allocated
1831 * This function releases anything requested by
1832 * vmbus_mmio_allocate().
1834 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1836 struct resource *iter;
1838 down(&hyperv_mmio_lock);
1839 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1840 if ((iter->start >= start + size) || (iter->end <= start))
1841 continue;
1843 __release_region(iter, start, size);
1845 release_mem_region(start, size);
1846 up(&hyperv_mmio_lock);
1849 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1851 static int vmbus_acpi_add(struct acpi_device *device)
1853 acpi_status result;
1854 int ret_val = -ENODEV;
1855 struct acpi_device *ancestor;
1857 hv_acpi_dev = device;
1859 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1860 vmbus_walk_resources, NULL);
1862 if (ACPI_FAILURE(result))
1863 goto acpi_walk_err;
1865 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1866 * firmware) is the VMOD that has the mmio ranges. Get that.
1868 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1869 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1870 vmbus_walk_resources, NULL);
1872 if (ACPI_FAILURE(result))
1873 continue;
1874 if (hyperv_mmio) {
1875 vmbus_reserve_fb();
1876 break;
1879 ret_val = 0;
1881 acpi_walk_err:
1882 complete(&probe_event);
1883 if (ret_val)
1884 vmbus_acpi_remove(device);
1885 return ret_val;
1888 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1889 {"VMBUS", 0},
1890 {"VMBus", 0},
1891 {"", 0},
1893 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1895 static struct acpi_driver vmbus_acpi_driver = {
1896 .name = "vmbus",
1897 .ids = vmbus_acpi_device_ids,
1898 .ops = {
1899 .add = vmbus_acpi_add,
1900 .remove = vmbus_acpi_remove,
1904 static void hv_kexec_handler(void)
1906 hv_synic_clockevents_cleanup();
1907 vmbus_initiate_unload(false);
1908 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1909 mb();
1910 cpuhp_remove_state(hyperv_cpuhp_online);
1911 hyperv_cleanup();
1914 static void hv_crash_handler(struct pt_regs *regs)
1916 vmbus_initiate_unload(true);
1918 * In crash handler we can't schedule synic cleanup for all CPUs,
1919 * doing the cleanup for current CPU only. This should be sufficient
1920 * for kdump.
1922 hv_synic_cleanup(smp_processor_id());
1923 hyperv_cleanup();
1926 static int __init hv_acpi_init(void)
1928 int ret, t;
1930 if (!hv_is_hyperv_initialized())
1931 return -ENODEV;
1933 init_completion(&probe_event);
1936 * Get ACPI resources first.
1938 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1940 if (ret)
1941 return ret;
1943 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1944 if (t == 0) {
1945 ret = -ETIMEDOUT;
1946 goto cleanup;
1949 ret = vmbus_bus_init();
1950 if (ret)
1951 goto cleanup;
1953 hv_setup_kexec_handler(hv_kexec_handler);
1954 hv_setup_crash_handler(hv_crash_handler);
1956 return 0;
1958 cleanup:
1959 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1960 hv_acpi_dev = NULL;
1961 return ret;
1964 static void __exit vmbus_exit(void)
1966 int cpu;
1968 hv_remove_kexec_handler();
1969 hv_remove_crash_handler();
1970 vmbus_connection.conn_state = DISCONNECTED;
1971 hv_synic_clockevents_cleanup();
1972 vmbus_disconnect();
1973 hv_remove_vmbus_irq();
1974 for_each_online_cpu(cpu) {
1975 struct hv_per_cpu_context *hv_cpu
1976 = per_cpu_ptr(hv_context.cpu_context, cpu);
1978 tasklet_kill(&hv_cpu->msg_dpc);
1980 vmbus_free_channels();
1982 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1983 kmsg_dump_unregister(&hv_kmsg_dumper);
1984 unregister_die_notifier(&hyperv_die_block);
1985 atomic_notifier_chain_unregister(&panic_notifier_list,
1986 &hyperv_panic_block);
1989 free_page((unsigned long)hv_panic_page);
1990 unregister_sysctl_table(hv_ctl_table_hdr);
1991 hv_ctl_table_hdr = NULL;
1992 bus_unregister(&hv_bus);
1994 cpuhp_remove_state(hyperv_cpuhp_online);
1995 hv_synic_free();
1996 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2000 MODULE_LICENSE("GPL");
2002 subsys_initcall(hv_acpi_init);
2003 module_exit(vmbus_exit);