2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dma-direct.h>
32 #include <linux/iommu-helper.h>
33 #include <linux/iommu.h>
34 #include <linux/delay.h>
35 #include <linux/amd-iommu.h>
36 #include <linux/notifier.h>
37 #include <linux/export.h>
38 #include <linux/irq.h>
39 #include <linux/msi.h>
40 #include <linux/dma-contiguous.h>
41 #include <linux/irqdomain.h>
42 #include <linux/percpu.h>
43 #include <linux/iova.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/io_apic.h>
47 #include <asm/hw_irq.h>
48 #include <asm/msidef.h>
49 #include <asm/proto.h>
50 #include <asm/iommu.h>
54 #include "amd_iommu_proto.h"
55 #include "amd_iommu_types.h"
56 #include "irq_remapping.h"
58 #define AMD_IOMMU_MAPPING_ERROR 0
60 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
62 #define LOOP_TIMEOUT 100000
64 /* IO virtual address start page frame number */
65 #define IOVA_START_PFN (1)
66 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
68 /* Reserved IOVA ranges */
69 #define MSI_RANGE_START (0xfee00000)
70 #define MSI_RANGE_END (0xfeefffff)
71 #define HT_RANGE_START (0xfd00000000ULL)
72 #define HT_RANGE_END (0xffffffffffULL)
75 * This bitmap is used to advertise the page sizes our hardware support
76 * to the IOMMU core, which will then use this information to split
77 * physically contiguous memory regions it is mapping into page sizes
80 * 512GB Pages are not supported due to a hardware bug
82 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
84 static DEFINE_SPINLOCK(amd_iommu_devtable_lock
);
85 static DEFINE_SPINLOCK(pd_bitmap_lock
);
87 /* List of all available dev_data structures */
88 static LLIST_HEAD(dev_data_list
);
90 LIST_HEAD(ioapic_map
);
92 LIST_HEAD(acpihid_map
);
95 * Domain for untranslated devices - only allocated
96 * if iommu=pt passed on kernel cmd line.
98 const struct iommu_ops amd_iommu_ops
;
100 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
101 int amd_iommu_max_glx_val
= -1;
103 static const struct dma_map_ops amd_iommu_dma_ops
;
106 * general struct to manage commands send to an IOMMU
112 struct kmem_cache
*amd_iommu_irq_cache
;
114 static void update_domain(struct protection_domain
*domain
);
115 static int protection_domain_init(struct protection_domain
*domain
);
116 static void detach_device(struct device
*dev
);
117 static void iova_domain_flush_tlb(struct iova_domain
*iovad
);
120 * Data container for a dma_ops specific protection domain
122 struct dma_ops_domain
{
123 /* generic protection domain information */
124 struct protection_domain domain
;
127 struct iova_domain iovad
;
130 static struct iova_domain reserved_iova_ranges
;
131 static struct lock_class_key reserved_rbtree_key
;
133 /****************************************************************************
137 ****************************************************************************/
139 static inline int match_hid_uid(struct device
*dev
,
140 struct acpihid_map_entry
*entry
)
142 struct acpi_device
*adev
= ACPI_COMPANION(dev
);
143 const char *hid
, *uid
;
148 hid
= acpi_device_hid(adev
);
149 uid
= acpi_device_uid(adev
);
155 return strcmp(hid
, entry
->hid
);
158 return strcmp(hid
, entry
->hid
);
160 return (strcmp(hid
, entry
->hid
) || strcmp(uid
, entry
->uid
));
163 static inline u16
get_pci_device_id(struct device
*dev
)
165 struct pci_dev
*pdev
= to_pci_dev(dev
);
167 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
170 static inline int get_acpihid_device_id(struct device
*dev
,
171 struct acpihid_map_entry
**entry
)
173 struct acpihid_map_entry
*p
;
175 list_for_each_entry(p
, &acpihid_map
, list
) {
176 if (!match_hid_uid(dev
, p
)) {
185 static inline int get_device_id(struct device
*dev
)
190 devid
= get_pci_device_id(dev
);
192 devid
= get_acpihid_device_id(dev
, NULL
);
197 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
199 return container_of(dom
, struct protection_domain
, domain
);
202 static struct dma_ops_domain
* to_dma_ops_domain(struct protection_domain
*domain
)
204 BUG_ON(domain
->flags
!= PD_DMA_OPS_MASK
);
205 return container_of(domain
, struct dma_ops_domain
, domain
);
208 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
210 struct iommu_dev_data
*dev_data
;
212 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
216 dev_data
->devid
= devid
;
217 ratelimit_default_init(&dev_data
->rs
);
219 llist_add(&dev_data
->dev_data_list
, &dev_data_list
);
223 static struct iommu_dev_data
*search_dev_data(u16 devid
)
225 struct iommu_dev_data
*dev_data
;
226 struct llist_node
*node
;
228 if (llist_empty(&dev_data_list
))
231 node
= dev_data_list
.first
;
232 llist_for_each_entry(dev_data
, node
, dev_data_list
) {
233 if (dev_data
->devid
== devid
)
240 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
242 *(u16
*)data
= alias
;
246 static u16
get_alias(struct device
*dev
)
248 struct pci_dev
*pdev
= to_pci_dev(dev
);
249 u16 devid
, ivrs_alias
, pci_alias
;
251 /* The callers make sure that get_device_id() does not fail here */
252 devid
= get_device_id(dev
);
254 /* For ACPI HID devices, we simply return the devid as such */
255 if (!dev_is_pci(dev
))
258 ivrs_alias
= amd_iommu_alias_table
[devid
];
260 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
262 if (ivrs_alias
== pci_alias
)
268 * The IVRS is fairly reliable in telling us about aliases, but it
269 * can't know about every screwy device. If we don't have an IVRS
270 * reported alias, use the PCI reported alias. In that case we may
271 * still need to initialize the rlookup and dev_table entries if the
272 * alias is to a non-existent device.
274 if (ivrs_alias
== devid
) {
275 if (!amd_iommu_rlookup_table
[pci_alias
]) {
276 amd_iommu_rlookup_table
[pci_alias
] =
277 amd_iommu_rlookup_table
[devid
];
278 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
279 amd_iommu_dev_table
[devid
].data
,
280 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
286 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
287 "for device %s[%04x:%04x], kernel reported alias "
288 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
289 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
290 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
291 PCI_FUNC(pci_alias
));
294 * If we don't have a PCI DMA alias and the IVRS alias is on the same
295 * bus, then the IVRS table may know about a quirk that we don't.
297 if (pci_alias
== devid
&&
298 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
299 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff);
300 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
301 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
308 static struct iommu_dev_data
*find_dev_data(u16 devid
)
310 struct iommu_dev_data
*dev_data
;
311 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
313 dev_data
= search_dev_data(devid
);
315 if (dev_data
== NULL
) {
316 dev_data
= alloc_dev_data(devid
);
320 if (translation_pre_enabled(iommu
))
321 dev_data
->defer_attach
= true;
327 struct iommu_dev_data
*get_dev_data(struct device
*dev
)
329 return dev
->archdata
.iommu
;
331 EXPORT_SYMBOL(get_dev_data
);
334 * Find or create an IOMMU group for a acpihid device.
336 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
338 struct acpihid_map_entry
*p
, *entry
= NULL
;
341 devid
= get_acpihid_device_id(dev
, &entry
);
343 return ERR_PTR(devid
);
345 list_for_each_entry(p
, &acpihid_map
, list
) {
346 if ((devid
== p
->devid
) && p
->group
)
347 entry
->group
= p
->group
;
351 entry
->group
= generic_device_group(dev
);
353 iommu_group_ref_get(entry
->group
);
358 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
360 static const int caps
[] = {
363 PCI_EXT_CAP_ID_PASID
,
367 if (pci_ats_disabled())
370 for (i
= 0; i
< 3; ++i
) {
371 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
379 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
381 struct iommu_dev_data
*dev_data
;
383 dev_data
= get_dev_data(&pdev
->dev
);
385 return dev_data
->errata
& (1 << erratum
) ? true : false;
389 * This function checks if the driver got a valid device from the caller to
390 * avoid dereferencing invalid pointers.
392 static bool check_device(struct device
*dev
)
396 if (!dev
|| !dev
->dma_mask
)
399 devid
= get_device_id(dev
);
403 /* Out of our scope? */
404 if (devid
> amd_iommu_last_bdf
)
407 if (amd_iommu_rlookup_table
[devid
] == NULL
)
413 static void init_iommu_group(struct device
*dev
)
415 struct iommu_group
*group
;
417 group
= iommu_group_get_for_dev(dev
);
421 iommu_group_put(group
);
424 static int iommu_init_device(struct device
*dev
)
426 struct iommu_dev_data
*dev_data
;
427 struct amd_iommu
*iommu
;
430 if (dev
->archdata
.iommu
)
433 devid
= get_device_id(dev
);
437 iommu
= amd_iommu_rlookup_table
[devid
];
439 dev_data
= find_dev_data(devid
);
443 dev_data
->alias
= get_alias(dev
);
446 * By default we use passthrough mode for IOMMUv2 capable device.
447 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
448 * invalid address), we ignore the capability for the device so
449 * it'll be forced to go into translation mode.
451 if ((iommu_pass_through
|| !amd_iommu_force_isolation
) &&
452 dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
453 struct amd_iommu
*iommu
;
455 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
456 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
459 dev
->archdata
.iommu
= dev_data
;
461 iommu_device_link(&iommu
->iommu
, dev
);
466 static void iommu_ignore_device(struct device
*dev
)
471 devid
= get_device_id(dev
);
475 alias
= get_alias(dev
);
477 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
478 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
480 amd_iommu_rlookup_table
[devid
] = NULL
;
481 amd_iommu_rlookup_table
[alias
] = NULL
;
484 static void iommu_uninit_device(struct device
*dev
)
486 struct iommu_dev_data
*dev_data
;
487 struct amd_iommu
*iommu
;
490 devid
= get_device_id(dev
);
494 iommu
= amd_iommu_rlookup_table
[devid
];
496 dev_data
= search_dev_data(devid
);
500 if (dev_data
->domain
)
503 iommu_device_unlink(&iommu
->iommu
, dev
);
505 iommu_group_remove_device(dev
);
511 * We keep dev_data around for unplugged devices and reuse it when the
512 * device is re-plugged - not doing so would introduce a ton of races.
516 /****************************************************************************
518 * Interrupt handling functions
520 ****************************************************************************/
522 static void dump_dte_entry(u16 devid
)
526 for (i
= 0; i
< 4; ++i
)
527 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
528 amd_iommu_dev_table
[devid
].data
[i
]);
531 static void dump_command(unsigned long phys_addr
)
533 struct iommu_cmd
*cmd
= iommu_phys_to_virt(phys_addr
);
536 for (i
= 0; i
< 4; ++i
)
537 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
540 static void amd_iommu_report_page_fault(u16 devid
, u16 domain_id
,
541 u64 address
, int flags
)
543 struct iommu_dev_data
*dev_data
= NULL
;
544 struct pci_dev
*pdev
;
546 pdev
= pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid
),
549 dev_data
= get_dev_data(&pdev
->dev
);
551 if (dev_data
&& __ratelimit(&dev_data
->rs
)) {
552 dev_err(&pdev
->dev
, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
553 domain_id
, address
, flags
);
554 } else if (printk_ratelimit()) {
555 pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
556 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
557 domain_id
, address
, flags
);
564 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
566 struct device
*dev
= iommu
->iommu
.dev
;
567 int type
, devid
, pasid
, flags
, tag
;
568 volatile u32
*event
= __evt
;
573 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
574 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
575 pasid
= PPR_PASID(*(u64
*)&event
[0]);
576 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
577 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
580 /* Did we hit the erratum? */
581 if (++count
== LOOP_TIMEOUT
) {
582 pr_err("AMD-Vi: No event written to event log\n");
589 if (type
== EVENT_TYPE_IO_FAULT
) {
590 amd_iommu_report_page_fault(devid
, pasid
, address
, flags
);
595 case EVENT_TYPE_ILL_DEV
:
596 dev_err(dev
, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
597 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
598 pasid
, address
, flags
);
599 dump_dte_entry(devid
);
601 case EVENT_TYPE_DEV_TAB_ERR
:
602 dev_err(dev
, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
603 "address=0x%016llx flags=0x%04x]\n",
604 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
607 case EVENT_TYPE_PAGE_TAB_ERR
:
608 dev_err(dev
, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
609 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
610 pasid
, address
, flags
);
612 case EVENT_TYPE_ILL_CMD
:
613 dev_err(dev
, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
614 dump_command(address
);
616 case EVENT_TYPE_CMD_HARD_ERR
:
617 dev_err(dev
, "Event logged [COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
620 case EVENT_TYPE_IOTLB_INV_TO
:
621 dev_err(dev
, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
622 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
625 case EVENT_TYPE_INV_DEV_REQ
:
626 dev_err(dev
, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
627 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
628 pasid
, address
, flags
);
630 case EVENT_TYPE_INV_PPR_REQ
:
631 pasid
= ((event
[0] >> 16) & 0xFFFF)
632 | ((event
[1] << 6) & 0xF0000);
633 tag
= event
[1] & 0x03FF;
634 dev_err(dev
, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
635 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
636 pasid
, address
, flags
);
639 dev_err(dev
, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
640 event
[0], event
[1], event
[2], event
[3]);
643 memset(__evt
, 0, 4 * sizeof(u32
));
646 static void iommu_poll_events(struct amd_iommu
*iommu
)
650 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
651 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
653 while (head
!= tail
) {
654 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
655 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
658 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
661 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
663 struct amd_iommu_fault fault
;
665 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
666 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
670 fault
.address
= raw
[1];
671 fault
.pasid
= PPR_PASID(raw
[0]);
672 fault
.device_id
= PPR_DEVID(raw
[0]);
673 fault
.tag
= PPR_TAG(raw
[0]);
674 fault
.flags
= PPR_FLAGS(raw
[0]);
676 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
679 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
683 if (iommu
->ppr_log
== NULL
)
686 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
687 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
689 while (head
!= tail
) {
694 raw
= (u64
*)(iommu
->ppr_log
+ head
);
697 * Hardware bug: Interrupt may arrive before the entry is
698 * written to memory. If this happens we need to wait for the
701 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
702 if (PPR_REQ_TYPE(raw
[0]) != 0)
707 /* Avoid memcpy function-call overhead */
712 * To detect the hardware bug we need to clear the entry
715 raw
[0] = raw
[1] = 0UL;
717 /* Update head pointer of hardware ring-buffer */
718 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
719 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
721 /* Handle PPR entry */
722 iommu_handle_ppr_entry(iommu
, entry
);
724 /* Refresh ring-buffer information */
725 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
726 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
730 #ifdef CONFIG_IRQ_REMAP
731 static int (*iommu_ga_log_notifier
)(u32
);
733 int amd_iommu_register_ga_log_notifier(int (*notifier
)(u32
))
735 iommu_ga_log_notifier
= notifier
;
739 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier
);
741 static void iommu_poll_ga_log(struct amd_iommu
*iommu
)
743 u32 head
, tail
, cnt
= 0;
745 if (iommu
->ga_log
== NULL
)
748 head
= readl(iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
749 tail
= readl(iommu
->mmio_base
+ MMIO_GA_TAIL_OFFSET
);
751 while (head
!= tail
) {
755 raw
= (u64
*)(iommu
->ga_log
+ head
);
758 /* Avoid memcpy function-call overhead */
761 /* Update head pointer of hardware ring-buffer */
762 head
= (head
+ GA_ENTRY_SIZE
) % GA_LOG_SIZE
;
763 writel(head
, iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
765 /* Handle GA entry */
766 switch (GA_REQ_TYPE(log_entry
)) {
768 if (!iommu_ga_log_notifier
)
771 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
772 __func__
, GA_DEVID(log_entry
),
775 if (iommu_ga_log_notifier(GA_TAG(log_entry
)) != 0)
776 pr_err("AMD-Vi: GA log notifier failed.\n");
783 #endif /* CONFIG_IRQ_REMAP */
785 #define AMD_IOMMU_INT_MASK \
786 (MMIO_STATUS_EVT_INT_MASK | \
787 MMIO_STATUS_PPR_INT_MASK | \
788 MMIO_STATUS_GALOG_INT_MASK)
790 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
792 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
793 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
795 while (status
& AMD_IOMMU_INT_MASK
) {
796 /* Enable EVT and PPR and GA interrupts again */
797 writel(AMD_IOMMU_INT_MASK
,
798 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
800 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
801 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
802 iommu_poll_events(iommu
);
805 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
806 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
807 iommu_poll_ppr_log(iommu
);
810 #ifdef CONFIG_IRQ_REMAP
811 if (status
& MMIO_STATUS_GALOG_INT_MASK
) {
812 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
813 iommu_poll_ga_log(iommu
);
818 * Hardware bug: ERBT1312
819 * When re-enabling interrupt (by writing 1
820 * to clear the bit), the hardware might also try to set
821 * the interrupt bit in the event status register.
822 * In this scenario, the bit will be set, and disable
823 * subsequent interrupts.
825 * Workaround: The IOMMU driver should read back the
826 * status register and check if the interrupt bits are cleared.
827 * If not, driver will need to go through the interrupt handler
828 * again and re-clear the bits
830 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
835 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
837 return IRQ_WAKE_THREAD
;
840 /****************************************************************************
842 * IOMMU command queuing functions
844 ****************************************************************************/
846 static int wait_on_sem(volatile u64
*sem
)
850 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
855 if (i
== LOOP_TIMEOUT
) {
856 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
863 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
864 struct iommu_cmd
*cmd
)
868 target
= iommu
->cmd_buf
+ iommu
->cmd_buf_tail
;
870 iommu
->cmd_buf_tail
+= sizeof(*cmd
);
871 iommu
->cmd_buf_tail
%= CMD_BUFFER_SIZE
;
873 /* Copy command to buffer */
874 memcpy(target
, cmd
, sizeof(*cmd
));
876 /* Tell the IOMMU about it */
877 writel(iommu
->cmd_buf_tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
880 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
882 u64 paddr
= iommu_virt_to_phys((void *)address
);
884 WARN_ON(address
& 0x7ULL
);
886 memset(cmd
, 0, sizeof(*cmd
));
887 cmd
->data
[0] = lower_32_bits(paddr
) | CMD_COMPL_WAIT_STORE_MASK
;
888 cmd
->data
[1] = upper_32_bits(paddr
);
890 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
893 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
895 memset(cmd
, 0, sizeof(*cmd
));
896 cmd
->data
[0] = devid
;
897 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
900 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
901 size_t size
, u16 domid
, int pde
)
906 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
911 * If we have to flush more than one page, flush all
912 * TLB entries for this domain
914 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
918 address
&= PAGE_MASK
;
920 memset(cmd
, 0, sizeof(*cmd
));
921 cmd
->data
[1] |= domid
;
922 cmd
->data
[2] = lower_32_bits(address
);
923 cmd
->data
[3] = upper_32_bits(address
);
924 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
925 if (s
) /* size bit - we flush more than one 4kb page */
926 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
927 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
928 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
931 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
932 u64 address
, size_t size
)
937 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
942 * If we have to flush more than one page, flush all
943 * TLB entries for this domain
945 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
949 address
&= PAGE_MASK
;
951 memset(cmd
, 0, sizeof(*cmd
));
952 cmd
->data
[0] = devid
;
953 cmd
->data
[0] |= (qdep
& 0xff) << 24;
954 cmd
->data
[1] = devid
;
955 cmd
->data
[2] = lower_32_bits(address
);
956 cmd
->data
[3] = upper_32_bits(address
);
957 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
959 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
962 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
963 u64 address
, bool size
)
965 memset(cmd
, 0, sizeof(*cmd
));
967 address
&= ~(0xfffULL
);
969 cmd
->data
[0] = pasid
;
970 cmd
->data
[1] = domid
;
971 cmd
->data
[2] = lower_32_bits(address
);
972 cmd
->data
[3] = upper_32_bits(address
);
973 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
974 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
976 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
977 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
980 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
981 int qdep
, u64 address
, bool size
)
983 memset(cmd
, 0, sizeof(*cmd
));
985 address
&= ~(0xfffULL
);
987 cmd
->data
[0] = devid
;
988 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
989 cmd
->data
[0] |= (qdep
& 0xff) << 24;
990 cmd
->data
[1] = devid
;
991 cmd
->data
[1] |= (pasid
& 0xff) << 16;
992 cmd
->data
[2] = lower_32_bits(address
);
993 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
994 cmd
->data
[3] = upper_32_bits(address
);
996 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
997 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
1000 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
1001 int status
, int tag
, bool gn
)
1003 memset(cmd
, 0, sizeof(*cmd
));
1005 cmd
->data
[0] = devid
;
1007 cmd
->data
[1] = pasid
;
1008 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
1010 cmd
->data
[3] = tag
& 0x1ff;
1011 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
1013 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
1016 static void build_inv_all(struct iommu_cmd
*cmd
)
1018 memset(cmd
, 0, sizeof(*cmd
));
1019 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
1022 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
1024 memset(cmd
, 0, sizeof(*cmd
));
1025 cmd
->data
[0] = devid
;
1026 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
1030 * Writes the command to the IOMMUs command buffer and informs the
1031 * hardware about the new command.
1033 static int __iommu_queue_command_sync(struct amd_iommu
*iommu
,
1034 struct iommu_cmd
*cmd
,
1037 unsigned int count
= 0;
1038 u32 left
, next_tail
;
1040 next_tail
= (iommu
->cmd_buf_tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
1042 left
= (iommu
->cmd_buf_head
- next_tail
) % CMD_BUFFER_SIZE
;
1045 /* Skip udelay() the first time around */
1047 if (count
== LOOP_TIMEOUT
) {
1048 pr_err("AMD-Vi: Command buffer timeout\n");
1055 /* Update head and recheck remaining space */
1056 iommu
->cmd_buf_head
= readl(iommu
->mmio_base
+
1057 MMIO_CMD_HEAD_OFFSET
);
1062 copy_cmd_to_buffer(iommu
, cmd
);
1064 /* Do we need to make sure all commands are processed? */
1065 iommu
->need_sync
= sync
;
1070 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1071 struct iommu_cmd
*cmd
,
1074 unsigned long flags
;
1077 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1078 ret
= __iommu_queue_command_sync(iommu
, cmd
, sync
);
1079 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1084 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1086 return iommu_queue_command_sync(iommu
, cmd
, true);
1090 * This function queues a completion wait command into the command
1091 * buffer of an IOMMU
1093 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1095 struct iommu_cmd cmd
;
1096 unsigned long flags
;
1099 if (!iommu
->need_sync
)
1103 build_completion_wait(&cmd
, (u64
)&iommu
->cmd_sem
);
1105 raw_spin_lock_irqsave(&iommu
->lock
, flags
);
1109 ret
= __iommu_queue_command_sync(iommu
, &cmd
, false);
1113 ret
= wait_on_sem(&iommu
->cmd_sem
);
1116 raw_spin_unlock_irqrestore(&iommu
->lock
, flags
);
1121 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1123 struct iommu_cmd cmd
;
1125 build_inv_dte(&cmd
, devid
);
1127 return iommu_queue_command(iommu
, &cmd
);
1130 static void amd_iommu_flush_dte_all(struct amd_iommu
*iommu
)
1134 for (devid
= 0; devid
<= 0xffff; ++devid
)
1135 iommu_flush_dte(iommu
, devid
);
1137 iommu_completion_wait(iommu
);
1141 * This function uses heavy locking and may disable irqs for some time. But
1142 * this is no issue because it is only called during resume.
1144 static void amd_iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1148 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1149 struct iommu_cmd cmd
;
1150 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1152 iommu_queue_command(iommu
, &cmd
);
1155 iommu_completion_wait(iommu
);
1158 static void amd_iommu_flush_tlb_domid(struct amd_iommu
*iommu
, u32 dom_id
)
1160 struct iommu_cmd cmd
;
1162 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1164 iommu_queue_command(iommu
, &cmd
);
1166 iommu_completion_wait(iommu
);
1169 static void amd_iommu_flush_all(struct amd_iommu
*iommu
)
1171 struct iommu_cmd cmd
;
1173 build_inv_all(&cmd
);
1175 iommu_queue_command(iommu
, &cmd
);
1176 iommu_completion_wait(iommu
);
1179 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1181 struct iommu_cmd cmd
;
1183 build_inv_irt(&cmd
, devid
);
1185 iommu_queue_command(iommu
, &cmd
);
1188 static void amd_iommu_flush_irt_all(struct amd_iommu
*iommu
)
1192 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1193 iommu_flush_irt(iommu
, devid
);
1195 iommu_completion_wait(iommu
);
1198 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1200 if (iommu_feature(iommu
, FEATURE_IA
)) {
1201 amd_iommu_flush_all(iommu
);
1203 amd_iommu_flush_dte_all(iommu
);
1204 amd_iommu_flush_irt_all(iommu
);
1205 amd_iommu_flush_tlb_all(iommu
);
1210 * Command send function for flushing on-device TLB
1212 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1213 u64 address
, size_t size
)
1215 struct amd_iommu
*iommu
;
1216 struct iommu_cmd cmd
;
1219 qdep
= dev_data
->ats
.qdep
;
1220 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1222 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1224 return iommu_queue_command(iommu
, &cmd
);
1228 * Command send function for invalidating a device table entry
1230 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1232 struct amd_iommu
*iommu
;
1236 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1237 alias
= dev_data
->alias
;
1239 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1240 if (!ret
&& alias
!= dev_data
->devid
)
1241 ret
= iommu_flush_dte(iommu
, alias
);
1245 if (dev_data
->ats
.enabled
)
1246 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1252 * TLB invalidation function which is called from the mapping functions.
1253 * It invalidates a single PTE if the range to flush is within a single
1254 * page. Otherwise it flushes the whole TLB of the IOMMU.
1256 static void __domain_flush_pages(struct protection_domain
*domain
,
1257 u64 address
, size_t size
, int pde
)
1259 struct iommu_dev_data
*dev_data
;
1260 struct iommu_cmd cmd
;
1263 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1265 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1266 if (!domain
->dev_iommu
[i
])
1270 * Devices of this domain are behind this IOMMU
1271 * We need a TLB flush
1273 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1276 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1278 if (!dev_data
->ats
.enabled
)
1281 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1287 static void domain_flush_pages(struct protection_domain
*domain
,
1288 u64 address
, size_t size
)
1290 __domain_flush_pages(domain
, address
, size
, 0);
1293 /* Flush the whole IO/TLB for a given protection domain */
1294 static void domain_flush_tlb(struct protection_domain
*domain
)
1296 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1299 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1300 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1302 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1305 static void domain_flush_complete(struct protection_domain
*domain
)
1309 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
1310 if (domain
&& !domain
->dev_iommu
[i
])
1314 * Devices of this domain are behind this IOMMU
1315 * We need to wait for completion of all commands.
1317 iommu_completion_wait(amd_iommus
[i
]);
1323 * This function flushes the DTEs for all devices in domain
1325 static void domain_flush_devices(struct protection_domain
*domain
)
1327 struct iommu_dev_data
*dev_data
;
1329 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1330 device_flush_dte(dev_data
);
1333 /****************************************************************************
1335 * The functions below are used the create the page table mappings for
1336 * unity mapped regions.
1338 ****************************************************************************/
1341 * This function is used to add another level to an IO page table. Adding
1342 * another level increases the size of the address space by 9 bits to a size up
1345 static void increase_address_space(struct protection_domain
*domain
,
1348 unsigned long flags
;
1351 spin_lock_irqsave(&domain
->lock
, flags
);
1353 if (WARN_ON_ONCE(domain
->mode
== PAGE_MODE_6_LEVEL
))
1354 /* address space already 64 bit large */
1357 pte
= (void *)get_zeroed_page(gfp
);
1361 *pte
= PM_LEVEL_PDE(domain
->mode
,
1362 iommu_virt_to_phys(domain
->pt_root
));
1363 domain
->pt_root
= pte
;
1365 domain
->updated
= true;
1368 spin_unlock_irqrestore(&domain
->lock
, flags
);
1373 static u64
*alloc_pte(struct protection_domain
*domain
,
1374 unsigned long address
,
1375 unsigned long page_size
,
1382 BUG_ON(!is_power_of_2(page_size
));
1384 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1385 increase_address_space(domain
, gfp
);
1387 level
= domain
->mode
- 1;
1388 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1389 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1390 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1392 while (level
> end_lvl
) {
1397 if (!IOMMU_PTE_PRESENT(__pte
)) {
1398 page
= (u64
*)get_zeroed_page(gfp
);
1402 __npte
= PM_LEVEL_PDE(level
, iommu_virt_to_phys(page
));
1404 /* pte could have been changed somewhere. */
1405 if (cmpxchg64(pte
, __pte
, __npte
) != __pte
) {
1406 free_page((unsigned long)page
);
1411 /* No level skipping support yet */
1412 if (PM_PTE_LEVEL(*pte
) != level
)
1417 pte
= IOMMU_PTE_PAGE(*pte
);
1419 if (pte_page
&& level
== end_lvl
)
1422 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1429 * This function checks if there is a PTE for a given dma address. If
1430 * there is one, it returns the pointer to it.
1432 static u64
*fetch_pte(struct protection_domain
*domain
,
1433 unsigned long address
,
1434 unsigned long *page_size
)
1441 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1444 level
= domain
->mode
- 1;
1445 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1446 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1451 if (!IOMMU_PTE_PRESENT(*pte
))
1455 if (PM_PTE_LEVEL(*pte
) == 7 ||
1456 PM_PTE_LEVEL(*pte
) == 0)
1459 /* No level skipping support yet */
1460 if (PM_PTE_LEVEL(*pte
) != level
)
1465 /* Walk to the next level */
1466 pte
= IOMMU_PTE_PAGE(*pte
);
1467 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1468 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1471 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1472 unsigned long pte_mask
;
1475 * If we have a series of large PTEs, make
1476 * sure to return a pointer to the first one.
1478 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1479 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1480 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1487 * Generic mapping functions. It maps a physical address into a DMA
1488 * address space. It allocates the page table pages if necessary.
1489 * In the future it can be extended to a generic mapping function
1490 * supporting all features of AMD IOMMU page tables like level skipping
1491 * and full 64 bit address spaces.
1493 static int iommu_map_page(struct protection_domain
*dom
,
1494 unsigned long bus_addr
,
1495 unsigned long phys_addr
,
1496 unsigned long page_size
,
1503 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1504 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1506 if (!(prot
& IOMMU_PROT_MASK
))
1509 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1510 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
);
1515 for (i
= 0; i
< count
; ++i
)
1516 if (IOMMU_PTE_PRESENT(pte
[i
]))
1520 __pte
= PAGE_SIZE_PTE(__sme_set(phys_addr
), page_size
);
1521 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1523 __pte
= __sme_set(phys_addr
) | IOMMU_PTE_PR
| IOMMU_PTE_FC
;
1525 if (prot
& IOMMU_PROT_IR
)
1526 __pte
|= IOMMU_PTE_IR
;
1527 if (prot
& IOMMU_PROT_IW
)
1528 __pte
|= IOMMU_PTE_IW
;
1530 for (i
= 0; i
< count
; ++i
)
1538 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1539 unsigned long bus_addr
,
1540 unsigned long page_size
)
1542 unsigned long long unmapped
;
1543 unsigned long unmap_size
;
1546 BUG_ON(!is_power_of_2(page_size
));
1550 while (unmapped
< page_size
) {
1552 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1557 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1558 for (i
= 0; i
< count
; i
++)
1562 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1563 unmapped
+= unmap_size
;
1566 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1571 /****************************************************************************
1573 * The next functions belong to the address allocator for the dma_ops
1574 * interface functions.
1576 ****************************************************************************/
1579 static unsigned long dma_ops_alloc_iova(struct device
*dev
,
1580 struct dma_ops_domain
*dma_dom
,
1581 unsigned int pages
, u64 dma_mask
)
1583 unsigned long pfn
= 0;
1585 pages
= __roundup_pow_of_two(pages
);
1587 if (dma_mask
> DMA_BIT_MASK(32))
1588 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1589 IOVA_PFN(DMA_BIT_MASK(32)), false);
1592 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1593 IOVA_PFN(dma_mask
), true);
1595 return (pfn
<< PAGE_SHIFT
);
1598 static void dma_ops_free_iova(struct dma_ops_domain
*dma_dom
,
1599 unsigned long address
,
1602 pages
= __roundup_pow_of_two(pages
);
1603 address
>>= PAGE_SHIFT
;
1605 free_iova_fast(&dma_dom
->iovad
, address
, pages
);
1608 /****************************************************************************
1610 * The next functions belong to the domain allocation. A domain is
1611 * allocated for every IOMMU as the default domain. If device isolation
1612 * is enabled, every device get its own domain. The most important thing
1613 * about domains is the page table mapping the DMA address space they
1616 ****************************************************************************/
1619 * This function adds a protection domain to the global protection domain list
1621 static void add_domain_to_list(struct protection_domain
*domain
)
1623 unsigned long flags
;
1625 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1626 list_add(&domain
->list
, &amd_iommu_pd_list
);
1627 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1631 * This function removes a protection domain to the global
1632 * protection domain list
1634 static void del_domain_from_list(struct protection_domain
*domain
)
1636 unsigned long flags
;
1638 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1639 list_del(&domain
->list
);
1640 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1643 static u16
domain_id_alloc(void)
1647 spin_lock(&pd_bitmap_lock
);
1648 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1650 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1651 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1654 spin_unlock(&pd_bitmap_lock
);
1659 static void domain_id_free(int id
)
1661 spin_lock(&pd_bitmap_lock
);
1662 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1663 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1664 spin_unlock(&pd_bitmap_lock
);
1667 #define DEFINE_FREE_PT_FN(LVL, FN) \
1668 static void free_pt_##LVL (unsigned long __pt) \
1676 for (i = 0; i < 512; ++i) { \
1677 /* PTE present? */ \
1678 if (!IOMMU_PTE_PRESENT(pt[i])) \
1682 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1683 PM_PTE_LEVEL(pt[i]) == 7) \
1686 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1689 free_page((unsigned long)pt); \
1692 DEFINE_FREE_PT_FN(l2
, free_page
)
1693 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1694 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1695 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1696 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1698 static void free_pagetable(struct protection_domain
*domain
)
1700 unsigned long root
= (unsigned long)domain
->pt_root
;
1702 switch (domain
->mode
) {
1703 case PAGE_MODE_NONE
:
1705 case PAGE_MODE_1_LEVEL
:
1708 case PAGE_MODE_2_LEVEL
:
1711 case PAGE_MODE_3_LEVEL
:
1714 case PAGE_MODE_4_LEVEL
:
1717 case PAGE_MODE_5_LEVEL
:
1720 case PAGE_MODE_6_LEVEL
:
1728 static void free_gcr3_tbl_level1(u64
*tbl
)
1733 for (i
= 0; i
< 512; ++i
) {
1734 if (!(tbl
[i
] & GCR3_VALID
))
1737 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1739 free_page((unsigned long)ptr
);
1743 static void free_gcr3_tbl_level2(u64
*tbl
)
1748 for (i
= 0; i
< 512; ++i
) {
1749 if (!(tbl
[i
] & GCR3_VALID
))
1752 ptr
= iommu_phys_to_virt(tbl
[i
] & PAGE_MASK
);
1754 free_gcr3_tbl_level1(ptr
);
1758 static void free_gcr3_table(struct protection_domain
*domain
)
1760 if (domain
->glx
== 2)
1761 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1762 else if (domain
->glx
== 1)
1763 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1765 BUG_ON(domain
->glx
!= 0);
1767 free_page((unsigned long)domain
->gcr3_tbl
);
1770 static void dma_ops_domain_flush_tlb(struct dma_ops_domain
*dom
)
1772 domain_flush_tlb(&dom
->domain
);
1773 domain_flush_complete(&dom
->domain
);
1776 static void iova_domain_flush_tlb(struct iova_domain
*iovad
)
1778 struct dma_ops_domain
*dom
;
1780 dom
= container_of(iovad
, struct dma_ops_domain
, iovad
);
1782 dma_ops_domain_flush_tlb(dom
);
1786 * Free a domain, only used if something went wrong in the
1787 * allocation path and we need to free an already allocated page table
1789 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1794 del_domain_from_list(&dom
->domain
);
1796 put_iova_domain(&dom
->iovad
);
1798 free_pagetable(&dom
->domain
);
1801 domain_id_free(dom
->domain
.id
);
1807 * Allocates a new protection domain usable for the dma_ops functions.
1808 * It also initializes the page table and the address allocator data
1809 * structures required for the dma_ops interface
1811 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1813 struct dma_ops_domain
*dma_dom
;
1815 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1819 if (protection_domain_init(&dma_dom
->domain
))
1822 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
1823 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1824 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1825 if (!dma_dom
->domain
.pt_root
)
1828 init_iova_domain(&dma_dom
->iovad
, PAGE_SIZE
, IOVA_START_PFN
);
1830 if (init_iova_flush_queue(&dma_dom
->iovad
, iova_domain_flush_tlb
, NULL
))
1833 /* Initialize reserved ranges */
1834 copy_reserved_iova(&reserved_iova_ranges
, &dma_dom
->iovad
);
1836 add_domain_to_list(&dma_dom
->domain
);
1841 dma_ops_domain_free(dma_dom
);
1847 * little helper function to check whether a given protection domain is a
1850 static bool dma_ops_domain(struct protection_domain
*domain
)
1852 return domain
->flags
& PD_DMA_OPS_MASK
;
1855 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
,
1862 if (domain
->mode
!= PAGE_MODE_NONE
)
1863 pte_root
= iommu_virt_to_phys(domain
->pt_root
);
1865 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1866 << DEV_ENTRY_MODE_SHIFT
;
1867 pte_root
|= DTE_FLAG_IR
| DTE_FLAG_IW
| DTE_FLAG_V
| DTE_FLAG_TV
;
1869 flags
= amd_iommu_dev_table
[devid
].data
[1];
1872 flags
|= DTE_FLAG_IOTLB
;
1875 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
1877 if (iommu_feature(iommu
, FEATURE_EPHSUP
))
1878 pte_root
|= 1ULL << DEV_ENTRY_PPR
;
1881 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1882 u64 gcr3
= iommu_virt_to_phys(domain
->gcr3_tbl
);
1883 u64 glx
= domain
->glx
;
1886 pte_root
|= DTE_FLAG_GV
;
1887 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1889 /* First mask out possible old values for GCR3 table */
1890 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1893 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1896 /* Encode GCR3 table into DTE */
1897 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1900 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1903 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1907 flags
&= ~DEV_DOMID_MASK
;
1908 flags
|= domain
->id
;
1910 old_domid
= amd_iommu_dev_table
[devid
].data
[1] & DEV_DOMID_MASK
;
1911 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1912 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1915 * A kdump kernel might be replacing a domain ID that was copied from
1916 * the previous kernel--if so, it needs to flush the translation cache
1917 * entries for the old domain ID that is being overwritten
1920 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
1922 amd_iommu_flush_tlb_domid(iommu
, old_domid
);
1926 static void clear_dte_entry(u16 devid
)
1928 /* remove entry from the device table seen by the hardware */
1929 amd_iommu_dev_table
[devid
].data
[0] = DTE_FLAG_V
| DTE_FLAG_TV
;
1930 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1932 amd_iommu_apply_erratum_63(devid
);
1935 static void do_attach(struct iommu_dev_data
*dev_data
,
1936 struct protection_domain
*domain
)
1938 struct amd_iommu
*iommu
;
1942 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1943 alias
= dev_data
->alias
;
1944 ats
= dev_data
->ats
.enabled
;
1946 /* Update data structures */
1947 dev_data
->domain
= domain
;
1948 list_add(&dev_data
->list
, &domain
->dev_list
);
1950 /* Do reference counting */
1951 domain
->dev_iommu
[iommu
->index
] += 1;
1952 domain
->dev_cnt
+= 1;
1954 /* Update device table */
1955 set_dte_entry(dev_data
->devid
, domain
, ats
, dev_data
->iommu_v2
);
1956 if (alias
!= dev_data
->devid
)
1957 set_dte_entry(alias
, domain
, ats
, dev_data
->iommu_v2
);
1959 device_flush_dte(dev_data
);
1962 static void do_detach(struct iommu_dev_data
*dev_data
)
1964 struct protection_domain
*domain
= dev_data
->domain
;
1965 struct amd_iommu
*iommu
;
1968 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1969 alias
= dev_data
->alias
;
1971 /* Update data structures */
1972 dev_data
->domain
= NULL
;
1973 list_del(&dev_data
->list
);
1974 clear_dte_entry(dev_data
->devid
);
1975 if (alias
!= dev_data
->devid
)
1976 clear_dte_entry(alias
);
1978 /* Flush the DTE entry */
1979 device_flush_dte(dev_data
);
1982 domain_flush_tlb_pde(domain
);
1984 /* Wait for the flushes to finish */
1985 domain_flush_complete(domain
);
1987 /* decrease reference counters - needs to happen after the flushes */
1988 domain
->dev_iommu
[iommu
->index
] -= 1;
1989 domain
->dev_cnt
-= 1;
1993 * If a device is not yet associated with a domain, this function makes the
1994 * device visible in the domain
1996 static int __attach_device(struct iommu_dev_data
*dev_data
,
1997 struct protection_domain
*domain
)
2002 spin_lock(&domain
->lock
);
2005 if (dev_data
->domain
!= NULL
)
2008 /* Attach alias group root */
2009 do_attach(dev_data
, domain
);
2016 spin_unlock(&domain
->lock
);
2022 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
2024 pci_disable_ats(pdev
);
2025 pci_disable_pri(pdev
);
2026 pci_disable_pasid(pdev
);
2029 /* FIXME: Change generic reset-function to do the same */
2030 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
2035 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2039 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
2040 control
|= PCI_PRI_CTRL_RESET
;
2041 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2046 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2051 /* FIXME: Hardcode number of outstanding requests for now */
2053 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2055 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2057 /* Only allow access to user-accessible pages */
2058 ret
= pci_enable_pasid(pdev
, 0);
2062 /* First reset the PRI state of the device */
2063 ret
= pci_reset_pri(pdev
);
2068 ret
= pci_enable_pri(pdev
, reqs
);
2073 ret
= pri_reset_while_enabled(pdev
);
2078 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2085 pci_disable_pri(pdev
);
2086 pci_disable_pasid(pdev
);
2091 /* FIXME: Move this to PCI code */
2092 #define PCI_PRI_TLP_OFF (1 << 15)
2094 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2099 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2103 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2105 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2109 * If a device is not yet associated with a domain, this function makes the
2110 * device visible in the domain
2112 static int attach_device(struct device
*dev
,
2113 struct protection_domain
*domain
)
2115 struct pci_dev
*pdev
;
2116 struct iommu_dev_data
*dev_data
;
2117 unsigned long flags
;
2120 dev_data
= get_dev_data(dev
);
2122 if (!dev_is_pci(dev
))
2123 goto skip_ats_check
;
2125 pdev
= to_pci_dev(dev
);
2126 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2127 if (!dev_data
->passthrough
)
2130 if (dev_data
->iommu_v2
) {
2131 if (pdev_iommuv2_enable(pdev
) != 0)
2134 dev_data
->ats
.enabled
= true;
2135 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2136 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2138 } else if (amd_iommu_iotlb_sup
&&
2139 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2140 dev_data
->ats
.enabled
= true;
2141 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2145 spin_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2146 ret
= __attach_device(dev_data
, domain
);
2147 spin_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2150 * We might boot into a crash-kernel here. The crashed kernel
2151 * left the caches in the IOMMU dirty. So we have to flush
2152 * here to evict all dirty stuff.
2154 domain_flush_tlb_pde(domain
);
2156 domain_flush_complete(domain
);
2162 * Removes a device from a protection domain (unlocked)
2164 static void __detach_device(struct iommu_dev_data
*dev_data
)
2166 struct protection_domain
*domain
;
2168 domain
= dev_data
->domain
;
2170 spin_lock(&domain
->lock
);
2172 do_detach(dev_data
);
2174 spin_unlock(&domain
->lock
);
2178 * Removes a device from a protection domain (with devtable_lock held)
2180 static void detach_device(struct device
*dev
)
2182 struct protection_domain
*domain
;
2183 struct iommu_dev_data
*dev_data
;
2184 unsigned long flags
;
2186 dev_data
= get_dev_data(dev
);
2187 domain
= dev_data
->domain
;
2190 * First check if the device is still attached. It might already
2191 * be detached from its domain because the generic
2192 * iommu_detach_group code detached it and we try again here in
2193 * our alias handling.
2195 if (WARN_ON(!dev_data
->domain
))
2198 /* lock device table */
2199 spin_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2200 __detach_device(dev_data
);
2201 spin_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2203 if (!dev_is_pci(dev
))
2206 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2207 pdev_iommuv2_disable(to_pci_dev(dev
));
2208 else if (dev_data
->ats
.enabled
)
2209 pci_disable_ats(to_pci_dev(dev
));
2211 dev_data
->ats
.enabled
= false;
2214 static int amd_iommu_add_device(struct device
*dev
)
2216 struct iommu_dev_data
*dev_data
;
2217 struct iommu_domain
*domain
;
2218 struct amd_iommu
*iommu
;
2221 if (!check_device(dev
) || get_dev_data(dev
))
2224 devid
= get_device_id(dev
);
2228 iommu
= amd_iommu_rlookup_table
[devid
];
2230 ret
= iommu_init_device(dev
);
2232 if (ret
!= -ENOTSUPP
)
2233 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2236 iommu_ignore_device(dev
);
2237 dev
->dma_ops
= &dma_direct_ops
;
2240 init_iommu_group(dev
);
2242 dev_data
= get_dev_data(dev
);
2246 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2247 iommu_request_dm_for_dev(dev
);
2249 /* Domains are initialized for this device - have a look what we ended up with */
2250 domain
= iommu_get_domain_for_dev(dev
);
2251 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2252 dev_data
->passthrough
= true;
2254 dev
->dma_ops
= &amd_iommu_dma_ops
;
2257 iommu_completion_wait(iommu
);
2262 static void amd_iommu_remove_device(struct device
*dev
)
2264 struct amd_iommu
*iommu
;
2267 if (!check_device(dev
))
2270 devid
= get_device_id(dev
);
2274 iommu
= amd_iommu_rlookup_table
[devid
];
2276 iommu_uninit_device(dev
);
2277 iommu_completion_wait(iommu
);
2280 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2282 if (dev_is_pci(dev
))
2283 return pci_device_group(dev
);
2285 return acpihid_device_group(dev
);
2288 /*****************************************************************************
2290 * The next functions belong to the dma_ops mapping/unmapping code.
2292 *****************************************************************************/
2295 * In the dma_ops path we only have the struct device. This function
2296 * finds the corresponding IOMMU, the protection domain and the
2297 * requestor id for a given device.
2298 * If the device is not yet associated with a domain this is also done
2301 static struct protection_domain
*get_domain(struct device
*dev
)
2303 struct protection_domain
*domain
;
2304 struct iommu_domain
*io_domain
;
2306 if (!check_device(dev
))
2307 return ERR_PTR(-EINVAL
);
2309 domain
= get_dev_data(dev
)->domain
;
2310 if (domain
== NULL
&& get_dev_data(dev
)->defer_attach
) {
2311 get_dev_data(dev
)->defer_attach
= false;
2312 io_domain
= iommu_get_domain_for_dev(dev
);
2313 domain
= to_pdomain(io_domain
);
2314 attach_device(dev
, domain
);
2317 return ERR_PTR(-EBUSY
);
2319 if (!dma_ops_domain(domain
))
2320 return ERR_PTR(-EBUSY
);
2325 static void update_device_table(struct protection_domain
*domain
)
2327 struct iommu_dev_data
*dev_data
;
2329 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2330 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
,
2331 dev_data
->iommu_v2
);
2333 if (dev_data
->devid
== dev_data
->alias
)
2336 /* There is an alias, update device table entry for it */
2337 set_dte_entry(dev_data
->alias
, domain
, dev_data
->ats
.enabled
,
2338 dev_data
->iommu_v2
);
2342 static void update_domain(struct protection_domain
*domain
)
2344 if (!domain
->updated
)
2347 update_device_table(domain
);
2349 domain_flush_devices(domain
);
2350 domain_flush_tlb_pde(domain
);
2352 domain
->updated
= false;
2355 static int dir2prot(enum dma_data_direction direction
)
2357 if (direction
== DMA_TO_DEVICE
)
2358 return IOMMU_PROT_IR
;
2359 else if (direction
== DMA_FROM_DEVICE
)
2360 return IOMMU_PROT_IW
;
2361 else if (direction
== DMA_BIDIRECTIONAL
)
2362 return IOMMU_PROT_IW
| IOMMU_PROT_IR
;
2368 * This function contains common code for mapping of a physically
2369 * contiguous memory region into DMA address space. It is used by all
2370 * mapping functions provided with this IOMMU driver.
2371 * Must be called with the domain lock held.
2373 static dma_addr_t
__map_single(struct device
*dev
,
2374 struct dma_ops_domain
*dma_dom
,
2377 enum dma_data_direction direction
,
2380 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2381 dma_addr_t address
, start
, ret
;
2386 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2389 address
= dma_ops_alloc_iova(dev
, dma_dom
, pages
, dma_mask
);
2390 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2393 prot
= dir2prot(direction
);
2396 for (i
= 0; i
< pages
; ++i
) {
2397 ret
= iommu_map_page(&dma_dom
->domain
, start
, paddr
,
2398 PAGE_SIZE
, prot
, GFP_ATOMIC
);
2407 if (unlikely(amd_iommu_np_cache
)) {
2408 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2409 domain_flush_complete(&dma_dom
->domain
);
2417 for (--i
; i
>= 0; --i
) {
2419 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2422 domain_flush_tlb(&dma_dom
->domain
);
2423 domain_flush_complete(&dma_dom
->domain
);
2425 dma_ops_free_iova(dma_dom
, address
, pages
);
2427 return AMD_IOMMU_MAPPING_ERROR
;
2431 * Does the reverse of the __map_single function. Must be called with
2432 * the domain lock held too
2434 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2435 dma_addr_t dma_addr
,
2439 dma_addr_t i
, start
;
2442 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2443 dma_addr
&= PAGE_MASK
;
2446 for (i
= 0; i
< pages
; ++i
) {
2447 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2451 if (amd_iommu_unmap_flush
) {
2452 domain_flush_tlb(&dma_dom
->domain
);
2453 domain_flush_complete(&dma_dom
->domain
);
2454 dma_ops_free_iova(dma_dom
, dma_addr
, pages
);
2456 pages
= __roundup_pow_of_two(pages
);
2457 queue_iova(&dma_dom
->iovad
, dma_addr
>> PAGE_SHIFT
, pages
, 0);
2462 * The exported map_single function for dma_ops.
2464 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2465 unsigned long offset
, size_t size
,
2466 enum dma_data_direction dir
,
2467 unsigned long attrs
)
2469 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2470 struct protection_domain
*domain
;
2471 struct dma_ops_domain
*dma_dom
;
2474 domain
= get_domain(dev
);
2475 if (PTR_ERR(domain
) == -EINVAL
)
2476 return (dma_addr_t
)paddr
;
2477 else if (IS_ERR(domain
))
2478 return AMD_IOMMU_MAPPING_ERROR
;
2480 dma_mask
= *dev
->dma_mask
;
2481 dma_dom
= to_dma_ops_domain(domain
);
2483 return __map_single(dev
, dma_dom
, paddr
, size
, dir
, dma_mask
);
2487 * The exported unmap_single function for dma_ops.
2489 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2490 enum dma_data_direction dir
, unsigned long attrs
)
2492 struct protection_domain
*domain
;
2493 struct dma_ops_domain
*dma_dom
;
2495 domain
= get_domain(dev
);
2499 dma_dom
= to_dma_ops_domain(domain
);
2501 __unmap_single(dma_dom
, dma_addr
, size
, dir
);
2504 static int sg_num_pages(struct device
*dev
,
2505 struct scatterlist
*sglist
,
2508 unsigned long mask
, boundary_size
;
2509 struct scatterlist
*s
;
2512 mask
= dma_get_seg_boundary(dev
);
2513 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
2514 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
2516 for_each_sg(sglist
, s
, nelems
, i
) {
2519 s
->dma_address
= npages
<< PAGE_SHIFT
;
2520 p
= npages
% boundary_size
;
2521 n
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2522 if (p
+ n
> boundary_size
)
2523 npages
+= boundary_size
- p
;
2531 * The exported map_sg function for dma_ops (handles scatter-gather
2534 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2535 int nelems
, enum dma_data_direction direction
,
2536 unsigned long attrs
)
2538 int mapped_pages
= 0, npages
= 0, prot
= 0, i
;
2539 struct protection_domain
*domain
;
2540 struct dma_ops_domain
*dma_dom
;
2541 struct scatterlist
*s
;
2542 unsigned long address
;
2545 domain
= get_domain(dev
);
2549 dma_dom
= to_dma_ops_domain(domain
);
2550 dma_mask
= *dev
->dma_mask
;
2552 npages
= sg_num_pages(dev
, sglist
, nelems
);
2554 address
= dma_ops_alloc_iova(dev
, dma_dom
, npages
, dma_mask
);
2555 if (address
== AMD_IOMMU_MAPPING_ERROR
)
2558 prot
= dir2prot(direction
);
2560 /* Map all sg entries */
2561 for_each_sg(sglist
, s
, nelems
, i
) {
2562 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2564 for (j
= 0; j
< pages
; ++j
) {
2565 unsigned long bus_addr
, phys_addr
;
2568 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2569 phys_addr
= (sg_phys(s
) & PAGE_MASK
) + (j
<< PAGE_SHIFT
);
2570 ret
= iommu_map_page(domain
, bus_addr
, phys_addr
,
2572 GFP_ATOMIC
| __GFP_NOWARN
);
2580 /* Everything is mapped - write the right values into s->dma_address */
2581 for_each_sg(sglist
, s
, nelems
, i
) {
2583 * Add in the remaining piece of the scatter-gather offset that
2584 * was masked out when we were determining the physical address
2585 * via (sg_phys(s) & PAGE_MASK) earlier.
2587 s
->dma_address
+= address
+ (s
->offset
& ~PAGE_MASK
);
2588 s
->dma_length
= s
->length
;
2594 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2595 dev_name(dev
), npages
);
2597 for_each_sg(sglist
, s
, nelems
, i
) {
2598 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2600 for (j
= 0; j
< pages
; ++j
) {
2601 unsigned long bus_addr
;
2603 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2604 iommu_unmap_page(domain
, bus_addr
, PAGE_SIZE
);
2606 if (--mapped_pages
== 0)
2612 free_iova_fast(&dma_dom
->iovad
, address
>> PAGE_SHIFT
, npages
);
2619 * The exported map_sg function for dma_ops (handles scatter-gather
2622 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2623 int nelems
, enum dma_data_direction dir
,
2624 unsigned long attrs
)
2626 struct protection_domain
*domain
;
2627 struct dma_ops_domain
*dma_dom
;
2628 unsigned long startaddr
;
2631 domain
= get_domain(dev
);
2635 startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
2636 dma_dom
= to_dma_ops_domain(domain
);
2637 npages
= sg_num_pages(dev
, sglist
, nelems
);
2639 __unmap_single(dma_dom
, startaddr
, npages
<< PAGE_SHIFT
, dir
);
2643 * The exported alloc_coherent function for dma_ops.
2645 static void *alloc_coherent(struct device
*dev
, size_t size
,
2646 dma_addr_t
*dma_addr
, gfp_t flag
,
2647 unsigned long attrs
)
2649 u64 dma_mask
= dev
->coherent_dma_mask
;
2650 struct protection_domain
*domain
;
2651 struct dma_ops_domain
*dma_dom
;
2654 domain
= get_domain(dev
);
2655 if (PTR_ERR(domain
) == -EINVAL
) {
2656 page
= alloc_pages(flag
, get_order(size
));
2657 *dma_addr
= page_to_phys(page
);
2658 return page_address(page
);
2659 } else if (IS_ERR(domain
))
2662 dma_dom
= to_dma_ops_domain(domain
);
2663 size
= PAGE_ALIGN(size
);
2664 dma_mask
= dev
->coherent_dma_mask
;
2665 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2668 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2670 if (!gfpflags_allow_blocking(flag
))
2673 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2674 get_order(size
), flag
& __GFP_NOWARN
);
2680 dma_mask
= *dev
->dma_mask
;
2682 *dma_addr
= __map_single(dev
, dma_dom
, page_to_phys(page
),
2683 size
, DMA_BIDIRECTIONAL
, dma_mask
);
2685 if (*dma_addr
== AMD_IOMMU_MAPPING_ERROR
)
2688 return page_address(page
);
2692 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2693 __free_pages(page
, get_order(size
));
2699 * The exported free_coherent function for dma_ops.
2701 static void free_coherent(struct device
*dev
, size_t size
,
2702 void *virt_addr
, dma_addr_t dma_addr
,
2703 unsigned long attrs
)
2705 struct protection_domain
*domain
;
2706 struct dma_ops_domain
*dma_dom
;
2709 page
= virt_to_page(virt_addr
);
2710 size
= PAGE_ALIGN(size
);
2712 domain
= get_domain(dev
);
2716 dma_dom
= to_dma_ops_domain(domain
);
2718 __unmap_single(dma_dom
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2721 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2722 __free_pages(page
, get_order(size
));
2726 * This function is called by the DMA layer to find out if we can handle a
2727 * particular device. It is part of the dma_ops.
2729 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2731 if (!dma_direct_supported(dev
, mask
))
2733 return check_device(dev
);
2736 static int amd_iommu_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2738 return dma_addr
== AMD_IOMMU_MAPPING_ERROR
;
2741 static const struct dma_map_ops amd_iommu_dma_ops
= {
2742 .alloc
= alloc_coherent
,
2743 .free
= free_coherent
,
2744 .map_page
= map_page
,
2745 .unmap_page
= unmap_page
,
2747 .unmap_sg
= unmap_sg
,
2748 .dma_supported
= amd_iommu_dma_supported
,
2749 .mapping_error
= amd_iommu_mapping_error
,
2752 static int init_reserved_iova_ranges(void)
2754 struct pci_dev
*pdev
= NULL
;
2757 init_iova_domain(&reserved_iova_ranges
, PAGE_SIZE
, IOVA_START_PFN
);
2759 lockdep_set_class(&reserved_iova_ranges
.iova_rbtree_lock
,
2760 &reserved_rbtree_key
);
2762 /* MSI memory range */
2763 val
= reserve_iova(&reserved_iova_ranges
,
2764 IOVA_PFN(MSI_RANGE_START
), IOVA_PFN(MSI_RANGE_END
));
2766 pr_err("Reserving MSI range failed\n");
2770 /* HT memory range */
2771 val
= reserve_iova(&reserved_iova_ranges
,
2772 IOVA_PFN(HT_RANGE_START
), IOVA_PFN(HT_RANGE_END
));
2774 pr_err("Reserving HT range failed\n");
2779 * Memory used for PCI resources
2780 * FIXME: Check whether we can reserve the PCI-hole completly
2782 for_each_pci_dev(pdev
) {
2785 for (i
= 0; i
< PCI_NUM_RESOURCES
; ++i
) {
2786 struct resource
*r
= &pdev
->resource
[i
];
2788 if (!(r
->flags
& IORESOURCE_MEM
))
2791 val
= reserve_iova(&reserved_iova_ranges
,
2795 pr_err("Reserve pci-resource range failed\n");
2804 int __init
amd_iommu_init_api(void)
2808 ret
= iova_cache_get();
2812 ret
= init_reserved_iova_ranges();
2816 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2819 #ifdef CONFIG_ARM_AMBA
2820 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2824 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2831 int __init
amd_iommu_init_dma_ops(void)
2833 swiotlb
= (iommu_pass_through
|| sme_me_mask
) ? 1 : 0;
2837 * In case we don't initialize SWIOTLB (actually the common case
2838 * when AMD IOMMU is enabled and SME is not active), make sure there
2839 * are global dma_ops set as a fall-back for devices not handled by
2840 * this driver (for example non-PCI devices). When SME is active,
2841 * make sure that swiotlb variable remains set so the global dma_ops
2842 * continue to be SWIOTLB.
2845 dma_ops
= &dma_direct_ops
;
2847 if (amd_iommu_unmap_flush
)
2848 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2850 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2856 /*****************************************************************************
2858 * The following functions belong to the exported interface of AMD IOMMU
2860 * This interface allows access to lower level functions of the IOMMU
2861 * like protection domain handling and assignement of devices to domains
2862 * which is not possible with the dma_ops interface.
2864 *****************************************************************************/
2866 static void cleanup_domain(struct protection_domain
*domain
)
2868 struct iommu_dev_data
*entry
;
2869 unsigned long flags
;
2871 spin_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2873 while (!list_empty(&domain
->dev_list
)) {
2874 entry
= list_first_entry(&domain
->dev_list
,
2875 struct iommu_dev_data
, list
);
2876 BUG_ON(!entry
->domain
);
2877 __detach_device(entry
);
2880 spin_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2883 static void protection_domain_free(struct protection_domain
*domain
)
2888 del_domain_from_list(domain
);
2891 domain_id_free(domain
->id
);
2896 static int protection_domain_init(struct protection_domain
*domain
)
2898 spin_lock_init(&domain
->lock
);
2899 mutex_init(&domain
->api_lock
);
2900 domain
->id
= domain_id_alloc();
2903 INIT_LIST_HEAD(&domain
->dev_list
);
2908 static struct protection_domain
*protection_domain_alloc(void)
2910 struct protection_domain
*domain
;
2912 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2916 if (protection_domain_init(domain
))
2919 add_domain_to_list(domain
);
2929 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2931 struct protection_domain
*pdomain
;
2932 struct dma_ops_domain
*dma_domain
;
2935 case IOMMU_DOMAIN_UNMANAGED
:
2936 pdomain
= protection_domain_alloc();
2940 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2941 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2942 if (!pdomain
->pt_root
) {
2943 protection_domain_free(pdomain
);
2947 pdomain
->domain
.geometry
.aperture_start
= 0;
2948 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2949 pdomain
->domain
.geometry
.force_aperture
= true;
2952 case IOMMU_DOMAIN_DMA
:
2953 dma_domain
= dma_ops_domain_alloc();
2955 pr_err("AMD-Vi: Failed to allocate\n");
2958 pdomain
= &dma_domain
->domain
;
2960 case IOMMU_DOMAIN_IDENTITY
:
2961 pdomain
= protection_domain_alloc();
2965 pdomain
->mode
= PAGE_MODE_NONE
;
2971 return &pdomain
->domain
;
2974 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2976 struct protection_domain
*domain
;
2977 struct dma_ops_domain
*dma_dom
;
2979 domain
= to_pdomain(dom
);
2981 if (domain
->dev_cnt
> 0)
2982 cleanup_domain(domain
);
2984 BUG_ON(domain
->dev_cnt
!= 0);
2989 switch (dom
->type
) {
2990 case IOMMU_DOMAIN_DMA
:
2991 /* Now release the domain */
2992 dma_dom
= to_dma_ops_domain(domain
);
2993 dma_ops_domain_free(dma_dom
);
2996 if (domain
->mode
!= PAGE_MODE_NONE
)
2997 free_pagetable(domain
);
2999 if (domain
->flags
& PD_IOMMUV2_MASK
)
3000 free_gcr3_table(domain
);
3002 protection_domain_free(domain
);
3007 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
3010 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3011 struct amd_iommu
*iommu
;
3014 if (!check_device(dev
))
3017 devid
= get_device_id(dev
);
3021 if (dev_data
->domain
!= NULL
)
3024 iommu
= amd_iommu_rlookup_table
[devid
];
3028 #ifdef CONFIG_IRQ_REMAP
3029 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) &&
3030 (dom
->type
== IOMMU_DOMAIN_UNMANAGED
))
3031 dev_data
->use_vapic
= 0;
3034 iommu_completion_wait(iommu
);
3037 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
3040 struct protection_domain
*domain
= to_pdomain(dom
);
3041 struct iommu_dev_data
*dev_data
;
3042 struct amd_iommu
*iommu
;
3045 if (!check_device(dev
))
3048 dev_data
= dev
->archdata
.iommu
;
3050 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3054 if (dev_data
->domain
)
3057 ret
= attach_device(dev
, domain
);
3059 #ifdef CONFIG_IRQ_REMAP
3060 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
3061 if (dom
->type
== IOMMU_DOMAIN_UNMANAGED
)
3062 dev_data
->use_vapic
= 1;
3064 dev_data
->use_vapic
= 0;
3068 iommu_completion_wait(iommu
);
3073 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3074 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3076 struct protection_domain
*domain
= to_pdomain(dom
);
3080 if (domain
->mode
== PAGE_MODE_NONE
)
3083 if (iommu_prot
& IOMMU_READ
)
3084 prot
|= IOMMU_PROT_IR
;
3085 if (iommu_prot
& IOMMU_WRITE
)
3086 prot
|= IOMMU_PROT_IW
;
3088 mutex_lock(&domain
->api_lock
);
3089 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, GFP_KERNEL
);
3090 mutex_unlock(&domain
->api_lock
);
3095 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3098 struct protection_domain
*domain
= to_pdomain(dom
);
3101 if (domain
->mode
== PAGE_MODE_NONE
)
3104 mutex_lock(&domain
->api_lock
);
3105 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3106 mutex_unlock(&domain
->api_lock
);
3111 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3114 struct protection_domain
*domain
= to_pdomain(dom
);
3115 unsigned long offset_mask
, pte_pgsize
;
3118 if (domain
->mode
== PAGE_MODE_NONE
)
3121 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3123 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3126 offset_mask
= pte_pgsize
- 1;
3127 __pte
= __sme_clr(*pte
& PM_ADDR_MASK
);
3129 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3132 static bool amd_iommu_capable(enum iommu_cap cap
)
3135 case IOMMU_CAP_CACHE_COHERENCY
:
3137 case IOMMU_CAP_INTR_REMAP
:
3138 return (irq_remapping_enabled
== 1);
3139 case IOMMU_CAP_NOEXEC
:
3146 static void amd_iommu_get_resv_regions(struct device
*dev
,
3147 struct list_head
*head
)
3149 struct iommu_resv_region
*region
;
3150 struct unity_map_entry
*entry
;
3153 devid
= get_device_id(dev
);
3157 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3161 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3164 type
= IOMMU_RESV_DIRECT
;
3165 length
= entry
->address_end
- entry
->address_start
;
3166 if (entry
->prot
& IOMMU_PROT_IR
)
3168 if (entry
->prot
& IOMMU_PROT_IW
)
3169 prot
|= IOMMU_WRITE
;
3170 if (entry
->prot
& IOMMU_UNITY_MAP_FLAG_EXCL_RANGE
)
3171 /* Exclusion range */
3172 type
= IOMMU_RESV_RESERVED
;
3174 region
= iommu_alloc_resv_region(entry
->address_start
,
3175 length
, prot
, type
);
3177 pr_err("Out of memory allocating dm-regions for %s\n",
3181 list_add_tail(®ion
->list
, head
);
3184 region
= iommu_alloc_resv_region(MSI_RANGE_START
,
3185 MSI_RANGE_END
- MSI_RANGE_START
+ 1,
3189 list_add_tail(®ion
->list
, head
);
3191 region
= iommu_alloc_resv_region(HT_RANGE_START
,
3192 HT_RANGE_END
- HT_RANGE_START
+ 1,
3193 0, IOMMU_RESV_RESERVED
);
3196 list_add_tail(®ion
->list
, head
);
3199 static void amd_iommu_put_resv_regions(struct device
*dev
,
3200 struct list_head
*head
)
3202 struct iommu_resv_region
*entry
, *next
;
3204 list_for_each_entry_safe(entry
, next
, head
, list
)
3208 static void amd_iommu_apply_resv_region(struct device
*dev
,
3209 struct iommu_domain
*domain
,
3210 struct iommu_resv_region
*region
)
3212 struct dma_ops_domain
*dma_dom
= to_dma_ops_domain(to_pdomain(domain
));
3213 unsigned long start
, end
;
3215 start
= IOVA_PFN(region
->start
);
3216 end
= IOVA_PFN(region
->start
+ region
->length
- 1);
3218 WARN_ON_ONCE(reserve_iova(&dma_dom
->iovad
, start
, end
) == NULL
);
3221 static bool amd_iommu_is_attach_deferred(struct iommu_domain
*domain
,
3224 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3225 return dev_data
->defer_attach
;
3228 static void amd_iommu_flush_iotlb_all(struct iommu_domain
*domain
)
3230 struct protection_domain
*dom
= to_pdomain(domain
);
3232 domain_flush_tlb_pde(dom
);
3233 domain_flush_complete(dom
);
3236 static void amd_iommu_iotlb_range_add(struct iommu_domain
*domain
,
3237 unsigned long iova
, size_t size
)
3241 const struct iommu_ops amd_iommu_ops
= {
3242 .capable
= amd_iommu_capable
,
3243 .domain_alloc
= amd_iommu_domain_alloc
,
3244 .domain_free
= amd_iommu_domain_free
,
3245 .attach_dev
= amd_iommu_attach_device
,
3246 .detach_dev
= amd_iommu_detach_device
,
3247 .map
= amd_iommu_map
,
3248 .unmap
= amd_iommu_unmap
,
3249 .iova_to_phys
= amd_iommu_iova_to_phys
,
3250 .add_device
= amd_iommu_add_device
,
3251 .remove_device
= amd_iommu_remove_device
,
3252 .device_group
= amd_iommu_device_group
,
3253 .get_resv_regions
= amd_iommu_get_resv_regions
,
3254 .put_resv_regions
= amd_iommu_put_resv_regions
,
3255 .apply_resv_region
= amd_iommu_apply_resv_region
,
3256 .is_attach_deferred
= amd_iommu_is_attach_deferred
,
3257 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3258 .flush_iotlb_all
= amd_iommu_flush_iotlb_all
,
3259 .iotlb_range_add
= amd_iommu_iotlb_range_add
,
3260 .iotlb_sync
= amd_iommu_flush_iotlb_all
,
3263 /*****************************************************************************
3265 * The next functions do a basic initialization of IOMMU for pass through
3268 * In passthrough mode the IOMMU is initialized and enabled but not used for
3269 * DMA-API translation.
3271 *****************************************************************************/
3273 /* IOMMUv2 specific functions */
3274 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3276 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3278 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3280 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3282 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3284 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3286 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3288 struct protection_domain
*domain
= to_pdomain(dom
);
3289 unsigned long flags
;
3291 spin_lock_irqsave(&domain
->lock
, flags
);
3293 /* Update data structure */
3294 domain
->mode
= PAGE_MODE_NONE
;
3295 domain
->updated
= true;
3297 /* Make changes visible to IOMMUs */
3298 update_domain(domain
);
3300 /* Page-table is not visible to IOMMU anymore, so free it */
3301 free_pagetable(domain
);
3303 spin_unlock_irqrestore(&domain
->lock
, flags
);
3305 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3307 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3309 struct protection_domain
*domain
= to_pdomain(dom
);
3310 unsigned long flags
;
3313 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3316 /* Number of GCR3 table levels required */
3317 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3320 if (levels
> amd_iommu_max_glx_val
)
3323 spin_lock_irqsave(&domain
->lock
, flags
);
3326 * Save us all sanity checks whether devices already in the
3327 * domain support IOMMUv2. Just force that the domain has no
3328 * devices attached when it is switched into IOMMUv2 mode.
3331 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3335 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3336 if (domain
->gcr3_tbl
== NULL
)
3339 domain
->glx
= levels
;
3340 domain
->flags
|= PD_IOMMUV2_MASK
;
3341 domain
->updated
= true;
3343 update_domain(domain
);
3348 spin_unlock_irqrestore(&domain
->lock
, flags
);
3352 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3354 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3355 u64 address
, bool size
)
3357 struct iommu_dev_data
*dev_data
;
3358 struct iommu_cmd cmd
;
3361 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3364 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3367 * IOMMU TLB needs to be flushed before Device TLB to
3368 * prevent device TLB refill from IOMMU TLB
3370 for (i
= 0; i
< amd_iommu_get_num_iommus(); ++i
) {
3371 if (domain
->dev_iommu
[i
] == 0)
3374 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3379 /* Wait until IOMMU TLB flushes are complete */
3380 domain_flush_complete(domain
);
3382 /* Now flush device TLBs */
3383 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3384 struct amd_iommu
*iommu
;
3388 There might be non-IOMMUv2 capable devices in an IOMMUv2
3391 if (!dev_data
->ats
.enabled
)
3394 qdep
= dev_data
->ats
.qdep
;
3395 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3397 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3398 qdep
, address
, size
);
3400 ret
= iommu_queue_command(iommu
, &cmd
);
3405 /* Wait until all device TLBs are flushed */
3406 domain_flush_complete(domain
);
3415 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3418 return __flush_pasid(domain
, pasid
, address
, false);
3421 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3424 struct protection_domain
*domain
= to_pdomain(dom
);
3425 unsigned long flags
;
3428 spin_lock_irqsave(&domain
->lock
, flags
);
3429 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3430 spin_unlock_irqrestore(&domain
->lock
, flags
);
3434 EXPORT_SYMBOL(amd_iommu_flush_page
);
3436 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3438 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3442 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3444 struct protection_domain
*domain
= to_pdomain(dom
);
3445 unsigned long flags
;
3448 spin_lock_irqsave(&domain
->lock
, flags
);
3449 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3450 spin_unlock_irqrestore(&domain
->lock
, flags
);
3454 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3456 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3463 index
= (pasid
>> (9 * level
)) & 0x1ff;
3469 if (!(*pte
& GCR3_VALID
)) {
3473 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3477 *pte
= iommu_virt_to_phys(root
) | GCR3_VALID
;
3480 root
= iommu_phys_to_virt(*pte
& PAGE_MASK
);
3488 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3493 if (domain
->mode
!= PAGE_MODE_NONE
)
3496 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3500 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3502 return __amd_iommu_flush_tlb(domain
, pasid
);
3505 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3509 if (domain
->mode
!= PAGE_MODE_NONE
)
3512 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3518 return __amd_iommu_flush_tlb(domain
, pasid
);
3521 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3524 struct protection_domain
*domain
= to_pdomain(dom
);
3525 unsigned long flags
;
3528 spin_lock_irqsave(&domain
->lock
, flags
);
3529 ret
= __set_gcr3(domain
, pasid
, cr3
);
3530 spin_unlock_irqrestore(&domain
->lock
, flags
);
3534 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3536 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3538 struct protection_domain
*domain
= to_pdomain(dom
);
3539 unsigned long flags
;
3542 spin_lock_irqsave(&domain
->lock
, flags
);
3543 ret
= __clear_gcr3(domain
, pasid
);
3544 spin_unlock_irqrestore(&domain
->lock
, flags
);
3548 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3550 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3551 int status
, int tag
)
3553 struct iommu_dev_data
*dev_data
;
3554 struct amd_iommu
*iommu
;
3555 struct iommu_cmd cmd
;
3557 dev_data
= get_dev_data(&pdev
->dev
);
3558 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3560 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3561 tag
, dev_data
->pri_tlp
);
3563 return iommu_queue_command(iommu
, &cmd
);
3565 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3567 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3569 struct protection_domain
*pdomain
;
3571 pdomain
= get_domain(&pdev
->dev
);
3572 if (IS_ERR(pdomain
))
3575 /* Only return IOMMUv2 domains */
3576 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3579 return &pdomain
->domain
;
3581 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3583 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3585 struct iommu_dev_data
*dev_data
;
3587 if (!amd_iommu_v2_supported())
3590 dev_data
= get_dev_data(&pdev
->dev
);
3591 dev_data
->errata
|= (1 << erratum
);
3593 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3595 int amd_iommu_device_info(struct pci_dev
*pdev
,
3596 struct amd_iommu_device_info
*info
)
3601 if (pdev
== NULL
|| info
== NULL
)
3604 if (!amd_iommu_v2_supported())
3607 memset(info
, 0, sizeof(*info
));
3609 if (!pci_ats_disabled()) {
3610 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3612 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3615 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3617 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3619 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3623 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3624 max_pasids
= min(max_pasids
, (1 << 20));
3626 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3627 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3629 features
= pci_pasid_features(pdev
);
3630 if (features
& PCI_PASID_CAP_EXEC
)
3631 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3632 if (features
& PCI_PASID_CAP_PRIV
)
3633 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3638 EXPORT_SYMBOL(amd_iommu_device_info
);
3640 #ifdef CONFIG_IRQ_REMAP
3642 /*****************************************************************************
3644 * Interrupt Remapping Implementation
3646 *****************************************************************************/
3648 static struct irq_chip amd_ir_chip
;
3649 static DEFINE_SPINLOCK(iommu_table_lock
);
3651 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3655 dte
= amd_iommu_dev_table
[devid
].data
[2];
3656 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3657 dte
|= iommu_virt_to_phys(table
->table
);
3658 dte
|= DTE_IRQ_REMAP_INTCTL
;
3659 dte
|= DTE_IRQ_TABLE_LEN
;
3660 dte
|= DTE_IRQ_REMAP_ENABLE
;
3662 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3665 static struct irq_remap_table
*get_irq_table(u16 devid
)
3667 struct irq_remap_table
*table
;
3669 if (WARN_ONCE(!amd_iommu_rlookup_table
[devid
],
3670 "%s: no iommu for devid %x\n", __func__
, devid
))
3673 table
= irq_lookup_table
[devid
];
3674 if (WARN_ONCE(!table
, "%s: no table for devid %x\n", __func__
, devid
))
3680 static struct irq_remap_table
*__alloc_irq_table(void)
3682 struct irq_remap_table
*table
;
3684 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
3688 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_KERNEL
);
3689 if (!table
->table
) {
3693 raw_spin_lock_init(&table
->lock
);
3695 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3696 memset(table
->table
, 0,
3697 MAX_IRQS_PER_TABLE
* sizeof(u32
));
3699 memset(table
->table
, 0,
3700 (MAX_IRQS_PER_TABLE
* (sizeof(u64
) * 2)));
3704 static void set_remap_table_entry(struct amd_iommu
*iommu
, u16 devid
,
3705 struct irq_remap_table
*table
)
3707 irq_lookup_table
[devid
] = table
;
3708 set_dte_irq_entry(devid
, table
);
3709 iommu_flush_dte(iommu
, devid
);
3712 static int set_remap_table_entry_alias(struct pci_dev
*pdev
, u16 alias
,
3715 struct irq_remap_table
*table
= data
;
3717 irq_lookup_table
[alias
] = table
;
3718 set_dte_irq_entry(alias
, table
);
3720 iommu_flush_dte(amd_iommu_rlookup_table
[alias
], alias
);
3725 static struct irq_remap_table
*alloc_irq_table(u16 devid
, struct pci_dev
*pdev
)
3727 struct irq_remap_table
*table
= NULL
;
3728 struct irq_remap_table
*new_table
= NULL
;
3729 struct amd_iommu
*iommu
;
3730 unsigned long flags
;
3733 spin_lock_irqsave(&iommu_table_lock
, flags
);
3735 iommu
= amd_iommu_rlookup_table
[devid
];
3739 table
= irq_lookup_table
[devid
];
3743 alias
= amd_iommu_alias_table
[devid
];
3744 table
= irq_lookup_table
[alias
];
3746 set_remap_table_entry(iommu
, devid
, table
);
3749 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3751 /* Nothing there yet, allocate new irq remapping table */
3752 new_table
= __alloc_irq_table();
3756 spin_lock_irqsave(&iommu_table_lock
, flags
);
3758 table
= irq_lookup_table
[devid
];
3762 table
= irq_lookup_table
[alias
];
3764 set_remap_table_entry(iommu
, devid
, table
);
3772 pci_for_each_dma_alias(pdev
, set_remap_table_entry_alias
,
3775 set_remap_table_entry(iommu
, devid
, table
);
3778 set_remap_table_entry(iommu
, alias
, table
);
3781 iommu_completion_wait(iommu
);
3784 spin_unlock_irqrestore(&iommu_table_lock
, flags
);
3787 kmem_cache_free(amd_iommu_irq_cache
, new_table
->table
);
3793 static int alloc_irq_index(u16 devid
, int count
, bool align
,
3794 struct pci_dev
*pdev
)
3796 struct irq_remap_table
*table
;
3797 int index
, c
, alignment
= 1;
3798 unsigned long flags
;
3799 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3804 table
= alloc_irq_table(devid
, pdev
);
3809 alignment
= roundup_pow_of_two(count
);
3811 raw_spin_lock_irqsave(&table
->lock
, flags
);
3813 /* Scan table for free entries */
3814 for (index
= ALIGN(table
->min_index
, alignment
), c
= 0;
3815 index
< MAX_IRQS_PER_TABLE
;) {
3816 if (!iommu
->irte_ops
->is_allocated(table
, index
)) {
3820 index
= ALIGN(index
+ 1, alignment
);
3826 iommu
->irte_ops
->set_allocated(table
, index
- c
+ 1);
3838 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3843 static int modify_irte_ga(u16 devid
, int index
, struct irte_ga
*irte
,
3844 struct amd_ir_data
*data
)
3846 struct irq_remap_table
*table
;
3847 struct amd_iommu
*iommu
;
3848 unsigned long flags
;
3849 struct irte_ga
*entry
;
3851 iommu
= amd_iommu_rlookup_table
[devid
];
3855 table
= get_irq_table(devid
);
3859 raw_spin_lock_irqsave(&table
->lock
, flags
);
3861 entry
= (struct irte_ga
*)table
->table
;
3862 entry
= &entry
[index
];
3863 entry
->lo
.fields_remap
.valid
= 0;
3864 entry
->hi
.val
= irte
->hi
.val
;
3865 entry
->lo
.val
= irte
->lo
.val
;
3866 entry
->lo
.fields_remap
.valid
= 1;
3870 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3872 iommu_flush_irt(iommu
, devid
);
3873 iommu_completion_wait(iommu
);
3878 static int modify_irte(u16 devid
, int index
, union irte
*irte
)
3880 struct irq_remap_table
*table
;
3881 struct amd_iommu
*iommu
;
3882 unsigned long flags
;
3884 iommu
= amd_iommu_rlookup_table
[devid
];
3888 table
= get_irq_table(devid
);
3892 raw_spin_lock_irqsave(&table
->lock
, flags
);
3893 table
->table
[index
] = irte
->val
;
3894 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3896 iommu_flush_irt(iommu
, devid
);
3897 iommu_completion_wait(iommu
);
3902 static void free_irte(u16 devid
, int index
)
3904 struct irq_remap_table
*table
;
3905 struct amd_iommu
*iommu
;
3906 unsigned long flags
;
3908 iommu
= amd_iommu_rlookup_table
[devid
];
3912 table
= get_irq_table(devid
);
3916 raw_spin_lock_irqsave(&table
->lock
, flags
);
3917 iommu
->irte_ops
->clear_allocated(table
, index
);
3918 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
3920 iommu_flush_irt(iommu
, devid
);
3921 iommu_completion_wait(iommu
);
3924 static void irte_prepare(void *entry
,
3925 u32 delivery_mode
, u32 dest_mode
,
3926 u8 vector
, u32 dest_apicid
, int devid
)
3928 union irte
*irte
= (union irte
*) entry
;
3931 irte
->fields
.vector
= vector
;
3932 irte
->fields
.int_type
= delivery_mode
;
3933 irte
->fields
.destination
= dest_apicid
;
3934 irte
->fields
.dm
= dest_mode
;
3935 irte
->fields
.valid
= 1;
3938 static void irte_ga_prepare(void *entry
,
3939 u32 delivery_mode
, u32 dest_mode
,
3940 u8 vector
, u32 dest_apicid
, int devid
)
3942 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3946 irte
->lo
.fields_remap
.int_type
= delivery_mode
;
3947 irte
->lo
.fields_remap
.dm
= dest_mode
;
3948 irte
->hi
.fields
.vector
= vector
;
3949 irte
->lo
.fields_remap
.destination
= APICID_TO_IRTE_DEST_LO(dest_apicid
);
3950 irte
->hi
.fields
.destination
= APICID_TO_IRTE_DEST_HI(dest_apicid
);
3951 irte
->lo
.fields_remap
.valid
= 1;
3954 static void irte_activate(void *entry
, u16 devid
, u16 index
)
3956 union irte
*irte
= (union irte
*) entry
;
3958 irte
->fields
.valid
= 1;
3959 modify_irte(devid
, index
, irte
);
3962 static void irte_ga_activate(void *entry
, u16 devid
, u16 index
)
3964 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3966 irte
->lo
.fields_remap
.valid
= 1;
3967 modify_irte_ga(devid
, index
, irte
, NULL
);
3970 static void irte_deactivate(void *entry
, u16 devid
, u16 index
)
3972 union irte
*irte
= (union irte
*) entry
;
3974 irte
->fields
.valid
= 0;
3975 modify_irte(devid
, index
, irte
);
3978 static void irte_ga_deactivate(void *entry
, u16 devid
, u16 index
)
3980 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3982 irte
->lo
.fields_remap
.valid
= 0;
3983 modify_irte_ga(devid
, index
, irte
, NULL
);
3986 static void irte_set_affinity(void *entry
, u16 devid
, u16 index
,
3987 u8 vector
, u32 dest_apicid
)
3989 union irte
*irte
= (union irte
*) entry
;
3991 irte
->fields
.vector
= vector
;
3992 irte
->fields
.destination
= dest_apicid
;
3993 modify_irte(devid
, index
, irte
);
3996 static void irte_ga_set_affinity(void *entry
, u16 devid
, u16 index
,
3997 u8 vector
, u32 dest_apicid
)
3999 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
4001 if (!irte
->lo
.fields_remap
.guest_mode
) {
4002 irte
->hi
.fields
.vector
= vector
;
4003 irte
->lo
.fields_remap
.destination
=
4004 APICID_TO_IRTE_DEST_LO(dest_apicid
);
4005 irte
->hi
.fields
.destination
=
4006 APICID_TO_IRTE_DEST_HI(dest_apicid
);
4007 modify_irte_ga(devid
, index
, irte
, NULL
);
4011 #define IRTE_ALLOCATED (~1U)
4012 static void irte_set_allocated(struct irq_remap_table
*table
, int index
)
4014 table
->table
[index
] = IRTE_ALLOCATED
;
4017 static void irte_ga_set_allocated(struct irq_remap_table
*table
, int index
)
4019 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
4020 struct irte_ga
*irte
= &ptr
[index
];
4022 memset(&irte
->lo
.val
, 0, sizeof(u64
));
4023 memset(&irte
->hi
.val
, 0, sizeof(u64
));
4024 irte
->hi
.fields
.vector
= 0xff;
4027 static bool irte_is_allocated(struct irq_remap_table
*table
, int index
)
4029 union irte
*ptr
= (union irte
*)table
->table
;
4030 union irte
*irte
= &ptr
[index
];
4032 return irte
->val
!= 0;
4035 static bool irte_ga_is_allocated(struct irq_remap_table
*table
, int index
)
4037 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
4038 struct irte_ga
*irte
= &ptr
[index
];
4040 return irte
->hi
.fields
.vector
!= 0;
4043 static void irte_clear_allocated(struct irq_remap_table
*table
, int index
)
4045 table
->table
[index
] = 0;
4048 static void irte_ga_clear_allocated(struct irq_remap_table
*table
, int index
)
4050 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
4051 struct irte_ga
*irte
= &ptr
[index
];
4053 memset(&irte
->lo
.val
, 0, sizeof(u64
));
4054 memset(&irte
->hi
.val
, 0, sizeof(u64
));
4057 static int get_devid(struct irq_alloc_info
*info
)
4061 switch (info
->type
) {
4062 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4063 devid
= get_ioapic_devid(info
->ioapic_id
);
4065 case X86_IRQ_ALLOC_TYPE_HPET
:
4066 devid
= get_hpet_devid(info
->hpet_id
);
4068 case X86_IRQ_ALLOC_TYPE_MSI
:
4069 case X86_IRQ_ALLOC_TYPE_MSIX
:
4070 devid
= get_device_id(&info
->msi_dev
->dev
);
4080 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
4082 struct amd_iommu
*iommu
;
4088 devid
= get_devid(info
);
4090 iommu
= amd_iommu_rlookup_table
[devid
];
4092 return iommu
->ir_domain
;
4098 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
4100 struct amd_iommu
*iommu
;
4106 switch (info
->type
) {
4107 case X86_IRQ_ALLOC_TYPE_MSI
:
4108 case X86_IRQ_ALLOC_TYPE_MSIX
:
4109 devid
= get_device_id(&info
->msi_dev
->dev
);
4113 iommu
= amd_iommu_rlookup_table
[devid
];
4115 return iommu
->msi_domain
;
4124 struct irq_remap_ops amd_iommu_irq_ops
= {
4125 .prepare
= amd_iommu_prepare
,
4126 .enable
= amd_iommu_enable
,
4127 .disable
= amd_iommu_disable
,
4128 .reenable
= amd_iommu_reenable
,
4129 .enable_faulting
= amd_iommu_enable_faulting
,
4130 .get_ir_irq_domain
= get_ir_irq_domain
,
4131 .get_irq_domain
= get_irq_domain
,
4134 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
4135 struct irq_cfg
*irq_cfg
,
4136 struct irq_alloc_info
*info
,
4137 int devid
, int index
, int sub_handle
)
4139 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4140 struct msi_msg
*msg
= &data
->msi_entry
;
4141 struct IO_APIC_route_entry
*entry
;
4142 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
4147 data
->irq_2_irte
.devid
= devid
;
4148 data
->irq_2_irte
.index
= index
+ sub_handle
;
4149 iommu
->irte_ops
->prepare(data
->entry
, apic
->irq_delivery_mode
,
4150 apic
->irq_dest_mode
, irq_cfg
->vector
,
4151 irq_cfg
->dest_apicid
, devid
);
4153 switch (info
->type
) {
4154 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4155 /* Setup IOAPIC entry */
4156 entry
= info
->ioapic_entry
;
4157 info
->ioapic_entry
= NULL
;
4158 memset(entry
, 0, sizeof(*entry
));
4159 entry
->vector
= index
;
4161 entry
->trigger
= info
->ioapic_trigger
;
4162 entry
->polarity
= info
->ioapic_polarity
;
4163 /* Mask level triggered irqs. */
4164 if (info
->ioapic_trigger
)
4168 case X86_IRQ_ALLOC_TYPE_HPET
:
4169 case X86_IRQ_ALLOC_TYPE_MSI
:
4170 case X86_IRQ_ALLOC_TYPE_MSIX
:
4171 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4172 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4173 msg
->data
= irte_info
->index
;
4182 struct amd_irte_ops irte_32_ops
= {
4183 .prepare
= irte_prepare
,
4184 .activate
= irte_activate
,
4185 .deactivate
= irte_deactivate
,
4186 .set_affinity
= irte_set_affinity
,
4187 .set_allocated
= irte_set_allocated
,
4188 .is_allocated
= irte_is_allocated
,
4189 .clear_allocated
= irte_clear_allocated
,
4192 struct amd_irte_ops irte_128_ops
= {
4193 .prepare
= irte_ga_prepare
,
4194 .activate
= irte_ga_activate
,
4195 .deactivate
= irte_ga_deactivate
,
4196 .set_affinity
= irte_ga_set_affinity
,
4197 .set_allocated
= irte_ga_set_allocated
,
4198 .is_allocated
= irte_ga_is_allocated
,
4199 .clear_allocated
= irte_ga_clear_allocated
,
4202 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
4203 unsigned int nr_irqs
, void *arg
)
4205 struct irq_alloc_info
*info
= arg
;
4206 struct irq_data
*irq_data
;
4207 struct amd_ir_data
*data
= NULL
;
4208 struct irq_cfg
*cfg
;
4214 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
4215 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
4219 * With IRQ remapping enabled, don't need contiguous CPU vectors
4220 * to support multiple MSI interrupts.
4222 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
4223 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
4225 devid
= get_devid(info
);
4229 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
4233 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
4234 struct irq_remap_table
*table
;
4235 struct amd_iommu
*iommu
;
4237 table
= alloc_irq_table(devid
, NULL
);
4239 if (!table
->min_index
) {
4241 * Keep the first 32 indexes free for IOAPIC
4244 table
->min_index
= 32;
4245 iommu
= amd_iommu_rlookup_table
[devid
];
4246 for (i
= 0; i
< 32; ++i
)
4247 iommu
->irte_ops
->set_allocated(table
, i
);
4249 WARN_ON(table
->min_index
!= 32);
4250 index
= info
->ioapic_pin
;
4254 } else if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
||
4255 info
->type
== X86_IRQ_ALLOC_TYPE_MSIX
) {
4256 bool align
= (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
);
4258 index
= alloc_irq_index(devid
, nr_irqs
, align
, info
->msi_dev
);
4260 index
= alloc_irq_index(devid
, nr_irqs
, false, NULL
);
4264 pr_warn("Failed to allocate IRTE\n");
4266 goto out_free_parent
;
4269 for (i
= 0; i
< nr_irqs
; i
++) {
4270 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4271 cfg
= irqd_cfg(irq_data
);
4272 if (!irq_data
|| !cfg
) {
4278 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
4282 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
4283 data
->entry
= kzalloc(sizeof(union irte
), GFP_KERNEL
);
4285 data
->entry
= kzalloc(sizeof(struct irte_ga
),
4292 irq_data
->hwirq
= (devid
<< 16) + i
;
4293 irq_data
->chip_data
= data
;
4294 irq_data
->chip
= &amd_ir_chip
;
4295 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
4296 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
4302 for (i
--; i
>= 0; i
--) {
4303 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4305 kfree(irq_data
->chip_data
);
4307 for (i
= 0; i
< nr_irqs
; i
++)
4308 free_irte(devid
, index
+ i
);
4310 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4314 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4315 unsigned int nr_irqs
)
4317 struct irq_2_irte
*irte_info
;
4318 struct irq_data
*irq_data
;
4319 struct amd_ir_data
*data
;
4322 for (i
= 0; i
< nr_irqs
; i
++) {
4323 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4324 if (irq_data
&& irq_data
->chip_data
) {
4325 data
= irq_data
->chip_data
;
4326 irte_info
= &data
->irq_2_irte
;
4327 free_irte(irte_info
->devid
, irte_info
->index
);
4332 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4335 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4336 struct amd_ir_data
*ir_data
,
4337 struct irq_2_irte
*irte_info
,
4338 struct irq_cfg
*cfg
);
4340 static int irq_remapping_activate(struct irq_domain
*domain
,
4341 struct irq_data
*irq_data
, bool reserve
)
4343 struct amd_ir_data
*data
= irq_data
->chip_data
;
4344 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4345 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4346 struct irq_cfg
*cfg
= irqd_cfg(irq_data
);
4351 iommu
->irte_ops
->activate(data
->entry
, irte_info
->devid
,
4353 amd_ir_update_irte(irq_data
, iommu
, data
, irte_info
, cfg
);
4357 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4358 struct irq_data
*irq_data
)
4360 struct amd_ir_data
*data
= irq_data
->chip_data
;
4361 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4362 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4365 iommu
->irte_ops
->deactivate(data
->entry
, irte_info
->devid
,
4369 static const struct irq_domain_ops amd_ir_domain_ops
= {
4370 .alloc
= irq_remapping_alloc
,
4371 .free
= irq_remapping_free
,
4372 .activate
= irq_remapping_activate
,
4373 .deactivate
= irq_remapping_deactivate
,
4376 static int amd_ir_set_vcpu_affinity(struct irq_data
*data
, void *vcpu_info
)
4378 struct amd_iommu
*iommu
;
4379 struct amd_iommu_pi_data
*pi_data
= vcpu_info
;
4380 struct vcpu_data
*vcpu_pi_info
= pi_data
->vcpu_data
;
4381 struct amd_ir_data
*ir_data
= data
->chip_data
;
4382 struct irte_ga
*irte
= (struct irte_ga
*) ir_data
->entry
;
4383 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4384 struct iommu_dev_data
*dev_data
= search_dev_data(irte_info
->devid
);
4387 * This device has never been set up for guest mode.
4388 * we should not modify the IRTE
4390 if (!dev_data
|| !dev_data
->use_vapic
)
4393 pi_data
->ir_data
= ir_data
;
4396 * SVM tries to set up for VAPIC mode, but we are in
4397 * legacy mode. So, we force legacy mode instead.
4399 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
4400 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4402 pi_data
->is_guest_mode
= false;
4405 iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4409 pi_data
->prev_ga_tag
= ir_data
->cached_ga_tag
;
4410 if (pi_data
->is_guest_mode
) {
4412 irte
->hi
.fields
.ga_root_ptr
= (pi_data
->base
>> 12);
4413 irte
->hi
.fields
.vector
= vcpu_pi_info
->vector
;
4414 irte
->lo
.fields_vapic
.ga_log_intr
= 1;
4415 irte
->lo
.fields_vapic
.guest_mode
= 1;
4416 irte
->lo
.fields_vapic
.ga_tag
= pi_data
->ga_tag
;
4418 ir_data
->cached_ga_tag
= pi_data
->ga_tag
;
4421 struct irq_cfg
*cfg
= irqd_cfg(data
);
4425 irte
->hi
.fields
.vector
= cfg
->vector
;
4426 irte
->lo
.fields_remap
.guest_mode
= 0;
4427 irte
->lo
.fields_remap
.destination
=
4428 APICID_TO_IRTE_DEST_LO(cfg
->dest_apicid
);
4429 irte
->hi
.fields
.destination
=
4430 APICID_TO_IRTE_DEST_HI(cfg
->dest_apicid
);
4431 irte
->lo
.fields_remap
.int_type
= apic
->irq_delivery_mode
;
4432 irte
->lo
.fields_remap
.dm
= apic
->irq_dest_mode
;
4435 * This communicates the ga_tag back to the caller
4436 * so that it can do all the necessary clean up.
4438 ir_data
->cached_ga_tag
= 0;
4441 return modify_irte_ga(irte_info
->devid
, irte_info
->index
, irte
, ir_data
);
4445 static void amd_ir_update_irte(struct irq_data
*irqd
, struct amd_iommu
*iommu
,
4446 struct amd_ir_data
*ir_data
,
4447 struct irq_2_irte
*irte_info
,
4448 struct irq_cfg
*cfg
)
4452 * Atomically updates the IRTE with the new destination, vector
4453 * and flushes the interrupt entry cache.
4455 iommu
->irte_ops
->set_affinity(ir_data
->entry
, irte_info
->devid
,
4456 irte_info
->index
, cfg
->vector
,
4460 static int amd_ir_set_affinity(struct irq_data
*data
,
4461 const struct cpumask
*mask
, bool force
)
4463 struct amd_ir_data
*ir_data
= data
->chip_data
;
4464 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4465 struct irq_cfg
*cfg
= irqd_cfg(data
);
4466 struct irq_data
*parent
= data
->parent_data
;
4467 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4473 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4474 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4477 amd_ir_update_irte(data
, iommu
, ir_data
, irte_info
, cfg
);
4479 * After this point, all the interrupts will start arriving
4480 * at the new destination. So, time to cleanup the previous
4481 * vector allocation.
4483 send_cleanup_vector(cfg
);
4485 return IRQ_SET_MASK_OK_DONE
;
4488 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4490 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4492 *msg
= ir_data
->msi_entry
;
4495 static struct irq_chip amd_ir_chip
= {
4497 .irq_ack
= apic_ack_irq
,
4498 .irq_set_affinity
= amd_ir_set_affinity
,
4499 .irq_set_vcpu_affinity
= amd_ir_set_vcpu_affinity
,
4500 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4503 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4505 struct fwnode_handle
*fn
;
4507 fn
= irq_domain_alloc_named_id_fwnode("AMD-IR", iommu
->index
);
4510 iommu
->ir_domain
= irq_domain_create_tree(fn
, &amd_ir_domain_ops
, iommu
);
4511 irq_domain_free_fwnode(fn
);
4512 if (!iommu
->ir_domain
)
4515 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4516 iommu
->msi_domain
= arch_create_remap_msi_irq_domain(iommu
->ir_domain
,
4522 int amd_iommu_update_ga(int cpu
, bool is_run
, void *data
)
4524 unsigned long flags
;
4525 struct amd_iommu
*iommu
;
4526 struct irq_remap_table
*table
;
4527 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4528 int devid
= ir_data
->irq_2_irte
.devid
;
4529 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4530 struct irte_ga
*ref
= (struct irte_ga
*) ir_data
->ref
;
4532 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4533 !ref
|| !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4536 iommu
= amd_iommu_rlookup_table
[devid
];
4540 table
= get_irq_table(devid
);
4544 raw_spin_lock_irqsave(&table
->lock
, flags
);
4546 if (ref
->lo
.fields_vapic
.guest_mode
) {
4548 ref
->lo
.fields_vapic
.destination
=
4549 APICID_TO_IRTE_DEST_LO(cpu
);
4550 ref
->hi
.fields
.destination
=
4551 APICID_TO_IRTE_DEST_HI(cpu
);
4553 ref
->lo
.fields_vapic
.is_run
= is_run
;
4557 raw_spin_unlock_irqrestore(&table
->lock
, flags
);
4559 iommu_flush_irt(iommu
, devid
);
4560 iommu_completion_wait(iommu
);
4563 EXPORT_SYMBOL(amd_iommu_update_ga
);