1 // SPDX-License-Identifier: GPL-2.0
3 #define pr_fmt(fmt) "DMAR-IR: " fmt
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/intel-iommu.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22 #include <asm/msidef.h>
24 #include "irq_remapping.h"
32 struct intel_iommu
*iommu
;
34 unsigned int bus
; /* PCI bus number */
35 unsigned int devfn
; /* PCI devfn number */
39 struct intel_iommu
*iommu
;
46 struct intel_iommu
*iommu
;
53 struct intel_ir_data
{
54 struct irq_2_iommu irq_2_iommu
;
55 struct irte irte_entry
;
57 struct msi_msg msi_entry
;
61 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
62 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64 static int __read_mostly eim_mode
;
65 static struct ioapic_scope ir_ioapic
[MAX_IO_APICS
];
66 static struct hpet_scope ir_hpet
[MAX_HPET_TBS
];
73 * ->iommu->register_lock
75 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
76 * in single-threaded environment with interrupt disabled, so no need to tabke
77 * the dmar_global_lock.
79 static DEFINE_RAW_SPINLOCK(irq_2_ir_lock
);
80 static const struct irq_domain_ops intel_ir_domain_ops
;
82 static void iommu_disable_irq_remapping(struct intel_iommu
*iommu
);
83 static int __init
parse_ioapics_under_ir(void);
85 static bool ir_pre_enabled(struct intel_iommu
*iommu
)
87 return (iommu
->flags
& VTD_FLAG_IRQ_REMAP_PRE_ENABLED
);
90 static void clear_ir_pre_enabled(struct intel_iommu
*iommu
)
92 iommu
->flags
&= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED
;
95 static void init_ir_status(struct intel_iommu
*iommu
)
99 gsts
= readl(iommu
->reg
+ DMAR_GSTS_REG
);
100 if (gsts
& DMA_GSTS_IRES
)
101 iommu
->flags
|= VTD_FLAG_IRQ_REMAP_PRE_ENABLED
;
104 static int alloc_irte(struct intel_iommu
*iommu
, int irq
,
105 struct irq_2_iommu
*irq_iommu
, u16 count
)
107 struct ir_table
*table
= iommu
->ir_table
;
108 unsigned int mask
= 0;
112 if (!count
|| !irq_iommu
)
116 count
= __roundup_pow_of_two(count
);
120 if (mask
> ecap_max_handle_mask(iommu
->ecap
)) {
121 pr_err("Requested mask %x exceeds the max invalidation handle"
122 " mask value %Lx\n", mask
,
123 ecap_max_handle_mask(iommu
->ecap
));
127 raw_spin_lock_irqsave(&irq_2_ir_lock
, flags
);
128 index
= bitmap_find_free_region(table
->bitmap
,
129 INTR_REMAP_TABLE_ENTRIES
, mask
);
131 pr_warn("IR%d: can't allocate an IRTE\n", iommu
->seq_id
);
133 irq_iommu
->iommu
= iommu
;
134 irq_iommu
->irte_index
= index
;
135 irq_iommu
->sub_handle
= 0;
136 irq_iommu
->irte_mask
= mask
;
137 irq_iommu
->mode
= IRQ_REMAPPING
;
139 raw_spin_unlock_irqrestore(&irq_2_ir_lock
, flags
);
144 static int qi_flush_iec(struct intel_iommu
*iommu
, int index
, int mask
)
148 desc
.low
= QI_IEC_IIDEX(index
) | QI_IEC_TYPE
| QI_IEC_IM(mask
)
152 return qi_submit_sync(&desc
, iommu
);
155 static int modify_irte(struct irq_2_iommu
*irq_iommu
,
156 struct irte
*irte_modified
)
158 struct intel_iommu
*iommu
;
166 raw_spin_lock_irqsave(&irq_2_ir_lock
, flags
);
168 iommu
= irq_iommu
->iommu
;
170 index
= irq_iommu
->irte_index
+ irq_iommu
->sub_handle
;
171 irte
= &iommu
->ir_table
->base
[index
];
173 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
174 if ((irte
->pst
== 1) || (irte_modified
->pst
== 1)) {
177 ret
= cmpxchg_double(&irte
->low
, &irte
->high
,
178 irte
->low
, irte
->high
,
179 irte_modified
->low
, irte_modified
->high
);
181 * We use cmpxchg16 to atomically update the 128-bit IRTE,
182 * and it cannot be updated by the hardware or other processors
183 * behind us, so the return value of cmpxchg16 should be the
184 * same as the old value.
190 set_64bit(&irte
->low
, irte_modified
->low
);
191 set_64bit(&irte
->high
, irte_modified
->high
);
193 __iommu_flush_cache(iommu
, irte
, sizeof(*irte
));
195 rc
= qi_flush_iec(iommu
, index
, 0);
197 /* Update iommu mode according to the IRTE mode */
198 irq_iommu
->mode
= irte
->pst
? IRQ_POSTING
: IRQ_REMAPPING
;
199 raw_spin_unlock_irqrestore(&irq_2_ir_lock
, flags
);
204 static struct intel_iommu
*map_hpet_to_ir(u8 hpet_id
)
208 for (i
= 0; i
< MAX_HPET_TBS
; i
++)
209 if (ir_hpet
[i
].id
== hpet_id
&& ir_hpet
[i
].iommu
)
210 return ir_hpet
[i
].iommu
;
214 static struct intel_iommu
*map_ioapic_to_ir(int apic
)
218 for (i
= 0; i
< MAX_IO_APICS
; i
++)
219 if (ir_ioapic
[i
].id
== apic
&& ir_ioapic
[i
].iommu
)
220 return ir_ioapic
[i
].iommu
;
224 static struct intel_iommu
*map_dev_to_ir(struct pci_dev
*dev
)
226 struct dmar_drhd_unit
*drhd
;
228 drhd
= dmar_find_matched_drhd_unit(dev
);
235 static int clear_entries(struct irq_2_iommu
*irq_iommu
)
237 struct irte
*start
, *entry
, *end
;
238 struct intel_iommu
*iommu
;
241 if (irq_iommu
->sub_handle
)
244 iommu
= irq_iommu
->iommu
;
245 index
= irq_iommu
->irte_index
;
247 start
= iommu
->ir_table
->base
+ index
;
248 end
= start
+ (1 << irq_iommu
->irte_mask
);
250 for (entry
= start
; entry
< end
; entry
++) {
251 set_64bit(&entry
->low
, 0);
252 set_64bit(&entry
->high
, 0);
254 bitmap_release_region(iommu
->ir_table
->bitmap
, index
,
255 irq_iommu
->irte_mask
);
257 return qi_flush_iec(iommu
, index
, irq_iommu
->irte_mask
);
261 * source validation type
263 #define SVT_NO_VERIFY 0x0 /* no verification is required */
264 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
265 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
268 * source-id qualifier
270 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
271 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
272 * the third least significant bit
274 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
275 * the second and third least significant bits
277 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
278 * the least three significant bits
282 * set SVT, SQ and SID fields of irte to verify
283 * source ids of interrupt requests
285 static void set_irte_sid(struct irte
*irte
, unsigned int svt
,
286 unsigned int sq
, unsigned int sid
)
288 if (disable_sourceid_checking
)
295 static int set_ioapic_sid(struct irte
*irte
, int apic
)
303 down_read(&dmar_global_lock
);
304 for (i
= 0; i
< MAX_IO_APICS
; i
++) {
305 if (ir_ioapic
[i
].iommu
&& ir_ioapic
[i
].id
== apic
) {
306 sid
= (ir_ioapic
[i
].bus
<< 8) | ir_ioapic
[i
].devfn
;
310 up_read(&dmar_global_lock
);
313 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic
);
317 set_irte_sid(irte
, SVT_VERIFY_SID_SQ
, SQ_ALL_16
, sid
);
322 static int set_hpet_sid(struct irte
*irte
, u8 id
)
330 down_read(&dmar_global_lock
);
331 for (i
= 0; i
< MAX_HPET_TBS
; i
++) {
332 if (ir_hpet
[i
].iommu
&& ir_hpet
[i
].id
== id
) {
333 sid
= (ir_hpet
[i
].bus
<< 8) | ir_hpet
[i
].devfn
;
337 up_read(&dmar_global_lock
);
340 pr_warn("Failed to set source-id of HPET block (%d)\n", id
);
345 * Should really use SQ_ALL_16. Some platforms are broken.
346 * While we figure out the right quirks for these broken platforms, use
347 * SQ_13_IGNORE_3 for now.
349 set_irte_sid(irte
, SVT_VERIFY_SID_SQ
, SQ_13_IGNORE_3
, sid
);
354 struct set_msi_sid_data
{
355 struct pci_dev
*pdev
;
359 static int set_msi_sid_cb(struct pci_dev
*pdev
, u16 alias
, void *opaque
)
361 struct set_msi_sid_data
*data
= opaque
;
369 static int set_msi_sid(struct irte
*irte
, struct pci_dev
*dev
)
371 struct set_msi_sid_data data
;
376 pci_for_each_dma_alias(dev
, set_msi_sid_cb
, &data
);
379 * DMA alias provides us with a PCI device and alias. The only case
380 * where the it will return an alias on a different bus than the
381 * device is the case of a PCIe-to-PCI bridge, where the alias is for
382 * the subordinate bus. In this case we can only verify the bus.
384 * If the alias device is on a different bus than our source device
385 * then we have a topology based alias, use it.
387 * Otherwise, the alias is for a device DMA quirk and we cannot
388 * assume that MSI uses the same requester ID. Therefore use the
391 if (PCI_BUS_NUM(data
.alias
) != data
.pdev
->bus
->number
)
392 set_irte_sid(irte
, SVT_VERIFY_BUS
, SQ_ALL_16
,
393 PCI_DEVID(PCI_BUS_NUM(data
.alias
),
395 else if (data
.pdev
->bus
->number
!= dev
->bus
->number
)
396 set_irte_sid(irte
, SVT_VERIFY_SID_SQ
, SQ_ALL_16
, data
.alias
);
398 set_irte_sid(irte
, SVT_VERIFY_SID_SQ
, SQ_ALL_16
,
399 PCI_DEVID(dev
->bus
->number
, dev
->devfn
));
404 static int iommu_load_old_irte(struct intel_iommu
*iommu
)
406 struct irte
*old_ir_table
;
407 phys_addr_t irt_phys
;
412 /* Check whether the old ir-table has the same size as ours */
413 irta
= dmar_readq(iommu
->reg
+ DMAR_IRTA_REG
);
414 if ((irta
& INTR_REMAP_TABLE_REG_SIZE_MASK
)
415 != INTR_REMAP_TABLE_REG_SIZE
)
418 irt_phys
= irta
& VTD_PAGE_MASK
;
419 size
= INTR_REMAP_TABLE_ENTRIES
*sizeof(struct irte
);
421 /* Map the old IR table */
422 old_ir_table
= memremap(irt_phys
, size
, MEMREMAP_WB
);
427 memcpy(iommu
->ir_table
->base
, old_ir_table
, size
);
429 __iommu_flush_cache(iommu
, iommu
->ir_table
->base
, size
);
432 * Now check the table for used entries and mark those as
433 * allocated in the bitmap
435 for (i
= 0; i
< INTR_REMAP_TABLE_ENTRIES
; i
++) {
436 if (iommu
->ir_table
->base
[i
].present
)
437 bitmap_set(iommu
->ir_table
->bitmap
, i
, 1);
440 memunmap(old_ir_table
);
446 static void iommu_set_irq_remapping(struct intel_iommu
*iommu
, int mode
)
452 addr
= virt_to_phys((void *)iommu
->ir_table
->base
);
454 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
456 dmar_writeq(iommu
->reg
+ DMAR_IRTA_REG
,
457 (addr
) | IR_X2APIC_MODE(mode
) | INTR_REMAP_TABLE_REG_SIZE
);
459 /* Set interrupt-remapping table pointer */
460 writel(iommu
->gcmd
| DMA_GCMD_SIRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
462 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
463 readl
, (sts
& DMA_GSTS_IRTPS
), sts
);
464 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
467 * Global invalidation of interrupt entry cache to make sure the
468 * hardware uses the new irq remapping table.
470 qi_global_iec(iommu
);
473 static void iommu_enable_irq_remapping(struct intel_iommu
*iommu
)
478 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
480 /* Enable interrupt-remapping */
481 iommu
->gcmd
|= DMA_GCMD_IRE
;
482 iommu
->gcmd
&= ~DMA_GCMD_CFI
; /* Block compatibility-format MSIs */
483 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
485 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
486 readl
, (sts
& DMA_GSTS_IRES
), sts
);
489 * With CFI clear in the Global Command register, we should be
490 * protected from dangerous (i.e. compatibility) interrupts
491 * regardless of x2apic status. Check just to be sure.
493 if (sts
& DMA_GSTS_CFIS
)
495 "Compatibility-format IRQs enabled despite intr remapping;\n"
496 "you are vulnerable to IRQ injection.\n");
498 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
501 static int intel_setup_irq_remapping(struct intel_iommu
*iommu
)
503 struct ir_table
*ir_table
;
504 struct fwnode_handle
*fn
;
505 unsigned long *bitmap
;
511 ir_table
= kzalloc(sizeof(struct ir_table
), GFP_KERNEL
);
515 pages
= alloc_pages_node(iommu
->node
, GFP_KERNEL
| __GFP_ZERO
,
516 INTR_REMAP_PAGE_ORDER
);
518 pr_err("IR%d: failed to allocate pages of order %d\n",
519 iommu
->seq_id
, INTR_REMAP_PAGE_ORDER
);
523 bitmap
= kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES
),
524 sizeof(long), GFP_ATOMIC
);
525 if (bitmap
== NULL
) {
526 pr_err("IR%d: failed to allocate bitmap\n", iommu
->seq_id
);
530 fn
= irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu
->seq_id
);
532 goto out_free_bitmap
;
535 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
536 0, INTR_REMAP_TABLE_ENTRIES
,
537 fn
, &intel_ir_domain_ops
,
539 irq_domain_free_fwnode(fn
);
540 if (!iommu
->ir_domain
) {
541 pr_err("IR%d: failed to allocate irqdomain\n", iommu
->seq_id
);
542 goto out_free_bitmap
;
544 iommu
->ir_msi_domain
=
545 arch_create_remap_msi_irq_domain(iommu
->ir_domain
,
549 ir_table
->base
= page_address(pages
);
550 ir_table
->bitmap
= bitmap
;
551 iommu
->ir_table
= ir_table
;
554 * If the queued invalidation is already initialized,
555 * shouldn't disable it.
559 * Clear previous faults.
561 dmar_fault(-1, iommu
);
562 dmar_disable_qi(iommu
);
564 if (dmar_enable_qi(iommu
)) {
565 pr_err("Failed to enable queued invalidation\n");
566 goto out_free_bitmap
;
570 init_ir_status(iommu
);
572 if (ir_pre_enabled(iommu
)) {
573 if (!is_kdump_kernel()) {
574 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
576 clear_ir_pre_enabled(iommu
);
577 iommu_disable_irq_remapping(iommu
);
578 } else if (iommu_load_old_irte(iommu
))
579 pr_err("Failed to copy IR table for %s from previous kernel\n",
582 pr_info("Copied IR table for %s from previous kernel\n",
586 iommu_set_irq_remapping(iommu
, eim_mode
);
593 __free_pages(pages
, INTR_REMAP_PAGE_ORDER
);
597 iommu
->ir_table
= NULL
;
602 static void intel_teardown_irq_remapping(struct intel_iommu
*iommu
)
604 if (iommu
&& iommu
->ir_table
) {
605 if (iommu
->ir_msi_domain
) {
606 irq_domain_remove(iommu
->ir_msi_domain
);
607 iommu
->ir_msi_domain
= NULL
;
609 if (iommu
->ir_domain
) {
610 irq_domain_remove(iommu
->ir_domain
);
611 iommu
->ir_domain
= NULL
;
613 free_pages((unsigned long)iommu
->ir_table
->base
,
614 INTR_REMAP_PAGE_ORDER
);
615 kfree(iommu
->ir_table
->bitmap
);
616 kfree(iommu
->ir_table
);
617 iommu
->ir_table
= NULL
;
622 * Disable Interrupt Remapping.
624 static void iommu_disable_irq_remapping(struct intel_iommu
*iommu
)
629 if (!ecap_ir_support(iommu
->ecap
))
633 * global invalidation of interrupt entry cache before disabling
634 * interrupt-remapping.
636 qi_global_iec(iommu
);
638 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
640 sts
= readl(iommu
->reg
+ DMAR_GSTS_REG
);
641 if (!(sts
& DMA_GSTS_IRES
))
644 iommu
->gcmd
&= ~DMA_GCMD_IRE
;
645 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
647 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
648 readl
, !(sts
& DMA_GSTS_IRES
), sts
);
651 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
654 static int __init
dmar_x2apic_optout(void)
656 struct acpi_table_dmar
*dmar
;
657 dmar
= (struct acpi_table_dmar
*)dmar_tbl
;
658 if (!dmar
|| no_x2apic_optout
)
660 return dmar
->flags
& DMAR_X2APIC_OPT_OUT
;
663 static void __init
intel_cleanup_irq_remapping(void)
665 struct dmar_drhd_unit
*drhd
;
666 struct intel_iommu
*iommu
;
668 for_each_iommu(iommu
, drhd
) {
669 if (ecap_ir_support(iommu
->ecap
)) {
670 iommu_disable_irq_remapping(iommu
);
671 intel_teardown_irq_remapping(iommu
);
675 if (x2apic_supported())
676 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
679 static int __init
intel_prepare_irq_remapping(void)
681 struct dmar_drhd_unit
*drhd
;
682 struct intel_iommu
*iommu
;
685 if (irq_remap_broken
) {
686 pr_warn("This system BIOS has enabled interrupt remapping\n"
687 "on a chipset that contains an erratum making that\n"
688 "feature unstable. To maintain system stability\n"
689 "interrupt remapping is being disabled. Please\n"
690 "contact your BIOS vendor for an update\n");
691 add_taint(TAINT_FIRMWARE_WORKAROUND
, LOCKDEP_STILL_OK
);
695 if (dmar_table_init() < 0)
698 if (!dmar_ir_support())
701 if (parse_ioapics_under_ir()) {
702 pr_info("Not enabling interrupt remapping\n");
706 /* First make sure all IOMMUs support IRQ remapping */
707 for_each_iommu(iommu
, drhd
)
708 if (!ecap_ir_support(iommu
->ecap
))
711 /* Detect remapping mode: lapic or x2apic */
712 if (x2apic_supported()) {
713 eim
= !dmar_x2apic_optout();
715 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
716 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
720 for_each_iommu(iommu
, drhd
) {
721 if (eim
&& !ecap_eim_support(iommu
->ecap
)) {
722 pr_info("%s does not support EIM\n", iommu
->name
);
729 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
731 /* Do the initializations early */
732 for_each_iommu(iommu
, drhd
) {
733 if (intel_setup_irq_remapping(iommu
)) {
734 pr_err("Failed to setup irq remapping for %s\n",
743 intel_cleanup_irq_remapping();
748 * Set Posted-Interrupts capability.
750 static inline void set_irq_posting_cap(void)
752 struct dmar_drhd_unit
*drhd
;
753 struct intel_iommu
*iommu
;
755 if (!disable_irq_post
) {
757 * If IRTE is in posted format, the 'pda' field goes across the
758 * 64-bit boundary, we need use cmpxchg16b to atomically update
759 * it. We only expose posted-interrupt when X86_FEATURE_CX16
760 * is supported. Actually, hardware platforms supporting PI
761 * should have X86_FEATURE_CX16 support, this has been confirmed
762 * with Intel hardware guys.
764 if (boot_cpu_has(X86_FEATURE_CX16
))
765 intel_irq_remap_ops
.capability
|= 1 << IRQ_POSTING_CAP
;
767 for_each_iommu(iommu
, drhd
)
768 if (!cap_pi_support(iommu
->cap
)) {
769 intel_irq_remap_ops
.capability
&=
770 ~(1 << IRQ_POSTING_CAP
);
776 static int __init
intel_enable_irq_remapping(void)
778 struct dmar_drhd_unit
*drhd
;
779 struct intel_iommu
*iommu
;
783 * Setup Interrupt-remapping for all the DRHD's now.
785 for_each_iommu(iommu
, drhd
) {
786 if (!ir_pre_enabled(iommu
))
787 iommu_enable_irq_remapping(iommu
);
794 irq_remapping_enabled
= 1;
796 set_irq_posting_cap();
798 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode
? "x2apic" : "xapic");
800 return eim_mode
? IRQ_REMAP_X2APIC_MODE
: IRQ_REMAP_XAPIC_MODE
;
803 intel_cleanup_irq_remapping();
807 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope
*scope
,
808 struct intel_iommu
*iommu
,
809 struct acpi_dmar_hardware_unit
*drhd
)
811 struct acpi_dmar_pci_path
*path
;
813 int count
, free
= -1;
816 path
= (struct acpi_dmar_pci_path
*)(scope
+ 1);
817 count
= (scope
->length
- sizeof(struct acpi_dmar_device_scope
))
818 / sizeof(struct acpi_dmar_pci_path
);
820 while (--count
> 0) {
822 * Access PCI directly due to the PCI
823 * subsystem isn't initialized yet.
825 bus
= read_pci_config_byte(bus
, path
->device
, path
->function
,
830 for (count
= 0; count
< MAX_HPET_TBS
; count
++) {
831 if (ir_hpet
[count
].iommu
== iommu
&&
832 ir_hpet
[count
].id
== scope
->enumeration_id
)
834 else if (ir_hpet
[count
].iommu
== NULL
&& free
== -1)
838 pr_warn("Exceeded Max HPET blocks\n");
842 ir_hpet
[free
].iommu
= iommu
;
843 ir_hpet
[free
].id
= scope
->enumeration_id
;
844 ir_hpet
[free
].bus
= bus
;
845 ir_hpet
[free
].devfn
= PCI_DEVFN(path
->device
, path
->function
);
846 pr_info("HPET id %d under DRHD base 0x%Lx\n",
847 scope
->enumeration_id
, drhd
->address
);
852 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope
*scope
,
853 struct intel_iommu
*iommu
,
854 struct acpi_dmar_hardware_unit
*drhd
)
856 struct acpi_dmar_pci_path
*path
;
858 int count
, free
= -1;
861 path
= (struct acpi_dmar_pci_path
*)(scope
+ 1);
862 count
= (scope
->length
- sizeof(struct acpi_dmar_device_scope
))
863 / sizeof(struct acpi_dmar_pci_path
);
865 while (--count
> 0) {
867 * Access PCI directly due to the PCI
868 * subsystem isn't initialized yet.
870 bus
= read_pci_config_byte(bus
, path
->device
, path
->function
,
875 for (count
= 0; count
< MAX_IO_APICS
; count
++) {
876 if (ir_ioapic
[count
].iommu
== iommu
&&
877 ir_ioapic
[count
].id
== scope
->enumeration_id
)
879 else if (ir_ioapic
[count
].iommu
== NULL
&& free
== -1)
883 pr_warn("Exceeded Max IO APICS\n");
887 ir_ioapic
[free
].bus
= bus
;
888 ir_ioapic
[free
].devfn
= PCI_DEVFN(path
->device
, path
->function
);
889 ir_ioapic
[free
].iommu
= iommu
;
890 ir_ioapic
[free
].id
= scope
->enumeration_id
;
891 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
892 scope
->enumeration_id
, drhd
->address
, iommu
->seq_id
);
897 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header
*header
,
898 struct intel_iommu
*iommu
)
901 struct acpi_dmar_hardware_unit
*drhd
;
902 struct acpi_dmar_device_scope
*scope
;
905 drhd
= (struct acpi_dmar_hardware_unit
*)header
;
906 start
= (void *)(drhd
+ 1);
907 end
= ((void *)drhd
) + header
->length
;
909 while (start
< end
&& ret
== 0) {
911 if (scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_IOAPIC
)
912 ret
= ir_parse_one_ioapic_scope(scope
, iommu
, drhd
);
913 else if (scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_HPET
)
914 ret
= ir_parse_one_hpet_scope(scope
, iommu
, drhd
);
915 start
+= scope
->length
;
921 static void ir_remove_ioapic_hpet_scope(struct intel_iommu
*iommu
)
925 for (i
= 0; i
< MAX_HPET_TBS
; i
++)
926 if (ir_hpet
[i
].iommu
== iommu
)
927 ir_hpet
[i
].iommu
= NULL
;
929 for (i
= 0; i
< MAX_IO_APICS
; i
++)
930 if (ir_ioapic
[i
].iommu
== iommu
)
931 ir_ioapic
[i
].iommu
= NULL
;
935 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
938 static int __init
parse_ioapics_under_ir(void)
940 struct dmar_drhd_unit
*drhd
;
941 struct intel_iommu
*iommu
;
942 bool ir_supported
= false;
945 for_each_iommu(iommu
, drhd
) {
948 if (!ecap_ir_support(iommu
->ecap
))
951 ret
= ir_parse_ioapic_hpet_scope(drhd
->hdr
, iommu
);
961 for (ioapic_idx
= 0; ioapic_idx
< nr_ioapics
; ioapic_idx
++) {
962 int ioapic_id
= mpc_ioapic_id(ioapic_idx
);
963 if (!map_ioapic_to_ir(ioapic_id
)) {
964 pr_err(FW_BUG
"ioapic %d has no mapping iommu, "
965 "interrupt remapping will be disabled\n",
974 static int __init
ir_dev_scope_init(void)
978 if (!irq_remapping_enabled
)
981 down_write(&dmar_global_lock
);
982 ret
= dmar_dev_scope_init();
983 up_write(&dmar_global_lock
);
987 rootfs_initcall(ir_dev_scope_init
);
989 static void disable_irq_remapping(void)
991 struct dmar_drhd_unit
*drhd
;
992 struct intel_iommu
*iommu
= NULL
;
995 * Disable Interrupt-remapping for all the DRHD's now.
997 for_each_iommu(iommu
, drhd
) {
998 if (!ecap_ir_support(iommu
->ecap
))
1001 iommu_disable_irq_remapping(iommu
);
1005 * Clear Posted-Interrupts capability.
1007 if (!disable_irq_post
)
1008 intel_irq_remap_ops
.capability
&= ~(1 << IRQ_POSTING_CAP
);
1011 static int reenable_irq_remapping(int eim
)
1013 struct dmar_drhd_unit
*drhd
;
1015 struct intel_iommu
*iommu
= NULL
;
1017 for_each_iommu(iommu
, drhd
)
1019 dmar_reenable_qi(iommu
);
1022 * Setup Interrupt-remapping for all the DRHD's now.
1024 for_each_iommu(iommu
, drhd
) {
1025 if (!ecap_ir_support(iommu
->ecap
))
1028 /* Set up interrupt remapping for iommu.*/
1029 iommu_set_irq_remapping(iommu
, eim
);
1030 iommu_enable_irq_remapping(iommu
);
1037 set_irq_posting_cap();
1043 * handle error condition gracefully here!
1048 static void prepare_irte(struct irte
*irte
, int vector
, unsigned int dest
)
1050 memset(irte
, 0, sizeof(*irte
));
1053 irte
->dst_mode
= apic
->irq_dest_mode
;
1055 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1056 * actual level or edge trigger will be setup in the IO-APIC
1057 * RTE. This will help simplify level triggered irq migration.
1058 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1059 * irq migration in the presence of interrupt-remapping.
1061 irte
->trigger_mode
= 0;
1062 irte
->dlvry_mode
= apic
->irq_delivery_mode
;
1063 irte
->vector
= vector
;
1064 irte
->dest_id
= IRTE_DEST(dest
);
1065 irte
->redir_hint
= 1;
1068 static struct irq_domain
*intel_get_ir_irq_domain(struct irq_alloc_info
*info
)
1070 struct intel_iommu
*iommu
= NULL
;
1075 switch (info
->type
) {
1076 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
1077 iommu
= map_ioapic_to_ir(info
->ioapic_id
);
1079 case X86_IRQ_ALLOC_TYPE_HPET
:
1080 iommu
= map_hpet_to_ir(info
->hpet_id
);
1082 case X86_IRQ_ALLOC_TYPE_MSI
:
1083 case X86_IRQ_ALLOC_TYPE_MSIX
:
1084 iommu
= map_dev_to_ir(info
->msi_dev
);
1091 return iommu
? iommu
->ir_domain
: NULL
;
1094 static struct irq_domain
*intel_get_irq_domain(struct irq_alloc_info
*info
)
1096 struct intel_iommu
*iommu
;
1101 switch (info
->type
) {
1102 case X86_IRQ_ALLOC_TYPE_MSI
:
1103 case X86_IRQ_ALLOC_TYPE_MSIX
:
1104 iommu
= map_dev_to_ir(info
->msi_dev
);
1106 return iommu
->ir_msi_domain
;
1115 struct irq_remap_ops intel_irq_remap_ops
= {
1116 .prepare
= intel_prepare_irq_remapping
,
1117 .enable
= intel_enable_irq_remapping
,
1118 .disable
= disable_irq_remapping
,
1119 .reenable
= reenable_irq_remapping
,
1120 .enable_faulting
= enable_drhd_fault_handling
,
1121 .get_ir_irq_domain
= intel_get_ir_irq_domain
,
1122 .get_irq_domain
= intel_get_irq_domain
,
1125 static void intel_ir_reconfigure_irte(struct irq_data
*irqd
, bool force
)
1127 struct intel_ir_data
*ir_data
= irqd
->chip_data
;
1128 struct irte
*irte
= &ir_data
->irte_entry
;
1129 struct irq_cfg
*cfg
= irqd_cfg(irqd
);
1132 * Atomically updates the IRTE with the new destination, vector
1133 * and flushes the interrupt entry cache.
1135 irte
->vector
= cfg
->vector
;
1136 irte
->dest_id
= IRTE_DEST(cfg
->dest_apicid
);
1138 /* Update the hardware only if the interrupt is in remapped mode. */
1139 if (force
|| ir_data
->irq_2_iommu
.mode
== IRQ_REMAPPING
)
1140 modify_irte(&ir_data
->irq_2_iommu
, irte
);
1144 * Migrate the IO-APIC irq in the presence of intr-remapping.
1146 * For both level and edge triggered, irq migration is a simple atomic
1147 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1149 * For level triggered, we eliminate the io-apic RTE modification (with the
1150 * updated vector information), by using a virtual vector (io-apic pin number).
1151 * Real vector that is used for interrupting cpu will be coming from
1152 * the interrupt-remapping table entry.
1154 * As the migration is a simple atomic update of IRTE, the same mechanism
1155 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1158 intel_ir_set_affinity(struct irq_data
*data
, const struct cpumask
*mask
,
1161 struct irq_data
*parent
= data
->parent_data
;
1162 struct irq_cfg
*cfg
= irqd_cfg(data
);
1165 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
1166 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
1169 intel_ir_reconfigure_irte(data
, false);
1171 * After this point, all the interrupts will start arriving
1172 * at the new destination. So, time to cleanup the previous
1173 * vector allocation.
1175 send_cleanup_vector(cfg
);
1177 return IRQ_SET_MASK_OK_DONE
;
1180 static void intel_ir_compose_msi_msg(struct irq_data
*irq_data
,
1181 struct msi_msg
*msg
)
1183 struct intel_ir_data
*ir_data
= irq_data
->chip_data
;
1185 *msg
= ir_data
->msi_entry
;
1188 static int intel_ir_set_vcpu_affinity(struct irq_data
*data
, void *info
)
1190 struct intel_ir_data
*ir_data
= data
->chip_data
;
1191 struct vcpu_data
*vcpu_pi_info
= info
;
1193 /* stop posting interrupts, back to remapping mode */
1194 if (!vcpu_pi_info
) {
1195 modify_irte(&ir_data
->irq_2_iommu
, &ir_data
->irte_entry
);
1197 struct irte irte_pi
;
1200 * We are not caching the posted interrupt entry. We
1201 * copy the data from the remapped entry and modify
1202 * the fields which are relevant for posted mode. The
1203 * cached remapped entry is used for switching back to
1206 memset(&irte_pi
, 0, sizeof(irte_pi
));
1207 dmar_copy_shared_irte(&irte_pi
, &ir_data
->irte_entry
);
1209 /* Update the posted mode fields */
1211 irte_pi
.p_urgent
= 0;
1212 irte_pi
.p_vector
= vcpu_pi_info
->vector
;
1213 irte_pi
.pda_l
= (vcpu_pi_info
->pi_desc_addr
>>
1214 (32 - PDA_LOW_BIT
)) & ~(-1UL << PDA_LOW_BIT
);
1215 irte_pi
.pda_h
= (vcpu_pi_info
->pi_desc_addr
>> 32) &
1216 ~(-1UL << PDA_HIGH_BIT
);
1218 modify_irte(&ir_data
->irq_2_iommu
, &irte_pi
);
1224 static struct irq_chip intel_ir_chip
= {
1226 .irq_ack
= apic_ack_irq
,
1227 .irq_set_affinity
= intel_ir_set_affinity
,
1228 .irq_compose_msi_msg
= intel_ir_compose_msi_msg
,
1229 .irq_set_vcpu_affinity
= intel_ir_set_vcpu_affinity
,
1232 static void intel_irq_remapping_prepare_irte(struct intel_ir_data
*data
,
1233 struct irq_cfg
*irq_cfg
,
1234 struct irq_alloc_info
*info
,
1235 int index
, int sub_handle
)
1237 struct IR_IO_APIC_route_entry
*entry
;
1238 struct irte
*irte
= &data
->irte_entry
;
1239 struct msi_msg
*msg
= &data
->msi_entry
;
1241 prepare_irte(irte
, irq_cfg
->vector
, irq_cfg
->dest_apicid
);
1242 switch (info
->type
) {
1243 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
1244 /* Set source-id of interrupt request */
1245 set_ioapic_sid(irte
, info
->ioapic_id
);
1246 apic_printk(APIC_VERBOSE
, KERN_DEBUG
"IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1247 info
->ioapic_id
, irte
->present
, irte
->fpd
,
1248 irte
->dst_mode
, irte
->redir_hint
,
1249 irte
->trigger_mode
, irte
->dlvry_mode
,
1250 irte
->avail
, irte
->vector
, irte
->dest_id
,
1251 irte
->sid
, irte
->sq
, irte
->svt
);
1253 entry
= (struct IR_IO_APIC_route_entry
*)info
->ioapic_entry
;
1254 info
->ioapic_entry
= NULL
;
1255 memset(entry
, 0, sizeof(*entry
));
1256 entry
->index2
= (index
>> 15) & 0x1;
1259 entry
->index
= (index
& 0x7fff);
1261 * IO-APIC RTE will be configured with virtual vector.
1262 * irq handler will do the explicit EOI to the io-apic.
1264 entry
->vector
= info
->ioapic_pin
;
1265 entry
->mask
= 0; /* enable IRQ */
1266 entry
->trigger
= info
->ioapic_trigger
;
1267 entry
->polarity
= info
->ioapic_polarity
;
1268 if (info
->ioapic_trigger
)
1269 entry
->mask
= 1; /* Mask level triggered irqs. */
1272 case X86_IRQ_ALLOC_TYPE_HPET
:
1273 case X86_IRQ_ALLOC_TYPE_MSI
:
1274 case X86_IRQ_ALLOC_TYPE_MSIX
:
1275 if (info
->type
== X86_IRQ_ALLOC_TYPE_HPET
)
1276 set_hpet_sid(irte
, info
->hpet_id
);
1278 set_msi_sid(irte
, info
->msi_dev
);
1280 msg
->address_hi
= MSI_ADDR_BASE_HI
;
1281 msg
->data
= sub_handle
;
1282 msg
->address_lo
= MSI_ADDR_BASE_LO
| MSI_ADDR_IR_EXT_INT
|
1284 MSI_ADDR_IR_INDEX1(index
) |
1285 MSI_ADDR_IR_INDEX2(index
);
1294 static void intel_free_irq_resources(struct irq_domain
*domain
,
1295 unsigned int virq
, unsigned int nr_irqs
)
1297 struct irq_data
*irq_data
;
1298 struct intel_ir_data
*data
;
1299 struct irq_2_iommu
*irq_iommu
;
1300 unsigned long flags
;
1302 for (i
= 0; i
< nr_irqs
; i
++) {
1303 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
1304 if (irq_data
&& irq_data
->chip_data
) {
1305 data
= irq_data
->chip_data
;
1306 irq_iommu
= &data
->irq_2_iommu
;
1307 raw_spin_lock_irqsave(&irq_2_ir_lock
, flags
);
1308 clear_entries(irq_iommu
);
1309 raw_spin_unlock_irqrestore(&irq_2_ir_lock
, flags
);
1310 irq_domain_reset_irq_data(irq_data
);
1316 static int intel_irq_remapping_alloc(struct irq_domain
*domain
,
1317 unsigned int virq
, unsigned int nr_irqs
,
1320 struct intel_iommu
*iommu
= domain
->host_data
;
1321 struct irq_alloc_info
*info
= arg
;
1322 struct intel_ir_data
*data
, *ird
;
1323 struct irq_data
*irq_data
;
1324 struct irq_cfg
*irq_cfg
;
1327 if (!info
|| !iommu
)
1329 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
1330 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
1334 * With IRQ remapping enabled, don't need contiguous CPU vectors
1335 * to support multiple MSI interrupts.
1337 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
1338 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
1340 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
1345 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
1347 goto out_free_parent
;
1349 down_read(&dmar_global_lock
);
1350 index
= alloc_irte(iommu
, virq
, &data
->irq_2_iommu
, nr_irqs
);
1351 up_read(&dmar_global_lock
);
1353 pr_warn("Failed to allocate IRTE\n");
1355 goto out_free_parent
;
1358 for (i
= 0; i
< nr_irqs
; i
++) {
1359 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
1360 irq_cfg
= irqd_cfg(irq_data
);
1361 if (!irq_data
|| !irq_cfg
) {
1367 ird
= kzalloc(sizeof(*ird
), GFP_KERNEL
);
1370 /* Initialize the common data */
1371 ird
->irq_2_iommu
= data
->irq_2_iommu
;
1372 ird
->irq_2_iommu
.sub_handle
= i
;
1377 irq_data
->hwirq
= (index
<< 16) + i
;
1378 irq_data
->chip_data
= ird
;
1379 irq_data
->chip
= &intel_ir_chip
;
1380 intel_irq_remapping_prepare_irte(ird
, irq_cfg
, info
, index
, i
);
1381 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
1386 intel_free_irq_resources(domain
, virq
, i
);
1388 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
1392 static void intel_irq_remapping_free(struct irq_domain
*domain
,
1393 unsigned int virq
, unsigned int nr_irqs
)
1395 intel_free_irq_resources(domain
, virq
, nr_irqs
);
1396 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
1399 static int intel_irq_remapping_activate(struct irq_domain
*domain
,
1400 struct irq_data
*irq_data
, bool reserve
)
1402 intel_ir_reconfigure_irte(irq_data
, true);
1406 static void intel_irq_remapping_deactivate(struct irq_domain
*domain
,
1407 struct irq_data
*irq_data
)
1409 struct intel_ir_data
*data
= irq_data
->chip_data
;
1412 memset(&entry
, 0, sizeof(entry
));
1413 modify_irte(&data
->irq_2_iommu
, &entry
);
1416 static const struct irq_domain_ops intel_ir_domain_ops
= {
1417 .alloc
= intel_irq_remapping_alloc
,
1418 .free
= intel_irq_remapping_free
,
1419 .activate
= intel_irq_remapping_activate
,
1420 .deactivate
= intel_irq_remapping_deactivate
,
1424 * Support of Interrupt Remapping Unit Hotplug
1426 static int dmar_ir_add(struct dmar_drhd_unit
*dmaru
, struct intel_iommu
*iommu
)
1429 int eim
= x2apic_enabled();
1431 if (eim
&& !ecap_eim_support(iommu
->ecap
)) {
1432 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1433 iommu
->reg_phys
, iommu
->ecap
);
1437 if (ir_parse_ioapic_hpet_scope(dmaru
->hdr
, iommu
)) {
1438 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1443 /* TODO: check all IOAPICs are covered by IOMMU */
1445 /* Setup Interrupt-remapping now. */
1446 ret
= intel_setup_irq_remapping(iommu
);
1448 pr_err("Failed to setup irq remapping for %s\n",
1450 intel_teardown_irq_remapping(iommu
);
1451 ir_remove_ioapic_hpet_scope(iommu
);
1453 iommu_enable_irq_remapping(iommu
);
1459 int dmar_ir_hotplug(struct dmar_drhd_unit
*dmaru
, bool insert
)
1462 struct intel_iommu
*iommu
= dmaru
->iommu
;
1464 if (!irq_remapping_enabled
)
1468 if (!ecap_ir_support(iommu
->ecap
))
1470 if (irq_remapping_cap(IRQ_POSTING_CAP
) &&
1471 !cap_pi_support(iommu
->cap
))
1475 if (!iommu
->ir_table
)
1476 ret
= dmar_ir_add(dmaru
, iommu
);
1478 if (iommu
->ir_table
) {
1479 if (!bitmap_empty(iommu
->ir_table
->bitmap
,
1480 INTR_REMAP_TABLE_ENTRIES
)) {
1483 iommu_disable_irq_remapping(iommu
);
1484 intel_teardown_irq_remapping(iommu
);
1485 ir_remove_ioapic_hpet_scope(iommu
);