Linux 4.19.133
[linux/fpc-iii.git] / drivers / iio / health / afe4403.c
bloba739fff01c6b140f809cf66e7346079820e0f581
1 /*
2 * AFE4403 Heart Rate Monitors and Low-Cost Pulse Oximeters
4 * Copyright (C) 2015-2016 Texas Instruments Incorporated - http://www.ti.com/
5 * Andrew F. Davis <afd@ti.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/regmap.h>
23 #include <linux/spi/spi.h>
24 #include <linux/sysfs.h>
25 #include <linux/regulator/consumer.h>
27 #include <linux/iio/iio.h>
28 #include <linux/iio/sysfs.h>
29 #include <linux/iio/buffer.h>
30 #include <linux/iio/trigger.h>
31 #include <linux/iio/triggered_buffer.h>
32 #include <linux/iio/trigger_consumer.h>
34 #include "afe440x.h"
36 #define AFE4403_DRIVER_NAME "afe4403"
38 /* AFE4403 Registers */
39 #define AFE4403_TIAGAIN 0x20
40 #define AFE4403_TIA_AMB_GAIN 0x21
42 enum afe4403_fields {
43 /* Gains */
44 F_RF_LED1, F_CF_LED1,
45 F_RF_LED, F_CF_LED,
47 /* LED Current */
48 F_ILED1, F_ILED2,
50 /* sentinel */
51 F_MAX_FIELDS
54 static const struct reg_field afe4403_reg_fields[] = {
55 /* Gains */
56 [F_RF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 0, 2),
57 [F_CF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 3, 7),
58 [F_RF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 0, 2),
59 [F_CF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 3, 7),
60 /* LED Current */
61 [F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 7),
62 [F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 8, 15),
65 /**
66 * struct afe4403_data - AFE4403 device instance data
67 * @dev: Device structure
68 * @spi: SPI device handle
69 * @regmap: Register map of the device
70 * @fields: Register fields of the device
71 * @regulator: Pointer to the regulator for the IC
72 * @trig: IIO trigger for this device
73 * @irq: ADC_RDY line interrupt number
75 struct afe4403_data {
76 struct device *dev;
77 struct spi_device *spi;
78 struct regmap *regmap;
79 struct regmap_field *fields[F_MAX_FIELDS];
80 struct regulator *regulator;
81 struct iio_trigger *trig;
82 int irq;
85 enum afe4403_chan_id {
86 LED2 = 1,
87 ALED2,
88 LED1,
89 ALED1,
90 LED2_ALED2,
91 LED1_ALED1,
94 static const unsigned int afe4403_channel_values[] = {
95 [LED2] = AFE440X_LED2VAL,
96 [ALED2] = AFE440X_ALED2VAL,
97 [LED1] = AFE440X_LED1VAL,
98 [ALED1] = AFE440X_ALED1VAL,
99 [LED2_ALED2] = AFE440X_LED2_ALED2VAL,
100 [LED1_ALED1] = AFE440X_LED1_ALED1VAL,
103 static const unsigned int afe4403_channel_leds[] = {
104 [LED2] = F_ILED2,
105 [LED1] = F_ILED1,
108 static const struct iio_chan_spec afe4403_channels[] = {
109 /* ADC values */
110 AFE440X_INTENSITY_CHAN(LED2, 0),
111 AFE440X_INTENSITY_CHAN(ALED2, 0),
112 AFE440X_INTENSITY_CHAN(LED1, 0),
113 AFE440X_INTENSITY_CHAN(ALED1, 0),
114 AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
115 AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
116 /* LED current */
117 AFE440X_CURRENT_CHAN(LED2),
118 AFE440X_CURRENT_CHAN(LED1),
121 static const struct afe440x_val_table afe4403_res_table[] = {
122 { 500000 }, { 250000 }, { 100000 }, { 50000 },
123 { 25000 }, { 10000 }, { 1000000 }, { 0 },
125 AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4403_res_table);
127 static const struct afe440x_val_table afe4403_cap_table[] = {
128 { 0, 5000 }, { 0, 10000 }, { 0, 20000 }, { 0, 25000 },
129 { 0, 30000 }, { 0, 35000 }, { 0, 45000 }, { 0, 50000 },
130 { 0, 55000 }, { 0, 60000 }, { 0, 70000 }, { 0, 75000 },
131 { 0, 80000 }, { 0, 85000 }, { 0, 95000 }, { 0, 100000 },
132 { 0, 155000 }, { 0, 160000 }, { 0, 170000 }, { 0, 175000 },
133 { 0, 180000 }, { 0, 185000 }, { 0, 195000 }, { 0, 200000 },
134 { 0, 205000 }, { 0, 210000 }, { 0, 220000 }, { 0, 225000 },
135 { 0, 230000 }, { 0, 235000 }, { 0, 245000 }, { 0, 250000 },
137 AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4403_cap_table);
139 static ssize_t afe440x_show_register(struct device *dev,
140 struct device_attribute *attr,
141 char *buf)
143 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
144 struct afe4403_data *afe = iio_priv(indio_dev);
145 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
146 unsigned int reg_val;
147 int vals[2];
148 int ret;
150 ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
151 if (ret)
152 return ret;
154 if (reg_val >= afe440x_attr->table_size)
155 return -EINVAL;
157 vals[0] = afe440x_attr->val_table[reg_val].integer;
158 vals[1] = afe440x_attr->val_table[reg_val].fract;
160 return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
163 static ssize_t afe440x_store_register(struct device *dev,
164 struct device_attribute *attr,
165 const char *buf, size_t count)
167 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
168 struct afe4403_data *afe = iio_priv(indio_dev);
169 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
170 int val, integer, fract, ret;
172 ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
173 if (ret)
174 return ret;
176 for (val = 0; val < afe440x_attr->table_size; val++)
177 if (afe440x_attr->val_table[val].integer == integer &&
178 afe440x_attr->val_table[val].fract == fract)
179 break;
180 if (val == afe440x_attr->table_size)
181 return -EINVAL;
183 ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
184 if (ret)
185 return ret;
187 return count;
190 static AFE440X_ATTR(in_intensity1_resistance, F_RF_LED, afe4403_res_table);
191 static AFE440X_ATTR(in_intensity1_capacitance, F_CF_LED, afe4403_cap_table);
193 static AFE440X_ATTR(in_intensity2_resistance, F_RF_LED, afe4403_res_table);
194 static AFE440X_ATTR(in_intensity2_capacitance, F_CF_LED, afe4403_cap_table);
196 static AFE440X_ATTR(in_intensity3_resistance, F_RF_LED1, afe4403_res_table);
197 static AFE440X_ATTR(in_intensity3_capacitance, F_CF_LED1, afe4403_cap_table);
199 static AFE440X_ATTR(in_intensity4_resistance, F_RF_LED1, afe4403_res_table);
200 static AFE440X_ATTR(in_intensity4_capacitance, F_CF_LED1, afe4403_cap_table);
202 static struct attribute *afe440x_attributes[] = {
203 &dev_attr_in_intensity_resistance_available.attr,
204 &dev_attr_in_intensity_capacitance_available.attr,
205 &afe440x_attr_in_intensity1_resistance.dev_attr.attr,
206 &afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
207 &afe440x_attr_in_intensity2_resistance.dev_attr.attr,
208 &afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
209 &afe440x_attr_in_intensity3_resistance.dev_attr.attr,
210 &afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
211 &afe440x_attr_in_intensity4_resistance.dev_attr.attr,
212 &afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
213 NULL
216 static const struct attribute_group afe440x_attribute_group = {
217 .attrs = afe440x_attributes
220 static int afe4403_read(struct afe4403_data *afe, unsigned int reg, u32 *val)
222 u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
223 u8 rx[3];
224 int ret;
226 /* Enable reading from the device */
227 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
228 if (ret)
229 return ret;
231 ret = spi_write_then_read(afe->spi, &reg, 1, rx, 3);
232 if (ret)
233 return ret;
235 *val = (rx[0] << 16) |
236 (rx[1] << 8) |
237 (rx[2]);
239 /* Disable reading from the device */
240 tx[3] = AFE440X_CONTROL0_WRITE;
241 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
242 if (ret)
243 return ret;
245 return 0;
248 static int afe4403_read_raw(struct iio_dev *indio_dev,
249 struct iio_chan_spec const *chan,
250 int *val, int *val2, long mask)
252 struct afe4403_data *afe = iio_priv(indio_dev);
253 unsigned int reg = afe4403_channel_values[chan->address];
254 unsigned int field = afe4403_channel_leds[chan->address];
255 int ret;
257 switch (chan->type) {
258 case IIO_INTENSITY:
259 switch (mask) {
260 case IIO_CHAN_INFO_RAW:
261 ret = afe4403_read(afe, reg, val);
262 if (ret)
263 return ret;
264 return IIO_VAL_INT;
266 break;
267 case IIO_CURRENT:
268 switch (mask) {
269 case IIO_CHAN_INFO_RAW:
270 ret = regmap_field_read(afe->fields[field], val);
271 if (ret)
272 return ret;
273 return IIO_VAL_INT;
274 case IIO_CHAN_INFO_SCALE:
275 *val = 0;
276 *val2 = 800000;
277 return IIO_VAL_INT_PLUS_MICRO;
279 break;
280 default:
281 break;
284 return -EINVAL;
287 static int afe4403_write_raw(struct iio_dev *indio_dev,
288 struct iio_chan_spec const *chan,
289 int val, int val2, long mask)
291 struct afe4403_data *afe = iio_priv(indio_dev);
292 unsigned int field = afe4403_channel_leds[chan->address];
294 switch (chan->type) {
295 case IIO_CURRENT:
296 switch (mask) {
297 case IIO_CHAN_INFO_RAW:
298 return regmap_field_write(afe->fields[field], val);
300 break;
301 default:
302 break;
305 return -EINVAL;
308 static const struct iio_info afe4403_iio_info = {
309 .attrs = &afe440x_attribute_group,
310 .read_raw = afe4403_read_raw,
311 .write_raw = afe4403_write_raw,
314 static irqreturn_t afe4403_trigger_handler(int irq, void *private)
316 struct iio_poll_func *pf = private;
317 struct iio_dev *indio_dev = pf->indio_dev;
318 struct afe4403_data *afe = iio_priv(indio_dev);
319 int ret, bit, i = 0;
320 s32 buffer[8];
321 u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
322 u8 rx[3];
324 /* Enable reading from the device */
325 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
326 if (ret)
327 goto err;
329 for_each_set_bit(bit, indio_dev->active_scan_mask,
330 indio_dev->masklength) {
331 ret = spi_write_then_read(afe->spi,
332 &afe4403_channel_values[bit], 1,
333 rx, 3);
334 if (ret)
335 goto err;
337 buffer[i++] = (rx[0] << 16) |
338 (rx[1] << 8) |
339 (rx[2]);
342 /* Disable reading from the device */
343 tx[3] = AFE440X_CONTROL0_WRITE;
344 ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
345 if (ret)
346 goto err;
348 iio_push_to_buffers_with_timestamp(indio_dev, buffer, pf->timestamp);
349 err:
350 iio_trigger_notify_done(indio_dev->trig);
352 return IRQ_HANDLED;
355 static const struct iio_trigger_ops afe4403_trigger_ops = {
358 #define AFE4403_TIMING_PAIRS \
359 { AFE440X_LED2STC, 0x000050 }, \
360 { AFE440X_LED2ENDC, 0x0003e7 }, \
361 { AFE440X_LED1LEDSTC, 0x0007d0 }, \
362 { AFE440X_LED1LEDENDC, 0x000bb7 }, \
363 { AFE440X_ALED2STC, 0x000438 }, \
364 { AFE440X_ALED2ENDC, 0x0007cf }, \
365 { AFE440X_LED1STC, 0x000820 }, \
366 { AFE440X_LED1ENDC, 0x000bb7 }, \
367 { AFE440X_LED2LEDSTC, 0x000000 }, \
368 { AFE440X_LED2LEDENDC, 0x0003e7 }, \
369 { AFE440X_ALED1STC, 0x000c08 }, \
370 { AFE440X_ALED1ENDC, 0x000f9f }, \
371 { AFE440X_LED2CONVST, 0x0003ef }, \
372 { AFE440X_LED2CONVEND, 0x0007cf }, \
373 { AFE440X_ALED2CONVST, 0x0007d7 }, \
374 { AFE440X_ALED2CONVEND, 0x000bb7 }, \
375 { AFE440X_LED1CONVST, 0x000bbf }, \
376 { AFE440X_LED1CONVEND, 0x009c3f }, \
377 { AFE440X_ALED1CONVST, 0x000fa7 }, \
378 { AFE440X_ALED1CONVEND, 0x001387 }, \
379 { AFE440X_ADCRSTSTCT0, 0x0003e8 }, \
380 { AFE440X_ADCRSTENDCT0, 0x0003eb }, \
381 { AFE440X_ADCRSTSTCT1, 0x0007d0 }, \
382 { AFE440X_ADCRSTENDCT1, 0x0007d3 }, \
383 { AFE440X_ADCRSTSTCT2, 0x000bb8 }, \
384 { AFE440X_ADCRSTENDCT2, 0x000bbb }, \
385 { AFE440X_ADCRSTSTCT3, 0x000fa0 }, \
386 { AFE440X_ADCRSTENDCT3, 0x000fa3 }, \
387 { AFE440X_PRPCOUNT, 0x009c3f }, \
388 { AFE440X_PDNCYCLESTC, 0x001518 }, \
389 { AFE440X_PDNCYCLEENDC, 0x00991f }
391 static const struct reg_sequence afe4403_reg_sequences[] = {
392 AFE4403_TIMING_PAIRS,
393 { AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
394 { AFE4403_TIAGAIN, AFE440X_TIAGAIN_ENSEPGAIN },
397 static const struct regmap_range afe4403_yes_ranges[] = {
398 regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
401 static const struct regmap_access_table afe4403_volatile_table = {
402 .yes_ranges = afe4403_yes_ranges,
403 .n_yes_ranges = ARRAY_SIZE(afe4403_yes_ranges),
406 static const struct regmap_config afe4403_regmap_config = {
407 .reg_bits = 8,
408 .val_bits = 24,
410 .max_register = AFE440X_PDNCYCLEENDC,
411 .cache_type = REGCACHE_RBTREE,
412 .volatile_table = &afe4403_volatile_table,
415 static const struct of_device_id afe4403_of_match[] = {
416 { .compatible = "ti,afe4403", },
417 { /* sentinel */ }
419 MODULE_DEVICE_TABLE(of, afe4403_of_match);
421 static int __maybe_unused afe4403_suspend(struct device *dev)
423 struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
424 struct afe4403_data *afe = iio_priv(indio_dev);
425 int ret;
427 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
428 AFE440X_CONTROL2_PDN_AFE,
429 AFE440X_CONTROL2_PDN_AFE);
430 if (ret)
431 return ret;
433 ret = regulator_disable(afe->regulator);
434 if (ret) {
435 dev_err(dev, "Unable to disable regulator\n");
436 return ret;
439 return 0;
442 static int __maybe_unused afe4403_resume(struct device *dev)
444 struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
445 struct afe4403_data *afe = iio_priv(indio_dev);
446 int ret;
448 ret = regulator_enable(afe->regulator);
449 if (ret) {
450 dev_err(dev, "Unable to enable regulator\n");
451 return ret;
454 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
455 AFE440X_CONTROL2_PDN_AFE, 0);
456 if (ret)
457 return ret;
459 return 0;
462 static SIMPLE_DEV_PM_OPS(afe4403_pm_ops, afe4403_suspend, afe4403_resume);
464 static int afe4403_probe(struct spi_device *spi)
466 struct iio_dev *indio_dev;
467 struct afe4403_data *afe;
468 int i, ret;
470 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*afe));
471 if (!indio_dev)
472 return -ENOMEM;
474 afe = iio_priv(indio_dev);
475 spi_set_drvdata(spi, indio_dev);
477 afe->dev = &spi->dev;
478 afe->spi = spi;
479 afe->irq = spi->irq;
481 afe->regmap = devm_regmap_init_spi(spi, &afe4403_regmap_config);
482 if (IS_ERR(afe->regmap)) {
483 dev_err(afe->dev, "Unable to allocate register map\n");
484 return PTR_ERR(afe->regmap);
487 for (i = 0; i < F_MAX_FIELDS; i++) {
488 afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
489 afe4403_reg_fields[i]);
490 if (IS_ERR(afe->fields[i])) {
491 dev_err(afe->dev, "Unable to allocate regmap fields\n");
492 return PTR_ERR(afe->fields[i]);
496 afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
497 if (IS_ERR(afe->regulator)) {
498 dev_err(afe->dev, "Unable to get regulator\n");
499 return PTR_ERR(afe->regulator);
501 ret = regulator_enable(afe->regulator);
502 if (ret) {
503 dev_err(afe->dev, "Unable to enable regulator\n");
504 return ret;
507 ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
508 AFE440X_CONTROL0_SW_RESET);
509 if (ret) {
510 dev_err(afe->dev, "Unable to reset device\n");
511 goto err_disable_reg;
514 ret = regmap_multi_reg_write(afe->regmap, afe4403_reg_sequences,
515 ARRAY_SIZE(afe4403_reg_sequences));
516 if (ret) {
517 dev_err(afe->dev, "Unable to set register defaults\n");
518 goto err_disable_reg;
521 indio_dev->modes = INDIO_DIRECT_MODE;
522 indio_dev->dev.parent = afe->dev;
523 indio_dev->channels = afe4403_channels;
524 indio_dev->num_channels = ARRAY_SIZE(afe4403_channels);
525 indio_dev->name = AFE4403_DRIVER_NAME;
526 indio_dev->info = &afe4403_iio_info;
528 if (afe->irq > 0) {
529 afe->trig = devm_iio_trigger_alloc(afe->dev,
530 "%s-dev%d",
531 indio_dev->name,
532 indio_dev->id);
533 if (!afe->trig) {
534 dev_err(afe->dev, "Unable to allocate IIO trigger\n");
535 ret = -ENOMEM;
536 goto err_disable_reg;
539 iio_trigger_set_drvdata(afe->trig, indio_dev);
541 afe->trig->ops = &afe4403_trigger_ops;
542 afe->trig->dev.parent = afe->dev;
544 ret = iio_trigger_register(afe->trig);
545 if (ret) {
546 dev_err(afe->dev, "Unable to register IIO trigger\n");
547 goto err_disable_reg;
550 ret = devm_request_threaded_irq(afe->dev, afe->irq,
551 iio_trigger_generic_data_rdy_poll,
552 NULL, IRQF_ONESHOT,
553 AFE4403_DRIVER_NAME,
554 afe->trig);
555 if (ret) {
556 dev_err(afe->dev, "Unable to request IRQ\n");
557 goto err_trig;
561 ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
562 afe4403_trigger_handler, NULL);
563 if (ret) {
564 dev_err(afe->dev, "Unable to setup buffer\n");
565 goto err_trig;
568 ret = iio_device_register(indio_dev);
569 if (ret) {
570 dev_err(afe->dev, "Unable to register IIO device\n");
571 goto err_buff;
574 return 0;
576 err_buff:
577 iio_triggered_buffer_cleanup(indio_dev);
578 err_trig:
579 if (afe->irq > 0)
580 iio_trigger_unregister(afe->trig);
581 err_disable_reg:
582 regulator_disable(afe->regulator);
584 return ret;
587 static int afe4403_remove(struct spi_device *spi)
589 struct iio_dev *indio_dev = spi_get_drvdata(spi);
590 struct afe4403_data *afe = iio_priv(indio_dev);
591 int ret;
593 iio_device_unregister(indio_dev);
595 iio_triggered_buffer_cleanup(indio_dev);
597 if (afe->irq > 0)
598 iio_trigger_unregister(afe->trig);
600 ret = regulator_disable(afe->regulator);
601 if (ret) {
602 dev_err(afe->dev, "Unable to disable regulator\n");
603 return ret;
606 return 0;
609 static const struct spi_device_id afe4403_ids[] = {
610 { "afe4403", 0 },
611 { /* sentinel */ }
613 MODULE_DEVICE_TABLE(spi, afe4403_ids);
615 static struct spi_driver afe4403_spi_driver = {
616 .driver = {
617 .name = AFE4403_DRIVER_NAME,
618 .of_match_table = afe4403_of_match,
619 .pm = &afe4403_pm_ops,
621 .probe = afe4403_probe,
622 .remove = afe4403_remove,
623 .id_table = afe4403_ids,
625 module_spi_driver(afe4403_spi_driver);
627 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
628 MODULE_DESCRIPTION("TI AFE4403 Heart Rate Monitor and Pulse Oximeter AFE");
629 MODULE_LICENSE("GPL v2");