Linux 4.19.133
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-qup.c
blobe09cd0775ae91c60e052b22a748d870dfe037f7a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2014, Sony Mobile Communications AB.
6 */
8 #include <linux/acpi.h>
9 #include <linux/atomic.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dmapool.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/scatterlist.h>
25 /* QUP Registers */
26 #define QUP_CONFIG 0x000
27 #define QUP_STATE 0x004
28 #define QUP_IO_MODE 0x008
29 #define QUP_SW_RESET 0x00c
30 #define QUP_OPERATIONAL 0x018
31 #define QUP_ERROR_FLAGS 0x01c
32 #define QUP_ERROR_FLAGS_EN 0x020
33 #define QUP_OPERATIONAL_MASK 0x028
34 #define QUP_HW_VERSION 0x030
35 #define QUP_MX_OUTPUT_CNT 0x100
36 #define QUP_OUT_FIFO_BASE 0x110
37 #define QUP_MX_WRITE_CNT 0x150
38 #define QUP_MX_INPUT_CNT 0x200
39 #define QUP_MX_READ_CNT 0x208
40 #define QUP_IN_FIFO_BASE 0x218
41 #define QUP_I2C_CLK_CTL 0x400
42 #define QUP_I2C_STATUS 0x404
43 #define QUP_I2C_MASTER_GEN 0x408
45 /* QUP States and reset values */
46 #define QUP_RESET_STATE 0
47 #define QUP_RUN_STATE 1
48 #define QUP_PAUSE_STATE 3
49 #define QUP_STATE_MASK 3
51 #define QUP_STATE_VALID BIT(2)
52 #define QUP_I2C_MAST_GEN BIT(4)
53 #define QUP_I2C_FLUSH BIT(6)
55 #define QUP_OPERATIONAL_RESET 0x000ff0
56 #define QUP_I2C_STATUS_RESET 0xfffffc
58 /* QUP OPERATIONAL FLAGS */
59 #define QUP_I2C_NACK_FLAG BIT(3)
60 #define QUP_OUT_NOT_EMPTY BIT(4)
61 #define QUP_IN_NOT_EMPTY BIT(5)
62 #define QUP_OUT_FULL BIT(6)
63 #define QUP_OUT_SVC_FLAG BIT(8)
64 #define QUP_IN_SVC_FLAG BIT(9)
65 #define QUP_MX_OUTPUT_DONE BIT(10)
66 #define QUP_MX_INPUT_DONE BIT(11)
67 #define OUT_BLOCK_WRITE_REQ BIT(12)
68 #define IN_BLOCK_READ_REQ BIT(13)
70 /* I2C mini core related values */
71 #define QUP_NO_INPUT BIT(7)
72 #define QUP_CLOCK_AUTO_GATE BIT(13)
73 #define I2C_MINI_CORE (2 << 8)
74 #define I2C_N_VAL 15
75 #define I2C_N_VAL_V2 7
77 /* Most significant word offset in FIFO port */
78 #define QUP_MSW_SHIFT (I2C_N_VAL + 1)
80 /* Packing/Unpacking words in FIFOs, and IO modes */
81 #define QUP_OUTPUT_BLK_MODE (1 << 10)
82 #define QUP_OUTPUT_BAM_MODE (3 << 10)
83 #define QUP_INPUT_BLK_MODE (1 << 12)
84 #define QUP_INPUT_BAM_MODE (3 << 12)
85 #define QUP_BAM_MODE (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
86 #define QUP_UNPACK_EN BIT(14)
87 #define QUP_PACK_EN BIT(15)
89 #define QUP_REPACK_EN (QUP_UNPACK_EN | QUP_PACK_EN)
90 #define QUP_V2_TAGS_EN 1
92 #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
93 #define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07)
94 #define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03)
95 #define QUP_INPUT_FIFO_SIZE(x) (((x) >> 7) & 0x07)
97 /* QUP tags */
98 #define QUP_TAG_START (1 << 8)
99 #define QUP_TAG_DATA (2 << 8)
100 #define QUP_TAG_STOP (3 << 8)
101 #define QUP_TAG_REC (4 << 8)
102 #define QUP_BAM_INPUT_EOT 0x93
103 #define QUP_BAM_FLUSH_STOP 0x96
105 /* QUP v2 tags */
106 #define QUP_TAG_V2_START 0x81
107 #define QUP_TAG_V2_DATAWR 0x82
108 #define QUP_TAG_V2_DATAWR_STOP 0x83
109 #define QUP_TAG_V2_DATARD 0x85
110 #define QUP_TAG_V2_DATARD_NACK 0x86
111 #define QUP_TAG_V2_DATARD_STOP 0x87
113 /* Status, Error flags */
114 #define I2C_STATUS_WR_BUFFER_FULL BIT(0)
115 #define I2C_STATUS_BUS_ACTIVE BIT(8)
116 #define I2C_STATUS_ERROR_MASK 0x38000fc
117 #define QUP_STATUS_ERROR_FLAGS 0x7c
119 #define QUP_READ_LIMIT 256
120 #define SET_BIT 0x1
121 #define RESET_BIT 0x0
122 #define ONE_BYTE 0x1
123 #define QUP_I2C_MX_CONFIG_DURING_RUN BIT(31)
125 /* Maximum transfer length for single DMA descriptor */
126 #define MX_TX_RX_LEN SZ_64K
127 #define MX_BLOCKS (MX_TX_RX_LEN / QUP_READ_LIMIT)
128 /* Maximum transfer length for all DMA descriptors */
129 #define MX_DMA_TX_RX_LEN (2 * MX_TX_RX_LEN)
130 #define MX_DMA_BLOCKS (MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
134 * the top of maximum transfer time calculated from i2c bus speed to compensate
135 * the overheads.
137 #define TOUT_MIN 2
139 /* I2C Frequency Modes */
140 #define I2C_STANDARD_FREQ 100000
141 #define I2C_FAST_MODE_FREQ 400000
142 #define I2C_FAST_MODE_PLUS_FREQ 1000000
144 /* Default values. Use these if FW query fails */
145 #define DEFAULT_CLK_FREQ I2C_STANDARD_FREQ
146 #define DEFAULT_SRC_CLK 20000000
149 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
150 * data transfer
152 #define QUP_MAX_TAGS_LEN 4
153 /* Max data length for each DATARD tags */
154 #define RECV_MAX_DATA_LEN 254
155 /* TAG length for DATA READ in RX FIFO */
156 #define READ_RX_TAGS_LEN 2
158 static unsigned int scl_freq;
159 module_param_named(scl_freq, scl_freq, uint, 0444);
160 MODULE_PARM_DESC(scl_freq, "SCL frequency override");
163 * count: no of blocks
164 * pos: current block number
165 * tx_tag_len: tx tag length for current block
166 * rx_tag_len: rx tag length for current block
167 * data_len: remaining data length for current message
168 * cur_blk_len: data length for current block
169 * total_tx_len: total tx length including tag bytes for current QUP transfer
170 * total_rx_len: total rx length including tag bytes for current QUP transfer
171 * tx_fifo_data_pos: current byte number in TX FIFO word
172 * tx_fifo_free: number of free bytes in current QUP block write.
173 * rx_fifo_data_pos: current byte number in RX FIFO word
174 * fifo_available: number of available bytes in RX FIFO for current
175 * QUP block read
176 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
177 * to TX FIFO will be appended in this data and will be written to
178 * TX FIFO when all the 4 bytes are available.
179 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
180 * contains the 4 bytes of RX data.
181 * cur_data: pointer to tell cur data position for current message
182 * cur_tx_tags: pointer to tell cur position in tags
183 * tx_tags_sent: all tx tag bytes have been written in FIFO word
184 * send_last_word: for tx FIFO, last word send is pending in current block
185 * rx_bytes_read: if all the bytes have been read from rx FIFO.
186 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
187 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
188 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
189 * tags: contains tx tag bytes for current QUP transfer
191 struct qup_i2c_block {
192 int count;
193 int pos;
194 int tx_tag_len;
195 int rx_tag_len;
196 int data_len;
197 int cur_blk_len;
198 int total_tx_len;
199 int total_rx_len;
200 int tx_fifo_data_pos;
201 int tx_fifo_free;
202 int rx_fifo_data_pos;
203 int fifo_available;
204 u32 tx_fifo_data;
205 u32 rx_fifo_data;
206 u8 *cur_data;
207 u8 *cur_tx_tags;
208 bool tx_tags_sent;
209 bool send_last_word;
210 bool rx_tags_fetched;
211 bool rx_bytes_read;
212 bool is_tx_blk_mode;
213 bool is_rx_blk_mode;
214 u8 tags[6];
217 struct qup_i2c_tag {
218 u8 *start;
219 dma_addr_t addr;
222 struct qup_i2c_bam {
223 struct qup_i2c_tag tag;
224 struct dma_chan *dma;
225 struct scatterlist *sg;
226 unsigned int sg_cnt;
229 struct qup_i2c_dev {
230 struct device *dev;
231 void __iomem *base;
232 int irq;
233 struct clk *clk;
234 struct clk *pclk;
235 struct i2c_adapter adap;
237 int clk_ctl;
238 int out_fifo_sz;
239 int in_fifo_sz;
240 int out_blk_sz;
241 int in_blk_sz;
243 int blk_xfer_limit;
244 unsigned long one_byte_t;
245 unsigned long xfer_timeout;
246 struct qup_i2c_block blk;
248 struct i2c_msg *msg;
249 /* Current posion in user message buffer */
250 int pos;
251 /* I2C protocol errors */
252 u32 bus_err;
253 /* QUP core errors */
254 u32 qup_err;
256 /* To check if this is the last msg */
257 bool is_last;
258 bool is_smbus_read;
260 /* To configure when bus is in run state */
261 u32 config_run;
263 /* dma parameters */
264 bool is_dma;
265 /* To check if the current transfer is using DMA */
266 bool use_dma;
267 unsigned int max_xfer_sg_len;
268 unsigned int tag_buf_pos;
269 /* The threshold length above which block mode will be used */
270 unsigned int blk_mode_threshold;
271 struct dma_pool *dpool;
272 struct qup_i2c_tag start_tag;
273 struct qup_i2c_bam brx;
274 struct qup_i2c_bam btx;
276 struct completion xfer;
277 /* function to write data in tx fifo */
278 void (*write_tx_fifo)(struct qup_i2c_dev *qup);
279 /* function to read data from rx fifo */
280 void (*read_rx_fifo)(struct qup_i2c_dev *qup);
281 /* function to write tags in tx fifo for i2c read transfer */
282 void (*write_rx_tags)(struct qup_i2c_dev *qup);
285 static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
287 struct qup_i2c_dev *qup = dev;
288 struct qup_i2c_block *blk = &qup->blk;
289 u32 bus_err;
290 u32 qup_err;
291 u32 opflags;
293 bus_err = readl(qup->base + QUP_I2C_STATUS);
294 qup_err = readl(qup->base + QUP_ERROR_FLAGS);
295 opflags = readl(qup->base + QUP_OPERATIONAL);
297 if (!qup->msg) {
298 /* Clear Error interrupt */
299 writel(QUP_RESET_STATE, qup->base + QUP_STATE);
300 return IRQ_HANDLED;
303 bus_err &= I2C_STATUS_ERROR_MASK;
304 qup_err &= QUP_STATUS_ERROR_FLAGS;
306 /* Clear the error bits in QUP_ERROR_FLAGS */
307 if (qup_err)
308 writel(qup_err, qup->base + QUP_ERROR_FLAGS);
310 /* Clear the error bits in QUP_I2C_STATUS */
311 if (bus_err)
312 writel(bus_err, qup->base + QUP_I2C_STATUS);
315 * Check for BAM mode and returns if already error has come for current
316 * transfer. In Error case, sometimes, QUP generates more than one
317 * interrupt.
319 if (qup->use_dma && (qup->qup_err || qup->bus_err))
320 return IRQ_HANDLED;
322 /* Reset the QUP State in case of error */
323 if (qup_err || bus_err) {
325 * Don’t reset the QUP state in case of BAM mode. The BAM
326 * flush operation needs to be scheduled in transfer function
327 * which will clear the remaining schedule descriptors in BAM
328 * HW FIFO and generates the BAM interrupt.
330 if (!qup->use_dma)
331 writel(QUP_RESET_STATE, qup->base + QUP_STATE);
332 goto done;
335 if (opflags & QUP_OUT_SVC_FLAG) {
336 writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
338 if (opflags & OUT_BLOCK_WRITE_REQ) {
339 blk->tx_fifo_free += qup->out_blk_sz;
340 if (qup->msg->flags & I2C_M_RD)
341 qup->write_rx_tags(qup);
342 else
343 qup->write_tx_fifo(qup);
347 if (opflags & QUP_IN_SVC_FLAG) {
348 writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
350 if (!blk->is_rx_blk_mode) {
351 blk->fifo_available += qup->in_fifo_sz;
352 qup->read_rx_fifo(qup);
353 } else if (opflags & IN_BLOCK_READ_REQ) {
354 blk->fifo_available += qup->in_blk_sz;
355 qup->read_rx_fifo(qup);
359 if (qup->msg->flags & I2C_M_RD) {
360 if (!blk->rx_bytes_read)
361 return IRQ_HANDLED;
362 } else {
364 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
365 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
366 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
367 * of interrupt for write message in FIFO mode is
368 * QUP_MAX_OUTPUT_DONE_FLAG condition.
370 if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
371 return IRQ_HANDLED;
374 done:
375 qup->qup_err = qup_err;
376 qup->bus_err = bus_err;
377 complete(&qup->xfer);
378 return IRQ_HANDLED;
381 static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
382 u32 req_state, u32 req_mask)
384 int retries = 1;
385 u32 state;
388 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
389 * cycles. So retry once after a 1uS delay.
391 do {
392 state = readl(qup->base + QUP_STATE);
394 if (state & QUP_STATE_VALID &&
395 (state & req_mask) == req_state)
396 return 0;
398 udelay(1);
399 } while (retries--);
401 return -ETIMEDOUT;
404 static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
406 return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
409 static void qup_i2c_flush(struct qup_i2c_dev *qup)
411 u32 val = readl(qup->base + QUP_STATE);
413 val |= QUP_I2C_FLUSH;
414 writel(val, qup->base + QUP_STATE);
417 static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
419 return qup_i2c_poll_state_mask(qup, 0, 0);
422 static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
424 return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
427 static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
429 if (qup_i2c_poll_state_valid(qup) != 0)
430 return -EIO;
432 writel(state, qup->base + QUP_STATE);
434 if (qup_i2c_poll_state(qup, state) != 0)
435 return -EIO;
436 return 0;
439 /* Check if I2C bus returns to IDLE state */
440 static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
442 unsigned long timeout;
443 u32 status;
444 int ret = 0;
446 timeout = jiffies + len * 4;
447 for (;;) {
448 status = readl(qup->base + QUP_I2C_STATUS);
449 if (!(status & I2C_STATUS_BUS_ACTIVE))
450 break;
452 if (time_after(jiffies, timeout))
453 ret = -ETIMEDOUT;
455 usleep_range(len, len * 2);
458 return ret;
461 static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
463 struct qup_i2c_block *blk = &qup->blk;
464 struct i2c_msg *msg = qup->msg;
465 u32 addr = i2c_8bit_addr_from_msg(msg);
466 u32 qup_tag;
467 int idx;
468 u32 val;
470 if (qup->pos == 0) {
471 val = QUP_TAG_START | addr;
472 idx = 1;
473 blk->tx_fifo_free--;
474 } else {
475 val = 0;
476 idx = 0;
479 while (blk->tx_fifo_free && qup->pos < msg->len) {
480 if (qup->pos == msg->len - 1)
481 qup_tag = QUP_TAG_STOP;
482 else
483 qup_tag = QUP_TAG_DATA;
485 if (idx & 1)
486 val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
487 else
488 val = qup_tag | msg->buf[qup->pos];
490 /* Write out the pair and the last odd value */
491 if (idx & 1 || qup->pos == msg->len - 1)
492 writel(val, qup->base + QUP_OUT_FIFO_BASE);
494 qup->pos++;
495 idx++;
496 blk->tx_fifo_free--;
500 static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
501 struct i2c_msg *msg)
503 qup->blk.pos = 0;
504 qup->blk.data_len = msg->len;
505 qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
508 static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
510 int data_len;
512 if (qup->blk.data_len > qup->blk_xfer_limit)
513 data_len = qup->blk_xfer_limit;
514 else
515 data_len = qup->blk.data_len;
517 return data_len;
520 static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
522 return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
525 static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
526 struct i2c_msg *msg)
528 int len = 0;
530 if (qup->is_smbus_read) {
531 tags[len++] = QUP_TAG_V2_DATARD_STOP;
532 tags[len++] = qup_i2c_get_data_len(qup);
533 } else {
534 tags[len++] = QUP_TAG_V2_START;
535 tags[len++] = addr & 0xff;
537 if (msg->flags & I2C_M_TEN)
538 tags[len++] = addr >> 8;
540 tags[len++] = QUP_TAG_V2_DATARD;
541 /* Read 1 byte indicating the length of the SMBus message */
542 tags[len++] = 1;
544 return len;
547 static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
548 struct i2c_msg *msg)
550 u16 addr = i2c_8bit_addr_from_msg(msg);
551 int len = 0;
552 int data_len;
554 int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
556 /* Handle tags for SMBus block read */
557 if (qup_i2c_check_msg_len(msg))
558 return qup_i2c_set_tags_smb(addr, tags, qup, msg);
560 if (qup->blk.pos == 0) {
561 tags[len++] = QUP_TAG_V2_START;
562 tags[len++] = addr & 0xff;
564 if (msg->flags & I2C_M_TEN)
565 tags[len++] = addr >> 8;
568 /* Send _STOP commands for the last block */
569 if (last) {
570 if (msg->flags & I2C_M_RD)
571 tags[len++] = QUP_TAG_V2_DATARD_STOP;
572 else
573 tags[len++] = QUP_TAG_V2_DATAWR_STOP;
574 } else {
575 if (msg->flags & I2C_M_RD)
576 tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
577 QUP_TAG_V2_DATARD_NACK :
578 QUP_TAG_V2_DATARD;
579 else
580 tags[len++] = QUP_TAG_V2_DATAWR;
583 data_len = qup_i2c_get_data_len(qup);
585 /* 0 implies 256 bytes */
586 if (data_len == QUP_READ_LIMIT)
587 tags[len++] = 0;
588 else
589 tags[len++] = data_len;
591 return len;
595 static void qup_i2c_bam_cb(void *data)
597 struct qup_i2c_dev *qup = data;
599 complete(&qup->xfer);
602 static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
603 unsigned int buflen, struct qup_i2c_dev *qup,
604 int dir)
606 int ret;
608 sg_set_buf(sg, buf, buflen);
609 ret = dma_map_sg(qup->dev, sg, 1, dir);
610 if (!ret)
611 return -EINVAL;
613 return 0;
616 static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
618 if (qup->btx.dma)
619 dma_release_channel(qup->btx.dma);
620 if (qup->brx.dma)
621 dma_release_channel(qup->brx.dma);
622 qup->btx.dma = NULL;
623 qup->brx.dma = NULL;
626 static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
628 int err;
630 if (!qup->btx.dma) {
631 qup->btx.dma = dma_request_slave_channel_reason(qup->dev, "tx");
632 if (IS_ERR(qup->btx.dma)) {
633 err = PTR_ERR(qup->btx.dma);
634 qup->btx.dma = NULL;
635 dev_err(qup->dev, "\n tx channel not available");
636 return err;
640 if (!qup->brx.dma) {
641 qup->brx.dma = dma_request_slave_channel_reason(qup->dev, "rx");
642 if (IS_ERR(qup->brx.dma)) {
643 dev_err(qup->dev, "\n rx channel not available");
644 err = PTR_ERR(qup->brx.dma);
645 qup->brx.dma = NULL;
646 qup_i2c_rel_dma(qup);
647 return err;
650 return 0;
653 static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
655 int ret = 0, limit = QUP_READ_LIMIT;
656 u32 len = 0, blocks, rem;
657 u32 i = 0, tlen, tx_len = 0;
658 u8 *tags;
660 qup->blk_xfer_limit = QUP_READ_LIMIT;
661 qup_i2c_set_blk_data(qup, msg);
663 blocks = qup->blk.count;
664 rem = msg->len - (blocks - 1) * limit;
666 if (msg->flags & I2C_M_RD) {
667 while (qup->blk.pos < blocks) {
668 tlen = (i == (blocks - 1)) ? rem : limit;
669 tags = &qup->start_tag.start[qup->tag_buf_pos + len];
670 len += qup_i2c_set_tags(tags, qup, msg);
671 qup->blk.data_len -= tlen;
673 /* scratch buf to read the start and len tags */
674 ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
675 &qup->brx.tag.start[0],
676 2, qup, DMA_FROM_DEVICE);
678 if (ret)
679 return ret;
681 ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
682 &msg->buf[limit * i],
683 tlen, qup,
684 DMA_FROM_DEVICE);
685 if (ret)
686 return ret;
688 i++;
689 qup->blk.pos = i;
691 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
692 &qup->start_tag.start[qup->tag_buf_pos],
693 len, qup, DMA_TO_DEVICE);
694 if (ret)
695 return ret;
697 qup->tag_buf_pos += len;
698 } else {
699 while (qup->blk.pos < blocks) {
700 tlen = (i == (blocks - 1)) ? rem : limit;
701 tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
702 len = qup_i2c_set_tags(tags, qup, msg);
703 qup->blk.data_len -= tlen;
705 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
706 tags, len,
707 qup, DMA_TO_DEVICE);
708 if (ret)
709 return ret;
711 tx_len += len;
712 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
713 &msg->buf[limit * i],
714 tlen, qup, DMA_TO_DEVICE);
715 if (ret)
716 return ret;
717 i++;
718 qup->blk.pos = i;
721 qup->tag_buf_pos += tx_len;
724 return 0;
727 static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
729 struct dma_async_tx_descriptor *txd, *rxd = NULL;
730 int ret = 0;
731 dma_cookie_t cookie_rx, cookie_tx;
732 u32 len = 0;
733 u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
735 /* schedule the EOT and FLUSH I2C tags */
736 len = 1;
737 if (rx_cnt) {
738 qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
739 len++;
741 /* scratch buf to read the BAM EOT FLUSH tags */
742 ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
743 &qup->brx.tag.start[0],
744 1, qup, DMA_FROM_DEVICE);
745 if (ret)
746 return ret;
749 qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
750 ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
751 len, qup, DMA_TO_DEVICE);
752 if (ret)
753 return ret;
755 txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
756 DMA_MEM_TO_DEV,
757 DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
758 if (!txd) {
759 dev_err(qup->dev, "failed to get tx desc\n");
760 ret = -EINVAL;
761 goto desc_err;
764 if (!rx_cnt) {
765 txd->callback = qup_i2c_bam_cb;
766 txd->callback_param = qup;
769 cookie_tx = dmaengine_submit(txd);
770 if (dma_submit_error(cookie_tx)) {
771 ret = -EINVAL;
772 goto desc_err;
775 dma_async_issue_pending(qup->btx.dma);
777 if (rx_cnt) {
778 rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
779 rx_cnt, DMA_DEV_TO_MEM,
780 DMA_PREP_INTERRUPT);
781 if (!rxd) {
782 dev_err(qup->dev, "failed to get rx desc\n");
783 ret = -EINVAL;
785 /* abort TX descriptors */
786 dmaengine_terminate_all(qup->btx.dma);
787 goto desc_err;
790 rxd->callback = qup_i2c_bam_cb;
791 rxd->callback_param = qup;
792 cookie_rx = dmaengine_submit(rxd);
793 if (dma_submit_error(cookie_rx)) {
794 ret = -EINVAL;
795 goto desc_err;
798 dma_async_issue_pending(qup->brx.dma);
801 if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
802 dev_err(qup->dev, "normal trans timed out\n");
803 ret = -ETIMEDOUT;
806 if (ret || qup->bus_err || qup->qup_err) {
807 reinit_completion(&qup->xfer);
809 if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
810 dev_err(qup->dev, "change to run state timed out");
811 goto desc_err;
814 qup_i2c_flush(qup);
816 /* wait for remaining interrupts to occur */
817 if (!wait_for_completion_timeout(&qup->xfer, HZ))
818 dev_err(qup->dev, "flush timed out\n");
820 ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
823 desc_err:
824 dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
826 if (rx_cnt)
827 dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
828 DMA_FROM_DEVICE);
830 return ret;
833 static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
835 qup->btx.sg_cnt = 0;
836 qup->brx.sg_cnt = 0;
837 qup->tag_buf_pos = 0;
840 static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
841 int num)
843 struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
844 int ret = 0;
845 int idx = 0;
847 enable_irq(qup->irq);
848 ret = qup_i2c_req_dma(qup);
850 if (ret)
851 goto out;
853 writel(0, qup->base + QUP_MX_INPUT_CNT);
854 writel(0, qup->base + QUP_MX_OUTPUT_CNT);
856 /* set BAM mode */
857 writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
859 /* mask fifo irqs */
860 writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
862 /* set RUN STATE */
863 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
864 if (ret)
865 goto out;
867 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
868 qup_i2c_bam_clear_tag_buffers(qup);
870 for (idx = 0; idx < num; idx++) {
871 qup->msg = msg + idx;
872 qup->is_last = idx == (num - 1);
874 ret = qup_i2c_bam_make_desc(qup, qup->msg);
875 if (ret)
876 break;
879 * Make DMA descriptor and schedule the BAM transfer if its
880 * already crossed the maximum length. Since the memory for all
881 * tags buffers have been taken for 2 maximum possible
882 * transfers length so it will never cross the buffer actual
883 * length.
885 if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
886 qup->brx.sg_cnt > qup->max_xfer_sg_len ||
887 qup->is_last) {
888 ret = qup_i2c_bam_schedule_desc(qup);
889 if (ret)
890 break;
892 qup_i2c_bam_clear_tag_buffers(qup);
896 out:
897 disable_irq(qup->irq);
899 qup->msg = NULL;
900 return ret;
903 static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
904 struct i2c_msg *msg)
906 unsigned long left;
907 int ret = 0;
909 left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
910 if (!left) {
911 writel(1, qup->base + QUP_SW_RESET);
912 ret = -ETIMEDOUT;
915 if (qup->bus_err || qup->qup_err)
916 ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
918 return ret;
921 static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
923 struct qup_i2c_block *blk = &qup->blk;
924 struct i2c_msg *msg = qup->msg;
925 u32 val = 0;
926 int idx = 0;
928 while (blk->fifo_available && qup->pos < msg->len) {
929 if ((idx & 1) == 0) {
930 /* Reading 2 words at time */
931 val = readl(qup->base + QUP_IN_FIFO_BASE);
932 msg->buf[qup->pos++] = val & 0xFF;
933 } else {
934 msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
936 idx++;
937 blk->fifo_available--;
940 if (qup->pos == msg->len)
941 blk->rx_bytes_read = true;
944 static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
946 struct i2c_msg *msg = qup->msg;
947 u32 addr, len, val;
949 addr = i2c_8bit_addr_from_msg(msg);
951 /* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
952 len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
954 val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
955 writel(val, qup->base + QUP_OUT_FIFO_BASE);
958 static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
960 struct qup_i2c_block *blk = &qup->blk;
961 u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
962 u32 io_mode = QUP_REPACK_EN;
964 blk->is_tx_blk_mode =
965 blk->total_tx_len > qup->out_fifo_sz ? true : false;
966 blk->is_rx_blk_mode =
967 blk->total_rx_len > qup->in_fifo_sz ? true : false;
969 if (blk->is_tx_blk_mode) {
970 io_mode |= QUP_OUTPUT_BLK_MODE;
971 writel(0, qup->base + QUP_MX_WRITE_CNT);
972 writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
973 } else {
974 writel(0, qup->base + QUP_MX_OUTPUT_CNT);
975 writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
978 if (blk->total_rx_len) {
979 if (blk->is_rx_blk_mode) {
980 io_mode |= QUP_INPUT_BLK_MODE;
981 writel(0, qup->base + QUP_MX_READ_CNT);
982 writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
983 } else {
984 writel(0, qup->base + QUP_MX_INPUT_CNT);
985 writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
987 } else {
988 qup_config |= QUP_NO_INPUT;
991 writel(qup_config, qup->base + QUP_CONFIG);
992 writel(io_mode, qup->base + QUP_IO_MODE);
995 static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
997 blk->tx_fifo_free = 0;
998 blk->fifo_available = 0;
999 blk->rx_bytes_read = false;
1002 static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
1004 struct qup_i2c_block *blk = &qup->blk;
1005 int ret;
1007 qup_i2c_clear_blk_v1(blk);
1008 qup_i2c_conf_v1(qup);
1009 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1010 if (ret)
1011 return ret;
1013 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1015 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1016 if (ret)
1017 return ret;
1019 reinit_completion(&qup->xfer);
1020 enable_irq(qup->irq);
1021 if (!blk->is_tx_blk_mode) {
1022 blk->tx_fifo_free = qup->out_fifo_sz;
1024 if (is_rx)
1025 qup_i2c_write_rx_tags_v1(qup);
1026 else
1027 qup_i2c_write_tx_fifo_v1(qup);
1030 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1031 if (ret)
1032 goto err;
1034 ret = qup_i2c_wait_for_complete(qup, qup->msg);
1035 if (ret)
1036 goto err;
1038 ret = qup_i2c_bus_active(qup, ONE_BYTE);
1040 err:
1041 disable_irq(qup->irq);
1042 return ret;
1045 static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1047 struct i2c_msg *msg = qup->msg;
1048 struct qup_i2c_block *blk = &qup->blk;
1050 qup->pos = 0;
1051 blk->total_tx_len = msg->len + 1;
1052 blk->total_rx_len = 0;
1054 return qup_i2c_conf_xfer_v1(qup, false);
1057 static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1059 struct qup_i2c_block *blk = &qup->blk;
1061 qup->pos = 0;
1062 blk->total_tx_len = 2;
1063 blk->total_rx_len = qup->msg->len;
1065 return qup_i2c_conf_xfer_v1(qup, true);
1068 static int qup_i2c_xfer(struct i2c_adapter *adap,
1069 struct i2c_msg msgs[],
1070 int num)
1072 struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1073 int ret, idx;
1075 ret = pm_runtime_get_sync(qup->dev);
1076 if (ret < 0)
1077 goto out;
1079 qup->bus_err = 0;
1080 qup->qup_err = 0;
1082 writel(1, qup->base + QUP_SW_RESET);
1083 ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1084 if (ret)
1085 goto out;
1087 /* Configure QUP as I2C mini core */
1088 writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1090 for (idx = 0; idx < num; idx++) {
1091 if (qup_i2c_poll_state_i2c_master(qup)) {
1092 ret = -EIO;
1093 goto out;
1096 if (qup_i2c_check_msg_len(&msgs[idx])) {
1097 ret = -EINVAL;
1098 goto out;
1101 qup->msg = &msgs[idx];
1102 if (msgs[idx].flags & I2C_M_RD)
1103 ret = qup_i2c_read_one(qup);
1104 else
1105 ret = qup_i2c_write_one(qup);
1107 if (ret)
1108 break;
1110 ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1111 if (ret)
1112 break;
1115 if (ret == 0)
1116 ret = num;
1117 out:
1119 pm_runtime_mark_last_busy(qup->dev);
1120 pm_runtime_put_autosuspend(qup->dev);
1122 return ret;
1126 * Configure registers related with reconfiguration during run and call it
1127 * before each i2c sub transfer.
1129 static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1131 struct qup_i2c_block *blk = &qup->blk;
1132 u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1134 if (blk->is_tx_blk_mode)
1135 writel(qup->config_run | blk->total_tx_len,
1136 qup->base + QUP_MX_OUTPUT_CNT);
1137 else
1138 writel(qup->config_run | blk->total_tx_len,
1139 qup->base + QUP_MX_WRITE_CNT);
1141 if (blk->total_rx_len) {
1142 if (blk->is_rx_blk_mode)
1143 writel(qup->config_run | blk->total_rx_len,
1144 qup->base + QUP_MX_INPUT_CNT);
1145 else
1146 writel(qup->config_run | blk->total_rx_len,
1147 qup->base + QUP_MX_READ_CNT);
1148 } else {
1149 qup_config |= QUP_NO_INPUT;
1152 writel(qup_config, qup->base + QUP_CONFIG);
1156 * Configure registers related with transfer mode (FIFO/Block)
1157 * before starting of i2c transfer. It will be called only once in
1158 * QUP RESET state.
1160 static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1162 struct qup_i2c_block *blk = &qup->blk;
1163 u32 io_mode = QUP_REPACK_EN;
1165 if (blk->is_tx_blk_mode) {
1166 io_mode |= QUP_OUTPUT_BLK_MODE;
1167 writel(0, qup->base + QUP_MX_WRITE_CNT);
1168 } else {
1169 writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1172 if (blk->is_rx_blk_mode) {
1173 io_mode |= QUP_INPUT_BLK_MODE;
1174 writel(0, qup->base + QUP_MX_READ_CNT);
1175 } else {
1176 writel(0, qup->base + QUP_MX_INPUT_CNT);
1179 writel(io_mode, qup->base + QUP_IO_MODE);
1182 /* Clear required variables before starting of any QUP v2 sub transfer. */
1183 static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1185 blk->send_last_word = false;
1186 blk->tx_tags_sent = false;
1187 blk->tx_fifo_data = 0;
1188 blk->tx_fifo_data_pos = 0;
1189 blk->tx_fifo_free = 0;
1191 blk->rx_tags_fetched = false;
1192 blk->rx_bytes_read = false;
1193 blk->rx_fifo_data = 0;
1194 blk->rx_fifo_data_pos = 0;
1195 blk->fifo_available = 0;
1198 /* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1199 static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1201 struct qup_i2c_block *blk = &qup->blk;
1202 int j;
1204 for (j = blk->rx_fifo_data_pos;
1205 blk->cur_blk_len && blk->fifo_available;
1206 blk->cur_blk_len--, blk->fifo_available--) {
1207 if (j == 0)
1208 blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1210 *(blk->cur_data++) = blk->rx_fifo_data;
1211 blk->rx_fifo_data >>= 8;
1213 if (j == 3)
1214 j = 0;
1215 else
1216 j++;
1219 blk->rx_fifo_data_pos = j;
1222 /* Receive tags for read message in QUP v2 i2c transfer. */
1223 static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1225 struct qup_i2c_block *blk = &qup->blk;
1227 blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1228 blk->rx_fifo_data >>= blk->rx_tag_len * 8;
1229 blk->rx_fifo_data_pos = blk->rx_tag_len;
1230 blk->fifo_available -= blk->rx_tag_len;
1234 * Read the data and tags from RX FIFO. Since in read case, the tags will be
1235 * preceded by received data bytes so
1236 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1237 * all tag bytes and discard that.
1238 * 2. Read the data from RX FIFO. When all the data bytes have been read then
1239 * set rx_bytes_read to true.
1241 static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1243 struct qup_i2c_block *blk = &qup->blk;
1245 if (!blk->rx_tags_fetched) {
1246 qup_i2c_recv_tags(qup);
1247 blk->rx_tags_fetched = true;
1250 qup_i2c_recv_data(qup);
1251 if (!blk->cur_blk_len)
1252 blk->rx_bytes_read = true;
1256 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1257 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1258 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1260 static void
1261 qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1263 struct qup_i2c_block *blk = &qup->blk;
1264 unsigned int j;
1266 for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1267 (*len)--, blk->tx_fifo_free--) {
1268 blk->tx_fifo_data |= *(*data)++ << (j * 8);
1269 if (j == 3) {
1270 writel(blk->tx_fifo_data,
1271 qup->base + QUP_OUT_FIFO_BASE);
1272 blk->tx_fifo_data = 0x0;
1273 j = 0;
1274 } else {
1275 j++;
1279 blk->tx_fifo_data_pos = j;
1282 /* Transfer tags for read message in QUP v2 i2c transfer. */
1283 static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1285 struct qup_i2c_block *blk = &qup->blk;
1287 qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1288 if (blk->tx_fifo_data_pos)
1289 writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1293 * Write the data and tags in TX FIFO. Since in write case, both tags and data
1294 * need to be written and QUP write tags can have maximum 256 data length, so
1296 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1297 * tags to TX FIFO and set tx_tags_sent to true.
1298 * 2. Check if send_last_word is true. It will be set when last few data bytes
1299 * (less than 4 bytes) are reamining to be written in FIFO because of no FIFO
1300 * space. All this data bytes are available in tx_fifo_data so write this
1301 * in FIFO.
1302 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1303 * then more data is pending otherwise following 3 cases can be possible
1304 * a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1305 * have been written in TX FIFO so nothing else is required.
1306 * b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1307 * from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1308 * in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1309 * will be always greater than or equal to 4 bytes.
1310 * c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1311 * bytes) are copied to tx_fifo_data but couldn't be sent because of
1312 * FIFO full so make send_last_word true.
1314 static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1316 struct qup_i2c_block *blk = &qup->blk;
1318 if (!blk->tx_tags_sent) {
1319 qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1320 &blk->tx_tag_len);
1321 blk->tx_tags_sent = true;
1324 if (blk->send_last_word)
1325 goto send_last_word;
1327 qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1328 if (!blk->cur_blk_len) {
1329 if (!blk->tx_fifo_data_pos)
1330 return;
1332 if (blk->tx_fifo_free)
1333 goto send_last_word;
1335 blk->send_last_word = true;
1338 return;
1340 send_last_word:
1341 writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1345 * Main transfer function which read or write i2c data.
1346 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1347 * transfers can be scheduled.
1349 static int
1350 qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1351 bool change_pause_state)
1353 struct qup_i2c_block *blk = &qup->blk;
1354 struct i2c_msg *msg = qup->msg;
1355 int ret;
1358 * Check if its SMBus Block read for which the top level read will be
1359 * done into 2 QUP reads. One with message length 1 while other one is
1360 * with actual length.
1362 if (qup_i2c_check_msg_len(msg)) {
1363 if (qup->is_smbus_read) {
1365 * If the message length is already read in
1366 * the first byte of the buffer, account for
1367 * that by setting the offset
1369 blk->cur_data += 1;
1370 is_first = false;
1371 } else {
1372 change_pause_state = false;
1376 qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1378 qup_i2c_clear_blk_v2(blk);
1379 qup_i2c_conf_count_v2(qup);
1381 /* If it is first sub transfer, then configure i2c bus clocks */
1382 if (is_first) {
1383 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1384 if (ret)
1385 return ret;
1387 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1389 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1390 if (ret)
1391 return ret;
1394 reinit_completion(&qup->xfer);
1395 enable_irq(qup->irq);
1397 * In FIFO mode, tx FIFO can be written directly while in block mode the
1398 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1400 if (!blk->is_tx_blk_mode) {
1401 blk->tx_fifo_free = qup->out_fifo_sz;
1403 if (is_rx)
1404 qup_i2c_write_rx_tags_v2(qup);
1405 else
1406 qup_i2c_write_tx_fifo_v2(qup);
1409 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1410 if (ret)
1411 goto err;
1413 ret = qup_i2c_wait_for_complete(qup, msg);
1414 if (ret)
1415 goto err;
1417 /* Move to pause state for all the transfers, except last one */
1418 if (change_pause_state) {
1419 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1420 if (ret)
1421 goto err;
1424 err:
1425 disable_irq(qup->irq);
1426 return ret;
1430 * Transfer one read/write message in i2c transfer. It splits the message into
1431 * multiple of blk_xfer_limit data length blocks and schedule each
1432 * QUP block individually.
1434 static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1436 int ret = 0;
1437 unsigned int data_len, i;
1438 struct i2c_msg *msg = qup->msg;
1439 struct qup_i2c_block *blk = &qup->blk;
1440 u8 *msg_buf = msg->buf;
1442 qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1443 qup_i2c_set_blk_data(qup, msg);
1445 for (i = 0; i < blk->count; i++) {
1446 data_len = qup_i2c_get_data_len(qup);
1447 blk->pos = i;
1448 blk->cur_tx_tags = blk->tags;
1449 blk->cur_blk_len = data_len;
1450 blk->tx_tag_len =
1451 qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1453 blk->cur_data = msg_buf;
1455 if (is_rx) {
1456 blk->total_tx_len = blk->tx_tag_len;
1457 blk->rx_tag_len = 2;
1458 blk->total_rx_len = blk->rx_tag_len + data_len;
1459 } else {
1460 blk->total_tx_len = blk->tx_tag_len + data_len;
1461 blk->total_rx_len = 0;
1464 ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1465 !qup->is_last || i < blk->count - 1);
1466 if (ret)
1467 return ret;
1469 /* Handle SMBus block read length */
1470 if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1471 !qup->is_smbus_read) {
1472 if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1473 return -EPROTO;
1475 msg->len = msg->buf[0];
1476 qup->is_smbus_read = true;
1477 ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1478 qup->is_smbus_read = false;
1479 if (ret)
1480 return ret;
1482 msg->len += 1;
1485 msg_buf += data_len;
1486 blk->data_len -= qup->blk_xfer_limit;
1489 return ret;
1493 * QUP v2 supports 3 modes
1494 * Programmed IO using FIFO mode : Less than FIFO size
1495 * Programmed IO using Block mode : Greater than FIFO size
1496 * DMA using BAM : Appropriate for any transaction size but the address should
1497 * be DMA applicable
1499 * This function determines the mode which will be used for this transfer. An
1500 * i2c transfer contains multiple message. Following are the rules to determine
1501 * the mode used.
1502 * 1. Determine complete length, maximum tx and rx length for complete transfer.
1503 * 2. If complete transfer length is greater than fifo size then use the DMA
1504 * mode.
1505 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1506 * for maximum tx and rx length to determine mode.
1508 static int
1509 qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1510 struct i2c_msg msgs[], int num)
1512 int idx;
1513 bool no_dma = false;
1514 unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1516 /* All i2c_msgs should be transferred using either dma or cpu */
1517 for (idx = 0; idx < num; idx++) {
1518 if (msgs[idx].flags & I2C_M_RD)
1519 max_rx_len = max_t(unsigned int, max_rx_len,
1520 msgs[idx].len);
1521 else
1522 max_tx_len = max_t(unsigned int, max_tx_len,
1523 msgs[idx].len);
1525 if (is_vmalloc_addr(msgs[idx].buf))
1526 no_dma = true;
1528 total_len += msgs[idx].len;
1531 if (!no_dma && qup->is_dma &&
1532 (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1533 qup->use_dma = true;
1534 } else {
1535 qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1536 QUP_MAX_TAGS_LEN ? true : false;
1537 qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1538 READ_RX_TAGS_LEN ? true : false;
1541 return 0;
1544 static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1545 struct i2c_msg msgs[],
1546 int num)
1548 struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1549 int ret, idx = 0;
1551 qup->bus_err = 0;
1552 qup->qup_err = 0;
1554 ret = pm_runtime_get_sync(qup->dev);
1555 if (ret < 0)
1556 goto out;
1558 ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1559 if (ret)
1560 goto out;
1562 writel(1, qup->base + QUP_SW_RESET);
1563 ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1564 if (ret)
1565 goto out;
1567 /* Configure QUP as I2C mini core */
1568 writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1569 writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1571 if (qup_i2c_poll_state_i2c_master(qup)) {
1572 ret = -EIO;
1573 goto out;
1576 if (qup->use_dma) {
1577 reinit_completion(&qup->xfer);
1578 ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1579 qup->use_dma = false;
1580 } else {
1581 qup_i2c_conf_mode_v2(qup);
1583 for (idx = 0; idx < num; idx++) {
1584 qup->msg = &msgs[idx];
1585 qup->is_last = idx == (num - 1);
1587 ret = qup_i2c_xfer_v2_msg(qup, idx,
1588 !!(msgs[idx].flags & I2C_M_RD));
1589 if (ret)
1590 break;
1592 qup->msg = NULL;
1595 if (!ret)
1596 ret = qup_i2c_bus_active(qup, ONE_BYTE);
1598 if (!ret)
1599 qup_i2c_change_state(qup, QUP_RESET_STATE);
1601 if (ret == 0)
1602 ret = num;
1603 out:
1604 pm_runtime_mark_last_busy(qup->dev);
1605 pm_runtime_put_autosuspend(qup->dev);
1607 return ret;
1610 static u32 qup_i2c_func(struct i2c_adapter *adap)
1612 return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
1615 static const struct i2c_algorithm qup_i2c_algo = {
1616 .master_xfer = qup_i2c_xfer,
1617 .functionality = qup_i2c_func,
1620 static const struct i2c_algorithm qup_i2c_algo_v2 = {
1621 .master_xfer = qup_i2c_xfer_v2,
1622 .functionality = qup_i2c_func,
1626 * The QUP block will issue a NACK and STOP on the bus when reaching
1627 * the end of the read, the length of the read is specified as one byte
1628 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1630 static const struct i2c_adapter_quirks qup_i2c_quirks = {
1631 .flags = I2C_AQ_NO_ZERO_LEN,
1632 .max_read_len = QUP_READ_LIMIT,
1635 static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1636 .flags = I2C_AQ_NO_ZERO_LEN,
1639 static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1641 clk_prepare_enable(qup->clk);
1642 clk_prepare_enable(qup->pclk);
1645 static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1647 u32 config;
1649 qup_i2c_change_state(qup, QUP_RESET_STATE);
1650 clk_disable_unprepare(qup->clk);
1651 config = readl(qup->base + QUP_CONFIG);
1652 config |= QUP_CLOCK_AUTO_GATE;
1653 writel(config, qup->base + QUP_CONFIG);
1654 clk_disable_unprepare(qup->pclk);
1657 static const struct acpi_device_id qup_i2c_acpi_match[] = {
1658 { "QCOM8010"},
1659 { },
1661 MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1663 static int qup_i2c_probe(struct platform_device *pdev)
1665 static const int blk_sizes[] = {4, 16, 32};
1666 struct qup_i2c_dev *qup;
1667 unsigned long one_bit_t;
1668 struct resource *res;
1669 u32 io_mode, hw_ver, size;
1670 int ret, fs_div, hs_div;
1671 u32 src_clk_freq = DEFAULT_SRC_CLK;
1672 u32 clk_freq = DEFAULT_CLK_FREQ;
1673 int blocks;
1674 bool is_qup_v1;
1676 qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1677 if (!qup)
1678 return -ENOMEM;
1680 qup->dev = &pdev->dev;
1681 init_completion(&qup->xfer);
1682 platform_set_drvdata(pdev, qup);
1684 if (scl_freq) {
1685 dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1686 clk_freq = scl_freq;
1687 } else {
1688 ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1689 if (ret) {
1690 dev_notice(qup->dev, "using default clock-frequency %d",
1691 DEFAULT_CLK_FREQ);
1695 if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1696 qup->adap.algo = &qup_i2c_algo;
1697 qup->adap.quirks = &qup_i2c_quirks;
1698 is_qup_v1 = true;
1699 } else {
1700 qup->adap.algo = &qup_i2c_algo_v2;
1701 qup->adap.quirks = &qup_i2c_quirks_v2;
1702 is_qup_v1 = false;
1703 if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1704 goto nodma;
1705 else
1706 ret = qup_i2c_req_dma(qup);
1708 if (ret == -EPROBE_DEFER)
1709 goto fail_dma;
1710 else if (ret != 0)
1711 goto nodma;
1713 qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1714 blocks = (MX_DMA_BLOCKS << 1) + 1;
1715 qup->btx.sg = devm_kcalloc(&pdev->dev,
1716 blocks, sizeof(*qup->btx.sg),
1717 GFP_KERNEL);
1718 if (!qup->btx.sg) {
1719 ret = -ENOMEM;
1720 goto fail_dma;
1722 sg_init_table(qup->btx.sg, blocks);
1724 qup->brx.sg = devm_kcalloc(&pdev->dev,
1725 blocks, sizeof(*qup->brx.sg),
1726 GFP_KERNEL);
1727 if (!qup->brx.sg) {
1728 ret = -ENOMEM;
1729 goto fail_dma;
1731 sg_init_table(qup->brx.sg, blocks);
1733 /* 2 tag bytes for each block + 5 for start, stop tags */
1734 size = blocks * 2 + 5;
1736 qup->start_tag.start = devm_kzalloc(&pdev->dev,
1737 size, GFP_KERNEL);
1738 if (!qup->start_tag.start) {
1739 ret = -ENOMEM;
1740 goto fail_dma;
1743 qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1744 if (!qup->brx.tag.start) {
1745 ret = -ENOMEM;
1746 goto fail_dma;
1749 qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1750 if (!qup->btx.tag.start) {
1751 ret = -ENOMEM;
1752 goto fail_dma;
1754 qup->is_dma = true;
1757 nodma:
1758 /* We support frequencies up to FAST Mode Plus (1MHz) */
1759 if (!clk_freq || clk_freq > I2C_FAST_MODE_PLUS_FREQ) {
1760 dev_err(qup->dev, "clock frequency not supported %d\n",
1761 clk_freq);
1762 return -EINVAL;
1765 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1766 qup->base = devm_ioremap_resource(qup->dev, res);
1767 if (IS_ERR(qup->base))
1768 return PTR_ERR(qup->base);
1770 qup->irq = platform_get_irq(pdev, 0);
1771 if (qup->irq < 0) {
1772 dev_err(qup->dev, "No IRQ defined\n");
1773 return qup->irq;
1776 if (has_acpi_companion(qup->dev)) {
1777 ret = device_property_read_u32(qup->dev,
1778 "src-clock-hz", &src_clk_freq);
1779 if (ret) {
1780 dev_notice(qup->dev, "using default src-clock-hz %d",
1781 DEFAULT_SRC_CLK);
1783 ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1784 } else {
1785 qup->clk = devm_clk_get(qup->dev, "core");
1786 if (IS_ERR(qup->clk)) {
1787 dev_err(qup->dev, "Could not get core clock\n");
1788 return PTR_ERR(qup->clk);
1791 qup->pclk = devm_clk_get(qup->dev, "iface");
1792 if (IS_ERR(qup->pclk)) {
1793 dev_err(qup->dev, "Could not get iface clock\n");
1794 return PTR_ERR(qup->pclk);
1796 qup_i2c_enable_clocks(qup);
1797 src_clk_freq = clk_get_rate(qup->clk);
1801 * Bootloaders might leave a pending interrupt on certain QUP's,
1802 * so we reset the core before registering for interrupts.
1804 writel(1, qup->base + QUP_SW_RESET);
1805 ret = qup_i2c_poll_state_valid(qup);
1806 if (ret)
1807 goto fail;
1809 ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1810 IRQF_TRIGGER_HIGH, "i2c_qup", qup);
1811 if (ret) {
1812 dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1813 goto fail;
1815 disable_irq(qup->irq);
1817 hw_ver = readl(qup->base + QUP_HW_VERSION);
1818 dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1820 io_mode = readl(qup->base + QUP_IO_MODE);
1823 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1824 * associated with each byte written/received
1826 size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1827 if (size >= ARRAY_SIZE(blk_sizes)) {
1828 ret = -EIO;
1829 goto fail;
1831 qup->out_blk_sz = blk_sizes[size];
1833 size = QUP_INPUT_BLOCK_SIZE(io_mode);
1834 if (size >= ARRAY_SIZE(blk_sizes)) {
1835 ret = -EIO;
1836 goto fail;
1838 qup->in_blk_sz = blk_sizes[size];
1840 if (is_qup_v1) {
1842 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1843 * single transfer but the block size is in bytes so divide the
1844 * in_blk_sz and out_blk_sz by 2
1846 qup->in_blk_sz /= 2;
1847 qup->out_blk_sz /= 2;
1848 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1849 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1850 qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1851 } else {
1852 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1853 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1854 qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1857 size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1858 qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1860 size = QUP_INPUT_FIFO_SIZE(io_mode);
1861 qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1863 hs_div = 3;
1864 if (clk_freq <= I2C_STANDARD_FREQ) {
1865 fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1866 qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1867 } else {
1868 /* 33%/66% duty cycle */
1869 fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1870 qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1874 * Time it takes for a byte to be clocked out on the bus.
1875 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1877 one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1878 qup->one_byte_t = one_bit_t * 9;
1879 qup->xfer_timeout = TOUT_MIN * HZ +
1880 usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1882 dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1883 qup->in_blk_sz, qup->in_fifo_sz,
1884 qup->out_blk_sz, qup->out_fifo_sz);
1886 i2c_set_adapdata(&qup->adap, qup);
1887 qup->adap.dev.parent = qup->dev;
1888 qup->adap.dev.of_node = pdev->dev.of_node;
1889 qup->is_last = true;
1891 strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1893 pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1894 pm_runtime_use_autosuspend(qup->dev);
1895 pm_runtime_set_active(qup->dev);
1896 pm_runtime_enable(qup->dev);
1898 ret = i2c_add_adapter(&qup->adap);
1899 if (ret)
1900 goto fail_runtime;
1902 return 0;
1904 fail_runtime:
1905 pm_runtime_disable(qup->dev);
1906 pm_runtime_set_suspended(qup->dev);
1907 fail:
1908 qup_i2c_disable_clocks(qup);
1909 fail_dma:
1910 if (qup->btx.dma)
1911 dma_release_channel(qup->btx.dma);
1912 if (qup->brx.dma)
1913 dma_release_channel(qup->brx.dma);
1914 return ret;
1917 static int qup_i2c_remove(struct platform_device *pdev)
1919 struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1921 if (qup->is_dma) {
1922 dma_release_channel(qup->btx.dma);
1923 dma_release_channel(qup->brx.dma);
1926 disable_irq(qup->irq);
1927 qup_i2c_disable_clocks(qup);
1928 i2c_del_adapter(&qup->adap);
1929 pm_runtime_disable(qup->dev);
1930 pm_runtime_set_suspended(qup->dev);
1931 return 0;
1934 #ifdef CONFIG_PM
1935 static int qup_i2c_pm_suspend_runtime(struct device *device)
1937 struct qup_i2c_dev *qup = dev_get_drvdata(device);
1939 dev_dbg(device, "pm_runtime: suspending...\n");
1940 qup_i2c_disable_clocks(qup);
1941 return 0;
1944 static int qup_i2c_pm_resume_runtime(struct device *device)
1946 struct qup_i2c_dev *qup = dev_get_drvdata(device);
1948 dev_dbg(device, "pm_runtime: resuming...\n");
1949 qup_i2c_enable_clocks(qup);
1950 return 0;
1952 #endif
1954 #ifdef CONFIG_PM_SLEEP
1955 static int qup_i2c_suspend(struct device *device)
1957 if (!pm_runtime_suspended(device))
1958 return qup_i2c_pm_suspend_runtime(device);
1959 return 0;
1962 static int qup_i2c_resume(struct device *device)
1964 qup_i2c_pm_resume_runtime(device);
1965 pm_runtime_mark_last_busy(device);
1966 pm_request_autosuspend(device);
1967 return 0;
1969 #endif
1971 static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1972 SET_SYSTEM_SLEEP_PM_OPS(
1973 qup_i2c_suspend,
1974 qup_i2c_resume)
1975 SET_RUNTIME_PM_OPS(
1976 qup_i2c_pm_suspend_runtime,
1977 qup_i2c_pm_resume_runtime,
1978 NULL)
1981 static const struct of_device_id qup_i2c_dt_match[] = {
1982 { .compatible = "qcom,i2c-qup-v1.1.1" },
1983 { .compatible = "qcom,i2c-qup-v2.1.1" },
1984 { .compatible = "qcom,i2c-qup-v2.2.1" },
1987 MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1989 static struct platform_driver qup_i2c_driver = {
1990 .probe = qup_i2c_probe,
1991 .remove = qup_i2c_remove,
1992 .driver = {
1993 .name = "i2c_qup",
1994 .pm = &qup_i2c_qup_pm_ops,
1995 .of_match_table = qup_i2c_dt_match,
1996 .acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
2000 module_platform_driver(qup_i2c_driver);
2002 MODULE_LICENSE("GPL v2");
2003 MODULE_ALIAS("platform:i2c_qup");