4 * Copyright (C) 2014 Renesas Electronics Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
11 #include <linux/bitmap.h>
12 #include <linux/delay.h>
13 #include <linux/dma-iommu.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
19 #include <linux/iommu.h>
20 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/of_iommu.h>
24 #include <linux/of_platform.h>
25 #include <linux/platform_device.h>
26 #include <linux/sizes.h>
27 #include <linux/slab.h>
28 #include <linux/sys_soc.h>
30 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
31 #include <asm/dma-iommu.h>
32 #include <asm/pgalloc.h>
34 #define arm_iommu_create_mapping(...) NULL
35 #define arm_iommu_attach_device(...) -ENODEV
36 #define arm_iommu_release_mapping(...) do {} while (0)
37 #define arm_iommu_detach_device(...) do {} while (0)
40 #include "io-pgtable.h"
42 #define IPMMU_CTX_MAX 8
44 struct ipmmu_features
{
45 bool use_ns_alias_offset
;
46 bool has_cache_leaf_nodes
;
47 unsigned int number_of_contexts
;
49 bool twobit_imttbcr_sl0
;
50 bool reserved_context
;
53 struct ipmmu_vmsa_device
{
56 struct iommu_device iommu
;
57 struct ipmmu_vmsa_device
*root
;
58 const struct ipmmu_features
*features
;
59 unsigned int num_utlbs
;
61 spinlock_t lock
; /* Protects ctx and domains[] */
62 DECLARE_BITMAP(ctx
, IPMMU_CTX_MAX
);
63 struct ipmmu_vmsa_domain
*domains
[IPMMU_CTX_MAX
];
65 struct iommu_group
*group
;
66 struct dma_iommu_mapping
*mapping
;
69 struct ipmmu_vmsa_domain
{
70 struct ipmmu_vmsa_device
*mmu
;
71 struct iommu_domain io_domain
;
73 struct io_pgtable_cfg cfg
;
74 struct io_pgtable_ops
*iop
;
76 unsigned int context_id
;
77 struct mutex mutex
; /* Protects mappings */
80 static struct ipmmu_vmsa_domain
*to_vmsa_domain(struct iommu_domain
*dom
)
82 return container_of(dom
, struct ipmmu_vmsa_domain
, io_domain
);
85 static struct ipmmu_vmsa_device
*to_ipmmu(struct device
*dev
)
87 return dev
->iommu_fwspec
? dev
->iommu_fwspec
->iommu_priv
: NULL
;
90 #define TLB_LOOP_TIMEOUT 100 /* 100us */
92 /* -----------------------------------------------------------------------------
93 * Registers Definition
96 #define IM_NS_ALIAS_OFFSET 0x800
98 #define IM_CTX_SIZE 0x40
101 #define IMCTR_TRE (1 << 17)
102 #define IMCTR_AFE (1 << 16)
103 #define IMCTR_RTSEL_MASK (3 << 4)
104 #define IMCTR_RTSEL_SHIFT 4
105 #define IMCTR_TREN (1 << 3)
106 #define IMCTR_INTEN (1 << 2)
107 #define IMCTR_FLUSH (1 << 1)
108 #define IMCTR_MMUEN (1 << 0)
110 #define IMCAAR 0x0004
112 #define IMTTBCR 0x0008
113 #define IMTTBCR_EAE (1 << 31)
114 #define IMTTBCR_PMB (1 << 30)
115 #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
116 #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
117 #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
118 #define IMTTBCR_SH1_MASK (3 << 28)
119 #define IMTTBCR_ORGN1_NC (0 << 26)
120 #define IMTTBCR_ORGN1_WB_WA (1 << 26)
121 #define IMTTBCR_ORGN1_WT (2 << 26)
122 #define IMTTBCR_ORGN1_WB (3 << 26)
123 #define IMTTBCR_ORGN1_MASK (3 << 26)
124 #define IMTTBCR_IRGN1_NC (0 << 24)
125 #define IMTTBCR_IRGN1_WB_WA (1 << 24)
126 #define IMTTBCR_IRGN1_WT (2 << 24)
127 #define IMTTBCR_IRGN1_WB (3 << 24)
128 #define IMTTBCR_IRGN1_MASK (3 << 24)
129 #define IMTTBCR_TSZ1_MASK (7 << 16)
130 #define IMTTBCR_TSZ1_SHIFT 16
131 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
132 #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
133 #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
134 #define IMTTBCR_SH0_MASK (3 << 12)
135 #define IMTTBCR_ORGN0_NC (0 << 10)
136 #define IMTTBCR_ORGN0_WB_WA (1 << 10)
137 #define IMTTBCR_ORGN0_WT (2 << 10)
138 #define IMTTBCR_ORGN0_WB (3 << 10)
139 #define IMTTBCR_ORGN0_MASK (3 << 10)
140 #define IMTTBCR_IRGN0_NC (0 << 8)
141 #define IMTTBCR_IRGN0_WB_WA (1 << 8)
142 #define IMTTBCR_IRGN0_WT (2 << 8)
143 #define IMTTBCR_IRGN0_WB (3 << 8)
144 #define IMTTBCR_IRGN0_MASK (3 << 8)
145 #define IMTTBCR_SL0_LVL_2 (0 << 4)
146 #define IMTTBCR_SL0_LVL_1 (1 << 4)
147 #define IMTTBCR_TSZ0_MASK (7 << 0)
148 #define IMTTBCR_TSZ0_SHIFT O
150 #define IMTTBCR_SL0_TWOBIT_LVL_3 (0 << 6)
151 #define IMTTBCR_SL0_TWOBIT_LVL_2 (1 << 6)
152 #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6)
154 #define IMBUSCR 0x000c
155 #define IMBUSCR_DVM (1 << 2)
156 #define IMBUSCR_BUSSEL_SYS (0 << 0)
157 #define IMBUSCR_BUSSEL_CCI (1 << 0)
158 #define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
159 #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
160 #define IMBUSCR_BUSSEL_MASK (3 << 0)
162 #define IMTTLBR0 0x0010
163 #define IMTTUBR0 0x0014
164 #define IMTTLBR1 0x0018
165 #define IMTTUBR1 0x001c
168 #define IMSTR_ERRLVL_MASK (3 << 12)
169 #define IMSTR_ERRLVL_SHIFT 12
170 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
171 #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
172 #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
173 #define IMSTR_ERRCODE_MASK (7 << 8)
174 #define IMSTR_MHIT (1 << 4)
175 #define IMSTR_ABORT (1 << 2)
176 #define IMSTR_PF (1 << 1)
177 #define IMSTR_TF (1 << 0)
179 #define IMMAIR0 0x0028
180 #define IMMAIR1 0x002c
181 #define IMMAIR_ATTR_MASK 0xff
182 #define IMMAIR_ATTR_DEVICE 0x04
183 #define IMMAIR_ATTR_NC 0x44
184 #define IMMAIR_ATTR_WBRWA 0xff
185 #define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
186 #define IMMAIR_ATTR_IDX_NC 0
187 #define IMMAIR_ATTR_IDX_WBRWA 1
188 #define IMMAIR_ATTR_IDX_DEV 2
192 #define IMPCTR 0x0200
193 #define IMPSTR 0x0208
194 #define IMPEAR 0x020c
195 #define IMPMBA(n) (0x0280 + ((n) * 4))
196 #define IMPMBD(n) (0x02c0 + ((n) * 4))
198 #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
199 #define IMUCTR0(n) (0x0300 + ((n) * 16))
200 #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16))
201 #define IMUCTR_FIXADDEN (1 << 31)
202 #define IMUCTR_FIXADD_MASK (0xff << 16)
203 #define IMUCTR_FIXADD_SHIFT 16
204 #define IMUCTR_TTSEL_MMU(n) ((n) << 4)
205 #define IMUCTR_TTSEL_PMB (8 << 4)
206 #define IMUCTR_TTSEL_MASK (15 << 4)
207 #define IMUCTR_FLUSH (1 << 1)
208 #define IMUCTR_MMUEN (1 << 0)
210 #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
211 #define IMUASID0(n) (0x0308 + ((n) * 16))
212 #define IMUASID32(n) (0x0608 + (((n) - 32) * 16))
213 #define IMUASID_ASID8_MASK (0xff << 8)
214 #define IMUASID_ASID8_SHIFT 8
215 #define IMUASID_ASID0_MASK (0xff << 0)
216 #define IMUASID_ASID0_SHIFT 0
218 /* -----------------------------------------------------------------------------
219 * Root device handling
222 static struct platform_driver ipmmu_driver
;
224 static bool ipmmu_is_root(struct ipmmu_vmsa_device
*mmu
)
226 return mmu
->root
== mmu
;
229 static int __ipmmu_check_device(struct device
*dev
, void *data
)
231 struct ipmmu_vmsa_device
*mmu
= dev_get_drvdata(dev
);
232 struct ipmmu_vmsa_device
**rootp
= data
;
234 if (ipmmu_is_root(mmu
))
240 static struct ipmmu_vmsa_device
*ipmmu_find_root(void)
242 struct ipmmu_vmsa_device
*root
= NULL
;
244 return driver_for_each_device(&ipmmu_driver
.driver
, NULL
, &root
,
245 __ipmmu_check_device
) == 0 ? root
: NULL
;
248 /* -----------------------------------------------------------------------------
252 static u32
ipmmu_read(struct ipmmu_vmsa_device
*mmu
, unsigned int offset
)
254 return ioread32(mmu
->base
+ offset
);
257 static void ipmmu_write(struct ipmmu_vmsa_device
*mmu
, unsigned int offset
,
260 iowrite32(data
, mmu
->base
+ offset
);
263 static u32
ipmmu_ctx_read_root(struct ipmmu_vmsa_domain
*domain
,
266 return ipmmu_read(domain
->mmu
->root
,
267 domain
->context_id
* IM_CTX_SIZE
+ reg
);
270 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain
*domain
,
271 unsigned int reg
, u32 data
)
273 ipmmu_write(domain
->mmu
->root
,
274 domain
->context_id
* IM_CTX_SIZE
+ reg
, data
);
277 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain
*domain
,
278 unsigned int reg
, u32 data
)
280 if (domain
->mmu
!= domain
->mmu
->root
)
281 ipmmu_write(domain
->mmu
,
282 domain
->context_id
* IM_CTX_SIZE
+ reg
, data
);
284 ipmmu_write(domain
->mmu
->root
,
285 domain
->context_id
* IM_CTX_SIZE
+ reg
, data
);
288 /* -----------------------------------------------------------------------------
289 * TLB and microTLB Management
292 /* Wait for any pending TLB invalidations to complete */
293 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain
*domain
)
295 unsigned int count
= 0;
297 while (ipmmu_ctx_read_root(domain
, IMCTR
) & IMCTR_FLUSH
) {
299 if (++count
== TLB_LOOP_TIMEOUT
) {
300 dev_err_ratelimited(domain
->mmu
->dev
,
301 "TLB sync timed out -- MMU may be deadlocked\n");
308 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain
*domain
)
312 reg
= ipmmu_ctx_read_root(domain
, IMCTR
);
314 ipmmu_ctx_write_all(domain
, IMCTR
, reg
);
316 ipmmu_tlb_sync(domain
);
320 * Enable MMU translation for the microTLB.
322 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain
*domain
,
325 struct ipmmu_vmsa_device
*mmu
= domain
->mmu
;
328 * TODO: Reference-count the microTLB as several bus masters can be
329 * connected to the same microTLB.
332 /* TODO: What should we set the ASID to ? */
333 ipmmu_write(mmu
, IMUASID(utlb
), 0);
334 /* TODO: Do we need to flush the microTLB ? */
335 ipmmu_write(mmu
, IMUCTR(utlb
),
336 IMUCTR_TTSEL_MMU(domain
->context_id
) | IMUCTR_FLUSH
|
341 * Disable MMU translation for the microTLB.
343 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain
*domain
,
346 struct ipmmu_vmsa_device
*mmu
= domain
->mmu
;
348 ipmmu_write(mmu
, IMUCTR(utlb
), 0);
351 static void ipmmu_tlb_flush_all(void *cookie
)
353 struct ipmmu_vmsa_domain
*domain
= cookie
;
355 ipmmu_tlb_invalidate(domain
);
358 static void ipmmu_tlb_add_flush(unsigned long iova
, size_t size
,
359 size_t granule
, bool leaf
, void *cookie
)
361 /* The hardware doesn't support selective TLB flush. */
364 static const struct iommu_gather_ops ipmmu_gather_ops
= {
365 .tlb_flush_all
= ipmmu_tlb_flush_all
,
366 .tlb_add_flush
= ipmmu_tlb_add_flush
,
367 .tlb_sync
= ipmmu_tlb_flush_all
,
370 /* -----------------------------------------------------------------------------
371 * Domain/Context Management
374 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device
*mmu
,
375 struct ipmmu_vmsa_domain
*domain
)
380 spin_lock_irqsave(&mmu
->lock
, flags
);
382 ret
= find_first_zero_bit(mmu
->ctx
, mmu
->num_ctx
);
383 if (ret
!= mmu
->num_ctx
) {
384 mmu
->domains
[ret
] = domain
;
385 set_bit(ret
, mmu
->ctx
);
389 spin_unlock_irqrestore(&mmu
->lock
, flags
);
394 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device
*mmu
,
395 unsigned int context_id
)
399 spin_lock_irqsave(&mmu
->lock
, flags
);
401 clear_bit(context_id
, mmu
->ctx
);
402 mmu
->domains
[context_id
] = NULL
;
404 spin_unlock_irqrestore(&mmu
->lock
, flags
);
407 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain
*domain
)
414 * Allocate the page table operations.
416 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
417 * access, Long-descriptor format" that the NStable bit being set in a
418 * table descriptor will result in the NStable and NS bits of all child
419 * entries being ignored and considered as being set. The IPMMU seems
420 * not to comply with this, as it generates a secure access page fault
421 * if any of the NStable and NS bits isn't set when running in
424 domain
->cfg
.quirks
= IO_PGTABLE_QUIRK_ARM_NS
;
425 domain
->cfg
.pgsize_bitmap
= SZ_1G
| SZ_2M
| SZ_4K
;
426 domain
->cfg
.ias
= 32;
427 domain
->cfg
.oas
= 40;
428 domain
->cfg
.tlb
= &ipmmu_gather_ops
;
429 domain
->io_domain
.geometry
.aperture_end
= DMA_BIT_MASK(32);
430 domain
->io_domain
.geometry
.force_aperture
= true;
432 * TODO: Add support for coherent walk through CCI with DVM and remove
433 * cache handling. For now, delegate it to the io-pgtable code.
435 domain
->cfg
.iommu_dev
= domain
->mmu
->root
->dev
;
438 * Find an unused context.
440 ret
= ipmmu_domain_allocate_context(domain
->mmu
->root
, domain
);
444 domain
->context_id
= ret
;
446 domain
->iop
= alloc_io_pgtable_ops(ARM_32_LPAE_S1
, &domain
->cfg
,
449 ipmmu_domain_free_context(domain
->mmu
->root
,
455 ttbr
= domain
->cfg
.arm_lpae_s1_cfg
.ttbr
[0];
456 ipmmu_ctx_write_root(domain
, IMTTLBR0
, ttbr
);
457 ipmmu_ctx_write_root(domain
, IMTTUBR0
, ttbr
>> 32);
461 * We use long descriptors with inner-shareable WBWA tables and allocate
462 * the whole 32-bit VA space to TTBR0.
464 if (domain
->mmu
->features
->twobit_imttbcr_sl0
)
465 tmp
= IMTTBCR_SL0_TWOBIT_LVL_1
;
467 tmp
= IMTTBCR_SL0_LVL_1
;
469 ipmmu_ctx_write_root(domain
, IMTTBCR
, IMTTBCR_EAE
|
470 IMTTBCR_SH0_INNER_SHAREABLE
| IMTTBCR_ORGN0_WB_WA
|
471 IMTTBCR_IRGN0_WB_WA
| tmp
);
474 ipmmu_ctx_write_root(domain
, IMMAIR0
,
475 domain
->cfg
.arm_lpae_s1_cfg
.mair
[0]);
478 if (domain
->mmu
->features
->setup_imbuscr
)
479 ipmmu_ctx_write_root(domain
, IMBUSCR
,
480 ipmmu_ctx_read_root(domain
, IMBUSCR
) &
481 ~(IMBUSCR_DVM
| IMBUSCR_BUSSEL_MASK
));
485 * Clear all interrupt flags.
487 ipmmu_ctx_write_root(domain
, IMSTR
, ipmmu_ctx_read_root(domain
, IMSTR
));
491 * Enable the MMU and interrupt generation. The long-descriptor
492 * translation table format doesn't use TEX remapping. Don't enable AF
493 * software management as we have no use for it. Flush the TLB as
494 * required when modifying the context registers.
496 ipmmu_ctx_write_all(domain
, IMCTR
,
497 IMCTR_INTEN
| IMCTR_FLUSH
| IMCTR_MMUEN
);
502 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain
*domain
)
508 * Disable the context. Flush the TLB as required when modifying the
511 * TODO: Is TLB flush really needed ?
513 ipmmu_ctx_write_all(domain
, IMCTR
, IMCTR_FLUSH
);
514 ipmmu_tlb_sync(domain
);
515 ipmmu_domain_free_context(domain
->mmu
->root
, domain
->context_id
);
518 /* -----------------------------------------------------------------------------
522 static irqreturn_t
ipmmu_domain_irq(struct ipmmu_vmsa_domain
*domain
)
524 const u32 err_mask
= IMSTR_MHIT
| IMSTR_ABORT
| IMSTR_PF
| IMSTR_TF
;
525 struct ipmmu_vmsa_device
*mmu
= domain
->mmu
;
529 status
= ipmmu_ctx_read_root(domain
, IMSTR
);
530 if (!(status
& err_mask
))
533 iova
= ipmmu_ctx_read_root(domain
, IMEAR
);
536 * Clear the error status flags. Unlike traditional interrupt flag
537 * registers that must be cleared by writing 1, this status register
538 * seems to require 0. The error address register must be read before,
539 * otherwise its value will be 0.
541 ipmmu_ctx_write_root(domain
, IMSTR
, 0);
543 /* Log fatal errors. */
544 if (status
& IMSTR_MHIT
)
545 dev_err_ratelimited(mmu
->dev
, "Multiple TLB hits @0x%08x\n",
547 if (status
& IMSTR_ABORT
)
548 dev_err_ratelimited(mmu
->dev
, "Page Table Walk Abort @0x%08x\n",
551 if (!(status
& (IMSTR_PF
| IMSTR_TF
)))
555 * Try to handle page faults and translation faults.
557 * TODO: We need to look up the faulty device based on the I/O VA. Use
558 * the IOMMU device for now.
560 if (!report_iommu_fault(&domain
->io_domain
, mmu
->dev
, iova
, 0))
563 dev_err_ratelimited(mmu
->dev
,
564 "Unhandled fault: status 0x%08x iova 0x%08x\n",
570 static irqreturn_t
ipmmu_irq(int irq
, void *dev
)
572 struct ipmmu_vmsa_device
*mmu
= dev
;
573 irqreturn_t status
= IRQ_NONE
;
577 spin_lock_irqsave(&mmu
->lock
, flags
);
580 * Check interrupts for all active contexts.
582 for (i
= 0; i
< mmu
->num_ctx
; i
++) {
583 if (!mmu
->domains
[i
])
585 if (ipmmu_domain_irq(mmu
->domains
[i
]) == IRQ_HANDLED
)
586 status
= IRQ_HANDLED
;
589 spin_unlock_irqrestore(&mmu
->lock
, flags
);
594 /* -----------------------------------------------------------------------------
598 static struct iommu_domain
*__ipmmu_domain_alloc(unsigned type
)
600 struct ipmmu_vmsa_domain
*domain
;
602 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
606 mutex_init(&domain
->mutex
);
608 return &domain
->io_domain
;
611 static struct iommu_domain
*ipmmu_domain_alloc(unsigned type
)
613 struct iommu_domain
*io_domain
= NULL
;
616 case IOMMU_DOMAIN_UNMANAGED
:
617 io_domain
= __ipmmu_domain_alloc(type
);
620 case IOMMU_DOMAIN_DMA
:
621 io_domain
= __ipmmu_domain_alloc(type
);
622 if (io_domain
&& iommu_get_dma_cookie(io_domain
)) {
632 static void ipmmu_domain_free(struct iommu_domain
*io_domain
)
634 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
637 * Free the domain resources. We assume that all devices have already
640 iommu_put_dma_cookie(io_domain
);
641 ipmmu_domain_destroy_context(domain
);
642 free_io_pgtable_ops(domain
->iop
);
646 static int ipmmu_attach_device(struct iommu_domain
*io_domain
,
649 struct iommu_fwspec
*fwspec
= dev
->iommu_fwspec
;
650 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
651 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
656 dev_err(dev
, "Cannot attach to IPMMU\n");
660 mutex_lock(&domain
->mutex
);
663 /* The domain hasn't been used yet, initialize it. */
665 ret
= ipmmu_domain_init_context(domain
);
667 dev_err(dev
, "Unable to initialize IPMMU context\n");
670 dev_info(dev
, "Using IPMMU context %u\n",
673 } else if (domain
->mmu
!= mmu
) {
675 * Something is wrong, we can't attach two devices using
676 * different IOMMUs to the same domain.
678 dev_err(dev
, "Can't attach IPMMU %s to domain on IPMMU %s\n",
679 dev_name(mmu
->dev
), dev_name(domain
->mmu
->dev
));
682 dev_info(dev
, "Reusing IPMMU context %u\n", domain
->context_id
);
684 mutex_unlock(&domain
->mutex
);
689 for (i
= 0; i
< fwspec
->num_ids
; ++i
)
690 ipmmu_utlb_enable(domain
, fwspec
->ids
[i
]);
695 static void ipmmu_detach_device(struct iommu_domain
*io_domain
,
698 struct iommu_fwspec
*fwspec
= dev
->iommu_fwspec
;
699 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
702 for (i
= 0; i
< fwspec
->num_ids
; ++i
)
703 ipmmu_utlb_disable(domain
, fwspec
->ids
[i
]);
706 * TODO: Optimize by disabling the context when no device is attached.
710 static int ipmmu_map(struct iommu_domain
*io_domain
, unsigned long iova
,
711 phys_addr_t paddr
, size_t size
, int prot
)
713 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
718 return domain
->iop
->map(domain
->iop
, iova
, paddr
, size
, prot
);
721 static size_t ipmmu_unmap(struct iommu_domain
*io_domain
, unsigned long iova
,
724 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
726 return domain
->iop
->unmap(domain
->iop
, iova
, size
);
729 static void ipmmu_iotlb_sync(struct iommu_domain
*io_domain
)
731 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
734 ipmmu_tlb_flush_all(domain
);
737 static phys_addr_t
ipmmu_iova_to_phys(struct iommu_domain
*io_domain
,
740 struct ipmmu_vmsa_domain
*domain
= to_vmsa_domain(io_domain
);
742 /* TODO: Is locking needed ? */
744 return domain
->iop
->iova_to_phys(domain
->iop
, iova
);
747 static int ipmmu_init_platform_device(struct device
*dev
,
748 struct of_phandle_args
*args
)
750 struct platform_device
*ipmmu_pdev
;
752 ipmmu_pdev
= of_find_device_by_node(args
->np
);
756 dev
->iommu_fwspec
->iommu_priv
= platform_get_drvdata(ipmmu_pdev
);
760 static bool ipmmu_slave_whitelist(struct device
*dev
)
762 /* By default, do not allow use of IPMMU */
766 static const struct soc_device_attribute soc_rcar_gen3
[] = {
767 { .soc_id
= "r8a7795", },
768 { .soc_id
= "r8a7796", },
769 { .soc_id
= "r8a77965", },
770 { .soc_id
= "r8a77970", },
771 { .soc_id
= "r8a77995", },
775 static int ipmmu_of_xlate(struct device
*dev
,
776 struct of_phandle_args
*spec
)
778 /* For R-Car Gen3 use a white list to opt-in slave devices */
779 if (soc_device_match(soc_rcar_gen3
) && !ipmmu_slave_whitelist(dev
))
782 iommu_fwspec_add_ids(dev
, spec
->args
, 1);
784 /* Initialize once - xlate() will call multiple times */
788 return ipmmu_init_platform_device(dev
, spec
);
791 static int ipmmu_init_arm_mapping(struct device
*dev
)
793 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
794 struct iommu_group
*group
;
797 /* Create a device group and add the device to it. */
798 group
= iommu_group_alloc();
800 dev_err(dev
, "Failed to allocate IOMMU group\n");
801 return PTR_ERR(group
);
804 ret
= iommu_group_add_device(group
, dev
);
805 iommu_group_put(group
);
808 dev_err(dev
, "Failed to add device to IPMMU group\n");
813 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
814 * VAs. This will allocate a corresponding IOMMU domain.
817 * - Create one mapping per context (TLB).
818 * - Make the mapping size configurable ? We currently use a 2GB mapping
819 * at a 1GB offset to ensure that NULL VAs will fault.
822 struct dma_iommu_mapping
*mapping
;
824 mapping
= arm_iommu_create_mapping(&platform_bus_type
,
826 if (IS_ERR(mapping
)) {
827 dev_err(mmu
->dev
, "failed to create ARM IOMMU mapping\n");
828 ret
= PTR_ERR(mapping
);
832 mmu
->mapping
= mapping
;
835 /* Attach the ARM VA mapping to the device. */
836 ret
= arm_iommu_attach_device(dev
, mmu
->mapping
);
838 dev_err(dev
, "Failed to attach device to VA mapping\n");
845 iommu_group_remove_device(dev
);
847 arm_iommu_release_mapping(mmu
->mapping
);
852 static int ipmmu_add_device(struct device
*dev
)
854 struct iommu_group
*group
;
857 * Only let through devices that have been verified in xlate()
862 if (IS_ENABLED(CONFIG_ARM
) && !IS_ENABLED(CONFIG_IOMMU_DMA
))
863 return ipmmu_init_arm_mapping(dev
);
865 group
= iommu_group_get_for_dev(dev
);
867 return PTR_ERR(group
);
869 iommu_group_put(group
);
873 static void ipmmu_remove_device(struct device
*dev
)
875 arm_iommu_detach_device(dev
);
876 iommu_group_remove_device(dev
);
879 static struct iommu_group
*ipmmu_find_group(struct device
*dev
)
881 struct ipmmu_vmsa_device
*mmu
= to_ipmmu(dev
);
882 struct iommu_group
*group
;
885 return iommu_group_ref_get(mmu
->group
);
887 group
= iommu_group_alloc();
894 static const struct iommu_ops ipmmu_ops
= {
895 .domain_alloc
= ipmmu_domain_alloc
,
896 .domain_free
= ipmmu_domain_free
,
897 .attach_dev
= ipmmu_attach_device
,
898 .detach_dev
= ipmmu_detach_device
,
900 .unmap
= ipmmu_unmap
,
901 .flush_iotlb_all
= ipmmu_iotlb_sync
,
902 .iotlb_sync
= ipmmu_iotlb_sync
,
903 .iova_to_phys
= ipmmu_iova_to_phys
,
904 .add_device
= ipmmu_add_device
,
905 .remove_device
= ipmmu_remove_device
,
906 .device_group
= ipmmu_find_group
,
907 .pgsize_bitmap
= SZ_1G
| SZ_2M
| SZ_4K
,
908 .of_xlate
= ipmmu_of_xlate
,
911 /* -----------------------------------------------------------------------------
912 * Probe/remove and init
915 static void ipmmu_device_reset(struct ipmmu_vmsa_device
*mmu
)
919 /* Disable all contexts. */
920 for (i
= 0; i
< mmu
->num_ctx
; ++i
)
921 ipmmu_write(mmu
, i
* IM_CTX_SIZE
+ IMCTR
, 0);
924 static const struct ipmmu_features ipmmu_features_default
= {
925 .use_ns_alias_offset
= true,
926 .has_cache_leaf_nodes
= false,
927 .number_of_contexts
= 1, /* software only tested with one context */
928 .setup_imbuscr
= true,
929 .twobit_imttbcr_sl0
= false,
930 .reserved_context
= false,
933 static const struct ipmmu_features ipmmu_features_rcar_gen3
= {
934 .use_ns_alias_offset
= false,
935 .has_cache_leaf_nodes
= true,
936 .number_of_contexts
= 8,
937 .setup_imbuscr
= false,
938 .twobit_imttbcr_sl0
= true,
939 .reserved_context
= true,
942 static const struct of_device_id ipmmu_of_ids
[] = {
944 .compatible
= "renesas,ipmmu-vmsa",
945 .data
= &ipmmu_features_default
,
947 .compatible
= "renesas,ipmmu-r8a7795",
948 .data
= &ipmmu_features_rcar_gen3
,
950 .compatible
= "renesas,ipmmu-r8a7796",
951 .data
= &ipmmu_features_rcar_gen3
,
953 .compatible
= "renesas,ipmmu-r8a77965",
954 .data
= &ipmmu_features_rcar_gen3
,
956 .compatible
= "renesas,ipmmu-r8a77970",
957 .data
= &ipmmu_features_rcar_gen3
,
959 .compatible
= "renesas,ipmmu-r8a77995",
960 .data
= &ipmmu_features_rcar_gen3
,
966 MODULE_DEVICE_TABLE(of
, ipmmu_of_ids
);
968 static int ipmmu_probe(struct platform_device
*pdev
)
970 struct ipmmu_vmsa_device
*mmu
;
971 struct resource
*res
;
975 mmu
= devm_kzalloc(&pdev
->dev
, sizeof(*mmu
), GFP_KERNEL
);
977 dev_err(&pdev
->dev
, "cannot allocate device data\n");
981 mmu
->dev
= &pdev
->dev
;
983 spin_lock_init(&mmu
->lock
);
984 bitmap_zero(mmu
->ctx
, IPMMU_CTX_MAX
);
985 mmu
->features
= of_device_get_match_data(&pdev
->dev
);
986 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(40));
988 /* Map I/O memory and request IRQ. */
989 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
990 mmu
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
991 if (IS_ERR(mmu
->base
))
992 return PTR_ERR(mmu
->base
);
995 * The IPMMU has two register banks, for secure and non-secure modes.
996 * The bank mapped at the beginning of the IPMMU address space
997 * corresponds to the running mode of the CPU. When running in secure
998 * mode the non-secure register bank is also available at an offset.
1000 * Secure mode operation isn't clearly documented and is thus currently
1001 * not implemented in the driver. Furthermore, preliminary tests of
1002 * non-secure operation with the main register bank were not successful.
1003 * Offset the registers base unconditionally to point to the non-secure
1004 * alias space for now.
1006 if (mmu
->features
->use_ns_alias_offset
)
1007 mmu
->base
+= IM_NS_ALIAS_OFFSET
;
1009 mmu
->num_ctx
= min_t(unsigned int, IPMMU_CTX_MAX
,
1010 mmu
->features
->number_of_contexts
);
1012 irq
= platform_get_irq(pdev
, 0);
1015 * Determine if this IPMMU instance is a root device by checking for
1016 * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1018 if (!mmu
->features
->has_cache_leaf_nodes
||
1019 !of_find_property(pdev
->dev
.of_node
, "renesas,ipmmu-main", NULL
))
1022 mmu
->root
= ipmmu_find_root();
1025 * Wait until the root device has been registered for sure.
1028 return -EPROBE_DEFER
;
1030 /* Root devices have mandatory IRQs */
1031 if (ipmmu_is_root(mmu
)) {
1033 dev_err(&pdev
->dev
, "no IRQ found\n");
1037 ret
= devm_request_irq(&pdev
->dev
, irq
, ipmmu_irq
, 0,
1038 dev_name(&pdev
->dev
), mmu
);
1040 dev_err(&pdev
->dev
, "failed to request IRQ %d\n", irq
);
1044 ipmmu_device_reset(mmu
);
1046 if (mmu
->features
->reserved_context
) {
1047 dev_info(&pdev
->dev
, "IPMMU context 0 is reserved\n");
1048 set_bit(0, mmu
->ctx
);
1053 * Register the IPMMU to the IOMMU subsystem in the following cases:
1054 * - R-Car Gen2 IPMMU (all devices registered)
1055 * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1057 if (!mmu
->features
->has_cache_leaf_nodes
|| !ipmmu_is_root(mmu
)) {
1058 ret
= iommu_device_sysfs_add(&mmu
->iommu
, &pdev
->dev
, NULL
,
1059 dev_name(&pdev
->dev
));
1063 iommu_device_set_ops(&mmu
->iommu
, &ipmmu_ops
);
1064 iommu_device_set_fwnode(&mmu
->iommu
,
1065 &pdev
->dev
.of_node
->fwnode
);
1067 ret
= iommu_device_register(&mmu
->iommu
);
1071 #if defined(CONFIG_IOMMU_DMA)
1072 if (!iommu_present(&platform_bus_type
))
1073 bus_set_iommu(&platform_bus_type
, &ipmmu_ops
);
1078 * We can't create the ARM mapping here as it requires the bus to have
1079 * an IOMMU, which only happens when bus_set_iommu() is called in
1080 * ipmmu_init() after the probe function returns.
1083 platform_set_drvdata(pdev
, mmu
);
1088 static int ipmmu_remove(struct platform_device
*pdev
)
1090 struct ipmmu_vmsa_device
*mmu
= platform_get_drvdata(pdev
);
1092 iommu_device_sysfs_remove(&mmu
->iommu
);
1093 iommu_device_unregister(&mmu
->iommu
);
1095 arm_iommu_release_mapping(mmu
->mapping
);
1097 ipmmu_device_reset(mmu
);
1102 static struct platform_driver ipmmu_driver
= {
1104 .name
= "ipmmu-vmsa",
1105 .of_match_table
= of_match_ptr(ipmmu_of_ids
),
1107 .probe
= ipmmu_probe
,
1108 .remove
= ipmmu_remove
,
1111 static int __init
ipmmu_init(void)
1113 struct device_node
*np
;
1114 static bool setup_done
;
1120 np
= of_find_matching_node(NULL
, ipmmu_of_ids
);
1126 ret
= platform_driver_register(&ipmmu_driver
);
1130 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1131 if (!iommu_present(&platform_bus_type
))
1132 bus_set_iommu(&platform_bus_type
, &ipmmu_ops
);
1139 static void __exit
ipmmu_exit(void)
1141 return platform_driver_unregister(&ipmmu_driver
);
1144 subsys_initcall(ipmmu_init
);
1145 module_exit(ipmmu_exit
);
1147 MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
1148 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1149 MODULE_LICENSE("GPL v2");