Linux 4.19.133
[linux/fpc-iii.git] / drivers / hwmon / asb100.c
blob62e19131113942ab797cd8f0c7658102758aff98
1 /*
2 * asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
5 * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
7 * (derived from w83781d.c)
9 * Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
10 * Philip Edelbrock <phil@netroedge.com>, and
11 * Mark Studebaker <mdsxyz123@yahoo.com>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 * This driver supports the hardware sensor chips: Asus ASB100 and
30 * ASB100-A "BACH".
32 * ASB100-A supports pwm1, while plain ASB100 does not. There is no known
33 * way for the driver to tell which one is there.
35 * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
36 * asb100 7 3 1 4 0x31 0x0694 yes no
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/slab.h>
43 #include <linux/i2c.h>
44 #include <linux/hwmon.h>
45 #include <linux/hwmon-sysfs.h>
46 #include <linux/hwmon-vid.h>
47 #include <linux/err.h>
48 #include <linux/init.h>
49 #include <linux/jiffies.h>
50 #include <linux/mutex.h>
51 #include "lm75.h"
53 /* I2C addresses to scan */
54 static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
56 static unsigned short force_subclients[4];
57 module_param_array(force_subclients, short, NULL, 0);
58 MODULE_PARM_DESC(force_subclients,
59 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
61 /* Voltage IN registers 0-6 */
62 #define ASB100_REG_IN(nr) (0x20 + (nr))
63 #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
64 #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
66 /* FAN IN registers 1-3 */
67 #define ASB100_REG_FAN(nr) (0x28 + (nr))
68 #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
70 /* TEMPERATURE registers 1-4 */
71 static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
72 static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
73 static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
75 #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
76 #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
77 #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
79 #define ASB100_REG_TEMP2_CONFIG 0x0152
80 #define ASB100_REG_TEMP3_CONFIG 0x0252
83 #define ASB100_REG_CONFIG 0x40
84 #define ASB100_REG_ALARM1 0x41
85 #define ASB100_REG_ALARM2 0x42
86 #define ASB100_REG_SMIM1 0x43
87 #define ASB100_REG_SMIM2 0x44
88 #define ASB100_REG_VID_FANDIV 0x47
89 #define ASB100_REG_I2C_ADDR 0x48
90 #define ASB100_REG_CHIPID 0x49
91 #define ASB100_REG_I2C_SUBADDR 0x4a
92 #define ASB100_REG_PIN 0x4b
93 #define ASB100_REG_IRQ 0x4c
94 #define ASB100_REG_BANK 0x4e
95 #define ASB100_REG_CHIPMAN 0x4f
97 #define ASB100_REG_WCHIPID 0x58
99 /* bit 7 -> enable, bits 0-3 -> duty cycle */
100 #define ASB100_REG_PWM1 0x59
103 * CONVERSIONS
104 * Rounding and limit checking is only done on the TO_REG variants.
107 /* These constants are a guess, consistent w/ w83781d */
108 #define ASB100_IN_MIN 0
109 #define ASB100_IN_MAX 4080
112 * IN: 1/1000 V (0V to 4.08V)
113 * REG: 16mV/bit
115 static u8 IN_TO_REG(unsigned val)
117 unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX);
118 return (nval + 8) / 16;
121 static unsigned IN_FROM_REG(u8 reg)
123 return reg * 16;
126 static u8 FAN_TO_REG(long rpm, int div)
128 if (rpm == -1)
129 return 0;
130 if (rpm == 0)
131 return 255;
132 rpm = clamp_val(rpm, 1, 1000000);
133 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
136 static int FAN_FROM_REG(u8 val, int div)
138 return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
141 /* These constants are a guess, consistent w/ w83781d */
142 #define ASB100_TEMP_MIN -128000
143 #define ASB100_TEMP_MAX 127000
146 * TEMP: 0.001C/bit (-128C to +127C)
147 * REG: 1C/bit, two's complement
149 static u8 TEMP_TO_REG(long temp)
151 int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
152 ntemp += (ntemp < 0 ? -500 : 500);
153 return (u8)(ntemp / 1000);
156 static int TEMP_FROM_REG(u8 reg)
158 return (s8)reg * 1000;
162 * PWM: 0 - 255 per sensors documentation
163 * REG: (6.25% duty cycle per bit)
165 static u8 ASB100_PWM_TO_REG(int pwm)
167 pwm = clamp_val(pwm, 0, 255);
168 return (u8)(pwm / 16);
171 static int ASB100_PWM_FROM_REG(u8 reg)
173 return reg * 16;
176 #define DIV_FROM_REG(val) (1 << (val))
179 * FAN DIV: 1, 2, 4, or 8 (defaults to 2)
180 * REG: 0, 1, 2, or 3 (respectively) (defaults to 1)
182 static u8 DIV_TO_REG(long val)
184 return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1;
188 * For each registered client, we need to keep some data in memory. That
189 * data is pointed to by client->data. The structure itself is
190 * dynamically allocated, at the same time the client itself is allocated.
192 struct asb100_data {
193 struct device *hwmon_dev;
194 struct mutex lock;
196 struct mutex update_lock;
197 unsigned long last_updated; /* In jiffies */
199 /* array of 2 pointers to subclients */
200 struct i2c_client *lm75[2];
202 char valid; /* !=0 if following fields are valid */
203 u8 in[7]; /* Register value */
204 u8 in_max[7]; /* Register value */
205 u8 in_min[7]; /* Register value */
206 u8 fan[3]; /* Register value */
207 u8 fan_min[3]; /* Register value */
208 u16 temp[4]; /* Register value (0 and 3 are u8 only) */
209 u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
210 u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
211 u8 fan_div[3]; /* Register encoding, right justified */
212 u8 pwm; /* Register encoding */
213 u8 vid; /* Register encoding, combined */
214 u32 alarms; /* Register encoding, combined */
215 u8 vrm;
218 static int asb100_read_value(struct i2c_client *client, u16 reg);
219 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
221 static int asb100_probe(struct i2c_client *client,
222 const struct i2c_device_id *id);
223 static int asb100_detect(struct i2c_client *client,
224 struct i2c_board_info *info);
225 static int asb100_remove(struct i2c_client *client);
226 static struct asb100_data *asb100_update_device(struct device *dev);
227 static void asb100_init_client(struct i2c_client *client);
229 static const struct i2c_device_id asb100_id[] = {
230 { "asb100", 0 },
233 MODULE_DEVICE_TABLE(i2c, asb100_id);
235 static struct i2c_driver asb100_driver = {
236 .class = I2C_CLASS_HWMON,
237 .driver = {
238 .name = "asb100",
240 .probe = asb100_probe,
241 .remove = asb100_remove,
242 .id_table = asb100_id,
243 .detect = asb100_detect,
244 .address_list = normal_i2c,
247 /* 7 Voltages */
248 #define show_in_reg(reg) \
249 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
250 char *buf) \
252 int nr = to_sensor_dev_attr(attr)->index; \
253 struct asb100_data *data = asb100_update_device(dev); \
254 return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
257 show_in_reg(in)
258 show_in_reg(in_min)
259 show_in_reg(in_max)
261 #define set_in_reg(REG, reg) \
262 static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
263 const char *buf, size_t count) \
265 int nr = to_sensor_dev_attr(attr)->index; \
266 struct i2c_client *client = to_i2c_client(dev); \
267 struct asb100_data *data = i2c_get_clientdata(client); \
268 unsigned long val; \
269 int err = kstrtoul(buf, 10, &val); \
270 if (err) \
271 return err; \
272 mutex_lock(&data->update_lock); \
273 data->in_##reg[nr] = IN_TO_REG(val); \
274 asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
275 data->in_##reg[nr]); \
276 mutex_unlock(&data->update_lock); \
277 return count; \
280 set_in_reg(MIN, min)
281 set_in_reg(MAX, max)
283 #define sysfs_in(offset) \
284 static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
285 show_in, NULL, offset); \
286 static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
287 show_in_min, set_in_min, offset); \
288 static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
289 show_in_max, set_in_max, offset)
291 sysfs_in(0);
292 sysfs_in(1);
293 sysfs_in(2);
294 sysfs_in(3);
295 sysfs_in(4);
296 sysfs_in(5);
297 sysfs_in(6);
299 /* 3 Fans */
300 static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
301 char *buf)
303 int nr = to_sensor_dev_attr(attr)->index;
304 struct asb100_data *data = asb100_update_device(dev);
305 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
306 DIV_FROM_REG(data->fan_div[nr])));
309 static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
310 char *buf)
312 int nr = to_sensor_dev_attr(attr)->index;
313 struct asb100_data *data = asb100_update_device(dev);
314 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
315 DIV_FROM_REG(data->fan_div[nr])));
318 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
319 char *buf)
321 int nr = to_sensor_dev_attr(attr)->index;
322 struct asb100_data *data = asb100_update_device(dev);
323 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
326 static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
327 const char *buf, size_t count)
329 int nr = to_sensor_dev_attr(attr)->index;
330 struct i2c_client *client = to_i2c_client(dev);
331 struct asb100_data *data = i2c_get_clientdata(client);
332 unsigned long val;
333 int err;
335 err = kstrtoul(buf, 10, &val);
336 if (err)
337 return err;
339 mutex_lock(&data->update_lock);
340 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
341 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
342 mutex_unlock(&data->update_lock);
343 return count;
347 * Note: we save and restore the fan minimum here, because its value is
348 * determined in part by the fan divisor. This follows the principle of
349 * least surprise; the user doesn't expect the fan minimum to change just
350 * because the divisor changed.
352 static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
353 const char *buf, size_t count)
355 int nr = to_sensor_dev_attr(attr)->index;
356 struct i2c_client *client = to_i2c_client(dev);
357 struct asb100_data *data = i2c_get_clientdata(client);
358 unsigned long min;
359 int reg;
360 unsigned long val;
361 int err;
363 err = kstrtoul(buf, 10, &val);
364 if (err)
365 return err;
367 mutex_lock(&data->update_lock);
369 min = FAN_FROM_REG(data->fan_min[nr],
370 DIV_FROM_REG(data->fan_div[nr]));
371 data->fan_div[nr] = DIV_TO_REG(val);
373 switch (nr) {
374 case 0: /* fan 1 */
375 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
376 reg = (reg & 0xcf) | (data->fan_div[0] << 4);
377 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
378 break;
380 case 1: /* fan 2 */
381 reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
382 reg = (reg & 0x3f) | (data->fan_div[1] << 6);
383 asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
384 break;
386 case 2: /* fan 3 */
387 reg = asb100_read_value(client, ASB100_REG_PIN);
388 reg = (reg & 0x3f) | (data->fan_div[2] << 6);
389 asb100_write_value(client, ASB100_REG_PIN, reg);
390 break;
393 data->fan_min[nr] =
394 FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
395 asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
397 mutex_unlock(&data->update_lock);
399 return count;
402 #define sysfs_fan(offset) \
403 static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
404 show_fan, NULL, offset - 1); \
405 static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
406 show_fan_min, set_fan_min, offset - 1); \
407 static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
408 show_fan_div, set_fan_div, offset - 1)
410 sysfs_fan(1);
411 sysfs_fan(2);
412 sysfs_fan(3);
414 /* 4 Temp. Sensors */
415 static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
417 int ret = 0;
419 switch (nr) {
420 case 1: case 2:
421 ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
422 break;
423 case 0: case 3: default:
424 ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
425 break;
427 return ret;
430 #define show_temp_reg(reg) \
431 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
432 char *buf) \
434 int nr = to_sensor_dev_attr(attr)->index; \
435 struct asb100_data *data = asb100_update_device(dev); \
436 return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
439 show_temp_reg(temp);
440 show_temp_reg(temp_max);
441 show_temp_reg(temp_hyst);
443 #define set_temp_reg(REG, reg) \
444 static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
445 const char *buf, size_t count) \
447 int nr = to_sensor_dev_attr(attr)->index; \
448 struct i2c_client *client = to_i2c_client(dev); \
449 struct asb100_data *data = i2c_get_clientdata(client); \
450 long val; \
451 int err = kstrtol(buf, 10, &val); \
452 if (err) \
453 return err; \
454 mutex_lock(&data->update_lock); \
455 switch (nr) { \
456 case 1: case 2: \
457 data->reg[nr] = LM75_TEMP_TO_REG(val); \
458 break; \
459 case 0: case 3: default: \
460 data->reg[nr] = TEMP_TO_REG(val); \
461 break; \
463 asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
464 data->reg[nr]); \
465 mutex_unlock(&data->update_lock); \
466 return count; \
469 set_temp_reg(MAX, temp_max);
470 set_temp_reg(HYST, temp_hyst);
472 #define sysfs_temp(num) \
473 static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
474 show_temp, NULL, num - 1); \
475 static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
476 show_temp_max, set_temp_max, num - 1); \
477 static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
478 show_temp_hyst, set_temp_hyst, num - 1)
480 sysfs_temp(1);
481 sysfs_temp(2);
482 sysfs_temp(3);
483 sysfs_temp(4);
485 /* VID */
486 static ssize_t cpu0_vid_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
489 struct asb100_data *data = asb100_update_device(dev);
490 return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
493 static DEVICE_ATTR_RO(cpu0_vid);
495 /* VRM */
496 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
497 char *buf)
499 struct asb100_data *data = dev_get_drvdata(dev);
500 return sprintf(buf, "%d\n", data->vrm);
503 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
504 const char *buf, size_t count)
506 struct asb100_data *data = dev_get_drvdata(dev);
507 unsigned long val;
508 int err;
510 err = kstrtoul(buf, 10, &val);
511 if (err)
512 return err;
514 if (val > 255)
515 return -EINVAL;
517 data->vrm = val;
518 return count;
521 /* Alarms */
522 static DEVICE_ATTR_RW(vrm);
524 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
525 char *buf)
527 struct asb100_data *data = asb100_update_device(dev);
528 return sprintf(buf, "%u\n", data->alarms);
531 static DEVICE_ATTR_RO(alarms);
533 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
534 char *buf)
536 int bitnr = to_sensor_dev_attr(attr)->index;
537 struct asb100_data *data = asb100_update_device(dev);
538 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
540 static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
541 static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
542 static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
543 static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
544 static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
545 static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
546 static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
547 static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
548 static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
549 static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
550 static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
552 /* 1 PWM */
553 static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr,
554 char *buf)
556 struct asb100_data *data = asb100_update_device(dev);
557 return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
560 static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr,
561 const char *buf, size_t count)
563 struct i2c_client *client = to_i2c_client(dev);
564 struct asb100_data *data = i2c_get_clientdata(client);
565 unsigned long val;
566 int err;
568 err = kstrtoul(buf, 10, &val);
569 if (err)
570 return err;
572 mutex_lock(&data->update_lock);
573 data->pwm &= 0x80; /* keep the enable bit */
574 data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
575 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
576 mutex_unlock(&data->update_lock);
577 return count;
580 static ssize_t pwm1_enable_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
583 struct asb100_data *data = asb100_update_device(dev);
584 return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
587 static ssize_t pwm1_enable_store(struct device *dev,
588 struct device_attribute *attr,
589 const char *buf, size_t count)
591 struct i2c_client *client = to_i2c_client(dev);
592 struct asb100_data *data = i2c_get_clientdata(client);
593 unsigned long val;
594 int err;
596 err = kstrtoul(buf, 10, &val);
597 if (err)
598 return err;
600 mutex_lock(&data->update_lock);
601 data->pwm &= 0x0f; /* keep the duty cycle bits */
602 data->pwm |= (val ? 0x80 : 0x00);
603 asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
604 mutex_unlock(&data->update_lock);
605 return count;
608 static DEVICE_ATTR_RW(pwm1);
609 static DEVICE_ATTR_RW(pwm1_enable);
611 static struct attribute *asb100_attributes[] = {
612 &sensor_dev_attr_in0_input.dev_attr.attr,
613 &sensor_dev_attr_in0_min.dev_attr.attr,
614 &sensor_dev_attr_in0_max.dev_attr.attr,
615 &sensor_dev_attr_in1_input.dev_attr.attr,
616 &sensor_dev_attr_in1_min.dev_attr.attr,
617 &sensor_dev_attr_in1_max.dev_attr.attr,
618 &sensor_dev_attr_in2_input.dev_attr.attr,
619 &sensor_dev_attr_in2_min.dev_attr.attr,
620 &sensor_dev_attr_in2_max.dev_attr.attr,
621 &sensor_dev_attr_in3_input.dev_attr.attr,
622 &sensor_dev_attr_in3_min.dev_attr.attr,
623 &sensor_dev_attr_in3_max.dev_attr.attr,
624 &sensor_dev_attr_in4_input.dev_attr.attr,
625 &sensor_dev_attr_in4_min.dev_attr.attr,
626 &sensor_dev_attr_in4_max.dev_attr.attr,
627 &sensor_dev_attr_in5_input.dev_attr.attr,
628 &sensor_dev_attr_in5_min.dev_attr.attr,
629 &sensor_dev_attr_in5_max.dev_attr.attr,
630 &sensor_dev_attr_in6_input.dev_attr.attr,
631 &sensor_dev_attr_in6_min.dev_attr.attr,
632 &sensor_dev_attr_in6_max.dev_attr.attr,
634 &sensor_dev_attr_fan1_input.dev_attr.attr,
635 &sensor_dev_attr_fan1_min.dev_attr.attr,
636 &sensor_dev_attr_fan1_div.dev_attr.attr,
637 &sensor_dev_attr_fan2_input.dev_attr.attr,
638 &sensor_dev_attr_fan2_min.dev_attr.attr,
639 &sensor_dev_attr_fan2_div.dev_attr.attr,
640 &sensor_dev_attr_fan3_input.dev_attr.attr,
641 &sensor_dev_attr_fan3_min.dev_attr.attr,
642 &sensor_dev_attr_fan3_div.dev_attr.attr,
644 &sensor_dev_attr_temp1_input.dev_attr.attr,
645 &sensor_dev_attr_temp1_max.dev_attr.attr,
646 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
647 &sensor_dev_attr_temp2_input.dev_attr.attr,
648 &sensor_dev_attr_temp2_max.dev_attr.attr,
649 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
650 &sensor_dev_attr_temp3_input.dev_attr.attr,
651 &sensor_dev_attr_temp3_max.dev_attr.attr,
652 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
653 &sensor_dev_attr_temp4_input.dev_attr.attr,
654 &sensor_dev_attr_temp4_max.dev_attr.attr,
655 &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
657 &sensor_dev_attr_in0_alarm.dev_attr.attr,
658 &sensor_dev_attr_in1_alarm.dev_attr.attr,
659 &sensor_dev_attr_in2_alarm.dev_attr.attr,
660 &sensor_dev_attr_in3_alarm.dev_attr.attr,
661 &sensor_dev_attr_in4_alarm.dev_attr.attr,
662 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
663 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
664 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
665 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
666 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
667 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
669 &dev_attr_cpu0_vid.attr,
670 &dev_attr_vrm.attr,
671 &dev_attr_alarms.attr,
672 &dev_attr_pwm1.attr,
673 &dev_attr_pwm1_enable.attr,
675 NULL
678 static const struct attribute_group asb100_group = {
679 .attrs = asb100_attributes,
682 static int asb100_detect_subclients(struct i2c_client *client)
684 int i, id, err;
685 int address = client->addr;
686 unsigned short sc_addr[2];
687 struct asb100_data *data = i2c_get_clientdata(client);
688 struct i2c_adapter *adapter = client->adapter;
690 id = i2c_adapter_id(adapter);
692 if (force_subclients[0] == id && force_subclients[1] == address) {
693 for (i = 2; i <= 3; i++) {
694 if (force_subclients[i] < 0x48 ||
695 force_subclients[i] > 0x4f) {
696 dev_err(&client->dev,
697 "invalid subclient address %d; must be 0x48-0x4f\n",
698 force_subclients[i]);
699 err = -ENODEV;
700 goto ERROR_SC_2;
703 asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
704 (force_subclients[2] & 0x07) |
705 ((force_subclients[3] & 0x07) << 4));
706 sc_addr[0] = force_subclients[2];
707 sc_addr[1] = force_subclients[3];
708 } else {
709 int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
710 sc_addr[0] = 0x48 + (val & 0x07);
711 sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
714 if (sc_addr[0] == sc_addr[1]) {
715 dev_err(&client->dev,
716 "duplicate addresses 0x%x for subclients\n",
717 sc_addr[0]);
718 err = -ENODEV;
719 goto ERROR_SC_2;
722 data->lm75[0] = i2c_new_dummy(adapter, sc_addr[0]);
723 if (!data->lm75[0]) {
724 dev_err(&client->dev,
725 "subclient %d registration at address 0x%x failed.\n",
726 1, sc_addr[0]);
727 err = -ENOMEM;
728 goto ERROR_SC_2;
731 data->lm75[1] = i2c_new_dummy(adapter, sc_addr[1]);
732 if (!data->lm75[1]) {
733 dev_err(&client->dev,
734 "subclient %d registration at address 0x%x failed.\n",
735 2, sc_addr[1]);
736 err = -ENOMEM;
737 goto ERROR_SC_3;
740 return 0;
742 /* Undo inits in case of errors */
743 ERROR_SC_3:
744 i2c_unregister_device(data->lm75[0]);
745 ERROR_SC_2:
746 return err;
749 /* Return 0 if detection is successful, -ENODEV otherwise */
750 static int asb100_detect(struct i2c_client *client,
751 struct i2c_board_info *info)
753 struct i2c_adapter *adapter = client->adapter;
754 int val1, val2;
756 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
757 pr_debug("detect failed, smbus byte data not supported!\n");
758 return -ENODEV;
761 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
762 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
764 /* If we're in bank 0 */
765 if ((!(val1 & 0x07)) &&
766 /* Check for ASB100 ID (low byte) */
767 (((!(val1 & 0x80)) && (val2 != 0x94)) ||
768 /* Check for ASB100 ID (high byte ) */
769 ((val1 & 0x80) && (val2 != 0x06)))) {
770 pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
771 return -ENODEV;
774 /* Put it now into bank 0 and Vendor ID High Byte */
775 i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
776 (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
777 | 0x80);
779 /* Determine the chip type. */
780 val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
781 val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
783 if (val1 != 0x31 || val2 != 0x06)
784 return -ENODEV;
786 strlcpy(info->type, "asb100", I2C_NAME_SIZE);
788 return 0;
791 static int asb100_probe(struct i2c_client *client,
792 const struct i2c_device_id *id)
794 int err;
795 struct asb100_data *data;
797 data = devm_kzalloc(&client->dev, sizeof(struct asb100_data),
798 GFP_KERNEL);
799 if (!data)
800 return -ENOMEM;
802 i2c_set_clientdata(client, data);
803 mutex_init(&data->lock);
804 mutex_init(&data->update_lock);
806 /* Attach secondary lm75 clients */
807 err = asb100_detect_subclients(client);
808 if (err)
809 return err;
811 /* Initialize the chip */
812 asb100_init_client(client);
814 /* A few vars need to be filled upon startup */
815 data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
816 data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
817 data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
819 /* Register sysfs hooks */
820 err = sysfs_create_group(&client->dev.kobj, &asb100_group);
821 if (err)
822 goto ERROR3;
824 data->hwmon_dev = hwmon_device_register(&client->dev);
825 if (IS_ERR(data->hwmon_dev)) {
826 err = PTR_ERR(data->hwmon_dev);
827 goto ERROR4;
830 return 0;
832 ERROR4:
833 sysfs_remove_group(&client->dev.kobj, &asb100_group);
834 ERROR3:
835 i2c_unregister_device(data->lm75[1]);
836 i2c_unregister_device(data->lm75[0]);
837 return err;
840 static int asb100_remove(struct i2c_client *client)
842 struct asb100_data *data = i2c_get_clientdata(client);
844 hwmon_device_unregister(data->hwmon_dev);
845 sysfs_remove_group(&client->dev.kobj, &asb100_group);
847 i2c_unregister_device(data->lm75[1]);
848 i2c_unregister_device(data->lm75[0]);
850 return 0;
854 * The SMBus locks itself, usually, but nothing may access the chip between
855 * bank switches.
857 static int asb100_read_value(struct i2c_client *client, u16 reg)
859 struct asb100_data *data = i2c_get_clientdata(client);
860 struct i2c_client *cl;
861 int res, bank;
863 mutex_lock(&data->lock);
865 bank = (reg >> 8) & 0x0f;
866 if (bank > 2)
867 /* switch banks */
868 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
870 if (bank == 0 || bank > 2) {
871 res = i2c_smbus_read_byte_data(client, reg & 0xff);
872 } else {
873 /* switch to subclient */
874 cl = data->lm75[bank - 1];
876 /* convert from ISA to LM75 I2C addresses */
877 switch (reg & 0xff) {
878 case 0x50: /* TEMP */
879 res = i2c_smbus_read_word_swapped(cl, 0);
880 break;
881 case 0x52: /* CONFIG */
882 res = i2c_smbus_read_byte_data(cl, 1);
883 break;
884 case 0x53: /* HYST */
885 res = i2c_smbus_read_word_swapped(cl, 2);
886 break;
887 case 0x55: /* MAX */
888 default:
889 res = i2c_smbus_read_word_swapped(cl, 3);
890 break;
894 if (bank > 2)
895 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
897 mutex_unlock(&data->lock);
899 return res;
902 static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
904 struct asb100_data *data = i2c_get_clientdata(client);
905 struct i2c_client *cl;
906 int bank;
908 mutex_lock(&data->lock);
910 bank = (reg >> 8) & 0x0f;
911 if (bank > 2)
912 /* switch banks */
913 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
915 if (bank == 0 || bank > 2) {
916 i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
917 } else {
918 /* switch to subclient */
919 cl = data->lm75[bank - 1];
921 /* convert from ISA to LM75 I2C addresses */
922 switch (reg & 0xff) {
923 case 0x52: /* CONFIG */
924 i2c_smbus_write_byte_data(cl, 1, value & 0xff);
925 break;
926 case 0x53: /* HYST */
927 i2c_smbus_write_word_swapped(cl, 2, value);
928 break;
929 case 0x55: /* MAX */
930 i2c_smbus_write_word_swapped(cl, 3, value);
931 break;
935 if (bank > 2)
936 i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
938 mutex_unlock(&data->lock);
941 static void asb100_init_client(struct i2c_client *client)
943 struct asb100_data *data = i2c_get_clientdata(client);
945 data->vrm = vid_which_vrm();
947 /* Start monitoring */
948 asb100_write_value(client, ASB100_REG_CONFIG,
949 (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
952 static struct asb100_data *asb100_update_device(struct device *dev)
954 struct i2c_client *client = to_i2c_client(dev);
955 struct asb100_data *data = i2c_get_clientdata(client);
956 int i;
958 mutex_lock(&data->update_lock);
960 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
961 || !data->valid) {
963 dev_dbg(&client->dev, "starting device update...\n");
965 /* 7 voltage inputs */
966 for (i = 0; i < 7; i++) {
967 data->in[i] = asb100_read_value(client,
968 ASB100_REG_IN(i));
969 data->in_min[i] = asb100_read_value(client,
970 ASB100_REG_IN_MIN(i));
971 data->in_max[i] = asb100_read_value(client,
972 ASB100_REG_IN_MAX(i));
975 /* 3 fan inputs */
976 for (i = 0; i < 3; i++) {
977 data->fan[i] = asb100_read_value(client,
978 ASB100_REG_FAN(i));
979 data->fan_min[i] = asb100_read_value(client,
980 ASB100_REG_FAN_MIN(i));
983 /* 4 temperature inputs */
984 for (i = 1; i <= 4; i++) {
985 data->temp[i-1] = asb100_read_value(client,
986 ASB100_REG_TEMP(i));
987 data->temp_max[i-1] = asb100_read_value(client,
988 ASB100_REG_TEMP_MAX(i));
989 data->temp_hyst[i-1] = asb100_read_value(client,
990 ASB100_REG_TEMP_HYST(i));
993 /* VID and fan divisors */
994 i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
995 data->vid = i & 0x0f;
996 data->vid |= (asb100_read_value(client,
997 ASB100_REG_CHIPID) & 0x01) << 4;
998 data->fan_div[0] = (i >> 4) & 0x03;
999 data->fan_div[1] = (i >> 6) & 0x03;
1000 data->fan_div[2] = (asb100_read_value(client,
1001 ASB100_REG_PIN) >> 6) & 0x03;
1003 /* PWM */
1004 data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
1006 /* alarms */
1007 data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
1008 (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
1010 data->last_updated = jiffies;
1011 data->valid = 1;
1013 dev_dbg(&client->dev, "... device update complete\n");
1016 mutex_unlock(&data->update_lock);
1018 return data;
1021 module_i2c_driver(asb100_driver);
1023 MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1024 MODULE_DESCRIPTION("ASB100 Bach driver");
1025 MODULE_LICENSE("GPL");