2 * STMicroelectronics st_lsm6dsx FIFO buffer library driver
4 * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC: The FIFO buffer can be
5 * configured to store data from gyroscope and accelerometer. Samples are
6 * queued without any tag according to a specific pattern based on
7 * 'FIFO data sets' (6 bytes each):
8 * - 1st data set is reserved for gyroscope data
9 * - 2nd data set is reserved for accelerometer data
10 * The FIFO pattern changes depending on the ODRs and decimation factors
11 * assigned to the FIFO data sets. The first sequence of data stored in FIFO
12 * buffer contains the data of all the enabled FIFO data sets
13 * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
14 * value of the decimation factor and ODR set for each FIFO data set.
15 * FIFO supported modes:
16 * - BYPASS: FIFO disabled
17 * - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
18 * restarts from the beginning and the oldest sample is overwritten
20 * Copyright 2016 STMicroelectronics Inc.
22 * Lorenzo Bianconi <lorenzo.bianconi@st.com>
23 * Denis Ciocca <denis.ciocca@st.com>
25 * Licensed under the GPL-2.
27 #include <linux/module.h>
28 #include <linux/interrupt.h>
29 #include <linux/irq.h>
30 #include <linux/iio/kfifo_buf.h>
31 #include <linux/iio/iio.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/regmap.h>
34 #include <linux/bitfield.h>
36 #include <linux/platform_data/st_sensors_pdata.h>
38 #include "st_lsm6dsx.h"
40 #define ST_LSM6DSX_REG_HLACTIVE_ADDR 0x12
41 #define ST_LSM6DSX_REG_HLACTIVE_MASK BIT(5)
42 #define ST_LSM6DSX_REG_PP_OD_ADDR 0x12
43 #define ST_LSM6DSX_REG_PP_OD_MASK BIT(4)
44 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR 0x0a
45 #define ST_LSM6DSX_FIFO_MODE_MASK GENMASK(2, 0)
46 #define ST_LSM6DSX_FIFO_ODR_MASK GENMASK(6, 3)
47 #define ST_LSM6DSX_FIFO_EMPTY_MASK BIT(12)
48 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR 0x3e
49 #define ST_LSM6DSX_REG_TS_RESET_ADDR 0x42
51 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL 0x08
53 #define ST_LSM6DSX_TS_SENSITIVITY 25000UL /* 25us */
54 #define ST_LSM6DSX_TS_RESET_VAL 0xaa
56 struct st_lsm6dsx_decimator_entry
{
62 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table
[] = {
73 static int st_lsm6dsx_get_decimator_val(u8 val
)
75 const int max_size
= ARRAY_SIZE(st_lsm6dsx_decimator_table
);
78 for (i
= 0; i
< max_size
; i
++)
79 if (st_lsm6dsx_decimator_table
[i
].decimator
== val
)
82 return i
== max_size
? 0 : st_lsm6dsx_decimator_table
[i
].val
;
85 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw
*hw
,
86 u16
*max_odr
, u16
*min_odr
)
88 struct st_lsm6dsx_sensor
*sensor
;
91 *max_odr
= 0, *min_odr
= ~0;
92 for (i
= 0; i
< ST_LSM6DSX_ID_MAX
; i
++) {
93 sensor
= iio_priv(hw
->iio_devs
[i
]);
95 if (!(hw
->enable_mask
& BIT(sensor
->id
)))
98 *max_odr
= max_t(u16
, *max_odr
, sensor
->odr
);
99 *min_odr
= min_t(u16
, *min_odr
, sensor
->odr
);
103 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw
*hw
)
105 u16 max_odr
, min_odr
, sip
= 0, ts_sip
= 0;
106 const struct st_lsm6dsx_reg
*ts_dec_reg
;
107 struct st_lsm6dsx_sensor
*sensor
;
111 st_lsm6dsx_get_max_min_odr(hw
, &max_odr
, &min_odr
);
113 for (i
= 0; i
< ST_LSM6DSX_ID_MAX
; i
++) {
114 const struct st_lsm6dsx_reg
*dec_reg
;
116 sensor
= iio_priv(hw
->iio_devs
[i
]);
117 /* update fifo decimators and sample in pattern */
118 if (hw
->enable_mask
& BIT(sensor
->id
)) {
119 sensor
->sip
= sensor
->odr
/ min_odr
;
120 sensor
->decimator
= max_odr
/ sensor
->odr
;
121 data
= st_lsm6dsx_get_decimator_val(sensor
->decimator
);
124 sensor
->decimator
= 0;
127 ts_sip
= max_t(u16
, ts_sip
, sensor
->sip
);
129 dec_reg
= &hw
->settings
->decimator
[sensor
->id
];
131 int val
= ST_LSM6DSX_SHIFT_VAL(data
, dec_reg
->mask
);
133 err
= regmap_update_bits(hw
->regmap
, dec_reg
->addr
,
140 hw
->sip
= sip
+ ts_sip
;
144 * update hw ts decimator if necessary. Decimator for hw timestamp
145 * is always 1 or 0 in order to have a ts sample for each data
148 ts_dec_reg
= &hw
->settings
->ts_settings
.decimator
;
149 if (ts_dec_reg
->addr
) {
150 int val
, ts_dec
= !!hw
->ts_sip
;
152 val
= ST_LSM6DSX_SHIFT_VAL(ts_dec
, ts_dec_reg
->mask
);
153 err
= regmap_update_bits(hw
->regmap
, ts_dec_reg
->addr
,
154 ts_dec_reg
->mask
, val
);
159 int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw
*hw
,
160 enum st_lsm6dsx_fifo_mode fifo_mode
)
164 err
= regmap_update_bits(hw
->regmap
, ST_LSM6DSX_REG_FIFO_MODE_ADDR
,
165 ST_LSM6DSX_FIFO_MODE_MASK
,
166 FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK
,
171 hw
->fifo_mode
= fifo_mode
;
176 static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor
*sensor
,
179 struct st_lsm6dsx_hw
*hw
= sensor
->hw
;
182 data
= hw
->enable_mask
? ST_LSM6DSX_MAX_FIFO_ODR_VAL
: 0;
183 return regmap_update_bits(hw
->regmap
, ST_LSM6DSX_REG_FIFO_MODE_ADDR
,
184 ST_LSM6DSX_FIFO_ODR_MASK
,
185 FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK
, data
));
188 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor
*sensor
, u16 watermark
)
190 u16 fifo_watermark
= ~0, cur_watermark
, fifo_th_mask
;
191 struct st_lsm6dsx_hw
*hw
= sensor
->hw
;
192 struct st_lsm6dsx_sensor
*cur_sensor
;
199 for (i
= 0; i
< ST_LSM6DSX_ID_MAX
; i
++) {
200 cur_sensor
= iio_priv(hw
->iio_devs
[i
]);
202 if (!(hw
->enable_mask
& BIT(cur_sensor
->id
)))
205 cur_watermark
= (cur_sensor
== sensor
) ? watermark
206 : cur_sensor
->watermark
;
208 fifo_watermark
= min_t(u16
, fifo_watermark
, cur_watermark
);
211 fifo_watermark
= max_t(u16
, fifo_watermark
, hw
->sip
);
212 fifo_watermark
= (fifo_watermark
/ hw
->sip
) * hw
->sip
;
213 fifo_watermark
= fifo_watermark
* hw
->settings
->fifo_ops
.th_wl
;
215 err
= regmap_read(hw
->regmap
, hw
->settings
->fifo_ops
.fifo_th
.addr
+ 1,
220 fifo_th_mask
= hw
->settings
->fifo_ops
.fifo_th
.mask
;
221 fifo_watermark
= ((data
<< 8) & ~fifo_th_mask
) |
222 (fifo_watermark
& fifo_th_mask
);
224 wdata
= cpu_to_le16(fifo_watermark
);
225 return regmap_bulk_write(hw
->regmap
,
226 hw
->settings
->fifo_ops
.fifo_th
.addr
,
227 &wdata
, sizeof(wdata
));
230 static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw
*hw
)
232 struct st_lsm6dsx_sensor
*sensor
;
235 /* reset hw ts counter */
236 err
= regmap_write(hw
->regmap
, ST_LSM6DSX_REG_TS_RESET_ADDR
,
237 ST_LSM6DSX_TS_RESET_VAL
);
241 for (i
= 0; i
< ST_LSM6DSX_ID_MAX
; i
++) {
242 sensor
= iio_priv(hw
->iio_devs
[i
]);
244 * store enable buffer timestamp as reference for
247 sensor
->ts_ref
= iio_get_time_ns(hw
->iio_devs
[i
]);
253 * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN in order to avoid
254 * a kmalloc for each bus access
256 static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw
*hw
, u8
*data
,
257 unsigned int data_len
)
259 unsigned int word_len
, read_len
= 0;
262 while (read_len
< data_len
) {
263 word_len
= min_t(unsigned int, data_len
- read_len
,
264 ST_LSM6DSX_MAX_WORD_LEN
);
265 err
= regmap_bulk_read(hw
->regmap
,
266 ST_LSM6DSX_REG_FIFO_OUTL_ADDR
,
267 data
+ read_len
, word_len
);
270 read_len
+= word_len
;
275 #define ST_LSM6DSX_IIO_BUFF_SIZE (ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
276 sizeof(s64)) + sizeof(s64))
278 * st_lsm6dsx_read_fifo() - hw FIFO read routine
279 * @hw: Pointer to instance of struct st_lsm6dsx_hw.
281 * Read samples from the hw FIFO and push them to IIO buffers.
283 * Return: Number of bytes read from the FIFO
285 static int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw
*hw
)
287 u16 fifo_len
, pattern_len
= hw
->sip
* ST_LSM6DSX_SAMPLE_SIZE
;
288 u16 fifo_diff_mask
= hw
->settings
->fifo_ops
.fifo_diff
.mask
;
289 int err
, acc_sip
, gyro_sip
, ts_sip
, read_len
, offset
;
290 struct st_lsm6dsx_sensor
*acc_sensor
, *gyro_sensor
;
291 u8 gyro_buff
[ST_LSM6DSX_IIO_BUFF_SIZE
];
292 u8 acc_buff
[ST_LSM6DSX_IIO_BUFF_SIZE
];
293 bool reset_ts
= false;
297 err
= regmap_bulk_read(hw
->regmap
,
298 hw
->settings
->fifo_ops
.fifo_diff
.addr
,
299 &fifo_status
, sizeof(fifo_status
));
301 dev_err(hw
->dev
, "failed to read fifo status (err=%d)\n",
306 if (fifo_status
& cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK
))
309 fifo_len
= (le16_to_cpu(fifo_status
) & fifo_diff_mask
) *
310 ST_LSM6DSX_CHAN_SIZE
;
311 fifo_len
= (fifo_len
/ pattern_len
) * pattern_len
;
313 acc_sensor
= iio_priv(hw
->iio_devs
[ST_LSM6DSX_ID_ACC
]);
314 gyro_sensor
= iio_priv(hw
->iio_devs
[ST_LSM6DSX_ID_GYRO
]);
316 for (read_len
= 0; read_len
< fifo_len
; read_len
+= pattern_len
) {
317 err
= st_lsm6dsx_read_block(hw
, hw
->buff
, pattern_len
);
320 "failed to read pattern from fifo (err=%d)\n",
326 * Data are written to the FIFO with a specific pattern
327 * depending on the configured ODRs. The first sequence of data
328 * stored in FIFO contains the data of all enabled sensors
329 * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
330 * depending on the value of the decimation factor set for each
333 * Supposing the FIFO is storing data from gyroscope and
334 * accelerometer at different ODRs:
335 * - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
336 * Since the gyroscope ODR is twice the accelerometer one, the
337 * following pattern is repeated every 9 samples:
338 * - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
340 gyro_sip
= gyro_sensor
->sip
;
341 acc_sip
= acc_sensor
->sip
;
345 while (acc_sip
> 0 || gyro_sip
> 0) {
347 memcpy(gyro_buff
, &hw
->buff
[offset
],
348 ST_LSM6DSX_SAMPLE_SIZE
);
349 offset
+= ST_LSM6DSX_SAMPLE_SIZE
;
352 memcpy(acc_buff
, &hw
->buff
[offset
],
353 ST_LSM6DSX_SAMPLE_SIZE
);
354 offset
+= ST_LSM6DSX_SAMPLE_SIZE
;
358 u8 data
[ST_LSM6DSX_SAMPLE_SIZE
];
360 memcpy(data
, &hw
->buff
[offset
], sizeof(data
));
362 * hw timestamp is 3B long and it is stored
363 * in FIFO using 6B as 4th FIFO data set
364 * according to this schema:
365 * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
367 ts
= data
[1] << 16 | data
[0] << 8 | data
[3];
369 * check if hw timestamp engine is going to
370 * reset (the sensor generates an interrupt
371 * to signal the hw timestamp will reset in
374 if (!reset_ts
&& ts
>= 0xff0000)
376 ts
*= ST_LSM6DSX_TS_SENSITIVITY
;
378 offset
+= ST_LSM6DSX_SAMPLE_SIZE
;
382 iio_push_to_buffers_with_timestamp(
383 hw
->iio_devs
[ST_LSM6DSX_ID_GYRO
],
384 gyro_buff
, gyro_sensor
->ts_ref
+ ts
);
386 iio_push_to_buffers_with_timestamp(
387 hw
->iio_devs
[ST_LSM6DSX_ID_ACC
],
388 acc_buff
, acc_sensor
->ts_ref
+ ts
);
392 if (unlikely(reset_ts
)) {
393 err
= st_lsm6dsx_reset_hw_ts(hw
);
395 dev_err(hw
->dev
, "failed to reset hw ts (err=%d)\n",
403 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw
*hw
)
407 mutex_lock(&hw
->fifo_lock
);
409 st_lsm6dsx_read_fifo(hw
);
410 err
= st_lsm6dsx_set_fifo_mode(hw
, ST_LSM6DSX_FIFO_BYPASS
);
412 mutex_unlock(&hw
->fifo_lock
);
417 static int st_lsm6dsx_update_fifo(struct iio_dev
*iio_dev
, bool enable
)
419 struct st_lsm6dsx_sensor
*sensor
= iio_priv(iio_dev
);
420 struct st_lsm6dsx_hw
*hw
= sensor
->hw
;
423 mutex_lock(&hw
->conf_lock
);
425 if (hw
->fifo_mode
!= ST_LSM6DSX_FIFO_BYPASS
) {
426 err
= st_lsm6dsx_flush_fifo(hw
);
432 err
= st_lsm6dsx_sensor_enable(sensor
);
436 err
= st_lsm6dsx_sensor_disable(sensor
);
441 err
= st_lsm6dsx_set_fifo_odr(sensor
, enable
);
445 err
= st_lsm6dsx_update_decimators(hw
);
449 err
= st_lsm6dsx_update_watermark(sensor
, sensor
->watermark
);
453 if (hw
->enable_mask
) {
454 /* reset hw ts counter */
455 err
= st_lsm6dsx_reset_hw_ts(hw
);
459 err
= st_lsm6dsx_set_fifo_mode(hw
, ST_LSM6DSX_FIFO_CONT
);
463 mutex_unlock(&hw
->conf_lock
);
468 static irqreturn_t
st_lsm6dsx_handler_irq(int irq
, void *private)
470 struct st_lsm6dsx_hw
*hw
= private;
472 return hw
->sip
> 0 ? IRQ_WAKE_THREAD
: IRQ_NONE
;
475 static irqreturn_t
st_lsm6dsx_handler_thread(int irq
, void *private)
477 struct st_lsm6dsx_hw
*hw
= private;
480 mutex_lock(&hw
->fifo_lock
);
481 count
= st_lsm6dsx_read_fifo(hw
);
482 mutex_unlock(&hw
->fifo_lock
);
484 return !count
? IRQ_NONE
: IRQ_HANDLED
;
487 static int st_lsm6dsx_buffer_preenable(struct iio_dev
*iio_dev
)
489 return st_lsm6dsx_update_fifo(iio_dev
, true);
492 static int st_lsm6dsx_buffer_postdisable(struct iio_dev
*iio_dev
)
494 return st_lsm6dsx_update_fifo(iio_dev
, false);
497 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops
= {
498 .preenable
= st_lsm6dsx_buffer_preenable
,
499 .postdisable
= st_lsm6dsx_buffer_postdisable
,
502 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw
*hw
)
504 struct device_node
*np
= hw
->dev
->of_node
;
505 struct st_sensors_platform_data
*pdata
;
506 struct iio_buffer
*buffer
;
507 unsigned long irq_type
;
511 irq_type
= irqd_get_trigger_type(irq_get_irq_data(hw
->irq
));
514 case IRQF_TRIGGER_HIGH
:
515 case IRQF_TRIGGER_RISING
:
516 irq_active_low
= false;
518 case IRQF_TRIGGER_LOW
:
519 case IRQF_TRIGGER_FALLING
:
520 irq_active_low
= true;
523 dev_info(hw
->dev
, "mode %lx unsupported\n", irq_type
);
527 err
= regmap_update_bits(hw
->regmap
, ST_LSM6DSX_REG_HLACTIVE_ADDR
,
528 ST_LSM6DSX_REG_HLACTIVE_MASK
,
529 FIELD_PREP(ST_LSM6DSX_REG_HLACTIVE_MASK
,
534 pdata
= (struct st_sensors_platform_data
*)hw
->dev
->platform_data
;
535 if ((np
&& of_property_read_bool(np
, "drive-open-drain")) ||
536 (pdata
&& pdata
->open_drain
)) {
537 err
= regmap_update_bits(hw
->regmap
, ST_LSM6DSX_REG_PP_OD_ADDR
,
538 ST_LSM6DSX_REG_PP_OD_MASK
,
539 FIELD_PREP(ST_LSM6DSX_REG_PP_OD_MASK
,
544 irq_type
|= IRQF_SHARED
;
547 err
= devm_request_threaded_irq(hw
->dev
, hw
->irq
,
548 st_lsm6dsx_handler_irq
,
549 st_lsm6dsx_handler_thread
,
550 irq_type
| IRQF_ONESHOT
,
553 dev_err(hw
->dev
, "failed to request trigger irq %d\n",
558 for (i
= 0; i
< ST_LSM6DSX_ID_MAX
; i
++) {
559 buffer
= devm_iio_kfifo_allocate(hw
->dev
);
563 iio_device_attach_buffer(hw
->iio_devs
[i
], buffer
);
564 hw
->iio_devs
[i
]->modes
|= INDIO_BUFFER_SOFTWARE
;
565 hw
->iio_devs
[i
]->setup_ops
= &st_lsm6dsx_buffer_ops
;