Linux 4.19.133
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-at91.c
blobd51bf536bdf7509b6e1ce70fd51f60c02a761272
1 /*
2 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 * Copyright (C) 2011 Weinmann Medical GmbH
5 * Author: Nikolaus Voss <n.voss@weinmann.de>
7 * Evolved from original work by:
8 * Copyright (C) 2004 Rick Bronson
9 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 * Borrowed heavily from original work by:
12 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
37 #define DEFAULT_TWI_CLK_HZ 100000 /* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT msecs_to_jiffies(100) /* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD 8 /* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT 2000
41 #define AT91_I2C_MAX_ALT_CMD_DATA_SIZE 256
43 /* AT91 TWI register definitions */
44 #define AT91_TWI_CR 0x0000 /* Control Register */
45 #define AT91_TWI_START BIT(0) /* Send a Start Condition */
46 #define AT91_TWI_STOP BIT(1) /* Send a Stop Condition */
47 #define AT91_TWI_MSEN BIT(2) /* Master Transfer Enable */
48 #define AT91_TWI_MSDIS BIT(3) /* Master Transfer Disable */
49 #define AT91_TWI_SVEN BIT(4) /* Slave Transfer Enable */
50 #define AT91_TWI_SVDIS BIT(5) /* Slave Transfer Disable */
51 #define AT91_TWI_QUICK BIT(6) /* SMBus quick command */
52 #define AT91_TWI_SWRST BIT(7) /* Software Reset */
53 #define AT91_TWI_ACMEN BIT(16) /* Alternative Command Mode Enable */
54 #define AT91_TWI_ACMDIS BIT(17) /* Alternative Command Mode Disable */
55 #define AT91_TWI_THRCLR BIT(24) /* Transmit Holding Register Clear */
56 #define AT91_TWI_RHRCLR BIT(25) /* Receive Holding Register Clear */
57 #define AT91_TWI_LOCKCLR BIT(26) /* Lock Clear */
58 #define AT91_TWI_FIFOEN BIT(28) /* FIFO Enable */
59 #define AT91_TWI_FIFODIS BIT(29) /* FIFO Disable */
61 #define AT91_TWI_MMR 0x0004 /* Master Mode Register */
62 #define AT91_TWI_IADRSZ_1 0x0100 /* Internal Device Address Size */
63 #define AT91_TWI_MREAD BIT(12) /* Master Read Direction */
65 #define AT91_TWI_IADR 0x000c /* Internal Address Register */
67 #define AT91_TWI_CWGR 0x0010 /* Clock Waveform Generator Reg */
68 #define AT91_TWI_CWGR_HOLD_MAX 0x1f
69 #define AT91_TWI_CWGR_HOLD(x) (((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)
71 #define AT91_TWI_SR 0x0020 /* Status Register */
72 #define AT91_TWI_TXCOMP BIT(0) /* Transmission Complete */
73 #define AT91_TWI_RXRDY BIT(1) /* Receive Holding Register Ready */
74 #define AT91_TWI_TXRDY BIT(2) /* Transmit Holding Register Ready */
75 #define AT91_TWI_OVRE BIT(6) /* Overrun Error */
76 #define AT91_TWI_UNRE BIT(7) /* Underrun Error */
77 #define AT91_TWI_NACK BIT(8) /* Not Acknowledged */
78 #define AT91_TWI_LOCK BIT(23) /* TWI Lock due to Frame Errors */
80 #define AT91_TWI_INT_MASK \
81 (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
83 #define AT91_TWI_IER 0x0024 /* Interrupt Enable Register */
84 #define AT91_TWI_IDR 0x0028 /* Interrupt Disable Register */
85 #define AT91_TWI_IMR 0x002c /* Interrupt Mask Register */
86 #define AT91_TWI_RHR 0x0030 /* Receive Holding Register */
87 #define AT91_TWI_THR 0x0034 /* Transmit Holding Register */
89 #define AT91_TWI_ACR 0x0040 /* Alternative Command Register */
90 #define AT91_TWI_ACR_DATAL(len) ((len) & 0xff)
91 #define AT91_TWI_ACR_DIR BIT(8)
93 #define AT91_TWI_FMR 0x0050 /* FIFO Mode Register */
94 #define AT91_TWI_FMR_TXRDYM(mode) (((mode) & 0x3) << 0)
95 #define AT91_TWI_FMR_TXRDYM_MASK (0x3 << 0)
96 #define AT91_TWI_FMR_RXRDYM(mode) (((mode) & 0x3) << 4)
97 #define AT91_TWI_FMR_RXRDYM_MASK (0x3 << 4)
98 #define AT91_TWI_ONE_DATA 0x0
99 #define AT91_TWI_TWO_DATA 0x1
100 #define AT91_TWI_FOUR_DATA 0x2
102 #define AT91_TWI_FLR 0x0054 /* FIFO Level Register */
104 #define AT91_TWI_FSR 0x0060 /* FIFO Status Register */
105 #define AT91_TWI_FIER 0x0064 /* FIFO Interrupt Enable Register */
106 #define AT91_TWI_FIDR 0x0068 /* FIFO Interrupt Disable Register */
107 #define AT91_TWI_FIMR 0x006c /* FIFO Interrupt Mask Register */
109 #define AT91_TWI_VER 0x00fc /* Version Register */
111 struct at91_twi_pdata {
112 unsigned clk_max_div;
113 unsigned clk_offset;
114 bool has_unre_flag;
115 bool has_alt_cmd;
116 bool has_hold_field;
117 struct at_dma_slave dma_slave;
120 struct at91_twi_dma {
121 struct dma_chan *chan_rx;
122 struct dma_chan *chan_tx;
123 struct scatterlist sg[2];
124 struct dma_async_tx_descriptor *data_desc;
125 enum dma_data_direction direction;
126 bool buf_mapped;
127 bool xfer_in_progress;
130 struct at91_twi_dev {
131 struct device *dev;
132 void __iomem *base;
133 struct completion cmd_complete;
134 struct clk *clk;
135 u8 *buf;
136 size_t buf_len;
137 struct i2c_msg *msg;
138 int irq;
139 unsigned imr;
140 unsigned transfer_status;
141 struct i2c_adapter adapter;
142 unsigned twi_cwgr_reg;
143 struct at91_twi_pdata *pdata;
144 bool use_dma;
145 bool use_alt_cmd;
146 bool recv_len_abort;
147 u32 fifo_size;
148 struct at91_twi_dma dma;
151 static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
153 return readl_relaxed(dev->base + reg);
156 static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
158 writel_relaxed(val, dev->base + reg);
161 static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
163 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
166 static void at91_twi_irq_save(struct at91_twi_dev *dev)
168 dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
169 at91_disable_twi_interrupts(dev);
172 static void at91_twi_irq_restore(struct at91_twi_dev *dev)
174 at91_twi_write(dev, AT91_TWI_IER, dev->imr);
177 static void at91_init_twi_bus(struct at91_twi_dev *dev)
179 at91_disable_twi_interrupts(dev);
180 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
181 /* FIFO should be enabled immediately after the software reset */
182 if (dev->fifo_size)
183 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
184 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
185 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
186 at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
190 * Calculate symmetric clock as stated in datasheet:
191 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
193 static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
195 int ckdiv, cdiv, div, hold = 0;
196 struct at91_twi_pdata *pdata = dev->pdata;
197 int offset = pdata->clk_offset;
198 int max_ckdiv = pdata->clk_max_div;
199 u32 twd_hold_time_ns = 0;
201 div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
202 2 * twi_clk) - offset);
203 ckdiv = fls(div >> 8);
204 cdiv = div >> ckdiv;
206 if (ckdiv > max_ckdiv) {
207 dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
208 ckdiv, max_ckdiv);
209 ckdiv = max_ckdiv;
210 cdiv = 255;
213 if (pdata->has_hold_field) {
214 of_property_read_u32(dev->dev->of_node, "i2c-sda-hold-time-ns",
215 &twd_hold_time_ns);
218 * hold time = HOLD + 3 x T_peripheral_clock
219 * Use clk rate in kHz to prevent overflows when computing
220 * hold.
222 hold = DIV_ROUND_UP(twd_hold_time_ns
223 * (clk_get_rate(dev->clk) / 1000), 1000000);
224 hold -= 3;
225 if (hold < 0)
226 hold = 0;
227 if (hold > AT91_TWI_CWGR_HOLD_MAX) {
228 dev_warn(dev->dev,
229 "HOLD field set to its maximum value (%d instead of %d)\n",
230 AT91_TWI_CWGR_HOLD_MAX, hold);
231 hold = AT91_TWI_CWGR_HOLD_MAX;
235 dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
236 | AT91_TWI_CWGR_HOLD(hold);
238 dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
239 cdiv, ckdiv, hold, twd_hold_time_ns);
242 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
244 struct at91_twi_dma *dma = &dev->dma;
246 at91_twi_irq_save(dev);
248 if (dma->xfer_in_progress) {
249 if (dma->direction == DMA_FROM_DEVICE)
250 dmaengine_terminate_all(dma->chan_rx);
251 else
252 dmaengine_terminate_all(dma->chan_tx);
253 dma->xfer_in_progress = false;
255 if (dma->buf_mapped) {
256 dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
257 dev->buf_len, dma->direction);
258 dma->buf_mapped = false;
261 at91_twi_irq_restore(dev);
264 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
266 if (!dev->buf_len)
267 return;
269 /* 8bit write works with and without FIFO */
270 writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
272 /* send stop when last byte has been written */
273 if (--dev->buf_len == 0) {
274 if (!dev->use_alt_cmd)
275 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
276 at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
279 dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
281 ++dev->buf;
284 static void at91_twi_write_data_dma_callback(void *data)
286 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
288 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
289 dev->buf_len, DMA_TO_DEVICE);
292 * When this callback is called, THR/TX FIFO is likely not to be empty
293 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
294 * Status Register to be sure that the STOP bit has been sent and the
295 * transfer is completed. The NACK interrupt has already been enabled,
296 * we just have to enable TXCOMP one.
298 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
299 if (!dev->use_alt_cmd)
300 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
303 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
305 dma_addr_t dma_addr;
306 struct dma_async_tx_descriptor *txdesc;
307 struct at91_twi_dma *dma = &dev->dma;
308 struct dma_chan *chan_tx = dma->chan_tx;
309 unsigned int sg_len = 1;
311 if (!dev->buf_len)
312 return;
314 dma->direction = DMA_TO_DEVICE;
316 at91_twi_irq_save(dev);
317 dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
318 DMA_TO_DEVICE);
319 if (dma_mapping_error(dev->dev, dma_addr)) {
320 dev_err(dev->dev, "dma map failed\n");
321 return;
323 dma->buf_mapped = true;
324 at91_twi_irq_restore(dev);
326 if (dev->fifo_size) {
327 size_t part1_len, part2_len;
328 struct scatterlist *sg;
329 unsigned fifo_mr;
331 sg_len = 0;
333 part1_len = dev->buf_len & ~0x3;
334 if (part1_len) {
335 sg = &dma->sg[sg_len++];
336 sg_dma_len(sg) = part1_len;
337 sg_dma_address(sg) = dma_addr;
340 part2_len = dev->buf_len & 0x3;
341 if (part2_len) {
342 sg = &dma->sg[sg_len++];
343 sg_dma_len(sg) = part2_len;
344 sg_dma_address(sg) = dma_addr + part1_len;
348 * DMA controller is triggered when at least 4 data can be
349 * written into the TX FIFO
351 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
352 fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
353 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
354 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
355 } else {
356 sg_dma_len(&dma->sg[0]) = dev->buf_len;
357 sg_dma_address(&dma->sg[0]) = dma_addr;
360 txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
361 DMA_MEM_TO_DEV,
362 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
363 if (!txdesc) {
364 dev_err(dev->dev, "dma prep slave sg failed\n");
365 goto error;
368 txdesc->callback = at91_twi_write_data_dma_callback;
369 txdesc->callback_param = dev;
371 dma->xfer_in_progress = true;
372 dmaengine_submit(txdesc);
373 dma_async_issue_pending(chan_tx);
375 return;
377 error:
378 at91_twi_dma_cleanup(dev);
381 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
384 * If we are in this case, it means there is garbage data in RHR, so
385 * delete them.
387 if (!dev->buf_len) {
388 at91_twi_read(dev, AT91_TWI_RHR);
389 return;
392 /* 8bit read works with and without FIFO */
393 *dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
394 --dev->buf_len;
396 /* return if aborting, we only needed to read RHR to clear RXRDY*/
397 if (dev->recv_len_abort)
398 return;
400 /* handle I2C_SMBUS_BLOCK_DATA */
401 if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
402 /* ensure length byte is a valid value */
403 if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
404 dev->msg->flags &= ~I2C_M_RECV_LEN;
405 dev->buf_len += *dev->buf;
406 dev->msg->len = dev->buf_len + 1;
407 dev_dbg(dev->dev, "received block length %zu\n",
408 dev->buf_len);
409 } else {
410 /* abort and send the stop by reading one more byte */
411 dev->recv_len_abort = true;
412 dev->buf_len = 1;
416 /* send stop if second but last byte has been read */
417 if (!dev->use_alt_cmd && dev->buf_len == 1)
418 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
420 dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
422 ++dev->buf;
425 static void at91_twi_read_data_dma_callback(void *data)
427 struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
428 unsigned ier = AT91_TWI_TXCOMP;
430 dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
431 dev->buf_len, DMA_FROM_DEVICE);
433 if (!dev->use_alt_cmd) {
434 /* The last two bytes have to be read without using dma */
435 dev->buf += dev->buf_len - 2;
436 dev->buf_len = 2;
437 ier |= AT91_TWI_RXRDY;
439 at91_twi_write(dev, AT91_TWI_IER, ier);
442 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
444 dma_addr_t dma_addr;
445 struct dma_async_tx_descriptor *rxdesc;
446 struct at91_twi_dma *dma = &dev->dma;
447 struct dma_chan *chan_rx = dma->chan_rx;
448 size_t buf_len;
450 buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
451 dma->direction = DMA_FROM_DEVICE;
453 /* Keep in mind that we won't use dma to read the last two bytes */
454 at91_twi_irq_save(dev);
455 dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
456 if (dma_mapping_error(dev->dev, dma_addr)) {
457 dev_err(dev->dev, "dma map failed\n");
458 return;
460 dma->buf_mapped = true;
461 at91_twi_irq_restore(dev);
463 if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
464 unsigned fifo_mr;
467 * DMA controller is triggered when at least 4 data can be
468 * read from the RX FIFO
470 fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
471 fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
472 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
473 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
476 sg_dma_len(&dma->sg[0]) = buf_len;
477 sg_dma_address(&dma->sg[0]) = dma_addr;
479 rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
480 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
481 if (!rxdesc) {
482 dev_err(dev->dev, "dma prep slave sg failed\n");
483 goto error;
486 rxdesc->callback = at91_twi_read_data_dma_callback;
487 rxdesc->callback_param = dev;
489 dma->xfer_in_progress = true;
490 dmaengine_submit(rxdesc);
491 dma_async_issue_pending(dma->chan_rx);
493 return;
495 error:
496 at91_twi_dma_cleanup(dev);
499 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
501 struct at91_twi_dev *dev = dev_id;
502 const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
503 const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
505 if (!irqstatus)
506 return IRQ_NONE;
508 * In reception, the behavior of the twi device (before sama5d2) is
509 * weird. There is some magic about RXRDY flag! When a data has been
510 * almost received, the reception of a new one is anticipated if there
511 * is no stop command to send. That is the reason why ask for sending
512 * the stop command not on the last data but on the second last one.
514 * Unfortunately, we could still have the RXRDY flag set even if the
515 * transfer is done and we have read the last data. It might happen
516 * when the i2c slave device sends too quickly data after receiving the
517 * ack from the master. The data has been almost received before having
518 * the order to send stop. In this case, sending the stop command could
519 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
520 * the RXRDY interrupt first in order to not keep garbage data in the
521 * Receive Holding Register for the next transfer.
523 if (irqstatus & AT91_TWI_RXRDY) {
525 * Read all available bytes at once by polling RXRDY usable w/
526 * and w/o FIFO. With FIFO enabled we could also read RXFL and
527 * avoid polling RXRDY.
529 do {
530 at91_twi_read_next_byte(dev);
531 } while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
535 * When a NACK condition is detected, the I2C controller sets the NACK,
536 * TXCOMP and TXRDY bits all together in the Status Register (SR).
538 * 1 - Handling NACK errors with CPU write transfer.
540 * In such case, we should not write the next byte into the Transmit
541 * Holding Register (THR) otherwise the I2C controller would start a new
542 * transfer and the I2C slave is likely to reply by another NACK.
544 * 2 - Handling NACK errors with DMA write transfer.
546 * By setting the TXRDY bit in the SR, the I2C controller also triggers
547 * the DMA controller to write the next data into the THR. Then the
548 * result depends on the hardware version of the I2C controller.
550 * 2a - Without support of the Alternative Command mode.
552 * This is the worst case: the DMA controller is triggered to write the
553 * next data into the THR, hence starting a new transfer: the I2C slave
554 * is likely to reply by another NACK.
555 * Concurrently, this interrupt handler is likely to be called to manage
556 * the first NACK before the I2C controller detects the second NACK and
557 * sets once again the NACK bit into the SR.
558 * When handling the first NACK, this interrupt handler disables the I2C
559 * controller interruptions, especially the NACK interrupt.
560 * Hence, the NACK bit is pending into the SR. This is why we should
561 * read the SR to clear all pending interrupts at the beginning of
562 * at91_do_twi_transfer() before actually starting a new transfer.
564 * 2b - With support of the Alternative Command mode.
566 * When a NACK condition is detected, the I2C controller also locks the
567 * THR (and sets the LOCK bit in the SR): even though the DMA controller
568 * is triggered by the TXRDY bit to write the next data into the THR,
569 * this data actually won't go on the I2C bus hence a second NACK is not
570 * generated.
572 if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
573 at91_disable_twi_interrupts(dev);
574 complete(&dev->cmd_complete);
575 } else if (irqstatus & AT91_TWI_TXRDY) {
576 at91_twi_write_next_byte(dev);
579 /* catch error flags */
580 dev->transfer_status |= status;
582 return IRQ_HANDLED;
585 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
587 int ret;
588 unsigned long time_left;
589 bool has_unre_flag = dev->pdata->has_unre_flag;
590 bool has_alt_cmd = dev->pdata->has_alt_cmd;
593 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
594 * read flag but shows the state of the transmission at the time the
595 * Status Register is read. According to the programmer datasheet,
596 * TXCOMP is set when both holding register and internal shifter are
597 * empty and STOP condition has been sent.
598 * Consequently, we should enable NACK interrupt rather than TXCOMP to
599 * detect transmission failure.
600 * Indeed let's take the case of an i2c write command using DMA.
601 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
602 * TXCOMP bits are set together into the Status Register.
603 * LOCK is a clear on write bit, which is set to prevent the DMA
604 * controller from sending new data on the i2c bus after a NACK
605 * condition has happened. Once locked, this i2c peripheral stops
606 * triggering the DMA controller for new data but it is more than
607 * likely that a new DMA transaction is already in progress, writing
608 * into the Transmit Holding Register. Since the peripheral is locked,
609 * these new data won't be sent to the i2c bus but they will remain
610 * into the Transmit Holding Register, so TXCOMP bit is cleared.
611 * Then when the interrupt handler is called, the Status Register is
612 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
613 * manage the error properly, without waiting for timeout.
614 * This case can be reproduced easyly when writing into an at24 eeprom.
616 * Besides, the TXCOMP bit is already set before the i2c transaction
617 * has been started. For read transactions, this bit is cleared when
618 * writing the START bit into the Control Register. So the
619 * corresponding interrupt can safely be enabled just after.
620 * However for write transactions managed by the CPU, we first write
621 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
622 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
623 * the interrupt handler would be called immediately and the i2c command
624 * would be reported as completed.
625 * Also when a write transaction is managed by the DMA controller,
626 * enabling the TXCOMP interrupt in this function may lead to a race
627 * condition since we don't know whether the TXCOMP interrupt is enabled
628 * before or after the DMA has started to write into THR. So the TXCOMP
629 * interrupt is enabled later by at91_twi_write_data_dma_callback().
630 * Immediately after in that DMA callback, if the alternative command
631 * mode is not used, we still need to send the STOP condition manually
632 * writing the corresponding bit into the Control Register.
635 dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
636 (dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
638 reinit_completion(&dev->cmd_complete);
639 dev->transfer_status = 0;
641 /* Clear pending interrupts, such as NACK. */
642 at91_twi_read(dev, AT91_TWI_SR);
644 if (dev->fifo_size) {
645 unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
647 /* Reset FIFO mode register */
648 fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
649 AT91_TWI_FMR_RXRDYM_MASK);
650 fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
651 fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
652 at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
654 /* Flush FIFOs */
655 at91_twi_write(dev, AT91_TWI_CR,
656 AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
659 if (!dev->buf_len) {
660 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
661 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
662 } else if (dev->msg->flags & I2C_M_RD) {
663 unsigned start_flags = AT91_TWI_START;
665 /* if only one byte is to be read, immediately stop transfer */
666 if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
667 !(dev->msg->flags & I2C_M_RECV_LEN))
668 start_flags |= AT91_TWI_STOP;
669 at91_twi_write(dev, AT91_TWI_CR, start_flags);
671 * When using dma without alternative command mode, the last
672 * byte has to be read manually in order to not send the stop
673 * command too late and then to receive extra data.
674 * In practice, there are some issues if you use the dma to
675 * read n-1 bytes because of latency.
676 * Reading n-2 bytes with dma and the two last ones manually
677 * seems to be the best solution.
679 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
680 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
681 at91_twi_read_data_dma(dev);
682 } else {
683 at91_twi_write(dev, AT91_TWI_IER,
684 AT91_TWI_TXCOMP |
685 AT91_TWI_NACK |
686 AT91_TWI_RXRDY);
688 } else {
689 if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
690 at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
691 at91_twi_write_data_dma(dev);
692 } else {
693 at91_twi_write_next_byte(dev);
694 at91_twi_write(dev, AT91_TWI_IER,
695 AT91_TWI_TXCOMP | AT91_TWI_NACK |
696 (dev->buf_len ? AT91_TWI_TXRDY : 0));
700 time_left = wait_for_completion_timeout(&dev->cmd_complete,
701 dev->adapter.timeout);
702 if (time_left == 0) {
703 dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
704 dev_err(dev->dev, "controller timed out\n");
705 at91_init_twi_bus(dev);
706 ret = -ETIMEDOUT;
707 goto error;
709 if (dev->transfer_status & AT91_TWI_NACK) {
710 dev_dbg(dev->dev, "received nack\n");
711 ret = -EREMOTEIO;
712 goto error;
714 if (dev->transfer_status & AT91_TWI_OVRE) {
715 dev_err(dev->dev, "overrun while reading\n");
716 ret = -EIO;
717 goto error;
719 if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
720 dev_err(dev->dev, "underrun while writing\n");
721 ret = -EIO;
722 goto error;
724 if ((has_alt_cmd || dev->fifo_size) &&
725 (dev->transfer_status & AT91_TWI_LOCK)) {
726 dev_err(dev->dev, "tx locked\n");
727 ret = -EIO;
728 goto error;
730 if (dev->recv_len_abort) {
731 dev_err(dev->dev, "invalid smbus block length recvd\n");
732 ret = -EPROTO;
733 goto error;
736 dev_dbg(dev->dev, "transfer complete\n");
738 return 0;
740 error:
741 /* first stop DMA transfer if still in progress */
742 at91_twi_dma_cleanup(dev);
743 /* then flush THR/FIFO and unlock TX if locked */
744 if ((has_alt_cmd || dev->fifo_size) &&
745 (dev->transfer_status & AT91_TWI_LOCK)) {
746 dev_dbg(dev->dev, "unlock tx\n");
747 at91_twi_write(dev, AT91_TWI_CR,
748 AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
750 return ret;
753 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
755 struct at91_twi_dev *dev = i2c_get_adapdata(adap);
756 int ret;
757 unsigned int_addr_flag = 0;
758 struct i2c_msg *m_start = msg;
759 bool is_read;
761 dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
763 ret = pm_runtime_get_sync(dev->dev);
764 if (ret < 0)
765 goto out;
767 if (num == 2) {
768 int internal_address = 0;
769 int i;
771 /* 1st msg is put into the internal address, start with 2nd */
772 m_start = &msg[1];
773 for (i = 0; i < msg->len; ++i) {
774 const unsigned addr = msg->buf[msg->len - 1 - i];
776 internal_address |= addr << (8 * i);
777 int_addr_flag += AT91_TWI_IADRSZ_1;
779 at91_twi_write(dev, AT91_TWI_IADR, internal_address);
782 dev->use_alt_cmd = false;
783 is_read = (m_start->flags & I2C_M_RD);
784 if (dev->pdata->has_alt_cmd) {
785 if (m_start->len > 0 &&
786 m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
787 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
788 at91_twi_write(dev, AT91_TWI_ACR,
789 AT91_TWI_ACR_DATAL(m_start->len) |
790 ((is_read) ? AT91_TWI_ACR_DIR : 0));
791 dev->use_alt_cmd = true;
792 } else {
793 at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
797 at91_twi_write(dev, AT91_TWI_MMR,
798 (m_start->addr << 16) |
799 int_addr_flag |
800 ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
802 dev->buf_len = m_start->len;
803 dev->buf = m_start->buf;
804 dev->msg = m_start;
805 dev->recv_len_abort = false;
807 ret = at91_do_twi_transfer(dev);
809 ret = (ret < 0) ? ret : num;
810 out:
811 pm_runtime_mark_last_busy(dev->dev);
812 pm_runtime_put_autosuspend(dev->dev);
814 return ret;
818 * The hardware can handle at most two messages concatenated by a
819 * repeated start via it's internal address feature.
821 static const struct i2c_adapter_quirks at91_twi_quirks = {
822 .flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
823 .max_comb_1st_msg_len = 3,
826 static u32 at91_twi_func(struct i2c_adapter *adapter)
828 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
829 | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
832 static const struct i2c_algorithm at91_twi_algorithm = {
833 .master_xfer = at91_twi_xfer,
834 .functionality = at91_twi_func,
837 static struct at91_twi_pdata at91rm9200_config = {
838 .clk_max_div = 5,
839 .clk_offset = 3,
840 .has_unre_flag = true,
841 .has_alt_cmd = false,
842 .has_hold_field = false,
845 static struct at91_twi_pdata at91sam9261_config = {
846 .clk_max_div = 5,
847 .clk_offset = 4,
848 .has_unre_flag = false,
849 .has_alt_cmd = false,
850 .has_hold_field = false,
853 static struct at91_twi_pdata at91sam9260_config = {
854 .clk_max_div = 7,
855 .clk_offset = 4,
856 .has_unre_flag = false,
857 .has_alt_cmd = false,
858 .has_hold_field = false,
861 static struct at91_twi_pdata at91sam9g20_config = {
862 .clk_max_div = 7,
863 .clk_offset = 4,
864 .has_unre_flag = false,
865 .has_alt_cmd = false,
866 .has_hold_field = false,
869 static struct at91_twi_pdata at91sam9g10_config = {
870 .clk_max_div = 7,
871 .clk_offset = 4,
872 .has_unre_flag = false,
873 .has_alt_cmd = false,
874 .has_hold_field = false,
877 static const struct platform_device_id at91_twi_devtypes[] = {
879 .name = "i2c-at91rm9200",
880 .driver_data = (unsigned long) &at91rm9200_config,
881 }, {
882 .name = "i2c-at91sam9261",
883 .driver_data = (unsigned long) &at91sam9261_config,
884 }, {
885 .name = "i2c-at91sam9260",
886 .driver_data = (unsigned long) &at91sam9260_config,
887 }, {
888 .name = "i2c-at91sam9g20",
889 .driver_data = (unsigned long) &at91sam9g20_config,
890 }, {
891 .name = "i2c-at91sam9g10",
892 .driver_data = (unsigned long) &at91sam9g10_config,
893 }, {
894 /* sentinel */
898 #if defined(CONFIG_OF)
899 static struct at91_twi_pdata at91sam9x5_config = {
900 .clk_max_div = 7,
901 .clk_offset = 4,
902 .has_unre_flag = false,
903 .has_alt_cmd = false,
904 .has_hold_field = false,
907 static struct at91_twi_pdata sama5d4_config = {
908 .clk_max_div = 7,
909 .clk_offset = 4,
910 .has_unre_flag = false,
911 .has_alt_cmd = false,
912 .has_hold_field = true,
915 static struct at91_twi_pdata sama5d2_config = {
916 .clk_max_div = 7,
917 .clk_offset = 3,
918 .has_unre_flag = true,
919 .has_alt_cmd = true,
920 .has_hold_field = true,
923 static const struct of_device_id atmel_twi_dt_ids[] = {
925 .compatible = "atmel,at91rm9200-i2c",
926 .data = &at91rm9200_config,
927 } , {
928 .compatible = "atmel,at91sam9260-i2c",
929 .data = &at91sam9260_config,
930 } , {
931 .compatible = "atmel,at91sam9261-i2c",
932 .data = &at91sam9261_config,
933 } , {
934 .compatible = "atmel,at91sam9g20-i2c",
935 .data = &at91sam9g20_config,
936 } , {
937 .compatible = "atmel,at91sam9g10-i2c",
938 .data = &at91sam9g10_config,
939 }, {
940 .compatible = "atmel,at91sam9x5-i2c",
941 .data = &at91sam9x5_config,
942 }, {
943 .compatible = "atmel,sama5d4-i2c",
944 .data = &sama5d4_config,
945 }, {
946 .compatible = "atmel,sama5d2-i2c",
947 .data = &sama5d2_config,
948 }, {
949 /* sentinel */
952 MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
953 #endif
955 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
957 int ret = 0;
958 struct dma_slave_config slave_config;
959 struct at91_twi_dma *dma = &dev->dma;
960 enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
963 * The actual width of the access will be chosen in
964 * dmaengine_prep_slave_sg():
965 * for each buffer in the scatter-gather list, if its size is aligned
966 * to addr_width then addr_width accesses will be performed to transfer
967 * the buffer. On the other hand, if the buffer size is not aligned to
968 * addr_width then the buffer is transferred using single byte accesses.
969 * Please refer to the Atmel eXtended DMA controller driver.
970 * When FIFOs are used, the TXRDYM threshold can always be set to
971 * trigger the XDMAC when at least 4 data can be written into the TX
972 * FIFO, even if single byte accesses are performed.
973 * However the RXRDYM threshold must be set to fit the access width,
974 * deduced from buffer length, so the XDMAC is triggered properly to
975 * read data from the RX FIFO.
977 if (dev->fifo_size)
978 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
980 memset(&slave_config, 0, sizeof(slave_config));
981 slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
982 slave_config.src_addr_width = addr_width;
983 slave_config.src_maxburst = 1;
984 slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
985 slave_config.dst_addr_width = addr_width;
986 slave_config.dst_maxburst = 1;
987 slave_config.device_fc = false;
989 dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
990 if (IS_ERR(dma->chan_tx)) {
991 ret = PTR_ERR(dma->chan_tx);
992 dma->chan_tx = NULL;
993 goto error;
996 dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
997 if (IS_ERR(dma->chan_rx)) {
998 ret = PTR_ERR(dma->chan_rx);
999 dma->chan_rx = NULL;
1000 goto error;
1003 slave_config.direction = DMA_MEM_TO_DEV;
1004 if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
1005 dev_err(dev->dev, "failed to configure tx channel\n");
1006 ret = -EINVAL;
1007 goto error;
1010 slave_config.direction = DMA_DEV_TO_MEM;
1011 if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
1012 dev_err(dev->dev, "failed to configure rx channel\n");
1013 ret = -EINVAL;
1014 goto error;
1017 sg_init_table(dma->sg, 2);
1018 dma->buf_mapped = false;
1019 dma->xfer_in_progress = false;
1020 dev->use_dma = true;
1022 dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
1023 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
1025 return ret;
1027 error:
1028 if (ret != -EPROBE_DEFER)
1029 dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
1030 if (dma->chan_rx)
1031 dma_release_channel(dma->chan_rx);
1032 if (dma->chan_tx)
1033 dma_release_channel(dma->chan_tx);
1034 return ret;
1037 static struct at91_twi_pdata *at91_twi_get_driver_data(
1038 struct platform_device *pdev)
1040 if (pdev->dev.of_node) {
1041 const struct of_device_id *match;
1042 match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
1043 if (!match)
1044 return NULL;
1045 return (struct at91_twi_pdata *)match->data;
1047 return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
1050 static int at91_twi_probe(struct platform_device *pdev)
1052 struct at91_twi_dev *dev;
1053 struct resource *mem;
1054 int rc;
1055 u32 phy_addr;
1056 u32 bus_clk_rate;
1058 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1059 if (!dev)
1060 return -ENOMEM;
1061 init_completion(&dev->cmd_complete);
1062 dev->dev = &pdev->dev;
1064 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1065 if (!mem)
1066 return -ENODEV;
1067 phy_addr = mem->start;
1069 dev->pdata = at91_twi_get_driver_data(pdev);
1070 if (!dev->pdata)
1071 return -ENODEV;
1073 dev->base = devm_ioremap_resource(&pdev->dev, mem);
1074 if (IS_ERR(dev->base))
1075 return PTR_ERR(dev->base);
1077 dev->irq = platform_get_irq(pdev, 0);
1078 if (dev->irq < 0)
1079 return dev->irq;
1081 rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
1082 dev_name(dev->dev), dev);
1083 if (rc) {
1084 dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
1085 return rc;
1088 platform_set_drvdata(pdev, dev);
1090 dev->clk = devm_clk_get(dev->dev, NULL);
1091 if (IS_ERR(dev->clk)) {
1092 dev_err(dev->dev, "no clock defined\n");
1093 return -ENODEV;
1095 rc = clk_prepare_enable(dev->clk);
1096 if (rc)
1097 return rc;
1099 if (dev->dev->of_node) {
1100 rc = at91_twi_configure_dma(dev, phy_addr);
1101 if (rc == -EPROBE_DEFER) {
1102 clk_disable_unprepare(dev->clk);
1103 return rc;
1107 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1108 &dev->fifo_size)) {
1109 dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
1112 rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
1113 &bus_clk_rate);
1114 if (rc)
1115 bus_clk_rate = DEFAULT_TWI_CLK_HZ;
1117 at91_calc_twi_clock(dev, bus_clk_rate);
1118 at91_init_twi_bus(dev);
1120 snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
1121 i2c_set_adapdata(&dev->adapter, dev);
1122 dev->adapter.owner = THIS_MODULE;
1123 dev->adapter.class = I2C_CLASS_DEPRECATED;
1124 dev->adapter.algo = &at91_twi_algorithm;
1125 dev->adapter.quirks = &at91_twi_quirks;
1126 dev->adapter.dev.parent = dev->dev;
1127 dev->adapter.nr = pdev->id;
1128 dev->adapter.timeout = AT91_I2C_TIMEOUT;
1129 dev->adapter.dev.of_node = pdev->dev.of_node;
1131 pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
1132 pm_runtime_use_autosuspend(dev->dev);
1133 pm_runtime_set_active(dev->dev);
1134 pm_runtime_enable(dev->dev);
1136 rc = i2c_add_numbered_adapter(&dev->adapter);
1137 if (rc) {
1138 clk_disable_unprepare(dev->clk);
1140 pm_runtime_disable(dev->dev);
1141 pm_runtime_set_suspended(dev->dev);
1143 return rc;
1146 dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
1147 at91_twi_read(dev, AT91_TWI_VER));
1148 return 0;
1151 static int at91_twi_remove(struct platform_device *pdev)
1153 struct at91_twi_dev *dev = platform_get_drvdata(pdev);
1155 i2c_del_adapter(&dev->adapter);
1156 clk_disable_unprepare(dev->clk);
1158 pm_runtime_disable(dev->dev);
1159 pm_runtime_set_suspended(dev->dev);
1161 return 0;
1164 #ifdef CONFIG_PM
1166 static int at91_twi_runtime_suspend(struct device *dev)
1168 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1170 clk_disable_unprepare(twi_dev->clk);
1172 pinctrl_pm_select_sleep_state(dev);
1174 return 0;
1177 static int at91_twi_runtime_resume(struct device *dev)
1179 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1181 pinctrl_pm_select_default_state(dev);
1183 return clk_prepare_enable(twi_dev->clk);
1186 static int at91_twi_suspend_noirq(struct device *dev)
1188 if (!pm_runtime_status_suspended(dev))
1189 at91_twi_runtime_suspend(dev);
1191 return 0;
1194 static int at91_twi_resume_noirq(struct device *dev)
1196 struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1197 int ret;
1199 if (!pm_runtime_status_suspended(dev)) {
1200 ret = at91_twi_runtime_resume(dev);
1201 if (ret)
1202 return ret;
1205 pm_runtime_mark_last_busy(dev);
1206 pm_request_autosuspend(dev);
1208 at91_init_twi_bus(twi_dev);
1210 return 0;
1213 static const struct dev_pm_ops at91_twi_pm = {
1214 .suspend_noirq = at91_twi_suspend_noirq,
1215 .resume_noirq = at91_twi_resume_noirq,
1216 .runtime_suspend = at91_twi_runtime_suspend,
1217 .runtime_resume = at91_twi_runtime_resume,
1220 #define at91_twi_pm_ops (&at91_twi_pm)
1221 #else
1222 #define at91_twi_pm_ops NULL
1223 #endif
1225 static struct platform_driver at91_twi_driver = {
1226 .probe = at91_twi_probe,
1227 .remove = at91_twi_remove,
1228 .id_table = at91_twi_devtypes,
1229 .driver = {
1230 .name = "at91_i2c",
1231 .of_match_table = of_match_ptr(atmel_twi_dt_ids),
1232 .pm = at91_twi_pm_ops,
1236 static int __init at91_twi_init(void)
1238 return platform_driver_register(&at91_twi_driver);
1241 static void __exit at91_twi_exit(void)
1243 platform_driver_unregister(&at91_twi_driver);
1246 subsys_initcall(at91_twi_init);
1247 module_exit(at91_twi_exit);
1249 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1250 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1251 MODULE_LICENSE("GPL");
1252 MODULE_ALIAS("platform:at91_i2c");