2 * MPU3050 gyroscope driver
4 * Copyright (C) 2016 Linaro Ltd.
5 * Author: Linus Walleij <linus.walleij@linaro.org>
7 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
8 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
9 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
10 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12 * TODO: add support for setting up the low pass 3dB frequency.
15 #include <linux/bitops.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
32 #define MPU3050_CHIP_ID 0x68
33 #define MPU3050_CHIP_ID_MASK 0x7E
36 * Register map: anything suffixed *_H is a big-endian high byte and always
37 * followed by the corresponding low byte (*_L) even though these are not
38 * explicitly included in the register definitions.
40 #define MPU3050_CHIP_ID_REG 0x00
41 #define MPU3050_PRODUCT_ID_REG 0x01
42 #define MPU3050_XG_OFFS_TC 0x05
43 #define MPU3050_YG_OFFS_TC 0x08
44 #define MPU3050_ZG_OFFS_TC 0x0B
45 #define MPU3050_X_OFFS_USR_H 0x0C
46 #define MPU3050_Y_OFFS_USR_H 0x0E
47 #define MPU3050_Z_OFFS_USR_H 0x10
48 #define MPU3050_FIFO_EN 0x12
49 #define MPU3050_AUX_VDDIO 0x13
50 #define MPU3050_SLV_ADDR 0x14
51 #define MPU3050_SMPLRT_DIV 0x15
52 #define MPU3050_DLPF_FS_SYNC 0x16
53 #define MPU3050_INT_CFG 0x17
54 #define MPU3050_AUX_ADDR 0x18
55 #define MPU3050_INT_STATUS 0x1A
56 #define MPU3050_TEMP_H 0x1B
57 #define MPU3050_XOUT_H 0x1D
58 #define MPU3050_YOUT_H 0x1F
59 #define MPU3050_ZOUT_H 0x21
60 #define MPU3050_DMP_CFG1 0x35
61 #define MPU3050_DMP_CFG2 0x36
62 #define MPU3050_BANK_SEL 0x37
63 #define MPU3050_MEM_START_ADDR 0x38
64 #define MPU3050_MEM_R_W 0x39
65 #define MPU3050_FIFO_COUNT_H 0x3A
66 #define MPU3050_FIFO_R 0x3C
67 #define MPU3050_USR_CTRL 0x3D
68 #define MPU3050_PWR_MGM 0x3E
70 /* MPU memory bank read options */
71 #define MPU3050_MEM_PRFTCH BIT(5)
72 #define MPU3050_MEM_USER_BANK BIT(4)
73 /* Bits 8-11 select memory bank */
74 #define MPU3050_MEM_RAM_BANK_0 0
75 #define MPU3050_MEM_RAM_BANK_1 1
76 #define MPU3050_MEM_RAM_BANK_2 2
77 #define MPU3050_MEM_RAM_BANK_3 3
78 #define MPU3050_MEM_OTP_BANK_0 4
80 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
85 #define MPU3050_FIFO_EN_FOOTER BIT(0)
86 #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1)
87 #define MPU3050_FIFO_EN_AUX_YOUT BIT(2)
88 #define MPU3050_FIFO_EN_AUX_XOUT BIT(3)
89 #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4)
90 #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5)
91 #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6)
92 #define MPU3050_FIFO_EN_TEMP_OUT BIT(7)
95 * Digital Low Pass filter (DLPF)
99 #define MPU3050_EXT_SYNC_NONE 0x00
100 #define MPU3050_EXT_SYNC_TEMP 0x20
101 #define MPU3050_EXT_SYNC_GYROX 0x40
102 #define MPU3050_EXT_SYNC_GYROY 0x60
103 #define MPU3050_EXT_SYNC_GYROZ 0x80
104 #define MPU3050_EXT_SYNC_ACCELX 0xA0
105 #define MPU3050_EXT_SYNC_ACCELY 0xC0
106 #define MPU3050_EXT_SYNC_ACCELZ 0xE0
107 #define MPU3050_EXT_SYNC_MASK 0xE0
108 #define MPU3050_EXT_SYNC_SHIFT 5
110 #define MPU3050_FS_250DPS 0x00
111 #define MPU3050_FS_500DPS 0x08
112 #define MPU3050_FS_1000DPS 0x10
113 #define MPU3050_FS_2000DPS 0x18
114 #define MPU3050_FS_MASK 0x18
115 #define MPU3050_FS_SHIFT 3
117 #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00
118 #define MPU3050_DLPF_CFG_188HZ 0x01
119 #define MPU3050_DLPF_CFG_98HZ 0x02
120 #define MPU3050_DLPF_CFG_42HZ 0x03
121 #define MPU3050_DLPF_CFG_20HZ 0x04
122 #define MPU3050_DLPF_CFG_10HZ 0x05
123 #define MPU3050_DLPF_CFG_5HZ 0x06
124 #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07
125 #define MPU3050_DLPF_CFG_MASK 0x07
126 #define MPU3050_DLPF_CFG_SHIFT 0
128 /* Interrupt config */
129 #define MPU3050_INT_RAW_RDY_EN BIT(0)
130 #define MPU3050_INT_DMP_DONE_EN BIT(1)
131 #define MPU3050_INT_MPU_RDY_EN BIT(2)
132 #define MPU3050_INT_ANYRD_2CLEAR BIT(4)
133 #define MPU3050_INT_LATCH_EN BIT(5)
134 #define MPU3050_INT_OPEN BIT(6)
135 #define MPU3050_INT_ACTL BIT(7)
136 /* Interrupt status */
137 #define MPU3050_INT_STATUS_RAW_RDY BIT(0)
138 #define MPU3050_INT_STATUS_DMP_DONE BIT(1)
139 #define MPU3050_INT_STATUS_MPU_RDY BIT(2)
140 #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7)
142 #define MPU3050_USR_CTRL_FIFO_EN BIT(6)
143 #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5)
144 #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3)
145 #define MPU3050_USR_CTRL_FIFO_RST BIT(1)
146 #define MPU3050_USR_CTRL_GYRO_RST BIT(0)
148 #define MPU3050_PWR_MGM_PLL_X 0x01
149 #define MPU3050_PWR_MGM_PLL_Y 0x02
150 #define MPU3050_PWR_MGM_PLL_Z 0x03
151 #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07
152 #define MPU3050_PWR_MGM_STBY_ZG BIT(3)
153 #define MPU3050_PWR_MGM_STBY_YG BIT(4)
154 #define MPU3050_PWR_MGM_STBY_XG BIT(5)
155 #define MPU3050_PWR_MGM_SLEEP BIT(6)
156 #define MPU3050_PWR_MGM_RESET BIT(7)
157 #define MPU3050_PWR_MGM_MASK 0xff
160 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
161 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
162 * in two's complement.
164 static unsigned int mpu3050_fs_precision
[] = {
165 IIO_DEGREE_TO_RAD(250),
166 IIO_DEGREE_TO_RAD(500),
167 IIO_DEGREE_TO_RAD(1000),
168 IIO_DEGREE_TO_RAD(2000)
174 static const char mpu3050_reg_vdd
[] = "vdd";
175 static const char mpu3050_reg_vlogic
[] = "vlogic";
177 static unsigned int mpu3050_get_freq(struct mpu3050
*mpu3050
)
181 if (mpu3050
->lpf
== MPU3050_DLPF_CFG_256HZ_NOLPF2
)
185 freq
/= (mpu3050
->divisor
+ 1);
190 static int mpu3050_start_sampling(struct mpu3050
*mpu3050
)
197 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
198 MPU3050_PWR_MGM_RESET
, MPU3050_PWR_MGM_RESET
);
202 /* Turn on the Z-axis PLL */
203 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
204 MPU3050_PWR_MGM_CLKSEL_MASK
,
205 MPU3050_PWR_MGM_PLL_Z
);
209 /* Write calibration offset registers */
210 for (i
= 0; i
< 3; i
++)
211 raw_val
[i
] = cpu_to_be16(mpu3050
->calibration
[i
]);
213 ret
= regmap_bulk_write(mpu3050
->map
, MPU3050_X_OFFS_USR_H
, raw_val
,
218 /* Set low pass filter (sample rate), sync and full scale */
219 ret
= regmap_write(mpu3050
->map
, MPU3050_DLPF_FS_SYNC
,
220 MPU3050_EXT_SYNC_NONE
<< MPU3050_EXT_SYNC_SHIFT
|
221 mpu3050
->fullscale
<< MPU3050_FS_SHIFT
|
222 mpu3050
->lpf
<< MPU3050_DLPF_CFG_SHIFT
);
226 /* Set up sampling frequency */
227 ret
= regmap_write(mpu3050
->map
, MPU3050_SMPLRT_DIV
, mpu3050
->divisor
);
232 * Max 50 ms start-up time after setting DLPF_FS_SYNC
233 * according to the data sheet, then wait for the next sample
234 * at this frequency T = 1000/f ms.
236 msleep(50 + 1000 / mpu3050_get_freq(mpu3050
));
241 static int mpu3050_set_8khz_samplerate(struct mpu3050
*mpu3050
)
245 enum mpu3050_lpf lpf
;
248 divisor
= mpu3050
->divisor
;
250 mpu3050
->lpf
= LPF_256_HZ_NOLPF
; /* 8 kHz base frequency */
251 mpu3050
->divisor
= 0; /* Divide by 1 */
252 ret
= mpu3050_start_sampling(mpu3050
);
255 mpu3050
->divisor
= divisor
;
260 static int mpu3050_read_raw(struct iio_dev
*indio_dev
,
261 struct iio_chan_spec
const *chan
,
265 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
270 case IIO_CHAN_INFO_OFFSET
:
271 switch (chan
->type
) {
273 /* The temperature scaling is (x+23000)/280 Celsius */
279 case IIO_CHAN_INFO_CALIBBIAS
:
280 switch (chan
->type
) {
282 *val
= mpu3050
->calibration
[chan
->scan_index
-1];
287 case IIO_CHAN_INFO_SAMP_FREQ
:
288 *val
= mpu3050_get_freq(mpu3050
);
290 case IIO_CHAN_INFO_SCALE
:
291 switch (chan
->type
) {
293 /* Millidegrees, see about temperature scaling above */
296 return IIO_VAL_FRACTIONAL
;
299 * Convert to the corresponding full scale in
300 * radians. All 16 bits are used with sign to
301 * span the available scale: to account for the one
302 * missing value if we multiply by 1/S16_MAX, instead
303 * multiply with 2/U16_MAX.
305 *val
= mpu3050_fs_precision
[mpu3050
->fullscale
] * 2;
307 return IIO_VAL_FRACTIONAL
;
311 case IIO_CHAN_INFO_RAW
:
313 pm_runtime_get_sync(mpu3050
->dev
);
314 mutex_lock(&mpu3050
->lock
);
316 ret
= mpu3050_set_8khz_samplerate(mpu3050
);
318 goto out_read_raw_unlock
;
320 switch (chan
->type
) {
322 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
,
323 &raw_val
, sizeof(raw_val
));
325 dev_err(mpu3050
->dev
,
326 "error reading temperature\n");
327 goto out_read_raw_unlock
;
330 *val
= be16_to_cpu(raw_val
);
333 goto out_read_raw_unlock
;
335 ret
= regmap_bulk_read(mpu3050
->map
,
336 MPU3050_AXIS_REGS(chan
->scan_index
-1),
340 dev_err(mpu3050
->dev
,
341 "error reading axis data\n");
342 goto out_read_raw_unlock
;
345 *val
= be16_to_cpu(raw_val
);
348 goto out_read_raw_unlock
;
351 goto out_read_raw_unlock
;
360 mutex_unlock(&mpu3050
->lock
);
361 pm_runtime_mark_last_busy(mpu3050
->dev
);
362 pm_runtime_put_autosuspend(mpu3050
->dev
);
367 static int mpu3050_write_raw(struct iio_dev
*indio_dev
,
368 const struct iio_chan_spec
*chan
,
369 int val
, int val2
, long mask
)
371 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
373 * Couldn't figure out a way to precalculate these at compile time.
376 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[0] * 1000000 * 2,
379 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[1] * 1000000 * 2,
381 unsigned int fs1000
=
382 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[2] * 1000000 * 2,
384 unsigned int fs2000
=
385 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[3] * 1000000 * 2,
389 case IIO_CHAN_INFO_CALIBBIAS
:
390 if (chan
->type
!= IIO_ANGL_VEL
)
392 mpu3050
->calibration
[chan
->scan_index
-1] = val
;
394 case IIO_CHAN_INFO_SAMP_FREQ
:
396 * The max samplerate is 8000 Hz, the minimum
399 if (val
< 4 || val
> 8000)
403 * Above 1000 Hz we must turn off the digital low pass filter
404 * so we get a base frequency of 8kHz to the divider
407 mpu3050
->lpf
= LPF_256_HZ_NOLPF
;
408 mpu3050
->divisor
= DIV_ROUND_CLOSEST(8000, val
) - 1;
412 mpu3050
->lpf
= LPF_188_HZ
;
413 mpu3050
->divisor
= DIV_ROUND_CLOSEST(1000, val
) - 1;
415 case IIO_CHAN_INFO_SCALE
:
416 if (chan
->type
!= IIO_ANGL_VEL
)
419 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
420 * which means we need to round to the closest radians
421 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
422 * rad/s. The scale is then for the 16 bits used to cover
423 * it 2/(2^16) of that.
426 /* Just too large, set the max range */
428 mpu3050
->fullscale
= FS_2000_DPS
;
433 * Now we're dealing with fractions below zero in millirad/s
434 * do some integer interpolation and match with the closest
435 * fullscale in the table.
438 val2
< ((fs500
+ fs250
) / 2))
439 mpu3050
->fullscale
= FS_250_DPS
;
440 else if (val2
<= fs500
||
441 val2
< ((fs1000
+ fs500
) / 2))
442 mpu3050
->fullscale
= FS_500_DPS
;
443 else if (val2
<= fs1000
||
444 val2
< ((fs2000
+ fs1000
) / 2))
445 mpu3050
->fullscale
= FS_1000_DPS
;
448 mpu3050
->fullscale
= FS_2000_DPS
;
457 static irqreturn_t
mpu3050_trigger_handler(int irq
, void *p
)
459 const struct iio_poll_func
*pf
= p
;
460 struct iio_dev
*indio_dev
= pf
->indio_dev
;
461 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
464 * Temperature 1*16 bits
465 * Three axes 3*16 bits
466 * Timestamp 64 bits (4*16 bits)
467 * Sum total 8*16 bits
471 unsigned int datums_from_fifo
= 0;
474 * If we're using the hardware trigger, get the precise timestamp from
475 * the top half of the threaded IRQ handler. Otherwise get the
476 * timestamp here so it will be close in time to the actual values
477 * read from the registers.
479 if (iio_trigger_using_own(indio_dev
))
480 timestamp
= mpu3050
->hw_timestamp
;
482 timestamp
= iio_get_time_ns(indio_dev
);
484 mutex_lock(&mpu3050
->lock
);
486 /* Using the hardware IRQ trigger? Check the buffer then. */
487 if (mpu3050
->hw_irq_trigger
) {
490 /* X, Y, Z + temperature */
491 unsigned int bytes_per_datum
= 8;
492 bool fifo_overflow
= false;
494 ret
= regmap_bulk_read(mpu3050
->map
,
495 MPU3050_FIFO_COUNT_H
,
497 sizeof(raw_fifocnt
));
499 goto out_trigger_unlock
;
500 fifocnt
= be16_to_cpu(raw_fifocnt
);
502 if (fifocnt
== 512) {
503 dev_info(mpu3050
->dev
,
504 "FIFO overflow! Emptying and resetting FIFO\n");
505 fifo_overflow
= true;
506 /* Reset and enable the FIFO */
507 ret
= regmap_update_bits(mpu3050
->map
,
509 MPU3050_USR_CTRL_FIFO_EN
|
510 MPU3050_USR_CTRL_FIFO_RST
,
511 MPU3050_USR_CTRL_FIFO_EN
|
512 MPU3050_USR_CTRL_FIFO_RST
);
514 dev_info(mpu3050
->dev
, "error resetting FIFO\n");
515 goto out_trigger_unlock
;
517 mpu3050
->pending_fifo_footer
= false;
521 dev_dbg(mpu3050
->dev
,
522 "%d bytes in the FIFO\n",
525 while (!fifo_overflow
&& fifocnt
> bytes_per_datum
) {
528 __be16 fifo_values
[5];
531 * If there is a FIFO footer in the pipe, first clear
532 * that out. This follows the complex algorithm in the
533 * datasheet that states that you may never leave the
534 * FIFO empty after the first reading: you have to
535 * always leave two footer bytes in it. The footer is
536 * in practice just two zero bytes.
538 if (mpu3050
->pending_fifo_footer
) {
539 toread
= bytes_per_datum
+ 2;
542 toread
= bytes_per_datum
;
544 /* Put in some dummy value */
545 fifo_values
[0] = 0xAAAA;
548 ret
= regmap_bulk_read(mpu3050
->map
,
550 &fifo_values
[offset
],
553 dev_dbg(mpu3050
->dev
,
554 "%04x %04x %04x %04x %04x\n",
561 /* Index past the footer (fifo_values[0]) and push */
562 iio_push_to_buffers_with_timestamp(indio_dev
,
568 mpu3050
->pending_fifo_footer
= true;
571 * If we're emptying the FIFO, just make sure to
572 * check if something new appeared.
574 if (fifocnt
< bytes_per_datum
) {
575 ret
= regmap_bulk_read(mpu3050
->map
,
576 MPU3050_FIFO_COUNT_H
,
578 sizeof(raw_fifocnt
));
580 goto out_trigger_unlock
;
581 fifocnt
= be16_to_cpu(raw_fifocnt
);
584 if (fifocnt
< bytes_per_datum
)
585 dev_dbg(mpu3050
->dev
,
586 "%d bytes left in the FIFO\n",
590 * At this point, the timestamp that triggered the
591 * hardware interrupt is no longer valid for what
592 * we are reading (the interrupt likely fired for
593 * the value on the top of the FIFO), so set the
594 * timestamp to zero and let userspace deal with it.
601 * If we picked some datums from the FIFO that's enough, else
602 * fall through and just read from the current value registers.
603 * This happens in two cases:
605 * - We are using some other trigger (external, like an HRTimer)
606 * than the sensor's own sample generator. In this case the
607 * sensor is just set to the max sampling frequency and we give
608 * the trigger a copy of the latest value every time we get here.
610 * - The hardware trigger is active but unused and we actually use
611 * another trigger which calls here with a frequency higher
612 * than what the device provides data. We will then just read
613 * duplicate values directly from the hardware registers.
615 if (datums_from_fifo
) {
616 dev_dbg(mpu3050
->dev
,
617 "read %d datums from the FIFO\n",
619 goto out_trigger_unlock
;
622 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
, &hw_values
,
625 dev_err(mpu3050
->dev
,
626 "error reading axis data\n");
627 goto out_trigger_unlock
;
630 iio_push_to_buffers_with_timestamp(indio_dev
, hw_values
, timestamp
);
633 mutex_unlock(&mpu3050
->lock
);
634 iio_trigger_notify_done(indio_dev
->trig
);
639 static int mpu3050_buffer_preenable(struct iio_dev
*indio_dev
)
641 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
643 pm_runtime_get_sync(mpu3050
->dev
);
645 /* Unless we have OUR trigger active, run at full speed */
646 if (!mpu3050
->hw_irq_trigger
)
647 return mpu3050_set_8khz_samplerate(mpu3050
);
652 static int mpu3050_buffer_postdisable(struct iio_dev
*indio_dev
)
654 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
656 pm_runtime_mark_last_busy(mpu3050
->dev
);
657 pm_runtime_put_autosuspend(mpu3050
->dev
);
662 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops
= {
663 .preenable
= mpu3050_buffer_preenable
,
664 .postenable
= iio_triggered_buffer_postenable
,
665 .predisable
= iio_triggered_buffer_predisable
,
666 .postdisable
= mpu3050_buffer_postdisable
,
669 static const struct iio_mount_matrix
*
670 mpu3050_get_mount_matrix(const struct iio_dev
*indio_dev
,
671 const struct iio_chan_spec
*chan
)
673 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
675 return &mpu3050
->orientation
;
678 static const struct iio_chan_spec_ext_info mpu3050_ext_info
[] = {
679 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE
, mpu3050_get_mount_matrix
),
683 #define MPU3050_AXIS_CHANNEL(axis, index) \
685 .type = IIO_ANGL_VEL, \
687 .channel2 = IIO_MOD_##axis, \
688 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
689 BIT(IIO_CHAN_INFO_CALIBBIAS), \
690 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
691 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
692 .ext_info = mpu3050_ext_info, \
693 .scan_index = index, \
698 .endianness = IIO_BE, \
702 static const struct iio_chan_spec mpu3050_channels
[] = {
705 .info_mask_separate
= BIT(IIO_CHAN_INFO_RAW
) |
706 BIT(IIO_CHAN_INFO_SCALE
) |
707 BIT(IIO_CHAN_INFO_OFFSET
),
708 .info_mask_shared_by_all
= BIT(IIO_CHAN_INFO_SAMP_FREQ
),
714 .endianness
= IIO_BE
,
717 MPU3050_AXIS_CHANNEL(X
, 1),
718 MPU3050_AXIS_CHANNEL(Y
, 2),
719 MPU3050_AXIS_CHANNEL(Z
, 3),
720 IIO_CHAN_SOFT_TIMESTAMP(4),
723 /* Four channels apart from timestamp, scan mask = 0x0f */
724 static const unsigned long mpu3050_scan_masks
[] = { 0xf, 0 };
727 * These are just the hardcoded factors resulting from the more elaborate
728 * calculations done with fractions in the scale raw get/set functions.
730 static IIO_CONST_ATTR(anglevel_scale_available
,
736 static struct attribute
*mpu3050_attributes
[] = {
737 &iio_const_attr_anglevel_scale_available
.dev_attr
.attr
,
741 static const struct attribute_group mpu3050_attribute_group
= {
742 .attrs
= mpu3050_attributes
,
745 static const struct iio_info mpu3050_info
= {
746 .read_raw
= mpu3050_read_raw
,
747 .write_raw
= mpu3050_write_raw
,
748 .attrs
= &mpu3050_attribute_group
,
752 * mpu3050_read_mem() - read MPU-3050 internal memory
753 * @mpu3050: device to read from
755 * @addr: target address
756 * @len: number of bytes
757 * @buf: the buffer to store the read bytes in
759 static int mpu3050_read_mem(struct mpu3050
*mpu3050
,
767 ret
= regmap_write(mpu3050
->map
,
773 ret
= regmap_write(mpu3050
->map
,
774 MPU3050_MEM_START_ADDR
,
779 return regmap_bulk_read(mpu3050
->map
,
785 static int mpu3050_hw_init(struct mpu3050
*mpu3050
)
791 ret
= regmap_update_bits(mpu3050
->map
,
793 MPU3050_PWR_MGM_RESET
,
794 MPU3050_PWR_MGM_RESET
);
798 /* Turn on the PLL */
799 ret
= regmap_update_bits(mpu3050
->map
,
801 MPU3050_PWR_MGM_CLKSEL_MASK
,
802 MPU3050_PWR_MGM_PLL_Z
);
807 ret
= regmap_write(mpu3050
->map
,
813 /* Read out the 8 bytes of OTP (one-time-programmable) memory */
814 ret
= mpu3050_read_mem(mpu3050
,
815 (MPU3050_MEM_PRFTCH
|
816 MPU3050_MEM_USER_BANK
|
817 MPU3050_MEM_OTP_BANK_0
),
824 /* This is device-unique data so it goes into the entropy pool */
825 add_device_randomness(otp
, sizeof(otp
));
827 dev_info(mpu3050
->dev
,
828 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
829 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
830 /* Die ID, bits 0-12 */
831 (otp
[1] << 8 | otp
[0]) & 0x1fff,
832 /* Wafer ID, bits 13-17 */
833 ((otp
[2] << 8 | otp
[1]) & 0x03e0) >> 5,
834 /* A lot ID, bits 18-33 */
835 ((otp
[4] << 16 | otp
[3] << 8 | otp
[2]) & 0x3fffc) >> 2,
836 /* W lot ID, bits 34-45 */
837 ((otp
[5] << 8 | otp
[4]) & 0x3ffc) >> 2,
838 /* WP ID, bits 47-49 */
839 ((otp
[6] << 8 | otp
[5]) & 0x0380) >> 7,
840 /* rev ID, bits 50-55 */
846 static int mpu3050_power_up(struct mpu3050
*mpu3050
)
850 ret
= regulator_bulk_enable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
852 dev_err(mpu3050
->dev
, "cannot enable regulators\n");
856 * 20-100 ms start-up time for register read/write according to
857 * the datasheet, be on the safe side and wait 200 ms.
861 /* Take device out of sleep mode */
862 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
863 MPU3050_PWR_MGM_SLEEP
, 0);
865 dev_err(mpu3050
->dev
, "error setting power mode\n");
873 static int mpu3050_power_down(struct mpu3050
*mpu3050
)
878 * Put MPU-3050 into sleep mode before cutting regulators.
879 * This is important, because we may not be the sole user
880 * of the regulator so the power may stay on after this, and
881 * then we would be wasting power unless we go to sleep mode
884 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
885 MPU3050_PWR_MGM_SLEEP
, MPU3050_PWR_MGM_SLEEP
);
887 dev_err(mpu3050
->dev
, "error putting to sleep\n");
889 ret
= regulator_bulk_disable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
891 dev_err(mpu3050
->dev
, "error disabling regulators\n");
896 static irqreturn_t
mpu3050_irq_handler(int irq
, void *p
)
898 struct iio_trigger
*trig
= p
;
899 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
900 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
902 if (!mpu3050
->hw_irq_trigger
)
905 /* Get the time stamp as close in time as possible */
906 mpu3050
->hw_timestamp
= iio_get_time_ns(indio_dev
);
908 return IRQ_WAKE_THREAD
;
911 static irqreturn_t
mpu3050_irq_thread(int irq
, void *p
)
913 struct iio_trigger
*trig
= p
;
914 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
915 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
919 /* ACK IRQ and check if it was from us */
920 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
922 dev_err(mpu3050
->dev
, "error reading IRQ status\n");
925 if (!(val
& MPU3050_INT_STATUS_RAW_RDY
))
928 iio_trigger_poll_chained(p
);
934 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
935 * @trig: trigger instance
936 * @enable: true if trigger should be enabled, false to disable
938 static int mpu3050_drdy_trigger_set_state(struct iio_trigger
*trig
,
941 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
942 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
946 /* Disabling trigger: disable interrupt and return */
948 /* Disable all interrupts */
949 ret
= regmap_write(mpu3050
->map
,
953 dev_err(mpu3050
->dev
, "error disabling IRQ\n");
956 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
958 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
960 /* Disable all things in the FIFO and reset it */
961 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
963 dev_err(mpu3050
->dev
, "error disabling FIFO\n");
965 ret
= regmap_write(mpu3050
->map
, MPU3050_USR_CTRL
,
966 MPU3050_USR_CTRL_FIFO_RST
);
968 dev_err(mpu3050
->dev
, "error resetting FIFO\n");
970 pm_runtime_mark_last_busy(mpu3050
->dev
);
971 pm_runtime_put_autosuspend(mpu3050
->dev
);
972 mpu3050
->hw_irq_trigger
= false;
976 /* Else we're enabling the trigger from this point */
977 pm_runtime_get_sync(mpu3050
->dev
);
978 mpu3050
->hw_irq_trigger
= true;
980 /* Disable all things in the FIFO */
981 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
985 /* Reset and enable the FIFO */
986 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_USR_CTRL
,
987 MPU3050_USR_CTRL_FIFO_EN
|
988 MPU3050_USR_CTRL_FIFO_RST
,
989 MPU3050_USR_CTRL_FIFO_EN
|
990 MPU3050_USR_CTRL_FIFO_RST
);
994 mpu3050
->pending_fifo_footer
= false;
996 /* Turn on the FIFO for temp+X+Y+Z */
997 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
,
998 MPU3050_FIFO_EN_TEMP_OUT
|
999 MPU3050_FIFO_EN_GYRO_XOUT
|
1000 MPU3050_FIFO_EN_GYRO_YOUT
|
1001 MPU3050_FIFO_EN_GYRO_ZOUT
|
1002 MPU3050_FIFO_EN_FOOTER
);
1006 /* Configure the sample engine */
1007 ret
= mpu3050_start_sampling(mpu3050
);
1011 /* Clear IRQ flag */
1012 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
1014 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
1016 /* Give us interrupts whenever there is new data ready */
1017 val
= MPU3050_INT_RAW_RDY_EN
;
1019 if (mpu3050
->irq_actl
)
1020 val
|= MPU3050_INT_ACTL
;
1021 if (mpu3050
->irq_latch
)
1022 val
|= MPU3050_INT_LATCH_EN
;
1023 if (mpu3050
->irq_opendrain
)
1024 val
|= MPU3050_INT_OPEN
;
1026 ret
= regmap_write(mpu3050
->map
, MPU3050_INT_CFG
, val
);
1034 static const struct iio_trigger_ops mpu3050_trigger_ops
= {
1035 .set_trigger_state
= mpu3050_drdy_trigger_set_state
,
1038 static int mpu3050_trigger_probe(struct iio_dev
*indio_dev
, int irq
)
1040 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1041 unsigned long irq_trig
;
1044 mpu3050
->trig
= devm_iio_trigger_alloc(&indio_dev
->dev
,
1051 /* Check if IRQ is open drain */
1052 if (of_property_read_bool(mpu3050
->dev
->of_node
, "drive-open-drain"))
1053 mpu3050
->irq_opendrain
= true;
1055 irq_trig
= irqd_get_trigger_type(irq_get_irq_data(irq
));
1057 * Configure the interrupt generator hardware to supply whatever
1058 * the interrupt is configured for, edges low/high level low/high,
1059 * we can provide it all.
1062 case IRQF_TRIGGER_RISING
:
1063 dev_info(&indio_dev
->dev
,
1064 "pulse interrupts on the rising edge\n");
1066 case IRQF_TRIGGER_FALLING
:
1067 mpu3050
->irq_actl
= true;
1068 dev_info(&indio_dev
->dev
,
1069 "pulse interrupts on the falling edge\n");
1071 case IRQF_TRIGGER_HIGH
:
1072 mpu3050
->irq_latch
= true;
1073 dev_info(&indio_dev
->dev
,
1074 "interrupts active high level\n");
1076 * With level IRQs, we mask the IRQ until it is processed,
1077 * but with edge IRQs (pulses) we can queue several interrupts
1080 irq_trig
|= IRQF_ONESHOT
;
1082 case IRQF_TRIGGER_LOW
:
1083 mpu3050
->irq_latch
= true;
1084 mpu3050
->irq_actl
= true;
1085 irq_trig
|= IRQF_ONESHOT
;
1086 dev_info(&indio_dev
->dev
,
1087 "interrupts active low level\n");
1090 /* This is the most preferred mode, if possible */
1091 dev_err(&indio_dev
->dev
,
1092 "unsupported IRQ trigger specified (%lx), enforce "
1093 "rising edge\n", irq_trig
);
1094 irq_trig
= IRQF_TRIGGER_RISING
;
1098 /* An open drain line can be shared with several devices */
1099 if (mpu3050
->irq_opendrain
)
1100 irq_trig
|= IRQF_SHARED
;
1102 ret
= request_threaded_irq(irq
,
1103 mpu3050_irq_handler
,
1106 mpu3050
->trig
->name
,
1109 dev_err(mpu3050
->dev
,
1110 "can't get IRQ %d, error %d\n", irq
, ret
);
1115 mpu3050
->trig
->dev
.parent
= mpu3050
->dev
;
1116 mpu3050
->trig
->ops
= &mpu3050_trigger_ops
;
1117 iio_trigger_set_drvdata(mpu3050
->trig
, indio_dev
);
1119 ret
= iio_trigger_register(mpu3050
->trig
);
1123 indio_dev
->trig
= iio_trigger_get(mpu3050
->trig
);
1128 int mpu3050_common_probe(struct device
*dev
,
1133 struct iio_dev
*indio_dev
;
1134 struct mpu3050
*mpu3050
;
1138 indio_dev
= devm_iio_device_alloc(dev
, sizeof(*mpu3050
));
1141 mpu3050
= iio_priv(indio_dev
);
1145 mutex_init(&mpu3050
->lock
);
1146 /* Default fullscale: 2000 degrees per second */
1147 mpu3050
->fullscale
= FS_2000_DPS
;
1148 /* 1 kHz, divide by 100, default frequency = 10 Hz */
1149 mpu3050
->lpf
= MPU3050_DLPF_CFG_188HZ
;
1150 mpu3050
->divisor
= 99;
1152 /* Read the mounting matrix, if present */
1153 ret
= of_iio_read_mount_matrix(dev
, "mount-matrix",
1154 &mpu3050
->orientation
);
1158 /* Fetch and turn on regulators */
1159 mpu3050
->regs
[0].supply
= mpu3050_reg_vdd
;
1160 mpu3050
->regs
[1].supply
= mpu3050_reg_vlogic
;
1161 ret
= devm_regulator_bulk_get(dev
, ARRAY_SIZE(mpu3050
->regs
),
1164 dev_err(dev
, "Cannot get regulators\n");
1168 ret
= mpu3050_power_up(mpu3050
);
1172 ret
= regmap_read(map
, MPU3050_CHIP_ID_REG
, &val
);
1174 dev_err(dev
, "could not read device ID\n");
1177 goto err_power_down
;
1180 if ((val
& MPU3050_CHIP_ID_MASK
) != MPU3050_CHIP_ID
) {
1181 dev_err(dev
, "unsupported chip id %02x\n",
1182 (u8
)(val
& MPU3050_CHIP_ID_MASK
));
1184 goto err_power_down
;
1187 ret
= regmap_read(map
, MPU3050_PRODUCT_ID_REG
, &val
);
1189 dev_err(dev
, "could not read device ID\n");
1192 goto err_power_down
;
1194 dev_info(dev
, "found MPU-3050 part no: %d, version: %d\n",
1195 ((val
>> 4) & 0xf), (val
& 0xf));
1197 ret
= mpu3050_hw_init(mpu3050
);
1199 goto err_power_down
;
1201 indio_dev
->dev
.parent
= dev
;
1202 indio_dev
->channels
= mpu3050_channels
;
1203 indio_dev
->num_channels
= ARRAY_SIZE(mpu3050_channels
);
1204 indio_dev
->info
= &mpu3050_info
;
1205 indio_dev
->available_scan_masks
= mpu3050_scan_masks
;
1206 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1207 indio_dev
->name
= name
;
1209 ret
= iio_triggered_buffer_setup(indio_dev
, iio_pollfunc_store_time
,
1210 mpu3050_trigger_handler
,
1211 &mpu3050_buffer_setup_ops
);
1213 dev_err(dev
, "triggered buffer setup failed\n");
1214 goto err_power_down
;
1217 ret
= iio_device_register(indio_dev
);
1219 dev_err(dev
, "device register failed\n");
1220 goto err_cleanup_buffer
;
1223 dev_set_drvdata(dev
, indio_dev
);
1225 /* Check if we have an assigned IRQ to use as trigger */
1227 ret
= mpu3050_trigger_probe(indio_dev
, irq
);
1229 dev_err(dev
, "failed to register trigger\n");
1232 /* Enable runtime PM */
1233 pm_runtime_get_noresume(dev
);
1234 pm_runtime_set_active(dev
);
1235 pm_runtime_enable(dev
);
1237 * Set autosuspend to two orders of magnitude larger than the
1238 * start-up time. 100ms start-up time means 10000ms autosuspend,
1241 pm_runtime_set_autosuspend_delay(dev
, 10000);
1242 pm_runtime_use_autosuspend(dev
);
1243 pm_runtime_put(dev
);
1248 iio_triggered_buffer_cleanup(indio_dev
);
1250 mpu3050_power_down(mpu3050
);
1254 EXPORT_SYMBOL(mpu3050_common_probe
);
1256 int mpu3050_common_remove(struct device
*dev
)
1258 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1259 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1261 pm_runtime_get_sync(dev
);
1262 pm_runtime_put_noidle(dev
);
1263 pm_runtime_disable(dev
);
1264 iio_triggered_buffer_cleanup(indio_dev
);
1266 free_irq(mpu3050
->irq
, mpu3050
);
1267 iio_device_unregister(indio_dev
);
1268 mpu3050_power_down(mpu3050
);
1272 EXPORT_SYMBOL(mpu3050_common_remove
);
1275 static int mpu3050_runtime_suspend(struct device
*dev
)
1277 return mpu3050_power_down(iio_priv(dev_get_drvdata(dev
)));
1280 static int mpu3050_runtime_resume(struct device
*dev
)
1282 return mpu3050_power_up(iio_priv(dev_get_drvdata(dev
)));
1284 #endif /* CONFIG_PM */
1286 const struct dev_pm_ops mpu3050_dev_pm_ops
= {
1287 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
1288 pm_runtime_force_resume
)
1289 SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend
,
1290 mpu3050_runtime_resume
, NULL
)
1292 EXPORT_SYMBOL(mpu3050_dev_pm_ops
);
1294 MODULE_AUTHOR("Linus Walleij");
1295 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1296 MODULE_LICENSE("GPL");