Linux 4.19.133
[linux/fpc-iii.git] / drivers / iio / gyro / mpu3050-core.c
blob5ddebede31a6f6f3625263893ad27a0f3fb68b88
1 /*
2 * MPU3050 gyroscope driver
4 * Copyright (C) 2016 Linaro Ltd.
5 * Author: Linus Walleij <linus.walleij@linaro.org>
7 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
8 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
9 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
10 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12 * TODO: add support for setting up the low pass 3dB frequency.
15 #include <linux/bitops.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/trigger_consumer.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
30 #include "mpu3050.h"
32 #define MPU3050_CHIP_ID 0x68
33 #define MPU3050_CHIP_ID_MASK 0x7E
36 * Register map: anything suffixed *_H is a big-endian high byte and always
37 * followed by the corresponding low byte (*_L) even though these are not
38 * explicitly included in the register definitions.
40 #define MPU3050_CHIP_ID_REG 0x00
41 #define MPU3050_PRODUCT_ID_REG 0x01
42 #define MPU3050_XG_OFFS_TC 0x05
43 #define MPU3050_YG_OFFS_TC 0x08
44 #define MPU3050_ZG_OFFS_TC 0x0B
45 #define MPU3050_X_OFFS_USR_H 0x0C
46 #define MPU3050_Y_OFFS_USR_H 0x0E
47 #define MPU3050_Z_OFFS_USR_H 0x10
48 #define MPU3050_FIFO_EN 0x12
49 #define MPU3050_AUX_VDDIO 0x13
50 #define MPU3050_SLV_ADDR 0x14
51 #define MPU3050_SMPLRT_DIV 0x15
52 #define MPU3050_DLPF_FS_SYNC 0x16
53 #define MPU3050_INT_CFG 0x17
54 #define MPU3050_AUX_ADDR 0x18
55 #define MPU3050_INT_STATUS 0x1A
56 #define MPU3050_TEMP_H 0x1B
57 #define MPU3050_XOUT_H 0x1D
58 #define MPU3050_YOUT_H 0x1F
59 #define MPU3050_ZOUT_H 0x21
60 #define MPU3050_DMP_CFG1 0x35
61 #define MPU3050_DMP_CFG2 0x36
62 #define MPU3050_BANK_SEL 0x37
63 #define MPU3050_MEM_START_ADDR 0x38
64 #define MPU3050_MEM_R_W 0x39
65 #define MPU3050_FIFO_COUNT_H 0x3A
66 #define MPU3050_FIFO_R 0x3C
67 #define MPU3050_USR_CTRL 0x3D
68 #define MPU3050_PWR_MGM 0x3E
70 /* MPU memory bank read options */
71 #define MPU3050_MEM_PRFTCH BIT(5)
72 #define MPU3050_MEM_USER_BANK BIT(4)
73 /* Bits 8-11 select memory bank */
74 #define MPU3050_MEM_RAM_BANK_0 0
75 #define MPU3050_MEM_RAM_BANK_1 1
76 #define MPU3050_MEM_RAM_BANK_2 2
77 #define MPU3050_MEM_RAM_BANK_3 3
78 #define MPU3050_MEM_OTP_BANK_0 4
80 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
82 /* Register bits */
84 /* FIFO Enable */
85 #define MPU3050_FIFO_EN_FOOTER BIT(0)
86 #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1)
87 #define MPU3050_FIFO_EN_AUX_YOUT BIT(2)
88 #define MPU3050_FIFO_EN_AUX_XOUT BIT(3)
89 #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4)
90 #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5)
91 #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6)
92 #define MPU3050_FIFO_EN_TEMP_OUT BIT(7)
95 * Digital Low Pass filter (DLPF)
96 * Full Scale (FS)
97 * and Synchronization
99 #define MPU3050_EXT_SYNC_NONE 0x00
100 #define MPU3050_EXT_SYNC_TEMP 0x20
101 #define MPU3050_EXT_SYNC_GYROX 0x40
102 #define MPU3050_EXT_SYNC_GYROY 0x60
103 #define MPU3050_EXT_SYNC_GYROZ 0x80
104 #define MPU3050_EXT_SYNC_ACCELX 0xA0
105 #define MPU3050_EXT_SYNC_ACCELY 0xC0
106 #define MPU3050_EXT_SYNC_ACCELZ 0xE0
107 #define MPU3050_EXT_SYNC_MASK 0xE0
108 #define MPU3050_EXT_SYNC_SHIFT 5
110 #define MPU3050_FS_250DPS 0x00
111 #define MPU3050_FS_500DPS 0x08
112 #define MPU3050_FS_1000DPS 0x10
113 #define MPU3050_FS_2000DPS 0x18
114 #define MPU3050_FS_MASK 0x18
115 #define MPU3050_FS_SHIFT 3
117 #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00
118 #define MPU3050_DLPF_CFG_188HZ 0x01
119 #define MPU3050_DLPF_CFG_98HZ 0x02
120 #define MPU3050_DLPF_CFG_42HZ 0x03
121 #define MPU3050_DLPF_CFG_20HZ 0x04
122 #define MPU3050_DLPF_CFG_10HZ 0x05
123 #define MPU3050_DLPF_CFG_5HZ 0x06
124 #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07
125 #define MPU3050_DLPF_CFG_MASK 0x07
126 #define MPU3050_DLPF_CFG_SHIFT 0
128 /* Interrupt config */
129 #define MPU3050_INT_RAW_RDY_EN BIT(0)
130 #define MPU3050_INT_DMP_DONE_EN BIT(1)
131 #define MPU3050_INT_MPU_RDY_EN BIT(2)
132 #define MPU3050_INT_ANYRD_2CLEAR BIT(4)
133 #define MPU3050_INT_LATCH_EN BIT(5)
134 #define MPU3050_INT_OPEN BIT(6)
135 #define MPU3050_INT_ACTL BIT(7)
136 /* Interrupt status */
137 #define MPU3050_INT_STATUS_RAW_RDY BIT(0)
138 #define MPU3050_INT_STATUS_DMP_DONE BIT(1)
139 #define MPU3050_INT_STATUS_MPU_RDY BIT(2)
140 #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7)
141 /* USR_CTRL */
142 #define MPU3050_USR_CTRL_FIFO_EN BIT(6)
143 #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5)
144 #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3)
145 #define MPU3050_USR_CTRL_FIFO_RST BIT(1)
146 #define MPU3050_USR_CTRL_GYRO_RST BIT(0)
147 /* PWR_MGM */
148 #define MPU3050_PWR_MGM_PLL_X 0x01
149 #define MPU3050_PWR_MGM_PLL_Y 0x02
150 #define MPU3050_PWR_MGM_PLL_Z 0x03
151 #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07
152 #define MPU3050_PWR_MGM_STBY_ZG BIT(3)
153 #define MPU3050_PWR_MGM_STBY_YG BIT(4)
154 #define MPU3050_PWR_MGM_STBY_XG BIT(5)
155 #define MPU3050_PWR_MGM_SLEEP BIT(6)
156 #define MPU3050_PWR_MGM_RESET BIT(7)
157 #define MPU3050_PWR_MGM_MASK 0xff
160 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
161 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
162 * in two's complement.
164 static unsigned int mpu3050_fs_precision[] = {
165 IIO_DEGREE_TO_RAD(250),
166 IIO_DEGREE_TO_RAD(500),
167 IIO_DEGREE_TO_RAD(1000),
168 IIO_DEGREE_TO_RAD(2000)
172 * Regulator names
174 static const char mpu3050_reg_vdd[] = "vdd";
175 static const char mpu3050_reg_vlogic[] = "vlogic";
177 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
179 unsigned int freq;
181 if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
182 freq = 8000;
183 else
184 freq = 1000;
185 freq /= (mpu3050->divisor + 1);
187 return freq;
190 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
192 __be16 raw_val[3];
193 int ret;
194 int i;
196 /* Reset */
197 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
198 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
199 if (ret)
200 return ret;
202 /* Turn on the Z-axis PLL */
203 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
204 MPU3050_PWR_MGM_CLKSEL_MASK,
205 MPU3050_PWR_MGM_PLL_Z);
206 if (ret)
207 return ret;
209 /* Write calibration offset registers */
210 for (i = 0; i < 3; i++)
211 raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
213 ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
214 sizeof(raw_val));
215 if (ret)
216 return ret;
218 /* Set low pass filter (sample rate), sync and full scale */
219 ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
220 MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
221 mpu3050->fullscale << MPU3050_FS_SHIFT |
222 mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
223 if (ret)
224 return ret;
226 /* Set up sampling frequency */
227 ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
228 if (ret)
229 return ret;
232 * Max 50 ms start-up time after setting DLPF_FS_SYNC
233 * according to the data sheet, then wait for the next sample
234 * at this frequency T = 1000/f ms.
236 msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
238 return 0;
241 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
243 int ret;
244 u8 divisor;
245 enum mpu3050_lpf lpf;
247 lpf = mpu3050->lpf;
248 divisor = mpu3050->divisor;
250 mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
251 mpu3050->divisor = 0; /* Divide by 1 */
252 ret = mpu3050_start_sampling(mpu3050);
254 mpu3050->lpf = lpf;
255 mpu3050->divisor = divisor;
257 return ret;
260 static int mpu3050_read_raw(struct iio_dev *indio_dev,
261 struct iio_chan_spec const *chan,
262 int *val, int *val2,
263 long mask)
265 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
266 int ret;
267 __be16 raw_val;
269 switch (mask) {
270 case IIO_CHAN_INFO_OFFSET:
271 switch (chan->type) {
272 case IIO_TEMP:
273 /* The temperature scaling is (x+23000)/280 Celsius */
274 *val = 23000;
275 return IIO_VAL_INT;
276 default:
277 return -EINVAL;
279 case IIO_CHAN_INFO_CALIBBIAS:
280 switch (chan->type) {
281 case IIO_ANGL_VEL:
282 *val = mpu3050->calibration[chan->scan_index-1];
283 return IIO_VAL_INT;
284 default:
285 return -EINVAL;
287 case IIO_CHAN_INFO_SAMP_FREQ:
288 *val = mpu3050_get_freq(mpu3050);
289 return IIO_VAL_INT;
290 case IIO_CHAN_INFO_SCALE:
291 switch (chan->type) {
292 case IIO_TEMP:
293 /* Millidegrees, see about temperature scaling above */
294 *val = 1000;
295 *val2 = 280;
296 return IIO_VAL_FRACTIONAL;
297 case IIO_ANGL_VEL:
299 * Convert to the corresponding full scale in
300 * radians. All 16 bits are used with sign to
301 * span the available scale: to account for the one
302 * missing value if we multiply by 1/S16_MAX, instead
303 * multiply with 2/U16_MAX.
305 *val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
306 *val2 = U16_MAX;
307 return IIO_VAL_FRACTIONAL;
308 default:
309 return -EINVAL;
311 case IIO_CHAN_INFO_RAW:
312 /* Resume device */
313 pm_runtime_get_sync(mpu3050->dev);
314 mutex_lock(&mpu3050->lock);
316 ret = mpu3050_set_8khz_samplerate(mpu3050);
317 if (ret)
318 goto out_read_raw_unlock;
320 switch (chan->type) {
321 case IIO_TEMP:
322 ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
323 &raw_val, sizeof(raw_val));
324 if (ret) {
325 dev_err(mpu3050->dev,
326 "error reading temperature\n");
327 goto out_read_raw_unlock;
330 *val = be16_to_cpu(raw_val);
331 ret = IIO_VAL_INT;
333 goto out_read_raw_unlock;
334 case IIO_ANGL_VEL:
335 ret = regmap_bulk_read(mpu3050->map,
336 MPU3050_AXIS_REGS(chan->scan_index-1),
337 &raw_val,
338 sizeof(raw_val));
339 if (ret) {
340 dev_err(mpu3050->dev,
341 "error reading axis data\n");
342 goto out_read_raw_unlock;
345 *val = be16_to_cpu(raw_val);
346 ret = IIO_VAL_INT;
348 goto out_read_raw_unlock;
349 default:
350 ret = -EINVAL;
351 goto out_read_raw_unlock;
353 default:
354 break;
357 return -EINVAL;
359 out_read_raw_unlock:
360 mutex_unlock(&mpu3050->lock);
361 pm_runtime_mark_last_busy(mpu3050->dev);
362 pm_runtime_put_autosuspend(mpu3050->dev);
364 return ret;
367 static int mpu3050_write_raw(struct iio_dev *indio_dev,
368 const struct iio_chan_spec *chan,
369 int val, int val2, long mask)
371 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
373 * Couldn't figure out a way to precalculate these at compile time.
375 unsigned int fs250 =
376 DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
377 U16_MAX);
378 unsigned int fs500 =
379 DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
380 U16_MAX);
381 unsigned int fs1000 =
382 DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
383 U16_MAX);
384 unsigned int fs2000 =
385 DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
386 U16_MAX);
388 switch (mask) {
389 case IIO_CHAN_INFO_CALIBBIAS:
390 if (chan->type != IIO_ANGL_VEL)
391 return -EINVAL;
392 mpu3050->calibration[chan->scan_index-1] = val;
393 return 0;
394 case IIO_CHAN_INFO_SAMP_FREQ:
396 * The max samplerate is 8000 Hz, the minimum
397 * 1000 / 256 ~= 4 Hz
399 if (val < 4 || val > 8000)
400 return -EINVAL;
403 * Above 1000 Hz we must turn off the digital low pass filter
404 * so we get a base frequency of 8kHz to the divider
406 if (val > 1000) {
407 mpu3050->lpf = LPF_256_HZ_NOLPF;
408 mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
409 return 0;
412 mpu3050->lpf = LPF_188_HZ;
413 mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
414 return 0;
415 case IIO_CHAN_INFO_SCALE:
416 if (chan->type != IIO_ANGL_VEL)
417 return -EINVAL;
419 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
420 * which means we need to round to the closest radians
421 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
422 * rad/s. The scale is then for the 16 bits used to cover
423 * it 2/(2^16) of that.
426 /* Just too large, set the max range */
427 if (val != 0) {
428 mpu3050->fullscale = FS_2000_DPS;
429 return 0;
433 * Now we're dealing with fractions below zero in millirad/s
434 * do some integer interpolation and match with the closest
435 * fullscale in the table.
437 if (val2 <= fs250 ||
438 val2 < ((fs500 + fs250) / 2))
439 mpu3050->fullscale = FS_250_DPS;
440 else if (val2 <= fs500 ||
441 val2 < ((fs1000 + fs500) / 2))
442 mpu3050->fullscale = FS_500_DPS;
443 else if (val2 <= fs1000 ||
444 val2 < ((fs2000 + fs1000) / 2))
445 mpu3050->fullscale = FS_1000_DPS;
446 else
447 /* Catch-all */
448 mpu3050->fullscale = FS_2000_DPS;
449 return 0;
450 default:
451 break;
454 return -EINVAL;
457 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
459 const struct iio_poll_func *pf = p;
460 struct iio_dev *indio_dev = pf->indio_dev;
461 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
462 int ret;
464 * Temperature 1*16 bits
465 * Three axes 3*16 bits
466 * Timestamp 64 bits (4*16 bits)
467 * Sum total 8*16 bits
469 __be16 hw_values[8];
470 s64 timestamp;
471 unsigned int datums_from_fifo = 0;
474 * If we're using the hardware trigger, get the precise timestamp from
475 * the top half of the threaded IRQ handler. Otherwise get the
476 * timestamp here so it will be close in time to the actual values
477 * read from the registers.
479 if (iio_trigger_using_own(indio_dev))
480 timestamp = mpu3050->hw_timestamp;
481 else
482 timestamp = iio_get_time_ns(indio_dev);
484 mutex_lock(&mpu3050->lock);
486 /* Using the hardware IRQ trigger? Check the buffer then. */
487 if (mpu3050->hw_irq_trigger) {
488 __be16 raw_fifocnt;
489 u16 fifocnt;
490 /* X, Y, Z + temperature */
491 unsigned int bytes_per_datum = 8;
492 bool fifo_overflow = false;
494 ret = regmap_bulk_read(mpu3050->map,
495 MPU3050_FIFO_COUNT_H,
496 &raw_fifocnt,
497 sizeof(raw_fifocnt));
498 if (ret)
499 goto out_trigger_unlock;
500 fifocnt = be16_to_cpu(raw_fifocnt);
502 if (fifocnt == 512) {
503 dev_info(mpu3050->dev,
504 "FIFO overflow! Emptying and resetting FIFO\n");
505 fifo_overflow = true;
506 /* Reset and enable the FIFO */
507 ret = regmap_update_bits(mpu3050->map,
508 MPU3050_USR_CTRL,
509 MPU3050_USR_CTRL_FIFO_EN |
510 MPU3050_USR_CTRL_FIFO_RST,
511 MPU3050_USR_CTRL_FIFO_EN |
512 MPU3050_USR_CTRL_FIFO_RST);
513 if (ret) {
514 dev_info(mpu3050->dev, "error resetting FIFO\n");
515 goto out_trigger_unlock;
517 mpu3050->pending_fifo_footer = false;
520 if (fifocnt)
521 dev_dbg(mpu3050->dev,
522 "%d bytes in the FIFO\n",
523 fifocnt);
525 while (!fifo_overflow && fifocnt > bytes_per_datum) {
526 unsigned int toread;
527 unsigned int offset;
528 __be16 fifo_values[5];
531 * If there is a FIFO footer in the pipe, first clear
532 * that out. This follows the complex algorithm in the
533 * datasheet that states that you may never leave the
534 * FIFO empty after the first reading: you have to
535 * always leave two footer bytes in it. The footer is
536 * in practice just two zero bytes.
538 if (mpu3050->pending_fifo_footer) {
539 toread = bytes_per_datum + 2;
540 offset = 0;
541 } else {
542 toread = bytes_per_datum;
543 offset = 1;
544 /* Put in some dummy value */
545 fifo_values[0] = 0xAAAA;
548 ret = regmap_bulk_read(mpu3050->map,
549 MPU3050_FIFO_R,
550 &fifo_values[offset],
551 toread);
553 dev_dbg(mpu3050->dev,
554 "%04x %04x %04x %04x %04x\n",
555 fifo_values[0],
556 fifo_values[1],
557 fifo_values[2],
558 fifo_values[3],
559 fifo_values[4]);
561 /* Index past the footer (fifo_values[0]) and push */
562 iio_push_to_buffers_with_timestamp(indio_dev,
563 &fifo_values[1],
564 timestamp);
566 fifocnt -= toread;
567 datums_from_fifo++;
568 mpu3050->pending_fifo_footer = true;
571 * If we're emptying the FIFO, just make sure to
572 * check if something new appeared.
574 if (fifocnt < bytes_per_datum) {
575 ret = regmap_bulk_read(mpu3050->map,
576 MPU3050_FIFO_COUNT_H,
577 &raw_fifocnt,
578 sizeof(raw_fifocnt));
579 if (ret)
580 goto out_trigger_unlock;
581 fifocnt = be16_to_cpu(raw_fifocnt);
584 if (fifocnt < bytes_per_datum)
585 dev_dbg(mpu3050->dev,
586 "%d bytes left in the FIFO\n",
587 fifocnt);
590 * At this point, the timestamp that triggered the
591 * hardware interrupt is no longer valid for what
592 * we are reading (the interrupt likely fired for
593 * the value on the top of the FIFO), so set the
594 * timestamp to zero and let userspace deal with it.
596 timestamp = 0;
601 * If we picked some datums from the FIFO that's enough, else
602 * fall through and just read from the current value registers.
603 * This happens in two cases:
605 * - We are using some other trigger (external, like an HRTimer)
606 * than the sensor's own sample generator. In this case the
607 * sensor is just set to the max sampling frequency and we give
608 * the trigger a copy of the latest value every time we get here.
610 * - The hardware trigger is active but unused and we actually use
611 * another trigger which calls here with a frequency higher
612 * than what the device provides data. We will then just read
613 * duplicate values directly from the hardware registers.
615 if (datums_from_fifo) {
616 dev_dbg(mpu3050->dev,
617 "read %d datums from the FIFO\n",
618 datums_from_fifo);
619 goto out_trigger_unlock;
622 ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
623 sizeof(hw_values));
624 if (ret) {
625 dev_err(mpu3050->dev,
626 "error reading axis data\n");
627 goto out_trigger_unlock;
630 iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
632 out_trigger_unlock:
633 mutex_unlock(&mpu3050->lock);
634 iio_trigger_notify_done(indio_dev->trig);
636 return IRQ_HANDLED;
639 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
641 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
643 pm_runtime_get_sync(mpu3050->dev);
645 /* Unless we have OUR trigger active, run at full speed */
646 if (!mpu3050->hw_irq_trigger)
647 return mpu3050_set_8khz_samplerate(mpu3050);
649 return 0;
652 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
654 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
656 pm_runtime_mark_last_busy(mpu3050->dev);
657 pm_runtime_put_autosuspend(mpu3050->dev);
659 return 0;
662 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
663 .preenable = mpu3050_buffer_preenable,
664 .postenable = iio_triggered_buffer_postenable,
665 .predisable = iio_triggered_buffer_predisable,
666 .postdisable = mpu3050_buffer_postdisable,
669 static const struct iio_mount_matrix *
670 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
671 const struct iio_chan_spec *chan)
673 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
675 return &mpu3050->orientation;
678 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
679 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
680 { },
683 #define MPU3050_AXIS_CHANNEL(axis, index) \
685 .type = IIO_ANGL_VEL, \
686 .modified = 1, \
687 .channel2 = IIO_MOD_##axis, \
688 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
689 BIT(IIO_CHAN_INFO_CALIBBIAS), \
690 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
691 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
692 .ext_info = mpu3050_ext_info, \
693 .scan_index = index, \
694 .scan_type = { \
695 .sign = 's', \
696 .realbits = 16, \
697 .storagebits = 16, \
698 .endianness = IIO_BE, \
699 }, \
702 static const struct iio_chan_spec mpu3050_channels[] = {
704 .type = IIO_TEMP,
705 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
706 BIT(IIO_CHAN_INFO_SCALE) |
707 BIT(IIO_CHAN_INFO_OFFSET),
708 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
709 .scan_index = 0,
710 .scan_type = {
711 .sign = 's',
712 .realbits = 16,
713 .storagebits = 16,
714 .endianness = IIO_BE,
717 MPU3050_AXIS_CHANNEL(X, 1),
718 MPU3050_AXIS_CHANNEL(Y, 2),
719 MPU3050_AXIS_CHANNEL(Z, 3),
720 IIO_CHAN_SOFT_TIMESTAMP(4),
723 /* Four channels apart from timestamp, scan mask = 0x0f */
724 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
727 * These are just the hardcoded factors resulting from the more elaborate
728 * calculations done with fractions in the scale raw get/set functions.
730 static IIO_CONST_ATTR(anglevel_scale_available,
731 "0.000122070 "
732 "0.000274658 "
733 "0.000518798 "
734 "0.001068115");
736 static struct attribute *mpu3050_attributes[] = {
737 &iio_const_attr_anglevel_scale_available.dev_attr.attr,
738 NULL,
741 static const struct attribute_group mpu3050_attribute_group = {
742 .attrs = mpu3050_attributes,
745 static const struct iio_info mpu3050_info = {
746 .read_raw = mpu3050_read_raw,
747 .write_raw = mpu3050_write_raw,
748 .attrs = &mpu3050_attribute_group,
752 * mpu3050_read_mem() - read MPU-3050 internal memory
753 * @mpu3050: device to read from
754 * @bank: target bank
755 * @addr: target address
756 * @len: number of bytes
757 * @buf: the buffer to store the read bytes in
759 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
760 u8 bank,
761 u8 addr,
762 u8 len,
763 u8 *buf)
765 int ret;
767 ret = regmap_write(mpu3050->map,
768 MPU3050_BANK_SEL,
769 bank);
770 if (ret)
771 return ret;
773 ret = regmap_write(mpu3050->map,
774 MPU3050_MEM_START_ADDR,
775 addr);
776 if (ret)
777 return ret;
779 return regmap_bulk_read(mpu3050->map,
780 MPU3050_MEM_R_W,
781 buf,
782 len);
785 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
787 int ret;
788 u8 otp[8];
790 /* Reset */
791 ret = regmap_update_bits(mpu3050->map,
792 MPU3050_PWR_MGM,
793 MPU3050_PWR_MGM_RESET,
794 MPU3050_PWR_MGM_RESET);
795 if (ret)
796 return ret;
798 /* Turn on the PLL */
799 ret = regmap_update_bits(mpu3050->map,
800 MPU3050_PWR_MGM,
801 MPU3050_PWR_MGM_CLKSEL_MASK,
802 MPU3050_PWR_MGM_PLL_Z);
803 if (ret)
804 return ret;
806 /* Disable IRQs */
807 ret = regmap_write(mpu3050->map,
808 MPU3050_INT_CFG,
810 if (ret)
811 return ret;
813 /* Read out the 8 bytes of OTP (one-time-programmable) memory */
814 ret = mpu3050_read_mem(mpu3050,
815 (MPU3050_MEM_PRFTCH |
816 MPU3050_MEM_USER_BANK |
817 MPU3050_MEM_OTP_BANK_0),
819 sizeof(otp),
820 otp);
821 if (ret)
822 return ret;
824 /* This is device-unique data so it goes into the entropy pool */
825 add_device_randomness(otp, sizeof(otp));
827 dev_info(mpu3050->dev,
828 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
829 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
830 /* Die ID, bits 0-12 */
831 (otp[1] << 8 | otp[0]) & 0x1fff,
832 /* Wafer ID, bits 13-17 */
833 ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5,
834 /* A lot ID, bits 18-33 */
835 ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2,
836 /* W lot ID, bits 34-45 */
837 ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2,
838 /* WP ID, bits 47-49 */
839 ((otp[6] << 8 | otp[5]) & 0x0380) >> 7,
840 /* rev ID, bits 50-55 */
841 otp[6] >> 2);
843 return 0;
846 static int mpu3050_power_up(struct mpu3050 *mpu3050)
848 int ret;
850 ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
851 if (ret) {
852 dev_err(mpu3050->dev, "cannot enable regulators\n");
853 return ret;
856 * 20-100 ms start-up time for register read/write according to
857 * the datasheet, be on the safe side and wait 200 ms.
859 msleep(200);
861 /* Take device out of sleep mode */
862 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
863 MPU3050_PWR_MGM_SLEEP, 0);
864 if (ret) {
865 dev_err(mpu3050->dev, "error setting power mode\n");
866 return ret;
868 msleep(10);
870 return 0;
873 static int mpu3050_power_down(struct mpu3050 *mpu3050)
875 int ret;
878 * Put MPU-3050 into sleep mode before cutting regulators.
879 * This is important, because we may not be the sole user
880 * of the regulator so the power may stay on after this, and
881 * then we would be wasting power unless we go to sleep mode
882 * first.
884 ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
885 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
886 if (ret)
887 dev_err(mpu3050->dev, "error putting to sleep\n");
889 ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
890 if (ret)
891 dev_err(mpu3050->dev, "error disabling regulators\n");
893 return 0;
896 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
898 struct iio_trigger *trig = p;
899 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
900 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
902 if (!mpu3050->hw_irq_trigger)
903 return IRQ_NONE;
905 /* Get the time stamp as close in time as possible */
906 mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
908 return IRQ_WAKE_THREAD;
911 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
913 struct iio_trigger *trig = p;
914 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
915 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
916 unsigned int val;
917 int ret;
919 /* ACK IRQ and check if it was from us */
920 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
921 if (ret) {
922 dev_err(mpu3050->dev, "error reading IRQ status\n");
923 return IRQ_HANDLED;
925 if (!(val & MPU3050_INT_STATUS_RAW_RDY))
926 return IRQ_NONE;
928 iio_trigger_poll_chained(p);
930 return IRQ_HANDLED;
934 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
935 * @trig: trigger instance
936 * @enable: true if trigger should be enabled, false to disable
938 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
939 bool enable)
941 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
942 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
943 unsigned int val;
944 int ret;
946 /* Disabling trigger: disable interrupt and return */
947 if (!enable) {
948 /* Disable all interrupts */
949 ret = regmap_write(mpu3050->map,
950 MPU3050_INT_CFG,
952 if (ret)
953 dev_err(mpu3050->dev, "error disabling IRQ\n");
955 /* Clear IRQ flag */
956 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
957 if (ret)
958 dev_err(mpu3050->dev, "error clearing IRQ status\n");
960 /* Disable all things in the FIFO and reset it */
961 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
962 if (ret)
963 dev_err(mpu3050->dev, "error disabling FIFO\n");
965 ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
966 MPU3050_USR_CTRL_FIFO_RST);
967 if (ret)
968 dev_err(mpu3050->dev, "error resetting FIFO\n");
970 pm_runtime_mark_last_busy(mpu3050->dev);
971 pm_runtime_put_autosuspend(mpu3050->dev);
972 mpu3050->hw_irq_trigger = false;
974 return 0;
975 } else {
976 /* Else we're enabling the trigger from this point */
977 pm_runtime_get_sync(mpu3050->dev);
978 mpu3050->hw_irq_trigger = true;
980 /* Disable all things in the FIFO */
981 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
982 if (ret)
983 return ret;
985 /* Reset and enable the FIFO */
986 ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
987 MPU3050_USR_CTRL_FIFO_EN |
988 MPU3050_USR_CTRL_FIFO_RST,
989 MPU3050_USR_CTRL_FIFO_EN |
990 MPU3050_USR_CTRL_FIFO_RST);
991 if (ret)
992 return ret;
994 mpu3050->pending_fifo_footer = false;
996 /* Turn on the FIFO for temp+X+Y+Z */
997 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
998 MPU3050_FIFO_EN_TEMP_OUT |
999 MPU3050_FIFO_EN_GYRO_XOUT |
1000 MPU3050_FIFO_EN_GYRO_YOUT |
1001 MPU3050_FIFO_EN_GYRO_ZOUT |
1002 MPU3050_FIFO_EN_FOOTER);
1003 if (ret)
1004 return ret;
1006 /* Configure the sample engine */
1007 ret = mpu3050_start_sampling(mpu3050);
1008 if (ret)
1009 return ret;
1011 /* Clear IRQ flag */
1012 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1013 if (ret)
1014 dev_err(mpu3050->dev, "error clearing IRQ status\n");
1016 /* Give us interrupts whenever there is new data ready */
1017 val = MPU3050_INT_RAW_RDY_EN;
1019 if (mpu3050->irq_actl)
1020 val |= MPU3050_INT_ACTL;
1021 if (mpu3050->irq_latch)
1022 val |= MPU3050_INT_LATCH_EN;
1023 if (mpu3050->irq_opendrain)
1024 val |= MPU3050_INT_OPEN;
1026 ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1027 if (ret)
1028 return ret;
1031 return 0;
1034 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1035 .set_trigger_state = mpu3050_drdy_trigger_set_state,
1038 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1040 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1041 unsigned long irq_trig;
1042 int ret;
1044 mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1045 "%s-dev%d",
1046 indio_dev->name,
1047 indio_dev->id);
1048 if (!mpu3050->trig)
1049 return -ENOMEM;
1051 /* Check if IRQ is open drain */
1052 if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1053 mpu3050->irq_opendrain = true;
1055 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1057 * Configure the interrupt generator hardware to supply whatever
1058 * the interrupt is configured for, edges low/high level low/high,
1059 * we can provide it all.
1061 switch (irq_trig) {
1062 case IRQF_TRIGGER_RISING:
1063 dev_info(&indio_dev->dev,
1064 "pulse interrupts on the rising edge\n");
1065 break;
1066 case IRQF_TRIGGER_FALLING:
1067 mpu3050->irq_actl = true;
1068 dev_info(&indio_dev->dev,
1069 "pulse interrupts on the falling edge\n");
1070 break;
1071 case IRQF_TRIGGER_HIGH:
1072 mpu3050->irq_latch = true;
1073 dev_info(&indio_dev->dev,
1074 "interrupts active high level\n");
1076 * With level IRQs, we mask the IRQ until it is processed,
1077 * but with edge IRQs (pulses) we can queue several interrupts
1078 * in the top half.
1080 irq_trig |= IRQF_ONESHOT;
1081 break;
1082 case IRQF_TRIGGER_LOW:
1083 mpu3050->irq_latch = true;
1084 mpu3050->irq_actl = true;
1085 irq_trig |= IRQF_ONESHOT;
1086 dev_info(&indio_dev->dev,
1087 "interrupts active low level\n");
1088 break;
1089 default:
1090 /* This is the most preferred mode, if possible */
1091 dev_err(&indio_dev->dev,
1092 "unsupported IRQ trigger specified (%lx), enforce "
1093 "rising edge\n", irq_trig);
1094 irq_trig = IRQF_TRIGGER_RISING;
1095 break;
1098 /* An open drain line can be shared with several devices */
1099 if (mpu3050->irq_opendrain)
1100 irq_trig |= IRQF_SHARED;
1102 ret = request_threaded_irq(irq,
1103 mpu3050_irq_handler,
1104 mpu3050_irq_thread,
1105 irq_trig,
1106 mpu3050->trig->name,
1107 mpu3050->trig);
1108 if (ret) {
1109 dev_err(mpu3050->dev,
1110 "can't get IRQ %d, error %d\n", irq, ret);
1111 return ret;
1114 mpu3050->irq = irq;
1115 mpu3050->trig->dev.parent = mpu3050->dev;
1116 mpu3050->trig->ops = &mpu3050_trigger_ops;
1117 iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1119 ret = iio_trigger_register(mpu3050->trig);
1120 if (ret)
1121 return ret;
1123 indio_dev->trig = iio_trigger_get(mpu3050->trig);
1125 return 0;
1128 int mpu3050_common_probe(struct device *dev,
1129 struct regmap *map,
1130 int irq,
1131 const char *name)
1133 struct iio_dev *indio_dev;
1134 struct mpu3050 *mpu3050;
1135 unsigned int val;
1136 int ret;
1138 indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1139 if (!indio_dev)
1140 return -ENOMEM;
1141 mpu3050 = iio_priv(indio_dev);
1143 mpu3050->dev = dev;
1144 mpu3050->map = map;
1145 mutex_init(&mpu3050->lock);
1146 /* Default fullscale: 2000 degrees per second */
1147 mpu3050->fullscale = FS_2000_DPS;
1148 /* 1 kHz, divide by 100, default frequency = 10 Hz */
1149 mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1150 mpu3050->divisor = 99;
1152 /* Read the mounting matrix, if present */
1153 ret = of_iio_read_mount_matrix(dev, "mount-matrix",
1154 &mpu3050->orientation);
1155 if (ret)
1156 return ret;
1158 /* Fetch and turn on regulators */
1159 mpu3050->regs[0].supply = mpu3050_reg_vdd;
1160 mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1161 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1162 mpu3050->regs);
1163 if (ret) {
1164 dev_err(dev, "Cannot get regulators\n");
1165 return ret;
1168 ret = mpu3050_power_up(mpu3050);
1169 if (ret)
1170 return ret;
1172 ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1173 if (ret) {
1174 dev_err(dev, "could not read device ID\n");
1175 ret = -ENODEV;
1177 goto err_power_down;
1180 if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1181 dev_err(dev, "unsupported chip id %02x\n",
1182 (u8)(val & MPU3050_CHIP_ID_MASK));
1183 ret = -ENODEV;
1184 goto err_power_down;
1187 ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1188 if (ret) {
1189 dev_err(dev, "could not read device ID\n");
1190 ret = -ENODEV;
1192 goto err_power_down;
1194 dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1195 ((val >> 4) & 0xf), (val & 0xf));
1197 ret = mpu3050_hw_init(mpu3050);
1198 if (ret)
1199 goto err_power_down;
1201 indio_dev->dev.parent = dev;
1202 indio_dev->channels = mpu3050_channels;
1203 indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1204 indio_dev->info = &mpu3050_info;
1205 indio_dev->available_scan_masks = mpu3050_scan_masks;
1206 indio_dev->modes = INDIO_DIRECT_MODE;
1207 indio_dev->name = name;
1209 ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1210 mpu3050_trigger_handler,
1211 &mpu3050_buffer_setup_ops);
1212 if (ret) {
1213 dev_err(dev, "triggered buffer setup failed\n");
1214 goto err_power_down;
1217 ret = iio_device_register(indio_dev);
1218 if (ret) {
1219 dev_err(dev, "device register failed\n");
1220 goto err_cleanup_buffer;
1223 dev_set_drvdata(dev, indio_dev);
1225 /* Check if we have an assigned IRQ to use as trigger */
1226 if (irq) {
1227 ret = mpu3050_trigger_probe(indio_dev, irq);
1228 if (ret)
1229 dev_err(dev, "failed to register trigger\n");
1232 /* Enable runtime PM */
1233 pm_runtime_get_noresume(dev);
1234 pm_runtime_set_active(dev);
1235 pm_runtime_enable(dev);
1237 * Set autosuspend to two orders of magnitude larger than the
1238 * start-up time. 100ms start-up time means 10000ms autosuspend,
1239 * i.e. 10 seconds.
1241 pm_runtime_set_autosuspend_delay(dev, 10000);
1242 pm_runtime_use_autosuspend(dev);
1243 pm_runtime_put(dev);
1245 return 0;
1247 err_cleanup_buffer:
1248 iio_triggered_buffer_cleanup(indio_dev);
1249 err_power_down:
1250 mpu3050_power_down(mpu3050);
1252 return ret;
1254 EXPORT_SYMBOL(mpu3050_common_probe);
1256 int mpu3050_common_remove(struct device *dev)
1258 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1259 struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1261 pm_runtime_get_sync(dev);
1262 pm_runtime_put_noidle(dev);
1263 pm_runtime_disable(dev);
1264 iio_triggered_buffer_cleanup(indio_dev);
1265 if (mpu3050->irq)
1266 free_irq(mpu3050->irq, mpu3050);
1267 iio_device_unregister(indio_dev);
1268 mpu3050_power_down(mpu3050);
1270 return 0;
1272 EXPORT_SYMBOL(mpu3050_common_remove);
1274 #ifdef CONFIG_PM
1275 static int mpu3050_runtime_suspend(struct device *dev)
1277 return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1280 static int mpu3050_runtime_resume(struct device *dev)
1282 return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1284 #endif /* CONFIG_PM */
1286 const struct dev_pm_ops mpu3050_dev_pm_ops = {
1287 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1288 pm_runtime_force_resume)
1289 SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1290 mpu3050_runtime_resume, NULL)
1292 EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1294 MODULE_AUTHOR("Linus Walleij");
1295 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1296 MODULE_LICENSE("GPL");