2 * IOMMU API for ARM architected SMMUv3 implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 * Copyright (C) 2015 ARM Limited
18 * Author: Will Deacon <will.deacon@arm.com>
20 * This driver is powered by bad coffee and bombay mix.
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/bitfield.h>
26 #include <linux/bitops.h>
27 #include <linux/crash_dump.h>
28 #include <linux/delay.h>
29 #include <linux/dma-iommu.h>
30 #include <linux/err.h>
31 #include <linux/interrupt.h>
32 #include <linux/iommu.h>
33 #include <linux/iopoll.h>
34 #include <linux/module.h>
35 #include <linux/msi.h>
37 #include <linux/of_address.h>
38 #include <linux/of_iommu.h>
39 #include <linux/of_platform.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
43 #include <linux/amba/bus.h>
45 #include "io-pgtable.h"
48 #define ARM_SMMU_IDR0 0x0
49 #define IDR0_ST_LVL GENMASK(28, 27)
50 #define IDR0_ST_LVL_2LVL 1
51 #define IDR0_STALL_MODEL GENMASK(25, 24)
52 #define IDR0_STALL_MODEL_STALL 0
53 #define IDR0_STALL_MODEL_FORCE 2
54 #define IDR0_TTENDIAN GENMASK(22, 21)
55 #define IDR0_TTENDIAN_MIXED 0
56 #define IDR0_TTENDIAN_LE 2
57 #define IDR0_TTENDIAN_BE 3
58 #define IDR0_CD2L (1 << 19)
59 #define IDR0_VMID16 (1 << 18)
60 #define IDR0_PRI (1 << 16)
61 #define IDR0_SEV (1 << 14)
62 #define IDR0_MSI (1 << 13)
63 #define IDR0_ASID16 (1 << 12)
64 #define IDR0_ATS (1 << 10)
65 #define IDR0_HYP (1 << 9)
66 #define IDR0_COHACC (1 << 4)
67 #define IDR0_TTF GENMASK(3, 2)
68 #define IDR0_TTF_AARCH64 2
69 #define IDR0_TTF_AARCH32_64 3
70 #define IDR0_S1P (1 << 1)
71 #define IDR0_S2P (1 << 0)
73 #define ARM_SMMU_IDR1 0x4
74 #define IDR1_TABLES_PRESET (1 << 30)
75 #define IDR1_QUEUES_PRESET (1 << 29)
76 #define IDR1_REL (1 << 28)
77 #define IDR1_CMDQS GENMASK(25, 21)
78 #define IDR1_EVTQS GENMASK(20, 16)
79 #define IDR1_PRIQS GENMASK(15, 11)
80 #define IDR1_SSIDSIZE GENMASK(10, 6)
81 #define IDR1_SIDSIZE GENMASK(5, 0)
83 #define ARM_SMMU_IDR5 0x14
84 #define IDR5_STALL_MAX GENMASK(31, 16)
85 #define IDR5_GRAN64K (1 << 6)
86 #define IDR5_GRAN16K (1 << 5)
87 #define IDR5_GRAN4K (1 << 4)
88 #define IDR5_OAS GENMASK(2, 0)
89 #define IDR5_OAS_32_BIT 0
90 #define IDR5_OAS_36_BIT 1
91 #define IDR5_OAS_40_BIT 2
92 #define IDR5_OAS_42_BIT 3
93 #define IDR5_OAS_44_BIT 4
94 #define IDR5_OAS_48_BIT 5
95 #define IDR5_OAS_52_BIT 6
96 #define IDR5_VAX GENMASK(11, 10)
97 #define IDR5_VAX_52_BIT 1
99 #define ARM_SMMU_CR0 0x20
100 #define CR0_CMDQEN (1 << 3)
101 #define CR0_EVTQEN (1 << 2)
102 #define CR0_PRIQEN (1 << 1)
103 #define CR0_SMMUEN (1 << 0)
105 #define ARM_SMMU_CR0ACK 0x24
107 #define ARM_SMMU_CR1 0x28
108 #define CR1_TABLE_SH GENMASK(11, 10)
109 #define CR1_TABLE_OC GENMASK(9, 8)
110 #define CR1_TABLE_IC GENMASK(7, 6)
111 #define CR1_QUEUE_SH GENMASK(5, 4)
112 #define CR1_QUEUE_OC GENMASK(3, 2)
113 #define CR1_QUEUE_IC GENMASK(1, 0)
114 /* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
115 #define CR1_CACHE_NC 0
116 #define CR1_CACHE_WB 1
117 #define CR1_CACHE_WT 2
119 #define ARM_SMMU_CR2 0x2c
120 #define CR2_PTM (1 << 2)
121 #define CR2_RECINVSID (1 << 1)
122 #define CR2_E2H (1 << 0)
124 #define ARM_SMMU_GBPA 0x44
125 #define GBPA_UPDATE (1 << 31)
126 #define GBPA_ABORT (1 << 20)
128 #define ARM_SMMU_IRQ_CTRL 0x50
129 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
130 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
131 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
133 #define ARM_SMMU_IRQ_CTRLACK 0x54
135 #define ARM_SMMU_GERROR 0x60
136 #define GERROR_SFM_ERR (1 << 8)
137 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
138 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
139 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
140 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
141 #define GERROR_PRIQ_ABT_ERR (1 << 3)
142 #define GERROR_EVTQ_ABT_ERR (1 << 2)
143 #define GERROR_CMDQ_ERR (1 << 0)
144 #define GERROR_ERR_MASK 0xfd
146 #define ARM_SMMU_GERRORN 0x64
148 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
149 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
150 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
152 #define ARM_SMMU_STRTAB_BASE 0x80
153 #define STRTAB_BASE_RA (1UL << 62)
154 #define STRTAB_BASE_ADDR_MASK GENMASK_ULL(51, 6)
156 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
157 #define STRTAB_BASE_CFG_FMT GENMASK(17, 16)
158 #define STRTAB_BASE_CFG_FMT_LINEAR 0
159 #define STRTAB_BASE_CFG_FMT_2LVL 1
160 #define STRTAB_BASE_CFG_SPLIT GENMASK(10, 6)
161 #define STRTAB_BASE_CFG_LOG2SIZE GENMASK(5, 0)
163 #define ARM_SMMU_CMDQ_BASE 0x90
164 #define ARM_SMMU_CMDQ_PROD 0x98
165 #define ARM_SMMU_CMDQ_CONS 0x9c
167 #define ARM_SMMU_EVTQ_BASE 0xa0
168 #define ARM_SMMU_EVTQ_PROD 0x100a8
169 #define ARM_SMMU_EVTQ_CONS 0x100ac
170 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
171 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
172 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
174 #define ARM_SMMU_PRIQ_BASE 0xc0
175 #define ARM_SMMU_PRIQ_PROD 0x100c8
176 #define ARM_SMMU_PRIQ_CONS 0x100cc
177 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
178 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
179 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
181 /* Common MSI config fields */
182 #define MSI_CFG0_ADDR_MASK GENMASK_ULL(51, 2)
183 #define MSI_CFG2_SH GENMASK(5, 4)
184 #define MSI_CFG2_MEMATTR GENMASK(3, 0)
186 /* Common memory attribute values */
187 #define ARM_SMMU_SH_NSH 0
188 #define ARM_SMMU_SH_OSH 2
189 #define ARM_SMMU_SH_ISH 3
190 #define ARM_SMMU_MEMATTR_DEVICE_nGnRE 0x1
191 #define ARM_SMMU_MEMATTR_OIWB 0xf
193 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
194 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
195 #define Q_OVERFLOW_FLAG (1 << 31)
196 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
197 #define Q_ENT(q, p) ((q)->base + \
198 Q_IDX(q, p) * (q)->ent_dwords)
200 #define Q_BASE_RWA (1UL << 62)
201 #define Q_BASE_ADDR_MASK GENMASK_ULL(51, 5)
202 #define Q_BASE_LOG2SIZE GENMASK(4, 0)
207 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
208 * 2lvl: 128k L1 entries,
209 * 256 lazy entries per table (each table covers a PCI bus)
211 #define STRTAB_L1_SZ_SHIFT 20
212 #define STRTAB_SPLIT 8
214 #define STRTAB_L1_DESC_DWORDS 1
215 #define STRTAB_L1_DESC_SPAN GENMASK_ULL(4, 0)
216 #define STRTAB_L1_DESC_L2PTR_MASK GENMASK_ULL(51, 6)
218 #define STRTAB_STE_DWORDS 8
219 #define STRTAB_STE_0_V (1UL << 0)
220 #define STRTAB_STE_0_CFG GENMASK_ULL(3, 1)
221 #define STRTAB_STE_0_CFG_ABORT 0
222 #define STRTAB_STE_0_CFG_BYPASS 4
223 #define STRTAB_STE_0_CFG_S1_TRANS 5
224 #define STRTAB_STE_0_CFG_S2_TRANS 6
226 #define STRTAB_STE_0_S1FMT GENMASK_ULL(5, 4)
227 #define STRTAB_STE_0_S1FMT_LINEAR 0
228 #define STRTAB_STE_0_S1CTXPTR_MASK GENMASK_ULL(51, 6)
229 #define STRTAB_STE_0_S1CDMAX GENMASK_ULL(63, 59)
231 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
232 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
233 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
234 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
235 #define STRTAB_STE_1_S1CIR GENMASK_ULL(3, 2)
236 #define STRTAB_STE_1_S1COR GENMASK_ULL(5, 4)
237 #define STRTAB_STE_1_S1CSH GENMASK_ULL(7, 6)
239 #define STRTAB_STE_1_S1STALLD (1UL << 27)
241 #define STRTAB_STE_1_EATS GENMASK_ULL(29, 28)
242 #define STRTAB_STE_1_EATS_ABT 0UL
243 #define STRTAB_STE_1_EATS_TRANS 1UL
244 #define STRTAB_STE_1_EATS_S1CHK 2UL
246 #define STRTAB_STE_1_STRW GENMASK_ULL(31, 30)
247 #define STRTAB_STE_1_STRW_NSEL1 0UL
248 #define STRTAB_STE_1_STRW_EL2 2UL
250 #define STRTAB_STE_1_SHCFG GENMASK_ULL(45, 44)
251 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
253 #define STRTAB_STE_2_S2VMID GENMASK_ULL(15, 0)
254 #define STRTAB_STE_2_VTCR GENMASK_ULL(50, 32)
255 #define STRTAB_STE_2_S2AA64 (1UL << 51)
256 #define STRTAB_STE_2_S2ENDI (1UL << 52)
257 #define STRTAB_STE_2_S2PTW (1UL << 54)
258 #define STRTAB_STE_2_S2R (1UL << 58)
260 #define STRTAB_STE_3_S2TTB_MASK GENMASK_ULL(51, 4)
262 /* Context descriptor (stage-1 only) */
263 #define CTXDESC_CD_DWORDS 8
264 #define CTXDESC_CD_0_TCR_T0SZ GENMASK_ULL(5, 0)
265 #define ARM64_TCR_T0SZ GENMASK_ULL(5, 0)
266 #define CTXDESC_CD_0_TCR_TG0 GENMASK_ULL(7, 6)
267 #define ARM64_TCR_TG0 GENMASK_ULL(15, 14)
268 #define CTXDESC_CD_0_TCR_IRGN0 GENMASK_ULL(9, 8)
269 #define ARM64_TCR_IRGN0 GENMASK_ULL(9, 8)
270 #define CTXDESC_CD_0_TCR_ORGN0 GENMASK_ULL(11, 10)
271 #define ARM64_TCR_ORGN0 GENMASK_ULL(11, 10)
272 #define CTXDESC_CD_0_TCR_SH0 GENMASK_ULL(13, 12)
273 #define ARM64_TCR_SH0 GENMASK_ULL(13, 12)
274 #define CTXDESC_CD_0_TCR_EPD0 (1ULL << 14)
275 #define ARM64_TCR_EPD0 (1ULL << 7)
276 #define CTXDESC_CD_0_TCR_EPD1 (1ULL << 30)
277 #define ARM64_TCR_EPD1 (1ULL << 23)
279 #define CTXDESC_CD_0_ENDI (1UL << 15)
280 #define CTXDESC_CD_0_V (1UL << 31)
282 #define CTXDESC_CD_0_TCR_IPS GENMASK_ULL(34, 32)
283 #define ARM64_TCR_IPS GENMASK_ULL(34, 32)
284 #define CTXDESC_CD_0_TCR_TBI0 (1ULL << 38)
285 #define ARM64_TCR_TBI0 (1ULL << 37)
287 #define CTXDESC_CD_0_AA64 (1UL << 41)
288 #define CTXDESC_CD_0_S (1UL << 44)
289 #define CTXDESC_CD_0_R (1UL << 45)
290 #define CTXDESC_CD_0_A (1UL << 46)
291 #define CTXDESC_CD_0_ASET (1UL << 47)
292 #define CTXDESC_CD_0_ASID GENMASK_ULL(63, 48)
294 #define CTXDESC_CD_1_TTB0_MASK GENMASK_ULL(51, 4)
296 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
297 #define ARM_SMMU_TCR2CD(tcr, fld) FIELD_PREP(CTXDESC_CD_0_TCR_##fld, \
298 FIELD_GET(ARM64_TCR_##fld, tcr))
301 #define CMDQ_ENT_DWORDS 2
302 #define CMDQ_MAX_SZ_SHIFT 8
304 #define CMDQ_CONS_ERR GENMASK(30, 24)
305 #define CMDQ_ERR_CERROR_NONE_IDX 0
306 #define CMDQ_ERR_CERROR_ILL_IDX 1
307 #define CMDQ_ERR_CERROR_ABT_IDX 2
309 #define CMDQ_0_OP GENMASK_ULL(7, 0)
310 #define CMDQ_0_SSV (1UL << 11)
312 #define CMDQ_PREFETCH_0_SID GENMASK_ULL(63, 32)
313 #define CMDQ_PREFETCH_1_SIZE GENMASK_ULL(4, 0)
314 #define CMDQ_PREFETCH_1_ADDR_MASK GENMASK_ULL(63, 12)
316 #define CMDQ_CFGI_0_SID GENMASK_ULL(63, 32)
317 #define CMDQ_CFGI_1_LEAF (1UL << 0)
318 #define CMDQ_CFGI_1_RANGE GENMASK_ULL(4, 0)
320 #define CMDQ_TLBI_0_VMID GENMASK_ULL(47, 32)
321 #define CMDQ_TLBI_0_ASID GENMASK_ULL(63, 48)
322 #define CMDQ_TLBI_1_LEAF (1UL << 0)
323 #define CMDQ_TLBI_1_VA_MASK GENMASK_ULL(63, 12)
324 #define CMDQ_TLBI_1_IPA_MASK GENMASK_ULL(51, 12)
326 #define CMDQ_PRI_0_SSID GENMASK_ULL(31, 12)
327 #define CMDQ_PRI_0_SID GENMASK_ULL(63, 32)
328 #define CMDQ_PRI_1_GRPID GENMASK_ULL(8, 0)
329 #define CMDQ_PRI_1_RESP GENMASK_ULL(13, 12)
331 #define CMDQ_SYNC_0_CS GENMASK_ULL(13, 12)
332 #define CMDQ_SYNC_0_CS_NONE 0
333 #define CMDQ_SYNC_0_CS_IRQ 1
334 #define CMDQ_SYNC_0_CS_SEV 2
335 #define CMDQ_SYNC_0_MSH GENMASK_ULL(23, 22)
336 #define CMDQ_SYNC_0_MSIATTR GENMASK_ULL(27, 24)
337 #define CMDQ_SYNC_0_MSIDATA GENMASK_ULL(63, 32)
338 #define CMDQ_SYNC_1_MSIADDR_MASK GENMASK_ULL(51, 2)
341 #define EVTQ_ENT_DWORDS 4
342 #define EVTQ_MAX_SZ_SHIFT 7
344 #define EVTQ_0_ID GENMASK_ULL(7, 0)
347 #define PRIQ_ENT_DWORDS 2
348 #define PRIQ_MAX_SZ_SHIFT 8
350 #define PRIQ_0_SID GENMASK_ULL(31, 0)
351 #define PRIQ_0_SSID GENMASK_ULL(51, 32)
352 #define PRIQ_0_PERM_PRIV (1UL << 58)
353 #define PRIQ_0_PERM_EXEC (1UL << 59)
354 #define PRIQ_0_PERM_READ (1UL << 60)
355 #define PRIQ_0_PERM_WRITE (1UL << 61)
356 #define PRIQ_0_PRG_LAST (1UL << 62)
357 #define PRIQ_0_SSID_V (1UL << 63)
359 #define PRIQ_1_PRG_IDX GENMASK_ULL(8, 0)
360 #define PRIQ_1_ADDR_MASK GENMASK_ULL(63, 12)
362 /* High-level queue structures */
363 #define ARM_SMMU_POLL_TIMEOUT_US 100
364 #define ARM_SMMU_CMDQ_SYNC_TIMEOUT_US 1000000 /* 1s! */
365 #define ARM_SMMU_CMDQ_SYNC_SPIN_COUNT 10
367 #define MSI_IOVA_BASE 0x8000000
368 #define MSI_IOVA_LENGTH 0x100000
370 static bool disable_bypass
= 1;
371 module_param_named(disable_bypass
, disable_bypass
, bool, S_IRUGO
);
372 MODULE_PARM_DESC(disable_bypass
,
373 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
381 enum arm_smmu_msi_index
{
388 static phys_addr_t arm_smmu_msi_cfg
[ARM_SMMU_MAX_MSIS
][3] = {
390 ARM_SMMU_EVTQ_IRQ_CFG0
,
391 ARM_SMMU_EVTQ_IRQ_CFG1
,
392 ARM_SMMU_EVTQ_IRQ_CFG2
,
394 [GERROR_MSI_INDEX
] = {
395 ARM_SMMU_GERROR_IRQ_CFG0
,
396 ARM_SMMU_GERROR_IRQ_CFG1
,
397 ARM_SMMU_GERROR_IRQ_CFG2
,
400 ARM_SMMU_PRIQ_IRQ_CFG0
,
401 ARM_SMMU_PRIQ_IRQ_CFG1
,
402 ARM_SMMU_PRIQ_IRQ_CFG2
,
406 struct arm_smmu_cmdq_ent
{
409 bool substream_valid
;
411 /* Command-specific fields */
413 #define CMDQ_OP_PREFETCH_CFG 0x1
420 #define CMDQ_OP_CFGI_STE 0x3
421 #define CMDQ_OP_CFGI_ALL 0x4
430 #define CMDQ_OP_TLBI_NH_ASID 0x11
431 #define CMDQ_OP_TLBI_NH_VA 0x12
432 #define CMDQ_OP_TLBI_EL2_ALL 0x20
433 #define CMDQ_OP_TLBI_S12_VMALL 0x28
434 #define CMDQ_OP_TLBI_S2_IPA 0x2a
435 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
443 #define CMDQ_OP_PRI_RESP 0x41
451 #define CMDQ_OP_CMD_SYNC 0x46
459 struct arm_smmu_queue
{
460 int irq
; /* Wired interrupt */
471 u32 __iomem
*prod_reg
;
472 u32 __iomem
*cons_reg
;
475 struct arm_smmu_cmdq
{
476 struct arm_smmu_queue q
;
480 struct arm_smmu_evtq
{
481 struct arm_smmu_queue q
;
485 struct arm_smmu_priq
{
486 struct arm_smmu_queue q
;
489 /* High-level stream table and context descriptor structures */
490 struct arm_smmu_strtab_l1_desc
{
494 dma_addr_t l2ptr_dma
;
497 struct arm_smmu_s1_cfg
{
499 dma_addr_t cdptr_dma
;
501 struct arm_smmu_ctx_desc
{
509 struct arm_smmu_s2_cfg
{
515 struct arm_smmu_strtab_ent
{
517 * An STE is "assigned" if the master emitting the corresponding SID
518 * is attached to a domain. The behaviour of an unassigned STE is
519 * determined by the disable_bypass parameter, whereas an assigned
520 * STE behaves according to s1_cfg/s2_cfg, which themselves are
521 * configured according to the domain type.
524 struct arm_smmu_s1_cfg
*s1_cfg
;
525 struct arm_smmu_s2_cfg
*s2_cfg
;
528 struct arm_smmu_strtab_cfg
{
530 dma_addr_t strtab_dma
;
531 struct arm_smmu_strtab_l1_desc
*l1_desc
;
532 unsigned int num_l1_ents
;
538 /* An SMMUv3 instance */
539 struct arm_smmu_device
{
543 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
544 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
545 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
546 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
547 #define ARM_SMMU_FEAT_PRI (1 << 4)
548 #define ARM_SMMU_FEAT_ATS (1 << 5)
549 #define ARM_SMMU_FEAT_SEV (1 << 6)
550 #define ARM_SMMU_FEAT_MSI (1 << 7)
551 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
552 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
553 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
554 #define ARM_SMMU_FEAT_STALLS (1 << 11)
555 #define ARM_SMMU_FEAT_HYP (1 << 12)
556 #define ARM_SMMU_FEAT_STALL_FORCE (1 << 13)
557 #define ARM_SMMU_FEAT_VAX (1 << 14)
560 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
561 #define ARM_SMMU_OPT_PAGE0_REGS_ONLY (1 << 1)
564 struct arm_smmu_cmdq cmdq
;
565 struct arm_smmu_evtq evtq
;
566 struct arm_smmu_priq priq
;
572 unsigned long ias
; /* IPA */
573 unsigned long oas
; /* PA */
574 unsigned long pgsize_bitmap
;
576 #define ARM_SMMU_MAX_ASIDS (1 << 16)
577 unsigned int asid_bits
;
578 DECLARE_BITMAP(asid_map
, ARM_SMMU_MAX_ASIDS
);
580 #define ARM_SMMU_MAX_VMIDS (1 << 16)
581 unsigned int vmid_bits
;
582 DECLARE_BITMAP(vmid_map
, ARM_SMMU_MAX_VMIDS
);
584 unsigned int ssid_bits
;
585 unsigned int sid_bits
;
587 struct arm_smmu_strtab_cfg strtab_cfg
;
589 /* Hi16xx adds an extra 32 bits of goodness to its MSI payload */
595 /* IOMMU core code handle */
596 struct iommu_device iommu
;
599 /* SMMU private data for each master */
600 struct arm_smmu_master_data
{
601 struct arm_smmu_device
*smmu
;
602 struct arm_smmu_strtab_ent ste
;
605 /* SMMU private data for an IOMMU domain */
606 enum arm_smmu_domain_stage
{
607 ARM_SMMU_DOMAIN_S1
= 0,
609 ARM_SMMU_DOMAIN_NESTED
,
610 ARM_SMMU_DOMAIN_BYPASS
,
613 struct arm_smmu_domain
{
614 struct arm_smmu_device
*smmu
;
615 struct mutex init_mutex
; /* Protects smmu pointer */
617 struct io_pgtable_ops
*pgtbl_ops
;
619 enum arm_smmu_domain_stage stage
;
621 struct arm_smmu_s1_cfg s1_cfg
;
622 struct arm_smmu_s2_cfg s2_cfg
;
625 struct iommu_domain domain
;
628 struct arm_smmu_option_prop
{
633 static struct arm_smmu_option_prop arm_smmu_options
[] = {
634 { ARM_SMMU_OPT_SKIP_PREFETCH
, "hisilicon,broken-prefetch-cmd" },
635 { ARM_SMMU_OPT_PAGE0_REGS_ONLY
, "cavium,cn9900-broken-page1-regspace"},
639 static inline void __iomem
*arm_smmu_page1_fixup(unsigned long offset
,
640 struct arm_smmu_device
*smmu
)
642 if ((offset
> SZ_64K
) &&
643 (smmu
->options
& ARM_SMMU_OPT_PAGE0_REGS_ONLY
))
646 return smmu
->base
+ offset
;
649 static struct arm_smmu_domain
*to_smmu_domain(struct iommu_domain
*dom
)
651 return container_of(dom
, struct arm_smmu_domain
, domain
);
654 static void parse_driver_options(struct arm_smmu_device
*smmu
)
659 if (of_property_read_bool(smmu
->dev
->of_node
,
660 arm_smmu_options
[i
].prop
)) {
661 smmu
->options
|= arm_smmu_options
[i
].opt
;
662 dev_notice(smmu
->dev
, "option %s\n",
663 arm_smmu_options
[i
].prop
);
665 } while (arm_smmu_options
[++i
].opt
);
668 /* Low-level queue manipulation functions */
669 static bool queue_full(struct arm_smmu_queue
*q
)
671 return Q_IDX(q
, q
->prod
) == Q_IDX(q
, q
->cons
) &&
672 Q_WRP(q
, q
->prod
) != Q_WRP(q
, q
->cons
);
675 static bool queue_empty(struct arm_smmu_queue
*q
)
677 return Q_IDX(q
, q
->prod
) == Q_IDX(q
, q
->cons
) &&
678 Q_WRP(q
, q
->prod
) == Q_WRP(q
, q
->cons
);
681 static void queue_sync_cons(struct arm_smmu_queue
*q
)
683 q
->cons
= readl_relaxed(q
->cons_reg
);
686 static void queue_inc_cons(struct arm_smmu_queue
*q
)
688 u32 cons
= (Q_WRP(q
, q
->cons
) | Q_IDX(q
, q
->cons
)) + 1;
690 q
->cons
= Q_OVF(q
, q
->cons
) | Q_WRP(q
, cons
) | Q_IDX(q
, cons
);
693 * Ensure that all CPU accesses (reads and writes) to the queue
694 * are complete before we update the cons pointer.
697 writel_relaxed(q
->cons
, q
->cons_reg
);
700 static int queue_sync_prod(struct arm_smmu_queue
*q
)
703 u32 prod
= readl_relaxed(q
->prod_reg
);
705 if (Q_OVF(q
, prod
) != Q_OVF(q
, q
->prod
))
712 static void queue_inc_prod(struct arm_smmu_queue
*q
)
714 u32 prod
= (Q_WRP(q
, q
->prod
) | Q_IDX(q
, q
->prod
)) + 1;
716 q
->prod
= Q_OVF(q
, q
->prod
) | Q_WRP(q
, prod
) | Q_IDX(q
, prod
);
717 writel(q
->prod
, q
->prod_reg
);
721 * Wait for the SMMU to consume items. If drain is true, wait until the queue
722 * is empty. Otherwise, wait until there is at least one free slot.
724 static int queue_poll_cons(struct arm_smmu_queue
*q
, bool sync
, bool wfe
)
727 unsigned int delay
= 1, spin_cnt
= 0;
729 /* Wait longer if it's a CMD_SYNC */
730 timeout
= ktime_add_us(ktime_get(), sync
?
731 ARM_SMMU_CMDQ_SYNC_TIMEOUT_US
:
732 ARM_SMMU_POLL_TIMEOUT_US
);
734 while (queue_sync_cons(q
), (sync
? !queue_empty(q
) : queue_full(q
))) {
735 if (ktime_compare(ktime_get(), timeout
) > 0)
740 } else if (++spin_cnt
< ARM_SMMU_CMDQ_SYNC_SPIN_COUNT
) {
753 static void queue_write(__le64
*dst
, u64
*src
, size_t n_dwords
)
757 for (i
= 0; i
< n_dwords
; ++i
)
758 *dst
++ = cpu_to_le64(*src
++);
761 static int queue_insert_raw(struct arm_smmu_queue
*q
, u64
*ent
)
766 queue_write(Q_ENT(q
, q
->prod
), ent
, q
->ent_dwords
);
771 static void queue_read(__le64
*dst
, u64
*src
, size_t n_dwords
)
775 for (i
= 0; i
< n_dwords
; ++i
)
776 *dst
++ = le64_to_cpu(*src
++);
779 static int queue_remove_raw(struct arm_smmu_queue
*q
, u64
*ent
)
784 queue_read(ent
, Q_ENT(q
, q
->cons
), q
->ent_dwords
);
789 /* High-level queue accessors */
790 static int arm_smmu_cmdq_build_cmd(u64
*cmd
, struct arm_smmu_cmdq_ent
*ent
)
792 memset(cmd
, 0, CMDQ_ENT_DWORDS
<< 3);
793 cmd
[0] |= FIELD_PREP(CMDQ_0_OP
, ent
->opcode
);
795 switch (ent
->opcode
) {
796 case CMDQ_OP_TLBI_EL2_ALL
:
797 case CMDQ_OP_TLBI_NSNH_ALL
:
799 case CMDQ_OP_PREFETCH_CFG
:
800 cmd
[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID
, ent
->prefetch
.sid
);
801 cmd
[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE
, ent
->prefetch
.size
);
802 cmd
[1] |= ent
->prefetch
.addr
& CMDQ_PREFETCH_1_ADDR_MASK
;
804 case CMDQ_OP_CFGI_STE
:
805 cmd
[0] |= FIELD_PREP(CMDQ_CFGI_0_SID
, ent
->cfgi
.sid
);
806 cmd
[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF
, ent
->cfgi
.leaf
);
808 case CMDQ_OP_CFGI_ALL
:
809 /* Cover the entire SID range */
810 cmd
[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE
, 31);
812 case CMDQ_OP_TLBI_NH_VA
:
813 cmd
[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID
, ent
->tlbi
.vmid
);
814 cmd
[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID
, ent
->tlbi
.asid
);
815 cmd
[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF
, ent
->tlbi
.leaf
);
816 cmd
[1] |= ent
->tlbi
.addr
& CMDQ_TLBI_1_VA_MASK
;
818 case CMDQ_OP_TLBI_S2_IPA
:
819 cmd
[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID
, ent
->tlbi
.vmid
);
820 cmd
[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF
, ent
->tlbi
.leaf
);
821 cmd
[1] |= ent
->tlbi
.addr
& CMDQ_TLBI_1_IPA_MASK
;
823 case CMDQ_OP_TLBI_NH_ASID
:
824 cmd
[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID
, ent
->tlbi
.asid
);
826 case CMDQ_OP_TLBI_S12_VMALL
:
827 cmd
[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID
, ent
->tlbi
.vmid
);
829 case CMDQ_OP_PRI_RESP
:
830 cmd
[0] |= FIELD_PREP(CMDQ_0_SSV
, ent
->substream_valid
);
831 cmd
[0] |= FIELD_PREP(CMDQ_PRI_0_SSID
, ent
->pri
.ssid
);
832 cmd
[0] |= FIELD_PREP(CMDQ_PRI_0_SID
, ent
->pri
.sid
);
833 cmd
[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID
, ent
->pri
.grpid
);
834 switch (ent
->pri
.resp
) {
842 cmd
[1] |= FIELD_PREP(CMDQ_PRI_1_RESP
, ent
->pri
.resp
);
844 case CMDQ_OP_CMD_SYNC
:
845 if (ent
->sync
.msiaddr
)
846 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_CS
, CMDQ_SYNC_0_CS_IRQ
);
848 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_CS
, CMDQ_SYNC_0_CS_SEV
);
849 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH
, ARM_SMMU_SH_ISH
);
850 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR
, ARM_SMMU_MEMATTR_OIWB
);
852 * Commands are written little-endian, but we want the SMMU to
853 * receive MSIData, and thus write it back to memory, in CPU
854 * byte order, so big-endian needs an extra byteswap here.
856 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIDATA
,
857 cpu_to_le32(ent
->sync
.msidata
));
858 cmd
[1] |= ent
->sync
.msiaddr
& CMDQ_SYNC_1_MSIADDR_MASK
;
867 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device
*smmu
)
869 static const char *cerror_str
[] = {
870 [CMDQ_ERR_CERROR_NONE_IDX
] = "No error",
871 [CMDQ_ERR_CERROR_ILL_IDX
] = "Illegal command",
872 [CMDQ_ERR_CERROR_ABT_IDX
] = "Abort on command fetch",
876 u64 cmd
[CMDQ_ENT_DWORDS
];
877 struct arm_smmu_queue
*q
= &smmu
->cmdq
.q
;
878 u32 cons
= readl_relaxed(q
->cons_reg
);
879 u32 idx
= FIELD_GET(CMDQ_CONS_ERR
, cons
);
880 struct arm_smmu_cmdq_ent cmd_sync
= {
881 .opcode
= CMDQ_OP_CMD_SYNC
,
884 dev_err(smmu
->dev
, "CMDQ error (cons 0x%08x): %s\n", cons
,
885 idx
< ARRAY_SIZE(cerror_str
) ? cerror_str
[idx
] : "Unknown");
888 case CMDQ_ERR_CERROR_ABT_IDX
:
889 dev_err(smmu
->dev
, "retrying command fetch\n");
890 case CMDQ_ERR_CERROR_NONE_IDX
:
892 case CMDQ_ERR_CERROR_ILL_IDX
:
899 * We may have concurrent producers, so we need to be careful
900 * not to touch any of the shadow cmdq state.
902 queue_read(cmd
, Q_ENT(q
, cons
), q
->ent_dwords
);
903 dev_err(smmu
->dev
, "skipping command in error state:\n");
904 for (i
= 0; i
< ARRAY_SIZE(cmd
); ++i
)
905 dev_err(smmu
->dev
, "\t0x%016llx\n", (unsigned long long)cmd
[i
]);
907 /* Convert the erroneous command into a CMD_SYNC */
908 if (arm_smmu_cmdq_build_cmd(cmd
, &cmd_sync
)) {
909 dev_err(smmu
->dev
, "failed to convert to CMD_SYNC\n");
913 queue_write(Q_ENT(q
, cons
), cmd
, q
->ent_dwords
);
916 static void arm_smmu_cmdq_insert_cmd(struct arm_smmu_device
*smmu
, u64
*cmd
)
918 struct arm_smmu_queue
*q
= &smmu
->cmdq
.q
;
919 bool wfe
= !!(smmu
->features
& ARM_SMMU_FEAT_SEV
);
921 while (queue_insert_raw(q
, cmd
) == -ENOSPC
) {
922 if (queue_poll_cons(q
, false, wfe
))
923 dev_err_ratelimited(smmu
->dev
, "CMDQ timeout\n");
927 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device
*smmu
,
928 struct arm_smmu_cmdq_ent
*ent
)
930 u64 cmd
[CMDQ_ENT_DWORDS
];
933 if (arm_smmu_cmdq_build_cmd(cmd
, ent
)) {
934 dev_warn(smmu
->dev
, "ignoring unknown CMDQ opcode 0x%x\n",
939 spin_lock_irqsave(&smmu
->cmdq
.lock
, flags
);
940 arm_smmu_cmdq_insert_cmd(smmu
, cmd
);
941 spin_unlock_irqrestore(&smmu
->cmdq
.lock
, flags
);
945 * The difference between val and sync_idx is bounded by the maximum size of
946 * a queue at 2^20 entries, so 32 bits is plenty for wrap-safe arithmetic.
948 static int __arm_smmu_sync_poll_msi(struct arm_smmu_device
*smmu
, u32 sync_idx
)
953 timeout
= ktime_add_us(ktime_get(), ARM_SMMU_CMDQ_SYNC_TIMEOUT_US
);
954 val
= smp_cond_load_acquire(&smmu
->sync_count
,
955 (int)(VAL
- sync_idx
) >= 0 ||
956 !ktime_before(ktime_get(), timeout
));
958 return (int)(val
- sync_idx
) < 0 ? -ETIMEDOUT
: 0;
961 static int __arm_smmu_cmdq_issue_sync_msi(struct arm_smmu_device
*smmu
)
963 u64 cmd
[CMDQ_ENT_DWORDS
];
965 struct arm_smmu_cmdq_ent ent
= {
966 .opcode
= CMDQ_OP_CMD_SYNC
,
968 .msiaddr
= virt_to_phys(&smmu
->sync_count
),
972 spin_lock_irqsave(&smmu
->cmdq
.lock
, flags
);
973 ent
.sync
.msidata
= ++smmu
->sync_nr
;
974 arm_smmu_cmdq_build_cmd(cmd
, &ent
);
975 arm_smmu_cmdq_insert_cmd(smmu
, cmd
);
976 spin_unlock_irqrestore(&smmu
->cmdq
.lock
, flags
);
978 return __arm_smmu_sync_poll_msi(smmu
, ent
.sync
.msidata
);
981 static int __arm_smmu_cmdq_issue_sync(struct arm_smmu_device
*smmu
)
983 u64 cmd
[CMDQ_ENT_DWORDS
];
985 bool wfe
= !!(smmu
->features
& ARM_SMMU_FEAT_SEV
);
986 struct arm_smmu_cmdq_ent ent
= { .opcode
= CMDQ_OP_CMD_SYNC
};
989 arm_smmu_cmdq_build_cmd(cmd
, &ent
);
991 spin_lock_irqsave(&smmu
->cmdq
.lock
, flags
);
992 arm_smmu_cmdq_insert_cmd(smmu
, cmd
);
993 ret
= queue_poll_cons(&smmu
->cmdq
.q
, true, wfe
);
994 spin_unlock_irqrestore(&smmu
->cmdq
.lock
, flags
);
999 static void arm_smmu_cmdq_issue_sync(struct arm_smmu_device
*smmu
)
1002 bool msi
= (smmu
->features
& ARM_SMMU_FEAT_MSI
) &&
1003 (smmu
->features
& ARM_SMMU_FEAT_COHERENCY
);
1005 ret
= msi
? __arm_smmu_cmdq_issue_sync_msi(smmu
)
1006 : __arm_smmu_cmdq_issue_sync(smmu
);
1008 dev_err_ratelimited(smmu
->dev
, "CMD_SYNC timeout\n");
1011 /* Context descriptor manipulation functions */
1012 static u64
arm_smmu_cpu_tcr_to_cd(u64 tcr
)
1016 /* Repack the TCR. Just care about TTBR0 for now */
1017 val
|= ARM_SMMU_TCR2CD(tcr
, T0SZ
);
1018 val
|= ARM_SMMU_TCR2CD(tcr
, TG0
);
1019 val
|= ARM_SMMU_TCR2CD(tcr
, IRGN0
);
1020 val
|= ARM_SMMU_TCR2CD(tcr
, ORGN0
);
1021 val
|= ARM_SMMU_TCR2CD(tcr
, SH0
);
1022 val
|= ARM_SMMU_TCR2CD(tcr
, EPD0
);
1023 val
|= ARM_SMMU_TCR2CD(tcr
, EPD1
);
1024 val
|= ARM_SMMU_TCR2CD(tcr
, IPS
);
1025 val
|= ARM_SMMU_TCR2CD(tcr
, TBI0
);
1030 static void arm_smmu_write_ctx_desc(struct arm_smmu_device
*smmu
,
1031 struct arm_smmu_s1_cfg
*cfg
)
1036 * We don't need to issue any invalidation here, as we'll invalidate
1037 * the STE when installing the new entry anyway.
1039 val
= arm_smmu_cpu_tcr_to_cd(cfg
->cd
.tcr
) |
1043 CTXDESC_CD_0_R
| CTXDESC_CD_0_A
| CTXDESC_CD_0_ASET
|
1044 CTXDESC_CD_0_AA64
| FIELD_PREP(CTXDESC_CD_0_ASID
, cfg
->cd
.asid
) |
1047 /* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
1048 if (smmu
->features
& ARM_SMMU_FEAT_STALL_FORCE
)
1049 val
|= CTXDESC_CD_0_S
;
1051 cfg
->cdptr
[0] = cpu_to_le64(val
);
1053 val
= cfg
->cd
.ttbr
& CTXDESC_CD_1_TTB0_MASK
;
1054 cfg
->cdptr
[1] = cpu_to_le64(val
);
1056 cfg
->cdptr
[3] = cpu_to_le64(cfg
->cd
.mair
);
1059 /* Stream table manipulation functions */
1061 arm_smmu_write_strtab_l1_desc(__le64
*dst
, struct arm_smmu_strtab_l1_desc
*desc
)
1065 val
|= FIELD_PREP(STRTAB_L1_DESC_SPAN
, desc
->span
);
1066 val
|= desc
->l2ptr_dma
& STRTAB_L1_DESC_L2PTR_MASK
;
1068 *dst
= cpu_to_le64(val
);
1071 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device
*smmu
, u32 sid
)
1073 struct arm_smmu_cmdq_ent cmd
= {
1074 .opcode
= CMDQ_OP_CFGI_STE
,
1081 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1082 arm_smmu_cmdq_issue_sync(smmu
);
1085 static void arm_smmu_write_strtab_ent(struct arm_smmu_device
*smmu
, u32 sid
,
1086 __le64
*dst
, struct arm_smmu_strtab_ent
*ste
)
1089 * This is hideously complicated, but we only really care about
1090 * three cases at the moment:
1092 * 1. Invalid (all zero) -> bypass/fault (init)
1093 * 2. Bypass/fault -> translation/bypass (attach)
1094 * 3. Translation/bypass -> bypass/fault (detach)
1096 * Given that we can't update the STE atomically and the SMMU
1097 * doesn't read the thing in a defined order, that leaves us
1098 * with the following maintenance requirements:
1100 * 1. Update Config, return (init time STEs aren't live)
1101 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1102 * 3. Update Config, sync
1104 u64 val
= le64_to_cpu(dst
[0]);
1105 bool ste_live
= false;
1106 struct arm_smmu_cmdq_ent prefetch_cmd
= {
1107 .opcode
= CMDQ_OP_PREFETCH_CFG
,
1113 if (val
& STRTAB_STE_0_V
) {
1114 switch (FIELD_GET(STRTAB_STE_0_CFG
, val
)) {
1115 case STRTAB_STE_0_CFG_BYPASS
:
1117 case STRTAB_STE_0_CFG_S1_TRANS
:
1118 case STRTAB_STE_0_CFG_S2_TRANS
:
1121 case STRTAB_STE_0_CFG_ABORT
:
1125 BUG(); /* STE corruption */
1129 /* Nuke the existing STE_0 value, as we're going to rewrite it */
1130 val
= STRTAB_STE_0_V
;
1133 if (!ste
->assigned
|| !(ste
->s1_cfg
|| ste
->s2_cfg
)) {
1134 if (!ste
->assigned
&& disable_bypass
)
1135 val
|= FIELD_PREP(STRTAB_STE_0_CFG
, STRTAB_STE_0_CFG_ABORT
);
1137 val
|= FIELD_PREP(STRTAB_STE_0_CFG
, STRTAB_STE_0_CFG_BYPASS
);
1139 dst
[0] = cpu_to_le64(val
);
1140 dst
[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG
,
1141 STRTAB_STE_1_SHCFG_INCOMING
));
1142 dst
[2] = 0; /* Nuke the VMID */
1144 * The SMMU can perform negative caching, so we must sync
1145 * the STE regardless of whether the old value was live.
1148 arm_smmu_sync_ste_for_sid(smmu
, sid
);
1154 dst
[1] = cpu_to_le64(
1155 FIELD_PREP(STRTAB_STE_1_S1CIR
, STRTAB_STE_1_S1C_CACHE_WBRA
) |
1156 FIELD_PREP(STRTAB_STE_1_S1COR
, STRTAB_STE_1_S1C_CACHE_WBRA
) |
1157 FIELD_PREP(STRTAB_STE_1_S1CSH
, ARM_SMMU_SH_ISH
) |
1158 #ifdef CONFIG_PCI_ATS
1159 FIELD_PREP(STRTAB_STE_1_EATS
, STRTAB_STE_1_EATS_TRANS
) |
1161 FIELD_PREP(STRTAB_STE_1_STRW
, STRTAB_STE_1_STRW_NSEL1
));
1163 if (smmu
->features
& ARM_SMMU_FEAT_STALLS
&&
1164 !(smmu
->features
& ARM_SMMU_FEAT_STALL_FORCE
))
1165 dst
[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD
);
1167 val
|= (ste
->s1_cfg
->cdptr_dma
& STRTAB_STE_0_S1CTXPTR_MASK
) |
1168 FIELD_PREP(STRTAB_STE_0_CFG
, STRTAB_STE_0_CFG_S1_TRANS
);
1173 dst
[2] = cpu_to_le64(
1174 FIELD_PREP(STRTAB_STE_2_S2VMID
, ste
->s2_cfg
->vmid
) |
1175 FIELD_PREP(STRTAB_STE_2_VTCR
, ste
->s2_cfg
->vtcr
) |
1177 STRTAB_STE_2_S2ENDI
|
1179 STRTAB_STE_2_S2PTW
| STRTAB_STE_2_S2AA64
|
1182 dst
[3] = cpu_to_le64(ste
->s2_cfg
->vttbr
& STRTAB_STE_3_S2TTB_MASK
);
1184 val
|= FIELD_PREP(STRTAB_STE_0_CFG
, STRTAB_STE_0_CFG_S2_TRANS
);
1187 arm_smmu_sync_ste_for_sid(smmu
, sid
);
1188 /* See comment in arm_smmu_write_ctx_desc() */
1189 WRITE_ONCE(dst
[0], cpu_to_le64(val
));
1190 arm_smmu_sync_ste_for_sid(smmu
, sid
);
1192 /* It's likely that we'll want to use the new STE soon */
1193 if (!(smmu
->options
& ARM_SMMU_OPT_SKIP_PREFETCH
))
1194 arm_smmu_cmdq_issue_cmd(smmu
, &prefetch_cmd
);
1197 static void arm_smmu_init_bypass_stes(u64
*strtab
, unsigned int nent
)
1200 struct arm_smmu_strtab_ent ste
= { .assigned
= false };
1202 for (i
= 0; i
< nent
; ++i
) {
1203 arm_smmu_write_strtab_ent(NULL
, -1, strtab
, &ste
);
1204 strtab
+= STRTAB_STE_DWORDS
;
1208 static int arm_smmu_init_l2_strtab(struct arm_smmu_device
*smmu
, u32 sid
)
1212 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
1213 struct arm_smmu_strtab_l1_desc
*desc
= &cfg
->l1_desc
[sid
>> STRTAB_SPLIT
];
1218 size
= 1 << (STRTAB_SPLIT
+ ilog2(STRTAB_STE_DWORDS
) + 3);
1219 strtab
= &cfg
->strtab
[(sid
>> STRTAB_SPLIT
) * STRTAB_L1_DESC_DWORDS
];
1221 desc
->span
= STRTAB_SPLIT
+ 1;
1222 desc
->l2ptr
= dmam_alloc_coherent(smmu
->dev
, size
, &desc
->l2ptr_dma
,
1223 GFP_KERNEL
| __GFP_ZERO
);
1226 "failed to allocate l2 stream table for SID %u\n",
1231 arm_smmu_init_bypass_stes(desc
->l2ptr
, 1 << STRTAB_SPLIT
);
1232 arm_smmu_write_strtab_l1_desc(strtab
, desc
);
1236 /* IRQ and event handlers */
1237 static irqreturn_t
arm_smmu_evtq_thread(int irq
, void *dev
)
1240 struct arm_smmu_device
*smmu
= dev
;
1241 struct arm_smmu_queue
*q
= &smmu
->evtq
.q
;
1242 u64 evt
[EVTQ_ENT_DWORDS
];
1245 while (!queue_remove_raw(q
, evt
)) {
1246 u8 id
= FIELD_GET(EVTQ_0_ID
, evt
[0]);
1248 dev_info(smmu
->dev
, "event 0x%02x received:\n", id
);
1249 for (i
= 0; i
< ARRAY_SIZE(evt
); ++i
)
1250 dev_info(smmu
->dev
, "\t0x%016llx\n",
1251 (unsigned long long)evt
[i
]);
1256 * Not much we can do on overflow, so scream and pretend we're
1259 if (queue_sync_prod(q
) == -EOVERFLOW
)
1260 dev_err(smmu
->dev
, "EVTQ overflow detected -- events lost\n");
1261 } while (!queue_empty(q
));
1263 /* Sync our overflow flag, as we believe we're up to speed */
1264 q
->cons
= Q_OVF(q
, q
->prod
) | Q_WRP(q
, q
->cons
) | Q_IDX(q
, q
->cons
);
1268 static void arm_smmu_handle_ppr(struct arm_smmu_device
*smmu
, u64
*evt
)
1274 sid
= FIELD_GET(PRIQ_0_SID
, evt
[0]);
1275 ssv
= FIELD_GET(PRIQ_0_SSID_V
, evt
[0]);
1276 ssid
= ssv
? FIELD_GET(PRIQ_0_SSID
, evt
[0]) : 0;
1277 last
= FIELD_GET(PRIQ_0_PRG_LAST
, evt
[0]);
1278 grpid
= FIELD_GET(PRIQ_1_PRG_IDX
, evt
[1]);
1280 dev_info(smmu
->dev
, "unexpected PRI request received:\n");
1282 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1283 sid
, ssid
, grpid
, last
? "L" : "",
1284 evt
[0] & PRIQ_0_PERM_PRIV
? "" : "un",
1285 evt
[0] & PRIQ_0_PERM_READ
? "R" : "",
1286 evt
[0] & PRIQ_0_PERM_WRITE
? "W" : "",
1287 evt
[0] & PRIQ_0_PERM_EXEC
? "X" : "",
1288 evt
[1] & PRIQ_1_ADDR_MASK
);
1291 struct arm_smmu_cmdq_ent cmd
= {
1292 .opcode
= CMDQ_OP_PRI_RESP
,
1293 .substream_valid
= ssv
,
1298 .resp
= PRI_RESP_DENY
,
1302 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1306 static irqreturn_t
arm_smmu_priq_thread(int irq
, void *dev
)
1308 struct arm_smmu_device
*smmu
= dev
;
1309 struct arm_smmu_queue
*q
= &smmu
->priq
.q
;
1310 u64 evt
[PRIQ_ENT_DWORDS
];
1313 while (!queue_remove_raw(q
, evt
))
1314 arm_smmu_handle_ppr(smmu
, evt
);
1316 if (queue_sync_prod(q
) == -EOVERFLOW
)
1317 dev_err(smmu
->dev
, "PRIQ overflow detected -- requests lost\n");
1318 } while (!queue_empty(q
));
1320 /* Sync our overflow flag, as we believe we're up to speed */
1321 q
->cons
= Q_OVF(q
, q
->prod
) | Q_WRP(q
, q
->cons
) | Q_IDX(q
, q
->cons
);
1322 writel(q
->cons
, q
->cons_reg
);
1326 static int arm_smmu_device_disable(struct arm_smmu_device
*smmu
);
1328 static irqreturn_t
arm_smmu_gerror_handler(int irq
, void *dev
)
1330 u32 gerror
, gerrorn
, active
;
1331 struct arm_smmu_device
*smmu
= dev
;
1333 gerror
= readl_relaxed(smmu
->base
+ ARM_SMMU_GERROR
);
1334 gerrorn
= readl_relaxed(smmu
->base
+ ARM_SMMU_GERRORN
);
1336 active
= gerror
^ gerrorn
;
1337 if (!(active
& GERROR_ERR_MASK
))
1338 return IRQ_NONE
; /* No errors pending */
1341 "unexpected global error reported (0x%08x), this could be serious\n",
1344 if (active
& GERROR_SFM_ERR
) {
1345 dev_err(smmu
->dev
, "device has entered Service Failure Mode!\n");
1346 arm_smmu_device_disable(smmu
);
1349 if (active
& GERROR_MSI_GERROR_ABT_ERR
)
1350 dev_warn(smmu
->dev
, "GERROR MSI write aborted\n");
1352 if (active
& GERROR_MSI_PRIQ_ABT_ERR
)
1353 dev_warn(smmu
->dev
, "PRIQ MSI write aborted\n");
1355 if (active
& GERROR_MSI_EVTQ_ABT_ERR
)
1356 dev_warn(smmu
->dev
, "EVTQ MSI write aborted\n");
1358 if (active
& GERROR_MSI_CMDQ_ABT_ERR
)
1359 dev_warn(smmu
->dev
, "CMDQ MSI write aborted\n");
1361 if (active
& GERROR_PRIQ_ABT_ERR
)
1362 dev_err(smmu
->dev
, "PRIQ write aborted -- events may have been lost\n");
1364 if (active
& GERROR_EVTQ_ABT_ERR
)
1365 dev_err(smmu
->dev
, "EVTQ write aborted -- events may have been lost\n");
1367 if (active
& GERROR_CMDQ_ERR
)
1368 arm_smmu_cmdq_skip_err(smmu
);
1370 writel(gerror
, smmu
->base
+ ARM_SMMU_GERRORN
);
1374 static irqreturn_t
arm_smmu_combined_irq_thread(int irq
, void *dev
)
1376 struct arm_smmu_device
*smmu
= dev
;
1378 arm_smmu_evtq_thread(irq
, dev
);
1379 if (smmu
->features
& ARM_SMMU_FEAT_PRI
)
1380 arm_smmu_priq_thread(irq
, dev
);
1385 static irqreturn_t
arm_smmu_combined_irq_handler(int irq
, void *dev
)
1387 arm_smmu_gerror_handler(irq
, dev
);
1388 return IRQ_WAKE_THREAD
;
1391 /* IO_PGTABLE API */
1392 static void __arm_smmu_tlb_sync(struct arm_smmu_device
*smmu
)
1394 arm_smmu_cmdq_issue_sync(smmu
);
1397 static void arm_smmu_tlb_sync(void *cookie
)
1399 struct arm_smmu_domain
*smmu_domain
= cookie
;
1400 __arm_smmu_tlb_sync(smmu_domain
->smmu
);
1403 static void arm_smmu_tlb_inv_context(void *cookie
)
1405 struct arm_smmu_domain
*smmu_domain
= cookie
;
1406 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1407 struct arm_smmu_cmdq_ent cmd
;
1409 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1410 cmd
.opcode
= CMDQ_OP_TLBI_NH_ASID
;
1411 cmd
.tlbi
.asid
= smmu_domain
->s1_cfg
.cd
.asid
;
1414 cmd
.opcode
= CMDQ_OP_TLBI_S12_VMALL
;
1415 cmd
.tlbi
.vmid
= smmu_domain
->s2_cfg
.vmid
;
1418 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1419 __arm_smmu_tlb_sync(smmu
);
1422 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova
, size_t size
,
1423 size_t granule
, bool leaf
, void *cookie
)
1425 struct arm_smmu_domain
*smmu_domain
= cookie
;
1426 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1427 struct arm_smmu_cmdq_ent cmd
= {
1434 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1435 cmd
.opcode
= CMDQ_OP_TLBI_NH_VA
;
1436 cmd
.tlbi
.asid
= smmu_domain
->s1_cfg
.cd
.asid
;
1438 cmd
.opcode
= CMDQ_OP_TLBI_S2_IPA
;
1439 cmd
.tlbi
.vmid
= smmu_domain
->s2_cfg
.vmid
;
1443 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1444 cmd
.tlbi
.addr
+= granule
;
1445 } while (size
-= granule
);
1448 static const struct iommu_gather_ops arm_smmu_gather_ops
= {
1449 .tlb_flush_all
= arm_smmu_tlb_inv_context
,
1450 .tlb_add_flush
= arm_smmu_tlb_inv_range_nosync
,
1451 .tlb_sync
= arm_smmu_tlb_sync
,
1455 static bool arm_smmu_capable(enum iommu_cap cap
)
1458 case IOMMU_CAP_CACHE_COHERENCY
:
1460 case IOMMU_CAP_NOEXEC
:
1467 static struct iommu_domain
*arm_smmu_domain_alloc(unsigned type
)
1469 struct arm_smmu_domain
*smmu_domain
;
1471 if (type
!= IOMMU_DOMAIN_UNMANAGED
&&
1472 type
!= IOMMU_DOMAIN_DMA
&&
1473 type
!= IOMMU_DOMAIN_IDENTITY
)
1477 * Allocate the domain and initialise some of its data structures.
1478 * We can't really do anything meaningful until we've added a
1481 smmu_domain
= kzalloc(sizeof(*smmu_domain
), GFP_KERNEL
);
1485 if (type
== IOMMU_DOMAIN_DMA
&&
1486 iommu_get_dma_cookie(&smmu_domain
->domain
)) {
1491 mutex_init(&smmu_domain
->init_mutex
);
1492 return &smmu_domain
->domain
;
1495 static int arm_smmu_bitmap_alloc(unsigned long *map
, int span
)
1497 int idx
, size
= 1 << span
;
1500 idx
= find_first_zero_bit(map
, size
);
1503 } while (test_and_set_bit(idx
, map
));
1508 static void arm_smmu_bitmap_free(unsigned long *map
, int idx
)
1510 clear_bit(idx
, map
);
1513 static void arm_smmu_domain_free(struct iommu_domain
*domain
)
1515 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1516 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1518 iommu_put_dma_cookie(domain
);
1519 free_io_pgtable_ops(smmu_domain
->pgtbl_ops
);
1521 /* Free the CD and ASID, if we allocated them */
1522 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1523 struct arm_smmu_s1_cfg
*cfg
= &smmu_domain
->s1_cfg
;
1526 dmam_free_coherent(smmu_domain
->smmu
->dev
,
1527 CTXDESC_CD_DWORDS
<< 3,
1531 arm_smmu_bitmap_free(smmu
->asid_map
, cfg
->cd
.asid
);
1534 struct arm_smmu_s2_cfg
*cfg
= &smmu_domain
->s2_cfg
;
1536 arm_smmu_bitmap_free(smmu
->vmid_map
, cfg
->vmid
);
1542 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain
*smmu_domain
,
1543 struct io_pgtable_cfg
*pgtbl_cfg
)
1547 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1548 struct arm_smmu_s1_cfg
*cfg
= &smmu_domain
->s1_cfg
;
1550 asid
= arm_smmu_bitmap_alloc(smmu
->asid_map
, smmu
->asid_bits
);
1554 cfg
->cdptr
= dmam_alloc_coherent(smmu
->dev
, CTXDESC_CD_DWORDS
<< 3,
1556 GFP_KERNEL
| __GFP_ZERO
);
1558 dev_warn(smmu
->dev
, "failed to allocate context descriptor\n");
1563 cfg
->cd
.asid
= (u16
)asid
;
1564 cfg
->cd
.ttbr
= pgtbl_cfg
->arm_lpae_s1_cfg
.ttbr
[0];
1565 cfg
->cd
.tcr
= pgtbl_cfg
->arm_lpae_s1_cfg
.tcr
;
1566 cfg
->cd
.mair
= pgtbl_cfg
->arm_lpae_s1_cfg
.mair
[0];
1570 arm_smmu_bitmap_free(smmu
->asid_map
, asid
);
1574 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain
*smmu_domain
,
1575 struct io_pgtable_cfg
*pgtbl_cfg
)
1578 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1579 struct arm_smmu_s2_cfg
*cfg
= &smmu_domain
->s2_cfg
;
1581 vmid
= arm_smmu_bitmap_alloc(smmu
->vmid_map
, smmu
->vmid_bits
);
1585 cfg
->vmid
= (u16
)vmid
;
1586 cfg
->vttbr
= pgtbl_cfg
->arm_lpae_s2_cfg
.vttbr
;
1587 cfg
->vtcr
= pgtbl_cfg
->arm_lpae_s2_cfg
.vtcr
;
1591 static int arm_smmu_domain_finalise(struct iommu_domain
*domain
)
1594 unsigned long ias
, oas
;
1595 enum io_pgtable_fmt fmt
;
1596 struct io_pgtable_cfg pgtbl_cfg
;
1597 struct io_pgtable_ops
*pgtbl_ops
;
1598 int (*finalise_stage_fn
)(struct arm_smmu_domain
*,
1599 struct io_pgtable_cfg
*);
1600 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1601 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1603 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
) {
1604 smmu_domain
->stage
= ARM_SMMU_DOMAIN_BYPASS
;
1608 /* Restrict the stage to what we can actually support */
1609 if (!(smmu
->features
& ARM_SMMU_FEAT_TRANS_S1
))
1610 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S2
;
1611 if (!(smmu
->features
& ARM_SMMU_FEAT_TRANS_S2
))
1612 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S1
;
1614 switch (smmu_domain
->stage
) {
1615 case ARM_SMMU_DOMAIN_S1
:
1616 ias
= (smmu
->features
& ARM_SMMU_FEAT_VAX
) ? 52 : 48;
1617 ias
= min_t(unsigned long, ias
, VA_BITS
);
1619 fmt
= ARM_64_LPAE_S1
;
1620 finalise_stage_fn
= arm_smmu_domain_finalise_s1
;
1622 case ARM_SMMU_DOMAIN_NESTED
:
1623 case ARM_SMMU_DOMAIN_S2
:
1626 fmt
= ARM_64_LPAE_S2
;
1627 finalise_stage_fn
= arm_smmu_domain_finalise_s2
;
1633 pgtbl_cfg
= (struct io_pgtable_cfg
) {
1634 .pgsize_bitmap
= smmu
->pgsize_bitmap
,
1637 .tlb
= &arm_smmu_gather_ops
,
1638 .iommu_dev
= smmu
->dev
,
1641 if (smmu
->features
& ARM_SMMU_FEAT_COHERENCY
)
1642 pgtbl_cfg
.quirks
= IO_PGTABLE_QUIRK_NO_DMA
;
1644 pgtbl_ops
= alloc_io_pgtable_ops(fmt
, &pgtbl_cfg
, smmu_domain
);
1648 domain
->pgsize_bitmap
= pgtbl_cfg
.pgsize_bitmap
;
1649 domain
->geometry
.aperture_end
= (1UL << pgtbl_cfg
.ias
) - 1;
1650 domain
->geometry
.force_aperture
= true;
1652 ret
= finalise_stage_fn(smmu_domain
, &pgtbl_cfg
);
1654 free_io_pgtable_ops(pgtbl_ops
);
1658 smmu_domain
->pgtbl_ops
= pgtbl_ops
;
1662 static __le64
*arm_smmu_get_step_for_sid(struct arm_smmu_device
*smmu
, u32 sid
)
1665 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
1667 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
) {
1668 struct arm_smmu_strtab_l1_desc
*l1_desc
;
1671 /* Two-level walk */
1672 idx
= (sid
>> STRTAB_SPLIT
) * STRTAB_L1_DESC_DWORDS
;
1673 l1_desc
= &cfg
->l1_desc
[idx
];
1674 idx
= (sid
& ((1 << STRTAB_SPLIT
) - 1)) * STRTAB_STE_DWORDS
;
1675 step
= &l1_desc
->l2ptr
[idx
];
1677 /* Simple linear lookup */
1678 step
= &cfg
->strtab
[sid
* STRTAB_STE_DWORDS
];
1684 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec
*fwspec
)
1687 struct arm_smmu_master_data
*master
= fwspec
->iommu_priv
;
1688 struct arm_smmu_device
*smmu
= master
->smmu
;
1690 for (i
= 0; i
< fwspec
->num_ids
; ++i
) {
1691 u32 sid
= fwspec
->ids
[i
];
1692 __le64
*step
= arm_smmu_get_step_for_sid(smmu
, sid
);
1694 /* Bridged PCI devices may end up with duplicated IDs */
1695 for (j
= 0; j
< i
; j
++)
1696 if (fwspec
->ids
[j
] == sid
)
1701 arm_smmu_write_strtab_ent(smmu
, sid
, step
, &master
->ste
);
1705 static void arm_smmu_detach_dev(struct device
*dev
)
1707 struct arm_smmu_master_data
*master
= dev
->iommu_fwspec
->iommu_priv
;
1709 master
->ste
.assigned
= false;
1710 arm_smmu_install_ste_for_dev(dev
->iommu_fwspec
);
1713 static int arm_smmu_attach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1716 struct arm_smmu_device
*smmu
;
1717 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1718 struct arm_smmu_master_data
*master
;
1719 struct arm_smmu_strtab_ent
*ste
;
1721 if (!dev
->iommu_fwspec
)
1724 master
= dev
->iommu_fwspec
->iommu_priv
;
1725 smmu
= master
->smmu
;
1728 /* Already attached to a different domain? */
1730 arm_smmu_detach_dev(dev
);
1732 mutex_lock(&smmu_domain
->init_mutex
);
1734 if (!smmu_domain
->smmu
) {
1735 smmu_domain
->smmu
= smmu
;
1736 ret
= arm_smmu_domain_finalise(domain
);
1738 smmu_domain
->smmu
= NULL
;
1741 } else if (smmu_domain
->smmu
!= smmu
) {
1743 "cannot attach to SMMU %s (upstream of %s)\n",
1744 dev_name(smmu_domain
->smmu
->dev
),
1745 dev_name(smmu
->dev
));
1750 ste
->assigned
= true;
1752 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_BYPASS
) {
1755 } else if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1756 ste
->s1_cfg
= &smmu_domain
->s1_cfg
;
1758 arm_smmu_write_ctx_desc(smmu
, ste
->s1_cfg
);
1761 ste
->s2_cfg
= &smmu_domain
->s2_cfg
;
1764 arm_smmu_install_ste_for_dev(dev
->iommu_fwspec
);
1766 mutex_unlock(&smmu_domain
->init_mutex
);
1770 static int arm_smmu_map(struct iommu_domain
*domain
, unsigned long iova
,
1771 phys_addr_t paddr
, size_t size
, int prot
)
1773 struct io_pgtable_ops
*ops
= to_smmu_domain(domain
)->pgtbl_ops
;
1778 return ops
->map(ops
, iova
, paddr
, size
, prot
);
1782 arm_smmu_unmap(struct iommu_domain
*domain
, unsigned long iova
, size_t size
)
1784 struct io_pgtable_ops
*ops
= to_smmu_domain(domain
)->pgtbl_ops
;
1789 return ops
->unmap(ops
, iova
, size
);
1792 static void arm_smmu_iotlb_sync(struct iommu_domain
*domain
)
1794 struct arm_smmu_device
*smmu
= to_smmu_domain(domain
)->smmu
;
1797 __arm_smmu_tlb_sync(smmu
);
1801 arm_smmu_iova_to_phys(struct iommu_domain
*domain
, dma_addr_t iova
)
1803 struct io_pgtable_ops
*ops
= to_smmu_domain(domain
)->pgtbl_ops
;
1805 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
1811 return ops
->iova_to_phys(ops
, iova
);
1814 static struct platform_driver arm_smmu_driver
;
1816 static int arm_smmu_match_node(struct device
*dev
, void *data
)
1818 return dev
->fwnode
== data
;
1822 struct arm_smmu_device
*arm_smmu_get_by_fwnode(struct fwnode_handle
*fwnode
)
1824 struct device
*dev
= driver_find_device(&arm_smmu_driver
.driver
, NULL
,
1825 fwnode
, arm_smmu_match_node
);
1827 return dev
? dev_get_drvdata(dev
) : NULL
;
1830 static bool arm_smmu_sid_in_range(struct arm_smmu_device
*smmu
, u32 sid
)
1832 unsigned long limit
= smmu
->strtab_cfg
.num_l1_ents
;
1834 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
)
1835 limit
*= 1UL << STRTAB_SPLIT
;
1840 static struct iommu_ops arm_smmu_ops
;
1842 static int arm_smmu_add_device(struct device
*dev
)
1845 struct arm_smmu_device
*smmu
;
1846 struct arm_smmu_master_data
*master
;
1847 struct iommu_fwspec
*fwspec
= dev
->iommu_fwspec
;
1848 struct iommu_group
*group
;
1850 if (!fwspec
|| fwspec
->ops
!= &arm_smmu_ops
)
1853 * We _can_ actually withstand dodgy bus code re-calling add_device()
1854 * without an intervening remove_device()/of_xlate() sequence, but
1855 * we're not going to do so quietly...
1857 if (WARN_ON_ONCE(fwspec
->iommu_priv
)) {
1858 master
= fwspec
->iommu_priv
;
1859 smmu
= master
->smmu
;
1861 smmu
= arm_smmu_get_by_fwnode(fwspec
->iommu_fwnode
);
1864 master
= kzalloc(sizeof(*master
), GFP_KERNEL
);
1868 master
->smmu
= smmu
;
1869 fwspec
->iommu_priv
= master
;
1872 /* Check the SIDs are in range of the SMMU and our stream table */
1873 for (i
= 0; i
< fwspec
->num_ids
; i
++) {
1874 u32 sid
= fwspec
->ids
[i
];
1876 if (!arm_smmu_sid_in_range(smmu
, sid
))
1879 /* Ensure l2 strtab is initialised */
1880 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
) {
1881 ret
= arm_smmu_init_l2_strtab(smmu
, sid
);
1887 group
= iommu_group_get_for_dev(dev
);
1888 if (!IS_ERR(group
)) {
1889 iommu_group_put(group
);
1890 iommu_device_link(&smmu
->iommu
, dev
);
1893 return PTR_ERR_OR_ZERO(group
);
1896 static void arm_smmu_remove_device(struct device
*dev
)
1898 struct iommu_fwspec
*fwspec
= dev
->iommu_fwspec
;
1899 struct arm_smmu_master_data
*master
;
1900 struct arm_smmu_device
*smmu
;
1902 if (!fwspec
|| fwspec
->ops
!= &arm_smmu_ops
)
1905 master
= fwspec
->iommu_priv
;
1906 smmu
= master
->smmu
;
1907 if (master
&& master
->ste
.assigned
)
1908 arm_smmu_detach_dev(dev
);
1909 iommu_group_remove_device(dev
);
1910 iommu_device_unlink(&smmu
->iommu
, dev
);
1912 iommu_fwspec_free(dev
);
1915 static struct iommu_group
*arm_smmu_device_group(struct device
*dev
)
1917 struct iommu_group
*group
;
1920 * We don't support devices sharing stream IDs other than PCI RID
1921 * aliases, since the necessary ID-to-device lookup becomes rather
1922 * impractical given a potential sparse 32-bit stream ID space.
1924 if (dev_is_pci(dev
))
1925 group
= pci_device_group(dev
);
1927 group
= generic_device_group(dev
);
1932 static int arm_smmu_domain_get_attr(struct iommu_domain
*domain
,
1933 enum iommu_attr attr
, void *data
)
1935 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1937 if (domain
->type
!= IOMMU_DOMAIN_UNMANAGED
)
1941 case DOMAIN_ATTR_NESTING
:
1942 *(int *)data
= (smmu_domain
->stage
== ARM_SMMU_DOMAIN_NESTED
);
1949 static int arm_smmu_domain_set_attr(struct iommu_domain
*domain
,
1950 enum iommu_attr attr
, void *data
)
1953 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1955 if (domain
->type
!= IOMMU_DOMAIN_UNMANAGED
)
1958 mutex_lock(&smmu_domain
->init_mutex
);
1961 case DOMAIN_ATTR_NESTING
:
1962 if (smmu_domain
->smmu
) {
1968 smmu_domain
->stage
= ARM_SMMU_DOMAIN_NESTED
;
1970 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S1
;
1978 mutex_unlock(&smmu_domain
->init_mutex
);
1982 static int arm_smmu_of_xlate(struct device
*dev
, struct of_phandle_args
*args
)
1984 return iommu_fwspec_add_ids(dev
, args
->args
, 1);
1987 static void arm_smmu_get_resv_regions(struct device
*dev
,
1988 struct list_head
*head
)
1990 struct iommu_resv_region
*region
;
1991 int prot
= IOMMU_WRITE
| IOMMU_NOEXEC
| IOMMU_MMIO
;
1993 region
= iommu_alloc_resv_region(MSI_IOVA_BASE
, MSI_IOVA_LENGTH
,
1994 prot
, IOMMU_RESV_SW_MSI
);
1998 list_add_tail(®ion
->list
, head
);
2000 iommu_dma_get_resv_regions(dev
, head
);
2003 static void arm_smmu_put_resv_regions(struct device
*dev
,
2004 struct list_head
*head
)
2006 struct iommu_resv_region
*entry
, *next
;
2008 list_for_each_entry_safe(entry
, next
, head
, list
)
2012 static struct iommu_ops arm_smmu_ops
= {
2013 .capable
= arm_smmu_capable
,
2014 .domain_alloc
= arm_smmu_domain_alloc
,
2015 .domain_free
= arm_smmu_domain_free
,
2016 .attach_dev
= arm_smmu_attach_dev
,
2017 .map
= arm_smmu_map
,
2018 .unmap
= arm_smmu_unmap
,
2019 .flush_iotlb_all
= arm_smmu_iotlb_sync
,
2020 .iotlb_sync
= arm_smmu_iotlb_sync
,
2021 .iova_to_phys
= arm_smmu_iova_to_phys
,
2022 .add_device
= arm_smmu_add_device
,
2023 .remove_device
= arm_smmu_remove_device
,
2024 .device_group
= arm_smmu_device_group
,
2025 .domain_get_attr
= arm_smmu_domain_get_attr
,
2026 .domain_set_attr
= arm_smmu_domain_set_attr
,
2027 .of_xlate
= arm_smmu_of_xlate
,
2028 .get_resv_regions
= arm_smmu_get_resv_regions
,
2029 .put_resv_regions
= arm_smmu_put_resv_regions
,
2030 .pgsize_bitmap
= -1UL, /* Restricted during device attach */
2033 /* Probing and initialisation functions */
2034 static int arm_smmu_init_one_queue(struct arm_smmu_device
*smmu
,
2035 struct arm_smmu_queue
*q
,
2036 unsigned long prod_off
,
2037 unsigned long cons_off
,
2040 size_t qsz
= ((1 << q
->max_n_shift
) * dwords
) << 3;
2042 q
->base
= dmam_alloc_coherent(smmu
->dev
, qsz
, &q
->base_dma
, GFP_KERNEL
);
2044 dev_err(smmu
->dev
, "failed to allocate queue (0x%zx bytes)\n",
2049 q
->prod_reg
= arm_smmu_page1_fixup(prod_off
, smmu
);
2050 q
->cons_reg
= arm_smmu_page1_fixup(cons_off
, smmu
);
2051 q
->ent_dwords
= dwords
;
2053 q
->q_base
= Q_BASE_RWA
;
2054 q
->q_base
|= q
->base_dma
& Q_BASE_ADDR_MASK
;
2055 q
->q_base
|= FIELD_PREP(Q_BASE_LOG2SIZE
, q
->max_n_shift
);
2057 q
->prod
= q
->cons
= 0;
2061 static int arm_smmu_init_queues(struct arm_smmu_device
*smmu
)
2066 spin_lock_init(&smmu
->cmdq
.lock
);
2067 ret
= arm_smmu_init_one_queue(smmu
, &smmu
->cmdq
.q
, ARM_SMMU_CMDQ_PROD
,
2068 ARM_SMMU_CMDQ_CONS
, CMDQ_ENT_DWORDS
);
2073 ret
= arm_smmu_init_one_queue(smmu
, &smmu
->evtq
.q
, ARM_SMMU_EVTQ_PROD
,
2074 ARM_SMMU_EVTQ_CONS
, EVTQ_ENT_DWORDS
);
2079 if (!(smmu
->features
& ARM_SMMU_FEAT_PRI
))
2082 return arm_smmu_init_one_queue(smmu
, &smmu
->priq
.q
, ARM_SMMU_PRIQ_PROD
,
2083 ARM_SMMU_PRIQ_CONS
, PRIQ_ENT_DWORDS
);
2086 static int arm_smmu_init_l1_strtab(struct arm_smmu_device
*smmu
)
2089 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2090 size_t size
= sizeof(*cfg
->l1_desc
) * cfg
->num_l1_ents
;
2091 void *strtab
= smmu
->strtab_cfg
.strtab
;
2093 cfg
->l1_desc
= devm_kzalloc(smmu
->dev
, size
, GFP_KERNEL
);
2094 if (!cfg
->l1_desc
) {
2095 dev_err(smmu
->dev
, "failed to allocate l1 stream table desc\n");
2099 for (i
= 0; i
< cfg
->num_l1_ents
; ++i
) {
2100 arm_smmu_write_strtab_l1_desc(strtab
, &cfg
->l1_desc
[i
]);
2101 strtab
+= STRTAB_L1_DESC_DWORDS
<< 3;
2107 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device
*smmu
)
2112 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2114 /* Calculate the L1 size, capped to the SIDSIZE. */
2115 size
= STRTAB_L1_SZ_SHIFT
- (ilog2(STRTAB_L1_DESC_DWORDS
) + 3);
2116 size
= min(size
, smmu
->sid_bits
- STRTAB_SPLIT
);
2117 cfg
->num_l1_ents
= 1 << size
;
2119 size
+= STRTAB_SPLIT
;
2120 if (size
< smmu
->sid_bits
)
2122 "2-level strtab only covers %u/%u bits of SID\n",
2123 size
, smmu
->sid_bits
);
2125 l1size
= cfg
->num_l1_ents
* (STRTAB_L1_DESC_DWORDS
<< 3);
2126 strtab
= dmam_alloc_coherent(smmu
->dev
, l1size
, &cfg
->strtab_dma
,
2127 GFP_KERNEL
| __GFP_ZERO
);
2130 "failed to allocate l1 stream table (%u bytes)\n",
2134 cfg
->strtab
= strtab
;
2136 /* Configure strtab_base_cfg for 2 levels */
2137 reg
= FIELD_PREP(STRTAB_BASE_CFG_FMT
, STRTAB_BASE_CFG_FMT_2LVL
);
2138 reg
|= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE
, size
);
2139 reg
|= FIELD_PREP(STRTAB_BASE_CFG_SPLIT
, STRTAB_SPLIT
);
2140 cfg
->strtab_base_cfg
= reg
;
2142 return arm_smmu_init_l1_strtab(smmu
);
2145 static int arm_smmu_init_strtab_linear(struct arm_smmu_device
*smmu
)
2150 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2152 size
= (1 << smmu
->sid_bits
) * (STRTAB_STE_DWORDS
<< 3);
2153 strtab
= dmam_alloc_coherent(smmu
->dev
, size
, &cfg
->strtab_dma
,
2154 GFP_KERNEL
| __GFP_ZERO
);
2157 "failed to allocate linear stream table (%u bytes)\n",
2161 cfg
->strtab
= strtab
;
2162 cfg
->num_l1_ents
= 1 << smmu
->sid_bits
;
2164 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2165 reg
= FIELD_PREP(STRTAB_BASE_CFG_FMT
, STRTAB_BASE_CFG_FMT_LINEAR
);
2166 reg
|= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE
, smmu
->sid_bits
);
2167 cfg
->strtab_base_cfg
= reg
;
2169 arm_smmu_init_bypass_stes(strtab
, cfg
->num_l1_ents
);
2173 static int arm_smmu_init_strtab(struct arm_smmu_device
*smmu
)
2178 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
)
2179 ret
= arm_smmu_init_strtab_2lvl(smmu
);
2181 ret
= arm_smmu_init_strtab_linear(smmu
);
2186 /* Set the strtab base address */
2187 reg
= smmu
->strtab_cfg
.strtab_dma
& STRTAB_BASE_ADDR_MASK
;
2188 reg
|= STRTAB_BASE_RA
;
2189 smmu
->strtab_cfg
.strtab_base
= reg
;
2191 /* Allocate the first VMID for stage-2 bypass STEs */
2192 set_bit(0, smmu
->vmid_map
);
2196 static int arm_smmu_init_structures(struct arm_smmu_device
*smmu
)
2200 ret
= arm_smmu_init_queues(smmu
);
2204 return arm_smmu_init_strtab(smmu
);
2207 static int arm_smmu_write_reg_sync(struct arm_smmu_device
*smmu
, u32 val
,
2208 unsigned int reg_off
, unsigned int ack_off
)
2212 writel_relaxed(val
, smmu
->base
+ reg_off
);
2213 return readl_relaxed_poll_timeout(smmu
->base
+ ack_off
, reg
, reg
== val
,
2214 1, ARM_SMMU_POLL_TIMEOUT_US
);
2217 /* GBPA is "special" */
2218 static int arm_smmu_update_gbpa(struct arm_smmu_device
*smmu
, u32 set
, u32 clr
)
2221 u32 reg
, __iomem
*gbpa
= smmu
->base
+ ARM_SMMU_GBPA
;
2223 ret
= readl_relaxed_poll_timeout(gbpa
, reg
, !(reg
& GBPA_UPDATE
),
2224 1, ARM_SMMU_POLL_TIMEOUT_US
);
2230 writel_relaxed(reg
| GBPA_UPDATE
, gbpa
);
2231 ret
= readl_relaxed_poll_timeout(gbpa
, reg
, !(reg
& GBPA_UPDATE
),
2232 1, ARM_SMMU_POLL_TIMEOUT_US
);
2235 dev_err(smmu
->dev
, "GBPA not responding to update\n");
2239 static void arm_smmu_free_msis(void *data
)
2241 struct device
*dev
= data
;
2242 platform_msi_domain_free_irqs(dev
);
2245 static void arm_smmu_write_msi_msg(struct msi_desc
*desc
, struct msi_msg
*msg
)
2247 phys_addr_t doorbell
;
2248 struct device
*dev
= msi_desc_to_dev(desc
);
2249 struct arm_smmu_device
*smmu
= dev_get_drvdata(dev
);
2250 phys_addr_t
*cfg
= arm_smmu_msi_cfg
[desc
->platform
.msi_index
];
2252 doorbell
= (((u64
)msg
->address_hi
) << 32) | msg
->address_lo
;
2253 doorbell
&= MSI_CFG0_ADDR_MASK
;
2255 writeq_relaxed(doorbell
, smmu
->base
+ cfg
[0]);
2256 writel_relaxed(msg
->data
, smmu
->base
+ cfg
[1]);
2257 writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE
, smmu
->base
+ cfg
[2]);
2260 static void arm_smmu_setup_msis(struct arm_smmu_device
*smmu
)
2262 struct msi_desc
*desc
;
2263 int ret
, nvec
= ARM_SMMU_MAX_MSIS
;
2264 struct device
*dev
= smmu
->dev
;
2266 /* Clear the MSI address regs */
2267 writeq_relaxed(0, smmu
->base
+ ARM_SMMU_GERROR_IRQ_CFG0
);
2268 writeq_relaxed(0, smmu
->base
+ ARM_SMMU_EVTQ_IRQ_CFG0
);
2270 if (smmu
->features
& ARM_SMMU_FEAT_PRI
)
2271 writeq_relaxed(0, smmu
->base
+ ARM_SMMU_PRIQ_IRQ_CFG0
);
2275 if (!(smmu
->features
& ARM_SMMU_FEAT_MSI
))
2278 if (!dev
->msi_domain
) {
2279 dev_info(smmu
->dev
, "msi_domain absent - falling back to wired irqs\n");
2283 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2284 ret
= platform_msi_domain_alloc_irqs(dev
, nvec
, arm_smmu_write_msi_msg
);
2286 dev_warn(dev
, "failed to allocate MSIs - falling back to wired irqs\n");
2290 for_each_msi_entry(desc
, dev
) {
2291 switch (desc
->platform
.msi_index
) {
2292 case EVTQ_MSI_INDEX
:
2293 smmu
->evtq
.q
.irq
= desc
->irq
;
2295 case GERROR_MSI_INDEX
:
2296 smmu
->gerr_irq
= desc
->irq
;
2298 case PRIQ_MSI_INDEX
:
2299 smmu
->priq
.q
.irq
= desc
->irq
;
2301 default: /* Unknown */
2306 /* Add callback to free MSIs on teardown */
2307 devm_add_action(dev
, arm_smmu_free_msis
, dev
);
2310 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device
*smmu
)
2314 arm_smmu_setup_msis(smmu
);
2316 /* Request interrupt lines */
2317 irq
= smmu
->evtq
.q
.irq
;
2319 ret
= devm_request_threaded_irq(smmu
->dev
, irq
, NULL
,
2320 arm_smmu_evtq_thread
,
2322 "arm-smmu-v3-evtq", smmu
);
2324 dev_warn(smmu
->dev
, "failed to enable evtq irq\n");
2326 dev_warn(smmu
->dev
, "no evtq irq - events will not be reported!\n");
2329 irq
= smmu
->gerr_irq
;
2331 ret
= devm_request_irq(smmu
->dev
, irq
, arm_smmu_gerror_handler
,
2332 0, "arm-smmu-v3-gerror", smmu
);
2334 dev_warn(smmu
->dev
, "failed to enable gerror irq\n");
2336 dev_warn(smmu
->dev
, "no gerr irq - errors will not be reported!\n");
2339 if (smmu
->features
& ARM_SMMU_FEAT_PRI
) {
2340 irq
= smmu
->priq
.q
.irq
;
2342 ret
= devm_request_threaded_irq(smmu
->dev
, irq
, NULL
,
2343 arm_smmu_priq_thread
,
2349 "failed to enable priq irq\n");
2351 dev_warn(smmu
->dev
, "no priq irq - PRI will be broken\n");
2356 static int arm_smmu_setup_irqs(struct arm_smmu_device
*smmu
)
2359 u32 irqen_flags
= IRQ_CTRL_EVTQ_IRQEN
| IRQ_CTRL_GERROR_IRQEN
;
2361 /* Disable IRQs first */
2362 ret
= arm_smmu_write_reg_sync(smmu
, 0, ARM_SMMU_IRQ_CTRL
,
2363 ARM_SMMU_IRQ_CTRLACK
);
2365 dev_err(smmu
->dev
, "failed to disable irqs\n");
2369 irq
= smmu
->combined_irq
;
2372 * Cavium ThunderX2 implementation doesn't not support unique
2373 * irq lines. Use single irq line for all the SMMUv3 interrupts.
2375 ret
= devm_request_threaded_irq(smmu
->dev
, irq
,
2376 arm_smmu_combined_irq_handler
,
2377 arm_smmu_combined_irq_thread
,
2379 "arm-smmu-v3-combined-irq", smmu
);
2381 dev_warn(smmu
->dev
, "failed to enable combined irq\n");
2383 arm_smmu_setup_unique_irqs(smmu
);
2385 if (smmu
->features
& ARM_SMMU_FEAT_PRI
)
2386 irqen_flags
|= IRQ_CTRL_PRIQ_IRQEN
;
2388 /* Enable interrupt generation on the SMMU */
2389 ret
= arm_smmu_write_reg_sync(smmu
, irqen_flags
,
2390 ARM_SMMU_IRQ_CTRL
, ARM_SMMU_IRQ_CTRLACK
);
2392 dev_warn(smmu
->dev
, "failed to enable irqs\n");
2397 static int arm_smmu_device_disable(struct arm_smmu_device
*smmu
)
2401 ret
= arm_smmu_write_reg_sync(smmu
, 0, ARM_SMMU_CR0
, ARM_SMMU_CR0ACK
);
2403 dev_err(smmu
->dev
, "failed to clear cr0\n");
2408 static int arm_smmu_device_reset(struct arm_smmu_device
*smmu
, bool bypass
)
2412 struct arm_smmu_cmdq_ent cmd
;
2414 /* Clear CR0 and sync (disables SMMU and queue processing) */
2415 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_CR0
);
2416 if (reg
& CR0_SMMUEN
) {
2417 dev_warn(smmu
->dev
, "SMMU currently enabled! Resetting...\n");
2418 WARN_ON(is_kdump_kernel() && !disable_bypass
);
2419 arm_smmu_update_gbpa(smmu
, GBPA_ABORT
, 0);
2422 ret
= arm_smmu_device_disable(smmu
);
2426 /* CR1 (table and queue memory attributes) */
2427 reg
= FIELD_PREP(CR1_TABLE_SH
, ARM_SMMU_SH_ISH
) |
2428 FIELD_PREP(CR1_TABLE_OC
, CR1_CACHE_WB
) |
2429 FIELD_PREP(CR1_TABLE_IC
, CR1_CACHE_WB
) |
2430 FIELD_PREP(CR1_QUEUE_SH
, ARM_SMMU_SH_ISH
) |
2431 FIELD_PREP(CR1_QUEUE_OC
, CR1_CACHE_WB
) |
2432 FIELD_PREP(CR1_QUEUE_IC
, CR1_CACHE_WB
);
2433 writel_relaxed(reg
, smmu
->base
+ ARM_SMMU_CR1
);
2435 /* CR2 (random crap) */
2436 reg
= CR2_PTM
| CR2_RECINVSID
| CR2_E2H
;
2437 writel_relaxed(reg
, smmu
->base
+ ARM_SMMU_CR2
);
2440 writeq_relaxed(smmu
->strtab_cfg
.strtab_base
,
2441 smmu
->base
+ ARM_SMMU_STRTAB_BASE
);
2442 writel_relaxed(smmu
->strtab_cfg
.strtab_base_cfg
,
2443 smmu
->base
+ ARM_SMMU_STRTAB_BASE_CFG
);
2446 writeq_relaxed(smmu
->cmdq
.q
.q_base
, smmu
->base
+ ARM_SMMU_CMDQ_BASE
);
2447 writel_relaxed(smmu
->cmdq
.q
.prod
, smmu
->base
+ ARM_SMMU_CMDQ_PROD
);
2448 writel_relaxed(smmu
->cmdq
.q
.cons
, smmu
->base
+ ARM_SMMU_CMDQ_CONS
);
2450 enables
= CR0_CMDQEN
;
2451 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2454 dev_err(smmu
->dev
, "failed to enable command queue\n");
2458 /* Invalidate any cached configuration */
2459 cmd
.opcode
= CMDQ_OP_CFGI_ALL
;
2460 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2461 arm_smmu_cmdq_issue_sync(smmu
);
2463 /* Invalidate any stale TLB entries */
2464 if (smmu
->features
& ARM_SMMU_FEAT_HYP
) {
2465 cmd
.opcode
= CMDQ_OP_TLBI_EL2_ALL
;
2466 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2469 cmd
.opcode
= CMDQ_OP_TLBI_NSNH_ALL
;
2470 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2471 arm_smmu_cmdq_issue_sync(smmu
);
2474 writeq_relaxed(smmu
->evtq
.q
.q_base
, smmu
->base
+ ARM_SMMU_EVTQ_BASE
);
2475 writel_relaxed(smmu
->evtq
.q
.prod
,
2476 arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD
, smmu
));
2477 writel_relaxed(smmu
->evtq
.q
.cons
,
2478 arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS
, smmu
));
2480 enables
|= CR0_EVTQEN
;
2481 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2484 dev_err(smmu
->dev
, "failed to enable event queue\n");
2489 if (smmu
->features
& ARM_SMMU_FEAT_PRI
) {
2490 writeq_relaxed(smmu
->priq
.q
.q_base
,
2491 smmu
->base
+ ARM_SMMU_PRIQ_BASE
);
2492 writel_relaxed(smmu
->priq
.q
.prod
,
2493 arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD
, smmu
));
2494 writel_relaxed(smmu
->priq
.q
.cons
,
2495 arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS
, smmu
));
2497 enables
|= CR0_PRIQEN
;
2498 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2501 dev_err(smmu
->dev
, "failed to enable PRI queue\n");
2506 ret
= arm_smmu_setup_irqs(smmu
);
2508 dev_err(smmu
->dev
, "failed to setup irqs\n");
2512 if (is_kdump_kernel())
2513 enables
&= ~(CR0_EVTQEN
| CR0_PRIQEN
);
2515 /* Enable the SMMU interface, or ensure bypass */
2516 if (!bypass
|| disable_bypass
) {
2517 enables
|= CR0_SMMUEN
;
2519 ret
= arm_smmu_update_gbpa(smmu
, 0, GBPA_ABORT
);
2523 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2526 dev_err(smmu
->dev
, "failed to enable SMMU interface\n");
2533 static int arm_smmu_device_hw_probe(struct arm_smmu_device
*smmu
)
2536 bool coherent
= smmu
->features
& ARM_SMMU_FEAT_COHERENCY
;
2539 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_IDR0
);
2541 /* 2-level structures */
2542 if (FIELD_GET(IDR0_ST_LVL
, reg
) == IDR0_ST_LVL_2LVL
)
2543 smmu
->features
|= ARM_SMMU_FEAT_2_LVL_STRTAB
;
2545 if (reg
& IDR0_CD2L
)
2546 smmu
->features
|= ARM_SMMU_FEAT_2_LVL_CDTAB
;
2549 * Translation table endianness.
2550 * We currently require the same endianness as the CPU, but this
2551 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2553 switch (FIELD_GET(IDR0_TTENDIAN
, reg
)) {
2554 case IDR0_TTENDIAN_MIXED
:
2555 smmu
->features
|= ARM_SMMU_FEAT_TT_LE
| ARM_SMMU_FEAT_TT_BE
;
2558 case IDR0_TTENDIAN_BE
:
2559 smmu
->features
|= ARM_SMMU_FEAT_TT_BE
;
2562 case IDR0_TTENDIAN_LE
:
2563 smmu
->features
|= ARM_SMMU_FEAT_TT_LE
;
2567 dev_err(smmu
->dev
, "unknown/unsupported TT endianness!\n");
2571 /* Boolean feature flags */
2572 if (IS_ENABLED(CONFIG_PCI_PRI
) && reg
& IDR0_PRI
)
2573 smmu
->features
|= ARM_SMMU_FEAT_PRI
;
2575 if (IS_ENABLED(CONFIG_PCI_ATS
) && reg
& IDR0_ATS
)
2576 smmu
->features
|= ARM_SMMU_FEAT_ATS
;
2579 smmu
->features
|= ARM_SMMU_FEAT_SEV
;
2582 smmu
->features
|= ARM_SMMU_FEAT_MSI
;
2585 smmu
->features
|= ARM_SMMU_FEAT_HYP
;
2588 * The coherency feature as set by FW is used in preference to the ID
2589 * register, but warn on mismatch.
2591 if (!!(reg
& IDR0_COHACC
) != coherent
)
2592 dev_warn(smmu
->dev
, "IDR0.COHACC overridden by FW configuration (%s)\n",
2593 coherent
? "true" : "false");
2595 switch (FIELD_GET(IDR0_STALL_MODEL
, reg
)) {
2596 case IDR0_STALL_MODEL_FORCE
:
2597 smmu
->features
|= ARM_SMMU_FEAT_STALL_FORCE
;
2599 case IDR0_STALL_MODEL_STALL
:
2600 smmu
->features
|= ARM_SMMU_FEAT_STALLS
;
2604 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S1
;
2607 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S2
;
2609 if (!(reg
& (IDR0_S1P
| IDR0_S2P
))) {
2610 dev_err(smmu
->dev
, "no translation support!\n");
2614 /* We only support the AArch64 table format at present */
2615 switch (FIELD_GET(IDR0_TTF
, reg
)) {
2616 case IDR0_TTF_AARCH32_64
:
2619 case IDR0_TTF_AARCH64
:
2622 dev_err(smmu
->dev
, "AArch64 table format not supported!\n");
2626 /* ASID/VMID sizes */
2627 smmu
->asid_bits
= reg
& IDR0_ASID16
? 16 : 8;
2628 smmu
->vmid_bits
= reg
& IDR0_VMID16
? 16 : 8;
2631 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_IDR1
);
2632 if (reg
& (IDR1_TABLES_PRESET
| IDR1_QUEUES_PRESET
| IDR1_REL
)) {
2633 dev_err(smmu
->dev
, "embedded implementation not supported\n");
2637 /* Queue sizes, capped at 4k */
2638 smmu
->cmdq
.q
.max_n_shift
= min_t(u32
, CMDQ_MAX_SZ_SHIFT
,
2639 FIELD_GET(IDR1_CMDQS
, reg
));
2640 if (!smmu
->cmdq
.q
.max_n_shift
) {
2641 /* Odd alignment restrictions on the base, so ignore for now */
2642 dev_err(smmu
->dev
, "unit-length command queue not supported\n");
2646 smmu
->evtq
.q
.max_n_shift
= min_t(u32
, EVTQ_MAX_SZ_SHIFT
,
2647 FIELD_GET(IDR1_EVTQS
, reg
));
2648 smmu
->priq
.q
.max_n_shift
= min_t(u32
, PRIQ_MAX_SZ_SHIFT
,
2649 FIELD_GET(IDR1_PRIQS
, reg
));
2651 /* SID/SSID sizes */
2652 smmu
->ssid_bits
= FIELD_GET(IDR1_SSIDSIZE
, reg
);
2653 smmu
->sid_bits
= FIELD_GET(IDR1_SIDSIZE
, reg
);
2656 * If the SMMU supports fewer bits than would fill a single L2 stream
2657 * table, use a linear table instead.
2659 if (smmu
->sid_bits
<= STRTAB_SPLIT
)
2660 smmu
->features
&= ~ARM_SMMU_FEAT_2_LVL_STRTAB
;
2663 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_IDR5
);
2665 /* Maximum number of outstanding stalls */
2666 smmu
->evtq
.max_stalls
= FIELD_GET(IDR5_STALL_MAX
, reg
);
2669 if (reg
& IDR5_GRAN64K
)
2670 smmu
->pgsize_bitmap
|= SZ_64K
| SZ_512M
;
2671 if (reg
& IDR5_GRAN16K
)
2672 smmu
->pgsize_bitmap
|= SZ_16K
| SZ_32M
;
2673 if (reg
& IDR5_GRAN4K
)
2674 smmu
->pgsize_bitmap
|= SZ_4K
| SZ_2M
| SZ_1G
;
2676 /* Input address size */
2677 if (FIELD_GET(IDR5_VAX
, reg
) == IDR5_VAX_52_BIT
)
2678 smmu
->features
|= ARM_SMMU_FEAT_VAX
;
2680 /* Output address size */
2681 switch (FIELD_GET(IDR5_OAS
, reg
)) {
2682 case IDR5_OAS_32_BIT
:
2685 case IDR5_OAS_36_BIT
:
2688 case IDR5_OAS_40_BIT
:
2691 case IDR5_OAS_42_BIT
:
2694 case IDR5_OAS_44_BIT
:
2697 case IDR5_OAS_52_BIT
:
2699 smmu
->pgsize_bitmap
|= 1ULL << 42; /* 4TB */
2703 "unknown output address size. Truncating to 48-bit\n");
2705 case IDR5_OAS_48_BIT
:
2709 if (arm_smmu_ops
.pgsize_bitmap
== -1UL)
2710 arm_smmu_ops
.pgsize_bitmap
= smmu
->pgsize_bitmap
;
2712 arm_smmu_ops
.pgsize_bitmap
|= smmu
->pgsize_bitmap
;
2714 /* Set the DMA mask for our table walker */
2715 if (dma_set_mask_and_coherent(smmu
->dev
, DMA_BIT_MASK(smmu
->oas
)))
2717 "failed to set DMA mask for table walker\n");
2719 smmu
->ias
= max(smmu
->ias
, smmu
->oas
);
2721 dev_info(smmu
->dev
, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2722 smmu
->ias
, smmu
->oas
, smmu
->features
);
2727 static void acpi_smmu_get_options(u32 model
, struct arm_smmu_device
*smmu
)
2730 case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX
:
2731 smmu
->options
|= ARM_SMMU_OPT_PAGE0_REGS_ONLY
;
2733 case ACPI_IORT_SMMU_V3_HISILICON_HI161X
:
2734 smmu
->options
|= ARM_SMMU_OPT_SKIP_PREFETCH
;
2738 dev_notice(smmu
->dev
, "option mask 0x%x\n", smmu
->options
);
2741 static int arm_smmu_device_acpi_probe(struct platform_device
*pdev
,
2742 struct arm_smmu_device
*smmu
)
2744 struct acpi_iort_smmu_v3
*iort_smmu
;
2745 struct device
*dev
= smmu
->dev
;
2746 struct acpi_iort_node
*node
;
2748 node
= *(struct acpi_iort_node
**)dev_get_platdata(dev
);
2750 /* Retrieve SMMUv3 specific data */
2751 iort_smmu
= (struct acpi_iort_smmu_v3
*)node
->node_data
;
2753 acpi_smmu_get_options(iort_smmu
->model
, smmu
);
2755 if (iort_smmu
->flags
& ACPI_IORT_SMMU_V3_COHACC_OVERRIDE
)
2756 smmu
->features
|= ARM_SMMU_FEAT_COHERENCY
;
2761 static inline int arm_smmu_device_acpi_probe(struct platform_device
*pdev
,
2762 struct arm_smmu_device
*smmu
)
2768 static int arm_smmu_device_dt_probe(struct platform_device
*pdev
,
2769 struct arm_smmu_device
*smmu
)
2771 struct device
*dev
= &pdev
->dev
;
2775 if (of_property_read_u32(dev
->of_node
, "#iommu-cells", &cells
))
2776 dev_err(dev
, "missing #iommu-cells property\n");
2777 else if (cells
!= 1)
2778 dev_err(dev
, "invalid #iommu-cells value (%d)\n", cells
);
2782 parse_driver_options(smmu
);
2784 if (of_dma_is_coherent(dev
->of_node
))
2785 smmu
->features
|= ARM_SMMU_FEAT_COHERENCY
;
2790 static unsigned long arm_smmu_resource_size(struct arm_smmu_device
*smmu
)
2792 if (smmu
->options
& ARM_SMMU_OPT_PAGE0_REGS_ONLY
)
2798 static int arm_smmu_device_probe(struct platform_device
*pdev
)
2801 struct resource
*res
;
2802 resource_size_t ioaddr
;
2803 struct arm_smmu_device
*smmu
;
2804 struct device
*dev
= &pdev
->dev
;
2807 smmu
= devm_kzalloc(dev
, sizeof(*smmu
), GFP_KERNEL
);
2809 dev_err(dev
, "failed to allocate arm_smmu_device\n");
2815 ret
= arm_smmu_device_dt_probe(pdev
, smmu
);
2817 ret
= arm_smmu_device_acpi_probe(pdev
, smmu
);
2822 /* Set bypass mode according to firmware probing result */
2826 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2827 if (resource_size(res
) + 1 < arm_smmu_resource_size(smmu
)) {
2828 dev_err(dev
, "MMIO region too small (%pr)\n", res
);
2831 ioaddr
= res
->start
;
2833 smmu
->base
= devm_ioremap_resource(dev
, res
);
2834 if (IS_ERR(smmu
->base
))
2835 return PTR_ERR(smmu
->base
);
2837 /* Interrupt lines */
2839 irq
= platform_get_irq_byname(pdev
, "combined");
2841 smmu
->combined_irq
= irq
;
2843 irq
= platform_get_irq_byname(pdev
, "eventq");
2845 smmu
->evtq
.q
.irq
= irq
;
2847 irq
= platform_get_irq_byname(pdev
, "priq");
2849 smmu
->priq
.q
.irq
= irq
;
2851 irq
= platform_get_irq_byname(pdev
, "gerror");
2853 smmu
->gerr_irq
= irq
;
2856 ret
= arm_smmu_device_hw_probe(smmu
);
2860 /* Initialise in-memory data structures */
2861 ret
= arm_smmu_init_structures(smmu
);
2865 /* Record our private device structure */
2866 platform_set_drvdata(pdev
, smmu
);
2868 /* Reset the device */
2869 ret
= arm_smmu_device_reset(smmu
, bypass
);
2873 /* And we're up. Go go go! */
2874 ret
= iommu_device_sysfs_add(&smmu
->iommu
, dev
, NULL
,
2875 "smmu3.%pa", &ioaddr
);
2879 iommu_device_set_ops(&smmu
->iommu
, &arm_smmu_ops
);
2880 iommu_device_set_fwnode(&smmu
->iommu
, dev
->fwnode
);
2882 ret
= iommu_device_register(&smmu
->iommu
);
2884 dev_err(dev
, "Failed to register iommu\n");
2889 if (pci_bus_type
.iommu_ops
!= &arm_smmu_ops
) {
2891 ret
= bus_set_iommu(&pci_bus_type
, &arm_smmu_ops
);
2896 #ifdef CONFIG_ARM_AMBA
2897 if (amba_bustype
.iommu_ops
!= &arm_smmu_ops
) {
2898 ret
= bus_set_iommu(&amba_bustype
, &arm_smmu_ops
);
2903 if (platform_bus_type
.iommu_ops
!= &arm_smmu_ops
) {
2904 ret
= bus_set_iommu(&platform_bus_type
, &arm_smmu_ops
);
2911 static int arm_smmu_device_remove(struct platform_device
*pdev
)
2913 struct arm_smmu_device
*smmu
= platform_get_drvdata(pdev
);
2915 arm_smmu_device_disable(smmu
);
2920 static void arm_smmu_device_shutdown(struct platform_device
*pdev
)
2922 arm_smmu_device_remove(pdev
);
2925 static const struct of_device_id arm_smmu_of_match
[] = {
2926 { .compatible
= "arm,smmu-v3", },
2929 MODULE_DEVICE_TABLE(of
, arm_smmu_of_match
);
2931 static struct platform_driver arm_smmu_driver
= {
2933 .name
= "arm-smmu-v3",
2934 .of_match_table
= of_match_ptr(arm_smmu_of_match
),
2936 .probe
= arm_smmu_device_probe
,
2937 .remove
= arm_smmu_device_remove
,
2938 .shutdown
= arm_smmu_device_shutdown
,
2940 module_platform_driver(arm_smmu_driver
);
2942 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2943 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2944 MODULE_LICENSE("GPL v2");