Linux 4.19.133
[linux/fpc-iii.git] / drivers / iio / buffer / industrialio-buffer-dma.c
blobb32bf57910caeffad07736600b974ec94afc17f2
1 /*
2 * Copyright 2013-2015 Analog Devices Inc.
3 * Author: Lars-Peter Clausen <lars@metafoo.de>
5 * Licensed under the GPL-2.
6 */
8 #include <linux/slab.h>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/workqueue.h>
13 #include <linux/mutex.h>
14 #include <linux/sched.h>
15 #include <linux/poll.h>
16 #include <linux/iio/buffer.h>
17 #include <linux/iio/buffer_impl.h>
18 #include <linux/iio/buffer-dma.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/sizes.h>
23 * For DMA buffers the storage is sub-divided into so called blocks. Each block
24 * has its own memory buffer. The size of the block is the granularity at which
25 * memory is exchanged between the hardware and the application. Increasing the
26 * basic unit of data exchange from one sample to one block decreases the
27 * management overhead that is associated with each sample. E.g. if we say the
28 * management overhead for one exchange is x and the unit of exchange is one
29 * sample the overhead will be x for each sample. Whereas when using a block
30 * which contains n samples the overhead per sample is reduced to x/n. This
31 * allows to achieve much higher samplerates than what can be sustained with
32 * the one sample approach.
34 * Blocks are exchanged between the DMA controller and the application via the
35 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
36 * incoming queue are waiting for the DMA controller to pick them up and fill
37 * them with data. Block on the outgoing queue have been filled with data and
38 * are waiting for the application to dequeue them and read the data.
40 * A block can be in one of the following states:
41 * * Owned by the application. In this state the application can read data from
42 * the block.
43 * * On the incoming list: Blocks on the incoming list are queued up to be
44 * processed by the DMA controller.
45 * * Owned by the DMA controller: The DMA controller is processing the block
46 * and filling it with data.
47 * * On the outgoing list: Blocks on the outgoing list have been successfully
48 * processed by the DMA controller and contain data. They can be dequeued by
49 * the application.
50 * * Dead: A block that is dead has been marked as to be freed. It might still
51 * be owned by either the application or the DMA controller at the moment.
52 * But once they are done processing it instead of going to either the
53 * incoming or outgoing queue the block will be freed.
55 * In addition to this blocks are reference counted and the memory associated
56 * with both the block structure as well as the storage memory for the block
57 * will be freed when the last reference to the block is dropped. This means a
58 * block must not be accessed without holding a reference.
60 * The iio_dma_buffer implementation provides a generic infrastructure for
61 * managing the blocks.
63 * A driver for a specific piece of hardware that has DMA capabilities need to
64 * implement the submit() callback from the iio_dma_buffer_ops structure. This
65 * callback is supposed to initiate the DMA transfer copying data from the
66 * converter to the memory region of the block. Once the DMA transfer has been
67 * completed the driver must call iio_dma_buffer_block_done() for the completed
68 * block.
70 * Prior to this it must set the bytes_used field of the block contains
71 * the actual number of bytes in the buffer. Typically this will be equal to the
72 * size of the block, but if the DMA hardware has certain alignment requirements
73 * for the transfer length it might choose to use less than the full size. In
74 * either case it is expected that bytes_used is a multiple of the bytes per
75 * datum, i.e. the block must not contain partial samples.
77 * The driver must call iio_dma_buffer_block_done() for each block it has
78 * received through its submit_block() callback, even if it does not actually
79 * perform a DMA transfer for the block, e.g. because the buffer was disabled
80 * before the block transfer was started. In this case it should set bytes_used
81 * to 0.
83 * In addition it is recommended that a driver implements the abort() callback.
84 * It will be called when the buffer is disabled and can be used to cancel
85 * pending and stop active transfers.
87 * The specific driver implementation should use the default callback
88 * implementations provided by this module for the iio_buffer_access_funcs
89 * struct. It may overload some callbacks with custom variants if the hardware
90 * has special requirements that are not handled by the generic functions. If a
91 * driver chooses to overload a callback it has to ensure that the generic
92 * callback is called from within the custom callback.
95 static void iio_buffer_block_release(struct kref *kref)
97 struct iio_dma_buffer_block *block = container_of(kref,
98 struct iio_dma_buffer_block, kref);
100 WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
102 dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
103 block->vaddr, block->phys_addr);
105 iio_buffer_put(&block->queue->buffer);
106 kfree(block);
109 static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
111 kref_get(&block->kref);
114 static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
116 kref_put(&block->kref, iio_buffer_block_release);
120 * dma_free_coherent can sleep, hence we need to take some special care to be
121 * able to drop a reference from an atomic context.
123 static LIST_HEAD(iio_dma_buffer_dead_blocks);
124 static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
126 static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
128 struct iio_dma_buffer_block *block, *_block;
129 LIST_HEAD(block_list);
131 spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
132 list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
133 spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
135 list_for_each_entry_safe(block, _block, &block_list, head)
136 iio_buffer_block_release(&block->kref);
138 static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
140 static void iio_buffer_block_release_atomic(struct kref *kref)
142 struct iio_dma_buffer_block *block;
143 unsigned long flags;
145 block = container_of(kref, struct iio_dma_buffer_block, kref);
147 spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
148 list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
149 spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
151 schedule_work(&iio_dma_buffer_cleanup_work);
155 * Version of iio_buffer_block_put() that can be called from atomic context
157 static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
159 kref_put(&block->kref, iio_buffer_block_release_atomic);
162 static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
164 return container_of(buf, struct iio_dma_buffer_queue, buffer);
167 static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
168 struct iio_dma_buffer_queue *queue, size_t size)
170 struct iio_dma_buffer_block *block;
172 block = kzalloc(sizeof(*block), GFP_KERNEL);
173 if (!block)
174 return NULL;
176 block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
177 &block->phys_addr, GFP_KERNEL);
178 if (!block->vaddr) {
179 kfree(block);
180 return NULL;
183 block->size = size;
184 block->state = IIO_BLOCK_STATE_DEQUEUED;
185 block->queue = queue;
186 INIT_LIST_HEAD(&block->head);
187 kref_init(&block->kref);
189 iio_buffer_get(&queue->buffer);
191 return block;
194 static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
196 struct iio_dma_buffer_queue *queue = block->queue;
199 * The buffer has already been freed by the application, just drop the
200 * reference.
202 if (block->state != IIO_BLOCK_STATE_DEAD) {
203 block->state = IIO_BLOCK_STATE_DONE;
204 list_add_tail(&block->head, &queue->outgoing);
209 * iio_dma_buffer_block_done() - Indicate that a block has been completed
210 * @block: The completed block
212 * Should be called when the DMA controller has finished handling the block to
213 * pass back ownership of the block to the queue.
215 void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
217 struct iio_dma_buffer_queue *queue = block->queue;
218 unsigned long flags;
220 spin_lock_irqsave(&queue->list_lock, flags);
221 _iio_dma_buffer_block_done(block);
222 spin_unlock_irqrestore(&queue->list_lock, flags);
224 iio_buffer_block_put_atomic(block);
225 wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
227 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
230 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
231 * aborted
232 * @queue: Queue for which to complete blocks.
233 * @list: List of aborted blocks. All blocks in this list must be from @queue.
235 * Typically called from the abort() callback after the DMA controller has been
236 * stopped. This will set bytes_used to 0 for each block in the list and then
237 * hand the blocks back to the queue.
239 void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
240 struct list_head *list)
242 struct iio_dma_buffer_block *block, *_block;
243 unsigned long flags;
245 spin_lock_irqsave(&queue->list_lock, flags);
246 list_for_each_entry_safe(block, _block, list, head) {
247 list_del(&block->head);
248 block->bytes_used = 0;
249 _iio_dma_buffer_block_done(block);
250 iio_buffer_block_put_atomic(block);
252 spin_unlock_irqrestore(&queue->list_lock, flags);
254 wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
256 EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
258 static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
261 * If the core owns the block it can be re-used. This should be the
262 * default case when enabling the buffer, unless the DMA controller does
263 * not support abort and has not given back the block yet.
265 switch (block->state) {
266 case IIO_BLOCK_STATE_DEQUEUED:
267 case IIO_BLOCK_STATE_QUEUED:
268 case IIO_BLOCK_STATE_DONE:
269 return true;
270 default:
271 return false;
276 * iio_dma_buffer_request_update() - DMA buffer request_update callback
277 * @buffer: The buffer which to request an update
279 * Should be used as the iio_dma_buffer_request_update() callback for
280 * iio_buffer_access_ops struct for DMA buffers.
282 int iio_dma_buffer_request_update(struct iio_buffer *buffer)
284 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
285 struct iio_dma_buffer_block *block;
286 bool try_reuse = false;
287 size_t size;
288 int ret = 0;
289 int i;
292 * Split the buffer into two even parts. This is used as a double
293 * buffering scheme with usually one block at a time being used by the
294 * DMA and the other one by the application.
296 size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
297 queue->buffer.length, 2);
299 mutex_lock(&queue->lock);
301 /* Allocations are page aligned */
302 if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
303 try_reuse = true;
305 queue->fileio.block_size = size;
306 queue->fileio.active_block = NULL;
308 spin_lock_irq(&queue->list_lock);
309 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
310 block = queue->fileio.blocks[i];
312 /* If we can't re-use it free it */
313 if (block && (!iio_dma_block_reusable(block) || !try_reuse))
314 block->state = IIO_BLOCK_STATE_DEAD;
318 * At this point all blocks are either owned by the core or marked as
319 * dead. This means we can reset the lists without having to fear
320 * corrution.
322 INIT_LIST_HEAD(&queue->outgoing);
323 spin_unlock_irq(&queue->list_lock);
325 INIT_LIST_HEAD(&queue->incoming);
327 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
328 if (queue->fileio.blocks[i]) {
329 block = queue->fileio.blocks[i];
330 if (block->state == IIO_BLOCK_STATE_DEAD) {
331 /* Could not reuse it */
332 iio_buffer_block_put(block);
333 block = NULL;
334 } else {
335 block->size = size;
337 } else {
338 block = NULL;
341 if (!block) {
342 block = iio_dma_buffer_alloc_block(queue, size);
343 if (!block) {
344 ret = -ENOMEM;
345 goto out_unlock;
347 queue->fileio.blocks[i] = block;
350 block->state = IIO_BLOCK_STATE_QUEUED;
351 list_add_tail(&block->head, &queue->incoming);
354 out_unlock:
355 mutex_unlock(&queue->lock);
357 return ret;
359 EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
361 static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
362 struct iio_dma_buffer_block *block)
364 int ret;
367 * If the hardware has already been removed we put the block into
368 * limbo. It will neither be on the incoming nor outgoing list, nor will
369 * it ever complete. It will just wait to be freed eventually.
371 if (!queue->ops)
372 return;
374 block->state = IIO_BLOCK_STATE_ACTIVE;
375 iio_buffer_block_get(block);
376 ret = queue->ops->submit(queue, block);
377 if (ret) {
379 * This is a bit of a problem and there is not much we can do
380 * other then wait for the buffer to be disabled and re-enabled
381 * and try again. But it should not really happen unless we run
382 * out of memory or something similar.
384 * TODO: Implement support in the IIO core to allow buffers to
385 * notify consumers that something went wrong and the buffer
386 * should be disabled.
388 iio_buffer_block_put(block);
393 * iio_dma_buffer_enable() - Enable DMA buffer
394 * @buffer: IIO buffer to enable
395 * @indio_dev: IIO device the buffer is attached to
397 * Needs to be called when the device that the buffer is attached to starts
398 * sampling. Typically should be the iio_buffer_access_ops enable callback.
400 * This will allocate the DMA buffers and start the DMA transfers.
402 int iio_dma_buffer_enable(struct iio_buffer *buffer,
403 struct iio_dev *indio_dev)
405 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
406 struct iio_dma_buffer_block *block, *_block;
408 mutex_lock(&queue->lock);
409 queue->active = true;
410 list_for_each_entry_safe(block, _block, &queue->incoming, head) {
411 list_del(&block->head);
412 iio_dma_buffer_submit_block(queue, block);
414 mutex_unlock(&queue->lock);
416 return 0;
418 EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
421 * iio_dma_buffer_disable() - Disable DMA buffer
422 * @buffer: IIO DMA buffer to disable
423 * @indio_dev: IIO device the buffer is attached to
425 * Needs to be called when the device that the buffer is attached to stops
426 * sampling. Typically should be the iio_buffer_access_ops disable callback.
428 int iio_dma_buffer_disable(struct iio_buffer *buffer,
429 struct iio_dev *indio_dev)
431 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
433 mutex_lock(&queue->lock);
434 queue->active = false;
436 if (queue->ops && queue->ops->abort)
437 queue->ops->abort(queue);
438 mutex_unlock(&queue->lock);
440 return 0;
442 EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
444 static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
445 struct iio_dma_buffer_block *block)
447 if (block->state == IIO_BLOCK_STATE_DEAD) {
448 iio_buffer_block_put(block);
449 } else if (queue->active) {
450 iio_dma_buffer_submit_block(queue, block);
451 } else {
452 block->state = IIO_BLOCK_STATE_QUEUED;
453 list_add_tail(&block->head, &queue->incoming);
457 static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
458 struct iio_dma_buffer_queue *queue)
460 struct iio_dma_buffer_block *block;
462 spin_lock_irq(&queue->list_lock);
463 block = list_first_entry_or_null(&queue->outgoing, struct
464 iio_dma_buffer_block, head);
465 if (block != NULL) {
466 list_del(&block->head);
467 block->state = IIO_BLOCK_STATE_DEQUEUED;
469 spin_unlock_irq(&queue->list_lock);
471 return block;
475 * iio_dma_buffer_read() - DMA buffer read callback
476 * @buffer: Buffer to read form
477 * @n: Number of bytes to read
478 * @user_buffer: Userspace buffer to copy the data to
480 * Should be used as the read_first_n callback for iio_buffer_access_ops
481 * struct for DMA buffers.
483 int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
484 char __user *user_buffer)
486 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
487 struct iio_dma_buffer_block *block;
488 int ret;
490 if (n < buffer->bytes_per_datum)
491 return -EINVAL;
493 mutex_lock(&queue->lock);
495 if (!queue->fileio.active_block) {
496 block = iio_dma_buffer_dequeue(queue);
497 if (block == NULL) {
498 ret = 0;
499 goto out_unlock;
501 queue->fileio.pos = 0;
502 queue->fileio.active_block = block;
503 } else {
504 block = queue->fileio.active_block;
507 n = rounddown(n, buffer->bytes_per_datum);
508 if (n > block->bytes_used - queue->fileio.pos)
509 n = block->bytes_used - queue->fileio.pos;
511 if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
512 ret = -EFAULT;
513 goto out_unlock;
516 queue->fileio.pos += n;
518 if (queue->fileio.pos == block->bytes_used) {
519 queue->fileio.active_block = NULL;
520 iio_dma_buffer_enqueue(queue, block);
523 ret = n;
525 out_unlock:
526 mutex_unlock(&queue->lock);
528 return ret;
530 EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
533 * iio_dma_buffer_data_available() - DMA buffer data_available callback
534 * @buf: Buffer to check for data availability
536 * Should be used as the data_available callback for iio_buffer_access_ops
537 * struct for DMA buffers.
539 size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
541 struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
542 struct iio_dma_buffer_block *block;
543 size_t data_available = 0;
546 * For counting the available bytes we'll use the size of the block not
547 * the number of actual bytes available in the block. Otherwise it is
548 * possible that we end up with a value that is lower than the watermark
549 * but won't increase since all blocks are in use.
552 mutex_lock(&queue->lock);
553 if (queue->fileio.active_block)
554 data_available += queue->fileio.active_block->size;
556 spin_lock_irq(&queue->list_lock);
557 list_for_each_entry(block, &queue->outgoing, head)
558 data_available += block->size;
559 spin_unlock_irq(&queue->list_lock);
560 mutex_unlock(&queue->lock);
562 return data_available;
564 EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
567 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
568 * @buffer: Buffer to set the bytes-per-datum for
569 * @bpd: The new bytes-per-datum value
571 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
572 * struct for DMA buffers.
574 int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
576 buffer->bytes_per_datum = bpd;
578 return 0;
580 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
583 * iio_dma_buffer_set_length - DMA buffer set_length callback
584 * @buffer: Buffer to set the length for
585 * @length: The new buffer length
587 * Should be used as the set_length callback for iio_buffer_access_ops
588 * struct for DMA buffers.
590 int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
592 /* Avoid an invalid state */
593 if (length < 2)
594 length = 2;
595 buffer->length = length;
596 buffer->watermark = length / 2;
598 return 0;
600 EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
603 * iio_dma_buffer_init() - Initialize DMA buffer queue
604 * @queue: Buffer to initialize
605 * @dev: DMA device
606 * @ops: DMA buffer queue callback operations
608 * The DMA device will be used by the queue to do DMA memory allocations. So it
609 * should refer to the device that will perform the DMA to ensure that
610 * allocations are done from a memory region that can be accessed by the device.
612 int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
613 struct device *dev, const struct iio_dma_buffer_ops *ops)
615 iio_buffer_init(&queue->buffer);
616 queue->buffer.length = PAGE_SIZE;
617 queue->buffer.watermark = queue->buffer.length / 2;
618 queue->dev = dev;
619 queue->ops = ops;
621 INIT_LIST_HEAD(&queue->incoming);
622 INIT_LIST_HEAD(&queue->outgoing);
624 mutex_init(&queue->lock);
625 spin_lock_init(&queue->list_lock);
627 return 0;
629 EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
632 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
633 * @queue: Buffer to cleanup
635 * After this function has completed it is safe to free any resources that are
636 * associated with the buffer and are accessed inside the callback operations.
638 void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
640 unsigned int i;
642 mutex_lock(&queue->lock);
644 spin_lock_irq(&queue->list_lock);
645 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
646 if (!queue->fileio.blocks[i])
647 continue;
648 queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
650 INIT_LIST_HEAD(&queue->outgoing);
651 spin_unlock_irq(&queue->list_lock);
653 INIT_LIST_HEAD(&queue->incoming);
655 for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
656 if (!queue->fileio.blocks[i])
657 continue;
658 iio_buffer_block_put(queue->fileio.blocks[i]);
659 queue->fileio.blocks[i] = NULL;
661 queue->fileio.active_block = NULL;
662 queue->ops = NULL;
664 mutex_unlock(&queue->lock);
666 EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
669 * iio_dma_buffer_release() - Release final buffer resources
670 * @queue: Buffer to release
672 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
673 * called in the buffers release callback implementation right before freeing
674 * the memory associated with the buffer.
676 void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
678 mutex_destroy(&queue->lock);
680 EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
682 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
683 MODULE_DESCRIPTION("DMA buffer for the IIO framework");
684 MODULE_LICENSE("GPL v2");