Linux 4.19.133
[linux/fpc-iii.git] / drivers / input / rmi4 / rmi_driver.c
blobac6a20f7afdfa219f7bfd7d726e73143afd70416
1 /*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
5 * This driver provides the core support for a single RMI4-based device.
7 * The RMI4 specification can be found here (URL split for line length):
9 * http://www.synaptics.com/sites/default/files/
10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <linux/irqdomain.h>
25 #include <uapi/linux/input.h>
26 #include <linux/rmi.h>
27 #include "rmi_bus.h"
28 #include "rmi_driver.h"
30 #define HAS_NONSTANDARD_PDT_MASK 0x40
31 #define RMI4_MAX_PAGE 0xff
32 #define RMI4_PAGE_SIZE 0x100
33 #define RMI4_PAGE_MASK 0xFF00
35 #define RMI_DEVICE_RESET_CMD 0x01
36 #define DEFAULT_RESET_DELAY_MS 100
38 void rmi_free_function_list(struct rmi_device *rmi_dev)
40 struct rmi_function *fn, *tmp;
41 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
43 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
45 /* Doing it in the reverse order so F01 will be removed last */
46 list_for_each_entry_safe_reverse(fn, tmp,
47 &data->function_list, node) {
48 list_del(&fn->node);
49 rmi_unregister_function(fn);
52 devm_kfree(&rmi_dev->dev, data->irq_memory);
53 data->irq_memory = NULL;
54 data->irq_status = NULL;
55 data->fn_irq_bits = NULL;
56 data->current_irq_mask = NULL;
57 data->new_irq_mask = NULL;
59 data->f01_container = NULL;
60 data->f34_container = NULL;
63 static int reset_one_function(struct rmi_function *fn)
65 struct rmi_function_handler *fh;
66 int retval = 0;
68 if (!fn || !fn->dev.driver)
69 return 0;
71 fh = to_rmi_function_handler(fn->dev.driver);
72 if (fh->reset) {
73 retval = fh->reset(fn);
74 if (retval < 0)
75 dev_err(&fn->dev, "Reset failed with code %d.\n",
76 retval);
79 return retval;
82 static int configure_one_function(struct rmi_function *fn)
84 struct rmi_function_handler *fh;
85 int retval = 0;
87 if (!fn || !fn->dev.driver)
88 return 0;
90 fh = to_rmi_function_handler(fn->dev.driver);
91 if (fh->config) {
92 retval = fh->config(fn);
93 if (retval < 0)
94 dev_err(&fn->dev, "Config failed with code %d.\n",
95 retval);
98 return retval;
101 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
103 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
104 struct rmi_function *entry;
105 int retval;
107 list_for_each_entry(entry, &data->function_list, node) {
108 retval = reset_one_function(entry);
109 if (retval < 0)
110 return retval;
113 return 0;
116 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
118 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
119 struct rmi_function *entry;
120 int retval;
122 list_for_each_entry(entry, &data->function_list, node) {
123 retval = configure_one_function(entry);
124 if (retval < 0)
125 return retval;
128 return 0;
131 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
133 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
134 struct device *dev = &rmi_dev->dev;
135 int i;
136 int error;
138 if (!data)
139 return 0;
141 if (!data->attn_data.data) {
142 error = rmi_read_block(rmi_dev,
143 data->f01_container->fd.data_base_addr + 1,
144 data->irq_status, data->num_of_irq_regs);
145 if (error < 0) {
146 dev_err(dev, "Failed to read irqs, code=%d\n", error);
147 return error;
151 mutex_lock(&data->irq_mutex);
152 bitmap_and(data->irq_status, data->irq_status, data->fn_irq_bits,
153 data->irq_count);
155 * At this point, irq_status has all bits that are set in the
156 * interrupt status register and are enabled.
158 mutex_unlock(&data->irq_mutex);
160 for_each_set_bit(i, data->irq_status, data->irq_count)
161 handle_nested_irq(irq_find_mapping(data->irqdomain, i));
163 if (data->input)
164 input_sync(data->input);
166 return 0;
169 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
170 void *data, size_t size)
172 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
173 struct rmi4_attn_data attn_data;
174 void *fifo_data;
176 if (!drvdata->enabled)
177 return;
179 fifo_data = kmemdup(data, size, GFP_ATOMIC);
180 if (!fifo_data)
181 return;
183 attn_data.irq_status = irq_status;
184 attn_data.size = size;
185 attn_data.data = fifo_data;
187 kfifo_put(&drvdata->attn_fifo, attn_data);
189 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
191 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
193 struct rmi_device *rmi_dev = dev_id;
194 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
195 struct rmi4_attn_data attn_data = {0};
196 int ret, count;
198 count = kfifo_get(&drvdata->attn_fifo, &attn_data);
199 if (count) {
200 *(drvdata->irq_status) = attn_data.irq_status;
201 drvdata->attn_data = attn_data;
204 ret = rmi_process_interrupt_requests(rmi_dev);
205 if (ret)
206 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
207 "Failed to process interrupt request: %d\n", ret);
209 if (count) {
210 kfree(attn_data.data);
211 drvdata->attn_data.data = NULL;
214 if (!kfifo_is_empty(&drvdata->attn_fifo))
215 return rmi_irq_fn(irq, dev_id);
217 return IRQ_HANDLED;
220 static int rmi_irq_init(struct rmi_device *rmi_dev)
222 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
223 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
224 int irq_flags = irq_get_trigger_type(pdata->irq);
225 int ret;
227 if (!irq_flags)
228 irq_flags = IRQF_TRIGGER_LOW;
230 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
231 rmi_irq_fn, irq_flags | IRQF_ONESHOT,
232 dev_driver_string(rmi_dev->xport->dev),
233 rmi_dev);
234 if (ret < 0) {
235 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
236 pdata->irq);
238 return ret;
241 data->enabled = true;
243 return 0;
246 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
248 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
249 struct rmi_function *entry;
251 list_for_each_entry(entry, &data->function_list, node) {
252 if (entry->fd.function_number == number)
253 return entry;
256 return NULL;
259 static int suspend_one_function(struct rmi_function *fn)
261 struct rmi_function_handler *fh;
262 int retval = 0;
264 if (!fn || !fn->dev.driver)
265 return 0;
267 fh = to_rmi_function_handler(fn->dev.driver);
268 if (fh->suspend) {
269 retval = fh->suspend(fn);
270 if (retval < 0)
271 dev_err(&fn->dev, "Suspend failed with code %d.\n",
272 retval);
275 return retval;
278 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
280 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
281 struct rmi_function *entry;
282 int retval;
284 list_for_each_entry(entry, &data->function_list, node) {
285 retval = suspend_one_function(entry);
286 if (retval < 0)
287 return retval;
290 return 0;
293 static int resume_one_function(struct rmi_function *fn)
295 struct rmi_function_handler *fh;
296 int retval = 0;
298 if (!fn || !fn->dev.driver)
299 return 0;
301 fh = to_rmi_function_handler(fn->dev.driver);
302 if (fh->resume) {
303 retval = fh->resume(fn);
304 if (retval < 0)
305 dev_err(&fn->dev, "Resume failed with code %d.\n",
306 retval);
309 return retval;
312 static int rmi_resume_functions(struct rmi_device *rmi_dev)
314 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
315 struct rmi_function *entry;
316 int retval;
318 list_for_each_entry(entry, &data->function_list, node) {
319 retval = resume_one_function(entry);
320 if (retval < 0)
321 return retval;
324 return 0;
327 int rmi_enable_sensor(struct rmi_device *rmi_dev)
329 int retval = 0;
331 retval = rmi_driver_process_config_requests(rmi_dev);
332 if (retval < 0)
333 return retval;
335 return rmi_process_interrupt_requests(rmi_dev);
339 * rmi_driver_set_input_params - set input device id and other data.
341 * @rmi_dev: Pointer to an RMI device
342 * @input: Pointer to input device
345 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
346 struct input_dev *input)
348 input->name = SYNAPTICS_INPUT_DEVICE_NAME;
349 input->id.vendor = SYNAPTICS_VENDOR_ID;
350 input->id.bustype = BUS_RMI;
351 return 0;
354 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
355 struct input_dev *input)
357 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
358 const char *device_name = rmi_f01_get_product_ID(data->f01_container);
359 char *name;
361 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
362 "Synaptics %s", device_name);
363 if (!name)
364 return;
366 input->name = name;
369 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
370 unsigned long *mask)
372 int error = 0;
373 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
374 struct device *dev = &rmi_dev->dev;
376 mutex_lock(&data->irq_mutex);
377 bitmap_or(data->new_irq_mask,
378 data->current_irq_mask, mask, data->irq_count);
380 error = rmi_write_block(rmi_dev,
381 data->f01_container->fd.control_base_addr + 1,
382 data->new_irq_mask, data->num_of_irq_regs);
383 if (error < 0) {
384 dev_err(dev, "%s: Failed to change enabled interrupts!",
385 __func__);
386 goto error_unlock;
388 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
389 data->num_of_irq_regs);
391 bitmap_or(data->fn_irq_bits, data->fn_irq_bits, mask, data->irq_count);
393 error_unlock:
394 mutex_unlock(&data->irq_mutex);
395 return error;
398 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
399 unsigned long *mask)
401 int error = 0;
402 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
403 struct device *dev = &rmi_dev->dev;
405 mutex_lock(&data->irq_mutex);
406 bitmap_andnot(data->fn_irq_bits,
407 data->fn_irq_bits, mask, data->irq_count);
408 bitmap_andnot(data->new_irq_mask,
409 data->current_irq_mask, mask, data->irq_count);
411 error = rmi_write_block(rmi_dev,
412 data->f01_container->fd.control_base_addr + 1,
413 data->new_irq_mask, data->num_of_irq_regs);
414 if (error < 0) {
415 dev_err(dev, "%s: Failed to change enabled interrupts!",
416 __func__);
417 goto error_unlock;
419 bitmap_copy(data->current_irq_mask, data->new_irq_mask,
420 data->num_of_irq_regs);
422 error_unlock:
423 mutex_unlock(&data->irq_mutex);
424 return error;
427 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
429 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
430 int error;
433 * Can get called before the driver is fully ready to deal with
434 * this situation.
436 if (!data || !data->f01_container) {
437 dev_warn(&rmi_dev->dev,
438 "Not ready to handle reset yet!\n");
439 return 0;
442 error = rmi_read_block(rmi_dev,
443 data->f01_container->fd.control_base_addr + 1,
444 data->current_irq_mask, data->num_of_irq_regs);
445 if (error < 0) {
446 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
447 __func__);
448 return error;
451 error = rmi_driver_process_reset_requests(rmi_dev);
452 if (error < 0)
453 return error;
455 error = rmi_driver_process_config_requests(rmi_dev);
456 if (error < 0)
457 return error;
459 return 0;
462 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
463 struct pdt_entry *entry, u16 pdt_address)
465 u8 buf[RMI_PDT_ENTRY_SIZE];
466 int error;
468 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
469 if (error) {
470 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
471 pdt_address, error);
472 return error;
475 entry->page_start = pdt_address & RMI4_PAGE_MASK;
476 entry->query_base_addr = buf[0];
477 entry->command_base_addr = buf[1];
478 entry->control_base_addr = buf[2];
479 entry->data_base_addr = buf[3];
480 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
481 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
482 entry->function_number = buf[5];
484 return 0;
487 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
488 struct rmi_function_descriptor *fd)
490 fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
491 fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
492 fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
493 fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
494 fd->function_number = pdt->function_number;
495 fd->interrupt_source_count = pdt->interrupt_source_count;
496 fd->function_version = pdt->function_version;
499 #define RMI_SCAN_CONTINUE 0
500 #define RMI_SCAN_DONE 1
502 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
503 int page,
504 int *empty_pages,
505 void *ctx,
506 int (*callback)(struct rmi_device *rmi_dev,
507 void *ctx,
508 const struct pdt_entry *entry))
510 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
511 struct pdt_entry pdt_entry;
512 u16 page_start = RMI4_PAGE_SIZE * page;
513 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
514 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
515 u16 addr;
516 int error;
517 int retval;
519 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
520 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
521 if (error)
522 return error;
524 if (RMI4_END_OF_PDT(pdt_entry.function_number))
525 break;
527 retval = callback(rmi_dev, ctx, &pdt_entry);
528 if (retval != RMI_SCAN_CONTINUE)
529 return retval;
533 * Count number of empty PDT pages. If a gap of two pages
534 * or more is found, stop scanning.
536 if (addr == pdt_start)
537 ++*empty_pages;
538 else
539 *empty_pages = 0;
541 return (data->bootloader_mode || *empty_pages >= 2) ?
542 RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
545 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
546 int (*callback)(struct rmi_device *rmi_dev,
547 void *ctx, const struct pdt_entry *entry))
549 int page;
550 int empty_pages = 0;
551 int retval = RMI_SCAN_DONE;
553 for (page = 0; page <= RMI4_MAX_PAGE; page++) {
554 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
555 ctx, callback);
556 if (retval != RMI_SCAN_CONTINUE)
557 break;
560 return retval < 0 ? retval : 0;
563 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
564 struct rmi_register_descriptor *rdesc)
566 int ret;
567 u8 size_presence_reg;
568 u8 buf[35];
569 int presense_offset = 1;
570 u8 *struct_buf;
571 int reg;
572 int offset = 0;
573 int map_offset = 0;
574 int i;
575 int b;
578 * The first register of the register descriptor is the size of
579 * the register descriptor's presense register.
581 ret = rmi_read(d, addr, &size_presence_reg);
582 if (ret)
583 return ret;
584 ++addr;
586 if (size_presence_reg < 0 || size_presence_reg > 35)
587 return -EIO;
589 memset(buf, 0, sizeof(buf));
592 * The presence register contains the size of the register structure
593 * and a bitmap which identified which packet registers are present
594 * for this particular register type (ie query, control, or data).
596 ret = rmi_read_block(d, addr, buf, size_presence_reg);
597 if (ret)
598 return ret;
599 ++addr;
601 if (buf[0] == 0) {
602 presense_offset = 3;
603 rdesc->struct_size = buf[1] | (buf[2] << 8);
604 } else {
605 rdesc->struct_size = buf[0];
608 for (i = presense_offset; i < size_presence_reg; i++) {
609 for (b = 0; b < 8; b++) {
610 if (buf[i] & (0x1 << b))
611 bitmap_set(rdesc->presense_map, map_offset, 1);
612 ++map_offset;
616 rdesc->num_registers = bitmap_weight(rdesc->presense_map,
617 RMI_REG_DESC_PRESENSE_BITS);
619 rdesc->registers = devm_kcalloc(&d->dev,
620 rdesc->num_registers,
621 sizeof(struct rmi_register_desc_item),
622 GFP_KERNEL);
623 if (!rdesc->registers)
624 return -ENOMEM;
627 * Allocate a temporary buffer to hold the register structure.
628 * I'm not using devm_kzalloc here since it will not be retained
629 * after exiting this function
631 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
632 if (!struct_buf)
633 return -ENOMEM;
636 * The register structure contains information about every packet
637 * register of this type. This includes the size of the packet
638 * register and a bitmap of all subpackets contained in the packet
639 * register.
641 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
642 if (ret)
643 goto free_struct_buff;
645 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
646 for (i = 0; i < rdesc->num_registers; i++) {
647 struct rmi_register_desc_item *item = &rdesc->registers[i];
648 int reg_size = struct_buf[offset];
650 ++offset;
651 if (reg_size == 0) {
652 reg_size = struct_buf[offset] |
653 (struct_buf[offset + 1] << 8);
654 offset += 2;
657 if (reg_size == 0) {
658 reg_size = struct_buf[offset] |
659 (struct_buf[offset + 1] << 8) |
660 (struct_buf[offset + 2] << 16) |
661 (struct_buf[offset + 3] << 24);
662 offset += 4;
665 item->reg = reg;
666 item->reg_size = reg_size;
668 map_offset = 0;
670 do {
671 for (b = 0; b < 7; b++) {
672 if (struct_buf[offset] & (0x1 << b))
673 bitmap_set(item->subpacket_map,
674 map_offset, 1);
675 ++map_offset;
677 } while (struct_buf[offset++] & 0x80);
679 item->num_subpackets = bitmap_weight(item->subpacket_map,
680 RMI_REG_DESC_SUBPACKET_BITS);
682 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
683 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
684 item->reg, item->reg_size, item->num_subpackets);
686 reg = find_next_bit(rdesc->presense_map,
687 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
690 free_struct_buff:
691 kfree(struct_buf);
692 return ret;
695 const struct rmi_register_desc_item *rmi_get_register_desc_item(
696 struct rmi_register_descriptor *rdesc, u16 reg)
698 const struct rmi_register_desc_item *item;
699 int i;
701 for (i = 0; i < rdesc->num_registers; i++) {
702 item = &rdesc->registers[i];
703 if (item->reg == reg)
704 return item;
707 return NULL;
710 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
712 const struct rmi_register_desc_item *item;
713 int i;
714 size_t size = 0;
716 for (i = 0; i < rdesc->num_registers; i++) {
717 item = &rdesc->registers[i];
718 size += item->reg_size;
720 return size;
723 /* Compute the register offset relative to the base address */
724 int rmi_register_desc_calc_reg_offset(
725 struct rmi_register_descriptor *rdesc, u16 reg)
727 const struct rmi_register_desc_item *item;
728 int offset = 0;
729 int i;
731 for (i = 0; i < rdesc->num_registers; i++) {
732 item = &rdesc->registers[i];
733 if (item->reg == reg)
734 return offset;
735 ++offset;
737 return -1;
740 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
741 u8 subpacket)
743 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
744 subpacket) == subpacket;
747 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
748 const struct pdt_entry *pdt)
750 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
751 int ret;
752 u8 status;
754 if (pdt->function_number == 0x34 && pdt->function_version > 1) {
755 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
756 if (ret) {
757 dev_err(&rmi_dev->dev,
758 "Failed to read F34 status: %d.\n", ret);
759 return ret;
762 if (status & BIT(7))
763 data->bootloader_mode = true;
764 } else if (pdt->function_number == 0x01) {
765 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
766 if (ret) {
767 dev_err(&rmi_dev->dev,
768 "Failed to read F01 status: %d.\n", ret);
769 return ret;
772 if (status & BIT(6))
773 data->bootloader_mode = true;
776 return 0;
779 static int rmi_count_irqs(struct rmi_device *rmi_dev,
780 void *ctx, const struct pdt_entry *pdt)
782 int *irq_count = ctx;
783 int ret;
785 *irq_count += pdt->interrupt_source_count;
787 ret = rmi_check_bootloader_mode(rmi_dev, pdt);
788 if (ret < 0)
789 return ret;
791 return RMI_SCAN_CONTINUE;
794 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
795 const struct pdt_entry *pdt)
797 int error;
799 if (pdt->function_number == 0x01) {
800 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
801 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
802 const struct rmi_device_platform_data *pdata =
803 rmi_get_platform_data(rmi_dev);
805 if (rmi_dev->xport->ops->reset) {
806 error = rmi_dev->xport->ops->reset(rmi_dev->xport,
807 cmd_addr);
808 if (error)
809 return error;
811 return RMI_SCAN_DONE;
814 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
815 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
816 if (error) {
817 dev_err(&rmi_dev->dev,
818 "Initial reset failed. Code = %d.\n", error);
819 return error;
822 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
824 return RMI_SCAN_DONE;
827 /* F01 should always be on page 0. If we don't find it there, fail. */
828 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
831 static int rmi_create_function(struct rmi_device *rmi_dev,
832 void *ctx, const struct pdt_entry *pdt)
834 struct device *dev = &rmi_dev->dev;
835 struct rmi_driver_data *data = dev_get_drvdata(dev);
836 int *current_irq_count = ctx;
837 struct rmi_function *fn;
838 int i;
839 int error;
841 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
842 pdt->function_number);
844 fn = kzalloc(sizeof(struct rmi_function) +
845 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
846 GFP_KERNEL);
847 if (!fn) {
848 dev_err(dev, "Failed to allocate memory for F%02X\n",
849 pdt->function_number);
850 return -ENOMEM;
853 INIT_LIST_HEAD(&fn->node);
854 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
856 fn->rmi_dev = rmi_dev;
858 fn->num_of_irqs = pdt->interrupt_source_count;
859 fn->irq_pos = *current_irq_count;
860 *current_irq_count += fn->num_of_irqs;
862 for (i = 0; i < fn->num_of_irqs; i++)
863 set_bit(fn->irq_pos + i, fn->irq_mask);
865 error = rmi_register_function(fn);
866 if (error)
867 return error;
869 if (pdt->function_number == 0x01)
870 data->f01_container = fn;
871 else if (pdt->function_number == 0x34)
872 data->f34_container = fn;
874 list_add_tail(&fn->node, &data->function_list);
876 return RMI_SCAN_CONTINUE;
879 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
881 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
882 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
883 int irq = pdata->irq;
884 int irq_flags;
885 int retval;
887 mutex_lock(&data->enabled_mutex);
889 if (data->enabled)
890 goto out;
892 enable_irq(irq);
893 data->enabled = true;
894 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
895 retval = disable_irq_wake(irq);
896 if (retval)
897 dev_warn(&rmi_dev->dev,
898 "Failed to disable irq for wake: %d\n",
899 retval);
903 * Call rmi_process_interrupt_requests() after enabling irq,
904 * otherwise we may lose interrupt on edge-triggered systems.
906 irq_flags = irq_get_trigger_type(pdata->irq);
907 if (irq_flags & IRQ_TYPE_EDGE_BOTH)
908 rmi_process_interrupt_requests(rmi_dev);
910 out:
911 mutex_unlock(&data->enabled_mutex);
914 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
916 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
917 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
918 struct rmi4_attn_data attn_data = {0};
919 int irq = pdata->irq;
920 int retval, count;
922 mutex_lock(&data->enabled_mutex);
924 if (!data->enabled)
925 goto out;
927 data->enabled = false;
928 disable_irq(irq);
929 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
930 retval = enable_irq_wake(irq);
931 if (retval)
932 dev_warn(&rmi_dev->dev,
933 "Failed to enable irq for wake: %d\n",
934 retval);
937 /* make sure the fifo is clean */
938 while (!kfifo_is_empty(&data->attn_fifo)) {
939 count = kfifo_get(&data->attn_fifo, &attn_data);
940 if (count)
941 kfree(attn_data.data);
944 out:
945 mutex_unlock(&data->enabled_mutex);
948 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
950 int retval;
952 retval = rmi_suspend_functions(rmi_dev);
953 if (retval)
954 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
955 retval);
957 rmi_disable_irq(rmi_dev, enable_wake);
958 return retval;
960 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
962 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
964 int retval;
966 rmi_enable_irq(rmi_dev, clear_wake);
968 retval = rmi_resume_functions(rmi_dev);
969 if (retval)
970 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
971 retval);
973 return retval;
975 EXPORT_SYMBOL_GPL(rmi_driver_resume);
977 static int rmi_driver_remove(struct device *dev)
979 struct rmi_device *rmi_dev = to_rmi_device(dev);
980 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
982 rmi_disable_irq(rmi_dev, false);
984 irq_domain_remove(data->irqdomain);
985 data->irqdomain = NULL;
987 rmi_f34_remove_sysfs(rmi_dev);
988 rmi_free_function_list(rmi_dev);
990 return 0;
993 #ifdef CONFIG_OF
994 static int rmi_driver_of_probe(struct device *dev,
995 struct rmi_device_platform_data *pdata)
997 int retval;
999 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1000 "syna,reset-delay-ms", 1);
1001 if (retval)
1002 return retval;
1004 return 0;
1006 #else
1007 static inline int rmi_driver_of_probe(struct device *dev,
1008 struct rmi_device_platform_data *pdata)
1010 return -ENODEV;
1012 #endif
1014 int rmi_probe_interrupts(struct rmi_driver_data *data)
1016 struct rmi_device *rmi_dev = data->rmi_dev;
1017 struct device *dev = &rmi_dev->dev;
1018 struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1019 int irq_count = 0;
1020 size_t size;
1021 int retval;
1024 * We need to count the IRQs and allocate their storage before scanning
1025 * the PDT and creating the function entries, because adding a new
1026 * function can trigger events that result in the IRQ related storage
1027 * being accessed.
1029 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1030 data->bootloader_mode = false;
1032 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1033 if (retval < 0) {
1034 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1035 return retval;
1038 if (data->bootloader_mode)
1039 dev_warn(dev, "Device in bootloader mode.\n");
1041 /* Allocate and register a linear revmap irq_domain */
1042 data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1043 &irq_domain_simple_ops,
1044 data);
1045 if (!data->irqdomain) {
1046 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1047 return -ENOMEM;
1050 data->irq_count = irq_count;
1051 data->num_of_irq_regs = (data->irq_count + 7) / 8;
1053 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1054 data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1055 if (!data->irq_memory) {
1056 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1057 return -ENOMEM;
1060 data->irq_status = data->irq_memory + size * 0;
1061 data->fn_irq_bits = data->irq_memory + size * 1;
1062 data->current_irq_mask = data->irq_memory + size * 2;
1063 data->new_irq_mask = data->irq_memory + size * 3;
1065 return retval;
1068 int rmi_init_functions(struct rmi_driver_data *data)
1070 struct rmi_device *rmi_dev = data->rmi_dev;
1071 struct device *dev = &rmi_dev->dev;
1072 int irq_count = 0;
1073 int retval;
1075 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1076 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1077 if (retval < 0) {
1078 dev_err(dev, "Function creation failed with code %d.\n",
1079 retval);
1080 goto err_destroy_functions;
1083 if (!data->f01_container) {
1084 dev_err(dev, "Missing F01 container!\n");
1085 retval = -EINVAL;
1086 goto err_destroy_functions;
1089 retval = rmi_read_block(rmi_dev,
1090 data->f01_container->fd.control_base_addr + 1,
1091 data->current_irq_mask, data->num_of_irq_regs);
1092 if (retval < 0) {
1093 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1094 __func__);
1095 goto err_destroy_functions;
1098 return 0;
1100 err_destroy_functions:
1101 rmi_free_function_list(rmi_dev);
1102 return retval;
1105 static int rmi_driver_probe(struct device *dev)
1107 struct rmi_driver *rmi_driver;
1108 struct rmi_driver_data *data;
1109 struct rmi_device_platform_data *pdata;
1110 struct rmi_device *rmi_dev;
1111 int retval;
1113 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1114 __func__);
1116 if (!rmi_is_physical_device(dev)) {
1117 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1118 return -ENODEV;
1121 rmi_dev = to_rmi_device(dev);
1122 rmi_driver = to_rmi_driver(dev->driver);
1123 rmi_dev->driver = rmi_driver;
1125 pdata = rmi_get_platform_data(rmi_dev);
1127 if (rmi_dev->xport->dev->of_node) {
1128 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1129 if (retval)
1130 return retval;
1133 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1134 if (!data)
1135 return -ENOMEM;
1137 INIT_LIST_HEAD(&data->function_list);
1138 data->rmi_dev = rmi_dev;
1139 dev_set_drvdata(&rmi_dev->dev, data);
1142 * Right before a warm boot, the sensor might be in some unusual state,
1143 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1144 * or configuration update. In order to clear the sensor to a known
1145 * state and/or apply any updates, we issue a initial reset to clear any
1146 * previous settings and force it into normal operation.
1148 * We have to do this before actually building the PDT because
1149 * the reflash updates (if any) might cause various registers to move
1150 * around.
1152 * For a number of reasons, this initial reset may fail to return
1153 * within the specified time, but we'll still be able to bring up the
1154 * driver normally after that failure. This occurs most commonly in
1155 * a cold boot situation (where then firmware takes longer to come up
1156 * than from a warm boot) and the reset_delay_ms in the platform data
1157 * has been set too short to accommodate that. Since the sensor will
1158 * eventually come up and be usable, we don't want to just fail here
1159 * and leave the customer's device unusable. So we warn them, and
1160 * continue processing.
1162 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1163 if (retval < 0)
1164 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1166 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1167 if (retval < 0) {
1169 * we'll print out a warning and continue since
1170 * failure to get the PDT properties is not a cause to fail
1172 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1173 PDT_PROPERTIES_LOCATION, retval);
1176 mutex_init(&data->irq_mutex);
1177 mutex_init(&data->enabled_mutex);
1179 retval = rmi_probe_interrupts(data);
1180 if (retval)
1181 goto err;
1183 if (rmi_dev->xport->input) {
1185 * The transport driver already has an input device.
1186 * In some cases it is preferable to reuse the transport
1187 * devices input device instead of creating a new one here.
1188 * One example is some HID touchpads report "pass-through"
1189 * button events are not reported by rmi registers.
1191 data->input = rmi_dev->xport->input;
1192 } else {
1193 data->input = devm_input_allocate_device(dev);
1194 if (!data->input) {
1195 dev_err(dev, "%s: Failed to allocate input device.\n",
1196 __func__);
1197 retval = -ENOMEM;
1198 goto err;
1200 rmi_driver_set_input_params(rmi_dev, data->input);
1201 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1202 "%s/input0", dev_name(dev));
1205 retval = rmi_init_functions(data);
1206 if (retval)
1207 goto err;
1209 retval = rmi_f34_create_sysfs(rmi_dev);
1210 if (retval)
1211 goto err;
1213 if (data->input) {
1214 rmi_driver_set_input_name(rmi_dev, data->input);
1215 if (!rmi_dev->xport->input) {
1216 retval = input_register_device(data->input);
1217 if (retval) {
1218 dev_err(dev, "%s: Failed to register input device.\n",
1219 __func__);
1220 goto err_destroy_functions;
1225 retval = rmi_irq_init(rmi_dev);
1226 if (retval < 0)
1227 goto err_destroy_functions;
1229 if (data->f01_container->dev.driver) {
1230 /* Driver already bound, so enable ATTN now. */
1231 retval = rmi_enable_sensor(rmi_dev);
1232 if (retval)
1233 goto err_disable_irq;
1236 return 0;
1238 err_disable_irq:
1239 rmi_disable_irq(rmi_dev, false);
1240 err_destroy_functions:
1241 rmi_free_function_list(rmi_dev);
1242 err:
1243 return retval;
1246 static struct rmi_driver rmi_physical_driver = {
1247 .driver = {
1248 .owner = THIS_MODULE,
1249 .name = "rmi4_physical",
1250 .bus = &rmi_bus_type,
1251 .probe = rmi_driver_probe,
1252 .remove = rmi_driver_remove,
1254 .reset_handler = rmi_driver_reset_handler,
1255 .clear_irq_bits = rmi_driver_clear_irq_bits,
1256 .set_irq_bits = rmi_driver_set_irq_bits,
1257 .set_input_params = rmi_driver_set_input_params,
1260 bool rmi_is_physical_driver(struct device_driver *drv)
1262 return drv == &rmi_physical_driver.driver;
1265 int __init rmi_register_physical_driver(void)
1267 int error;
1269 error = driver_register(&rmi_physical_driver.driver);
1270 if (error) {
1271 pr_err("%s: driver register failed, code=%d.\n", __func__,
1272 error);
1273 return error;
1276 return 0;
1279 void __exit rmi_unregister_physical_driver(void)
1281 driver_unregister(&rmi_physical_driver.driver);