Linux 4.19.133
[linux/fpc-iii.git] / drivers / infiniband / core / rw.c
blob683e6d11a564417df6d104b7726ad3c78fb6d7bf
1 /*
2 * Copyright (c) 2016 HGST, a Western Digital Company.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 #include <linux/moduleparam.h>
14 #include <linux/slab.h>
15 #include <rdma/mr_pool.h>
16 #include <rdma/rw.h>
18 enum {
19 RDMA_RW_SINGLE_WR,
20 RDMA_RW_MULTI_WR,
21 RDMA_RW_MR,
22 RDMA_RW_SIG_MR,
25 static bool rdma_rw_force_mr;
26 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
27 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
30 * Check if the device might use memory registration. This is currently only
31 * true for iWarp devices. In the future we can hopefully fine tune this based
32 * on HCA driver input.
34 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
36 if (rdma_protocol_iwarp(dev, port_num))
37 return true;
38 if (unlikely(rdma_rw_force_mr))
39 return true;
40 return false;
44 * Check if the device will use memory registration for this RW operation.
45 * We currently always use memory registrations for iWarp RDMA READs, and
46 * have a debug option to force usage of MRs.
48 * XXX: In the future we can hopefully fine tune this based on HCA driver
49 * input.
51 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
52 enum dma_data_direction dir, int dma_nents)
54 if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
55 return true;
56 if (unlikely(rdma_rw_force_mr))
57 return true;
58 return false;
61 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev)
63 /* arbitrary limit to avoid allocating gigantic resources */
64 return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256);
67 /* Caller must have zero-initialized *reg. */
68 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
69 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
70 u32 sg_cnt, u32 offset)
72 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
73 u32 nents = min(sg_cnt, pages_per_mr);
74 int count = 0, ret;
76 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
77 if (!reg->mr)
78 return -EAGAIN;
80 if (reg->mr->need_inval) {
81 reg->inv_wr.opcode = IB_WR_LOCAL_INV;
82 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
83 reg->inv_wr.next = &reg->reg_wr.wr;
84 count++;
85 } else {
86 reg->inv_wr.next = NULL;
89 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
90 if (ret < 0 || ret < nents) {
91 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
92 return -EINVAL;
95 reg->reg_wr.wr.opcode = IB_WR_REG_MR;
96 reg->reg_wr.mr = reg->mr;
97 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
98 if (rdma_protocol_iwarp(qp->device, port_num))
99 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
100 count++;
102 reg->sge.addr = reg->mr->iova;
103 reg->sge.length = reg->mr->length;
104 return count;
107 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
108 u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
109 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
111 struct rdma_rw_reg_ctx *prev = NULL;
112 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
113 int i, j, ret = 0, count = 0;
115 ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
116 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
117 if (!ctx->reg) {
118 ret = -ENOMEM;
119 goto out;
122 for (i = 0; i < ctx->nr_ops; i++) {
123 struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
124 u32 nents = min(sg_cnt, pages_per_mr);
126 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
127 offset);
128 if (ret < 0)
129 goto out_free;
130 count += ret;
132 if (prev) {
133 if (reg->mr->need_inval)
134 prev->wr.wr.next = &reg->inv_wr;
135 else
136 prev->wr.wr.next = &reg->reg_wr.wr;
139 reg->reg_wr.wr.next = &reg->wr.wr;
141 reg->wr.wr.sg_list = &reg->sge;
142 reg->wr.wr.num_sge = 1;
143 reg->wr.remote_addr = remote_addr;
144 reg->wr.rkey = rkey;
145 if (dir == DMA_TO_DEVICE) {
146 reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
147 } else if (!rdma_cap_read_inv(qp->device, port_num)) {
148 reg->wr.wr.opcode = IB_WR_RDMA_READ;
149 } else {
150 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
151 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
153 count++;
155 remote_addr += reg->sge.length;
156 sg_cnt -= nents;
157 for (j = 0; j < nents; j++)
158 sg = sg_next(sg);
159 prev = reg;
160 offset = 0;
163 if (prev)
164 prev->wr.wr.next = NULL;
166 ctx->type = RDMA_RW_MR;
167 return count;
169 out_free:
170 while (--i >= 0)
171 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
172 kfree(ctx->reg);
173 out:
174 return ret;
177 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
178 struct scatterlist *sg, u32 sg_cnt, u32 offset,
179 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
181 struct ib_device *dev = qp->pd->device;
182 u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
183 qp->max_read_sge;
184 struct ib_sge *sge;
185 u32 total_len = 0, i, j;
187 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
189 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
190 if (!ctx->map.sges)
191 goto out;
193 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
194 if (!ctx->map.wrs)
195 goto out_free_sges;
197 for (i = 0; i < ctx->nr_ops; i++) {
198 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
199 u32 nr_sge = min(sg_cnt, max_sge);
201 if (dir == DMA_TO_DEVICE)
202 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
203 else
204 rdma_wr->wr.opcode = IB_WR_RDMA_READ;
205 rdma_wr->remote_addr = remote_addr + total_len;
206 rdma_wr->rkey = rkey;
207 rdma_wr->wr.num_sge = nr_sge;
208 rdma_wr->wr.sg_list = sge;
210 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
211 sge->addr = ib_sg_dma_address(dev, sg) + offset;
212 sge->length = ib_sg_dma_len(dev, sg) - offset;
213 sge->lkey = qp->pd->local_dma_lkey;
215 total_len += sge->length;
216 sge++;
217 sg_cnt--;
218 offset = 0;
221 rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
222 &ctx->map.wrs[i + 1].wr : NULL;
225 ctx->type = RDMA_RW_MULTI_WR;
226 return ctx->nr_ops;
228 out_free_sges:
229 kfree(ctx->map.sges);
230 out:
231 return -ENOMEM;
234 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
235 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
236 enum dma_data_direction dir)
238 struct ib_device *dev = qp->pd->device;
239 struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
241 ctx->nr_ops = 1;
243 ctx->single.sge.lkey = qp->pd->local_dma_lkey;
244 ctx->single.sge.addr = ib_sg_dma_address(dev, sg) + offset;
245 ctx->single.sge.length = ib_sg_dma_len(dev, sg) - offset;
247 memset(rdma_wr, 0, sizeof(*rdma_wr));
248 if (dir == DMA_TO_DEVICE)
249 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
250 else
251 rdma_wr->wr.opcode = IB_WR_RDMA_READ;
252 rdma_wr->wr.sg_list = &ctx->single.sge;
253 rdma_wr->wr.num_sge = 1;
254 rdma_wr->remote_addr = remote_addr;
255 rdma_wr->rkey = rkey;
257 ctx->type = RDMA_RW_SINGLE_WR;
258 return 1;
262 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
263 * @ctx: context to initialize
264 * @qp: queue pair to operate on
265 * @port_num: port num to which the connection is bound
266 * @sg: scatterlist to READ/WRITE from/to
267 * @sg_cnt: number of entries in @sg
268 * @sg_offset: current byte offset into @sg
269 * @remote_addr:remote address to read/write (relative to @rkey)
270 * @rkey: remote key to operate on
271 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
273 * Returns the number of WQEs that will be needed on the workqueue if
274 * successful, or a negative error code.
276 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
277 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
278 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
280 struct ib_device *dev = qp->pd->device;
281 int ret;
283 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
284 if (!ret)
285 return -ENOMEM;
286 sg_cnt = ret;
289 * Skip to the S/G entry that sg_offset falls into:
291 for (;;) {
292 u32 len = ib_sg_dma_len(dev, sg);
294 if (sg_offset < len)
295 break;
297 sg = sg_next(sg);
298 sg_offset -= len;
299 sg_cnt--;
302 ret = -EIO;
303 if (WARN_ON_ONCE(sg_cnt == 0))
304 goto out_unmap_sg;
306 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
307 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
308 sg_offset, remote_addr, rkey, dir);
309 } else if (sg_cnt > 1) {
310 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
311 remote_addr, rkey, dir);
312 } else {
313 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
314 remote_addr, rkey, dir);
317 if (ret < 0)
318 goto out_unmap_sg;
319 return ret;
321 out_unmap_sg:
322 ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
323 return ret;
325 EXPORT_SYMBOL(rdma_rw_ctx_init);
328 * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
329 * @ctx: context to initialize
330 * @qp: queue pair to operate on
331 * @port_num: port num to which the connection is bound
332 * @sg: scatterlist to READ/WRITE from/to
333 * @sg_cnt: number of entries in @sg
334 * @prot_sg: scatterlist to READ/WRITE protection information from/to
335 * @prot_sg_cnt: number of entries in @prot_sg
336 * @sig_attrs: signature offloading algorithms
337 * @remote_addr:remote address to read/write (relative to @rkey)
338 * @rkey: remote key to operate on
339 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
341 * Returns the number of WQEs that will be needed on the workqueue if
342 * successful, or a negative error code.
344 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
345 u8 port_num, struct scatterlist *sg, u32 sg_cnt,
346 struct scatterlist *prot_sg, u32 prot_sg_cnt,
347 struct ib_sig_attrs *sig_attrs,
348 u64 remote_addr, u32 rkey, enum dma_data_direction dir)
350 struct ib_device *dev = qp->pd->device;
351 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
352 struct ib_rdma_wr *rdma_wr;
353 struct ib_send_wr *prev_wr = NULL;
354 int count = 0, ret;
356 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
357 pr_err("SG count too large\n");
358 return -EINVAL;
361 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
362 if (!ret)
363 return -ENOMEM;
364 sg_cnt = ret;
366 ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
367 if (!ret) {
368 ret = -ENOMEM;
369 goto out_unmap_sg;
371 prot_sg_cnt = ret;
373 ctx->type = RDMA_RW_SIG_MR;
374 ctx->nr_ops = 1;
375 ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL);
376 if (!ctx->sig) {
377 ret = -ENOMEM;
378 goto out_unmap_prot_sg;
381 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0);
382 if (ret < 0)
383 goto out_free_ctx;
384 count += ret;
385 prev_wr = &ctx->sig->data.reg_wr.wr;
387 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot,
388 prot_sg, prot_sg_cnt, 0);
389 if (ret < 0)
390 goto out_destroy_data_mr;
391 count += ret;
393 if (ctx->sig->prot.inv_wr.next)
394 prev_wr->next = &ctx->sig->prot.inv_wr;
395 else
396 prev_wr->next = &ctx->sig->prot.reg_wr.wr;
397 prev_wr = &ctx->sig->prot.reg_wr.wr;
399 ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs);
400 if (!ctx->sig->sig_mr) {
401 ret = -EAGAIN;
402 goto out_destroy_prot_mr;
405 if (ctx->sig->sig_mr->need_inval) {
406 memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr));
408 ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV;
409 ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey;
411 prev_wr->next = &ctx->sig->sig_inv_wr;
412 prev_wr = &ctx->sig->sig_inv_wr;
415 ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR;
416 ctx->sig->sig_wr.wr.wr_cqe = NULL;
417 ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge;
418 ctx->sig->sig_wr.wr.num_sge = 1;
419 ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE;
420 ctx->sig->sig_wr.sig_attrs = sig_attrs;
421 ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr;
422 if (prot_sg_cnt)
423 ctx->sig->sig_wr.prot = &ctx->sig->prot.sge;
424 prev_wr->next = &ctx->sig->sig_wr.wr;
425 prev_wr = &ctx->sig->sig_wr.wr;
426 count++;
428 ctx->sig->sig_sge.addr = 0;
429 ctx->sig->sig_sge.length = ctx->sig->data.sge.length;
430 if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE)
431 ctx->sig->sig_sge.length += ctx->sig->prot.sge.length;
433 rdma_wr = &ctx->sig->data.wr;
434 rdma_wr->wr.sg_list = &ctx->sig->sig_sge;
435 rdma_wr->wr.num_sge = 1;
436 rdma_wr->remote_addr = remote_addr;
437 rdma_wr->rkey = rkey;
438 if (dir == DMA_TO_DEVICE)
439 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
440 else
441 rdma_wr->wr.opcode = IB_WR_RDMA_READ;
442 prev_wr->next = &rdma_wr->wr;
443 prev_wr = &rdma_wr->wr;
444 count++;
446 return count;
448 out_destroy_prot_mr:
449 if (prot_sg_cnt)
450 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
451 out_destroy_data_mr:
452 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
453 out_free_ctx:
454 kfree(ctx->sig);
455 out_unmap_prot_sg:
456 ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
457 out_unmap_sg:
458 ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
459 return ret;
461 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
464 * Now that we are going to post the WRs we can update the lkey and need_inval
465 * state on the MRs. If we were doing this at init time, we would get double
466 * or missing invalidations if a context was initialized but not actually
467 * posted.
469 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
471 reg->mr->need_inval = need_inval;
472 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
473 reg->reg_wr.key = reg->mr->lkey;
474 reg->sge.lkey = reg->mr->lkey;
478 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
479 * @ctx: context to operate on
480 * @qp: queue pair to operate on
481 * @port_num: port num to which the connection is bound
482 * @cqe: completion queue entry for the last WR
483 * @chain_wr: WR to append to the posted chain
485 * Return the WR chain for the set of RDMA READ/WRITE operations described by
486 * @ctx, as well as any memory registration operations needed. If @chain_wr
487 * is non-NULL the WR it points to will be appended to the chain of WRs posted.
488 * If @chain_wr is not set @cqe must be set so that the caller gets a
489 * completion notification.
491 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
492 u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
494 struct ib_send_wr *first_wr, *last_wr;
495 int i;
497 switch (ctx->type) {
498 case RDMA_RW_SIG_MR:
499 rdma_rw_update_lkey(&ctx->sig->data, true);
500 if (ctx->sig->prot.mr)
501 rdma_rw_update_lkey(&ctx->sig->prot, true);
503 ctx->sig->sig_mr->need_inval = true;
504 ib_update_fast_reg_key(ctx->sig->sig_mr,
505 ib_inc_rkey(ctx->sig->sig_mr->lkey));
506 ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey;
508 if (ctx->sig->data.inv_wr.next)
509 first_wr = &ctx->sig->data.inv_wr;
510 else
511 first_wr = &ctx->sig->data.reg_wr.wr;
512 last_wr = &ctx->sig->data.wr.wr;
513 break;
514 case RDMA_RW_MR:
515 for (i = 0; i < ctx->nr_ops; i++) {
516 rdma_rw_update_lkey(&ctx->reg[i],
517 ctx->reg[i].wr.wr.opcode !=
518 IB_WR_RDMA_READ_WITH_INV);
521 if (ctx->reg[0].inv_wr.next)
522 first_wr = &ctx->reg[0].inv_wr;
523 else
524 first_wr = &ctx->reg[0].reg_wr.wr;
525 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
526 break;
527 case RDMA_RW_MULTI_WR:
528 first_wr = &ctx->map.wrs[0].wr;
529 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
530 break;
531 case RDMA_RW_SINGLE_WR:
532 first_wr = &ctx->single.wr.wr;
533 last_wr = &ctx->single.wr.wr;
534 break;
535 default:
536 BUG();
539 if (chain_wr) {
540 last_wr->next = chain_wr;
541 } else {
542 last_wr->wr_cqe = cqe;
543 last_wr->send_flags |= IB_SEND_SIGNALED;
546 return first_wr;
548 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
551 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
552 * @ctx: context to operate on
553 * @qp: queue pair to operate on
554 * @port_num: port num to which the connection is bound
555 * @cqe: completion queue entry for the last WR
556 * @chain_wr: WR to append to the posted chain
558 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
559 * any memory registration operations needed. If @chain_wr is non-NULL the
560 * WR it points to will be appended to the chain of WRs posted. If @chain_wr
561 * is not set @cqe must be set so that the caller gets a completion
562 * notification.
564 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
565 struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
567 struct ib_send_wr *first_wr;
569 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
570 return ib_post_send(qp, first_wr, NULL);
572 EXPORT_SYMBOL(rdma_rw_ctx_post);
575 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
576 * @ctx: context to release
577 * @qp: queue pair to operate on
578 * @port_num: port num to which the connection is bound
579 * @sg: scatterlist that was used for the READ/WRITE
580 * @sg_cnt: number of entries in @sg
581 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
583 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
584 struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
586 int i;
588 switch (ctx->type) {
589 case RDMA_RW_MR:
590 for (i = 0; i < ctx->nr_ops; i++)
591 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
592 kfree(ctx->reg);
593 break;
594 case RDMA_RW_MULTI_WR:
595 kfree(ctx->map.wrs);
596 kfree(ctx->map.sges);
597 break;
598 case RDMA_RW_SINGLE_WR:
599 break;
600 default:
601 BUG();
602 break;
605 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
607 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
610 * rdma_rw_ctx_destroy_signature - release all resources allocated by
611 * rdma_rw_ctx_init_signature
612 * @ctx: context to release
613 * @qp: queue pair to operate on
614 * @port_num: port num to which the connection is bound
615 * @sg: scatterlist that was used for the READ/WRITE
616 * @sg_cnt: number of entries in @sg
617 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI
618 * @prot_sg_cnt: number of entries in @prot_sg
619 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
621 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
622 u8 port_num, struct scatterlist *sg, u32 sg_cnt,
623 struct scatterlist *prot_sg, u32 prot_sg_cnt,
624 enum dma_data_direction dir)
626 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
627 return;
629 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
630 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
632 if (ctx->sig->prot.mr) {
633 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
634 ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
637 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr);
638 kfree(ctx->sig);
640 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
643 * rdma_rw_mr_factor - return number of MRs required for a payload
644 * @device: device handling the connection
645 * @port_num: port num to which the connection is bound
646 * @maxpages: maximum payload pages per rdma_rw_ctx
648 * Returns the number of MRs the device requires to move @maxpayload
649 * bytes. The returned value is used during transport creation to
650 * compute max_rdma_ctxts and the size of the transport's Send and
651 * Send Completion Queues.
653 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
654 unsigned int maxpages)
656 unsigned int mr_pages;
658 if (rdma_rw_can_use_mr(device, port_num))
659 mr_pages = rdma_rw_fr_page_list_len(device);
660 else
661 mr_pages = device->attrs.max_sge_rd;
662 return DIV_ROUND_UP(maxpages, mr_pages);
664 EXPORT_SYMBOL(rdma_rw_mr_factor);
666 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
668 u32 factor;
670 WARN_ON_ONCE(attr->port_num == 0);
673 * Each context needs at least one RDMA READ or WRITE WR.
675 * For some hardware we might need more, eventually we should ask the
676 * HCA driver for a multiplier here.
678 factor = 1;
681 * If the devices needs MRs to perform RDMA READ or WRITE operations,
682 * we'll need two additional MRs for the registrations and the
683 * invalidation.
685 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN)
686 factor += 6; /* (inv + reg) * (data + prot + sig) */
687 else if (rdma_rw_can_use_mr(dev, attr->port_num))
688 factor += 2; /* inv + reg */
690 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
693 * But maybe we were just too high in the sky and the device doesn't
694 * even support all we need, and we'll have to live with what we get..
696 attr->cap.max_send_wr =
697 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
700 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
702 struct ib_device *dev = qp->pd->device;
703 u32 nr_mrs = 0, nr_sig_mrs = 0;
704 int ret = 0;
706 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) {
707 nr_sig_mrs = attr->cap.max_rdma_ctxs;
708 nr_mrs = attr->cap.max_rdma_ctxs * 2;
709 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
710 nr_mrs = attr->cap.max_rdma_ctxs;
713 if (nr_mrs) {
714 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
715 IB_MR_TYPE_MEM_REG,
716 rdma_rw_fr_page_list_len(dev));
717 if (ret) {
718 pr_err("%s: failed to allocated %d MRs\n",
719 __func__, nr_mrs);
720 return ret;
724 if (nr_sig_mrs) {
725 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
726 IB_MR_TYPE_SIGNATURE, 2);
727 if (ret) {
728 pr_err("%s: failed to allocated %d SIG MRs\n",
729 __func__, nr_mrs);
730 goto out_free_rdma_mrs;
734 return 0;
736 out_free_rdma_mrs:
737 ib_mr_pool_destroy(qp, &qp->rdma_mrs);
738 return ret;
741 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
743 ib_mr_pool_destroy(qp, &qp->sig_mrs);
744 ib_mr_pool_destroy(qp, &qp->rdma_mrs);