1 // SPDX-License-Identifier: GPL-2.0
3 * Code for working with individual keys, and sorted sets of keys with in a
6 * Copyright 2012 Google, Inc.
9 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
14 #include <linux/console.h>
15 #include <linux/sched/clock.h>
16 #include <linux/random.h>
17 #include <linux/prefetch.h>
19 #ifdef CONFIG_BCACHE_DEBUG
21 void bch_dump_bset(struct btree_keys
*b
, struct bset
*i
, unsigned int set
)
23 struct bkey
*k
, *next
;
25 for (k
= i
->start
; k
< bset_bkey_last(i
); k
= next
) {
28 pr_err("block %u key %u/%u: ", set
,
29 (unsigned int) ((u64
*) k
- i
->d
), i
->keys
);
32 b
->ops
->key_dump(b
, k
);
34 pr_err("%llu:%llu\n", KEY_INODE(k
), KEY_OFFSET(k
));
36 if (next
< bset_bkey_last(i
) &&
37 bkey_cmp(k
, b
->ops
->is_extents
?
38 &START_KEY(next
) : next
) > 0)
39 pr_err("Key skipped backwards\n");
43 void bch_dump_bucket(struct btree_keys
*b
)
48 for (i
= 0; i
<= b
->nsets
; i
++)
49 bch_dump_bset(b
, b
->set
[i
].data
,
50 bset_sector_offset(b
, b
->set
[i
].data
));
54 int __bch_count_data(struct btree_keys
*b
)
57 struct btree_iter iter
;
60 if (b
->ops
->is_extents
)
61 for_each_key(b
, k
, &iter
)
66 void __bch_check_keys(struct btree_keys
*b
, const char *fmt
, ...)
69 struct bkey
*k
, *p
= NULL
;
70 struct btree_iter iter
;
73 for_each_key(b
, k
, &iter
) {
74 if (b
->ops
->is_extents
) {
75 err
= "Keys out of order";
76 if (p
&& bkey_cmp(&START_KEY(p
), &START_KEY(k
)) > 0)
79 if (bch_ptr_invalid(b
, k
))
82 err
= "Overlapping keys";
83 if (p
&& bkey_cmp(p
, &START_KEY(k
)) > 0)
86 if (bch_ptr_bad(b
, k
))
89 err
= "Duplicate keys";
90 if (p
&& !bkey_cmp(p
, k
))
96 err
= "Key larger than btree node key";
97 if (p
&& bkey_cmp(p
, &b
->key
) > 0)
108 panic("bch_check_keys error: %s:\n", err
);
111 static void bch_btree_iter_next_check(struct btree_iter
*iter
)
113 struct bkey
*k
= iter
->data
->k
, *next
= bkey_next(k
);
115 if (next
< iter
->data
->end
&&
116 bkey_cmp(k
, iter
->b
->ops
->is_extents
?
117 &START_KEY(next
) : next
) > 0) {
118 bch_dump_bucket(iter
->b
);
119 panic("Key skipped backwards\n");
125 static inline void bch_btree_iter_next_check(struct btree_iter
*iter
) {}
131 int __bch_keylist_realloc(struct keylist
*l
, unsigned int u64s
)
133 size_t oldsize
= bch_keylist_nkeys(l
);
134 size_t newsize
= oldsize
+ u64s
;
135 uint64_t *old_keys
= l
->keys_p
== l
->inline_keys
? NULL
: l
->keys_p
;
138 newsize
= roundup_pow_of_two(newsize
);
140 if (newsize
<= KEYLIST_INLINE
||
141 roundup_pow_of_two(oldsize
) == newsize
)
144 new_keys
= krealloc(old_keys
, sizeof(uint64_t) * newsize
, GFP_NOIO
);
150 memcpy(new_keys
, l
->inline_keys
, sizeof(uint64_t) * oldsize
);
152 l
->keys_p
= new_keys
;
153 l
->top_p
= new_keys
+ oldsize
;
158 struct bkey
*bch_keylist_pop(struct keylist
*l
)
160 struct bkey
*k
= l
->keys
;
165 while (bkey_next(k
) != l
->top
)
171 void bch_keylist_pop_front(struct keylist
*l
)
173 l
->top_p
-= bkey_u64s(l
->keys
);
177 bch_keylist_bytes(l
));
180 /* Key/pointer manipulation */
182 void bch_bkey_copy_single_ptr(struct bkey
*dest
, const struct bkey
*src
,
185 BUG_ON(i
> KEY_PTRS(src
));
187 /* Only copy the header, key, and one pointer. */
188 memcpy(dest
, src
, 2 * sizeof(uint64_t));
189 dest
->ptr
[0] = src
->ptr
[i
];
190 SET_KEY_PTRS(dest
, 1);
191 /* We didn't copy the checksum so clear that bit. */
192 SET_KEY_CSUM(dest
, 0);
195 bool __bch_cut_front(const struct bkey
*where
, struct bkey
*k
)
197 unsigned int i
, len
= 0;
199 if (bkey_cmp(where
, &START_KEY(k
)) <= 0)
202 if (bkey_cmp(where
, k
) < 0)
203 len
= KEY_OFFSET(k
) - KEY_OFFSET(where
);
205 bkey_copy_key(k
, where
);
207 for (i
= 0; i
< KEY_PTRS(k
); i
++)
208 SET_PTR_OFFSET(k
, i
, PTR_OFFSET(k
, i
) + KEY_SIZE(k
) - len
);
210 BUG_ON(len
> KEY_SIZE(k
));
211 SET_KEY_SIZE(k
, len
);
215 bool __bch_cut_back(const struct bkey
*where
, struct bkey
*k
)
217 unsigned int len
= 0;
219 if (bkey_cmp(where
, k
) >= 0)
222 BUG_ON(KEY_INODE(where
) != KEY_INODE(k
));
224 if (bkey_cmp(where
, &START_KEY(k
)) > 0)
225 len
= KEY_OFFSET(where
) - KEY_START(k
);
227 bkey_copy_key(k
, where
);
229 BUG_ON(len
> KEY_SIZE(k
));
230 SET_KEY_SIZE(k
, len
);
234 /* Auxiliary search trees */
237 #define BKEY_MID_BITS 3
238 #define BKEY_EXPONENT_BITS 7
239 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
240 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
243 unsigned int exponent
:BKEY_EXPONENT_BITS
;
244 unsigned int m
:BKEY_MID_BITS
;
245 unsigned int mantissa
:BKEY_MANTISSA_BITS
;
249 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
250 * it used to be 64, but I realized the lookup code would touch slightly less
251 * memory if it was 128.
253 * It definites the number of bytes (in struct bset) per struct bkey_float in
254 * the auxiliar search tree - when we're done searching the bset_float tree we
255 * have this many bytes left that we do a linear search over.
257 * Since (after level 5) every level of the bset_tree is on a new cacheline,
258 * we're touching one fewer cacheline in the bset tree in exchange for one more
259 * cacheline in the linear search - but the linear search might stop before it
260 * gets to the second cacheline.
263 #define BSET_CACHELINE 128
265 /* Space required for the btree node keys */
266 static inline size_t btree_keys_bytes(struct btree_keys
*b
)
268 return PAGE_SIZE
<< b
->page_order
;
271 static inline size_t btree_keys_cachelines(struct btree_keys
*b
)
273 return btree_keys_bytes(b
) / BSET_CACHELINE
;
276 /* Space required for the auxiliary search trees */
277 static inline size_t bset_tree_bytes(struct btree_keys
*b
)
279 return btree_keys_cachelines(b
) * sizeof(struct bkey_float
);
282 /* Space required for the prev pointers */
283 static inline size_t bset_prev_bytes(struct btree_keys
*b
)
285 return btree_keys_cachelines(b
) * sizeof(uint8_t);
288 /* Memory allocation */
290 void bch_btree_keys_free(struct btree_keys
*b
)
292 struct bset_tree
*t
= b
->set
;
294 if (bset_prev_bytes(b
) < PAGE_SIZE
)
297 free_pages((unsigned long) t
->prev
,
298 get_order(bset_prev_bytes(b
)));
300 if (bset_tree_bytes(b
) < PAGE_SIZE
)
303 free_pages((unsigned long) t
->tree
,
304 get_order(bset_tree_bytes(b
)));
306 free_pages((unsigned long) t
->data
, b
->page_order
);
312 EXPORT_SYMBOL(bch_btree_keys_free
);
314 int bch_btree_keys_alloc(struct btree_keys
*b
,
315 unsigned int page_order
,
318 struct bset_tree
*t
= b
->set
;
322 b
->page_order
= page_order
;
324 t
->data
= (void *) __get_free_pages(gfp
, b
->page_order
);
328 t
->tree
= bset_tree_bytes(b
) < PAGE_SIZE
329 ? kmalloc(bset_tree_bytes(b
), gfp
)
330 : (void *) __get_free_pages(gfp
, get_order(bset_tree_bytes(b
)));
334 t
->prev
= bset_prev_bytes(b
) < PAGE_SIZE
335 ? kmalloc(bset_prev_bytes(b
), gfp
)
336 : (void *) __get_free_pages(gfp
, get_order(bset_prev_bytes(b
)));
342 bch_btree_keys_free(b
);
345 EXPORT_SYMBOL(bch_btree_keys_alloc
);
347 void bch_btree_keys_init(struct btree_keys
*b
, const struct btree_keys_ops
*ops
,
348 bool *expensive_debug_checks
)
353 b
->expensive_debug_checks
= expensive_debug_checks
;
355 b
->last_set_unwritten
= 0;
357 /* XXX: shouldn't be needed */
358 for (i
= 0; i
< MAX_BSETS
; i
++)
361 * Second loop starts at 1 because b->keys[0]->data is the memory we
364 for (i
= 1; i
< MAX_BSETS
; i
++)
365 b
->set
[i
].data
= NULL
;
367 EXPORT_SYMBOL(bch_btree_keys_init
);
369 /* Binary tree stuff for auxiliary search trees */
372 * return array index next to j when does in-order traverse
373 * of a binary tree which is stored in a linear array
375 static unsigned int inorder_next(unsigned int j
, unsigned int size
)
377 if (j
* 2 + 1 < size
) {
389 * return array index previous to j when does in-order traverse
390 * of a binary tree which is stored in a linear array
392 static unsigned int inorder_prev(unsigned int j
, unsigned int size
)
397 while (j
* 2 + 1 < size
)
406 * I have no idea why this code works... and I'm the one who wrote it
408 * However, I do know what it does:
409 * Given a binary tree constructed in an array (i.e. how you normally implement
410 * a heap), it converts a node in the tree - referenced by array index - to the
411 * index it would have if you did an inorder traversal.
413 * Also tested for every j, size up to size somewhere around 6 million.
415 * The binary tree starts at array index 1, not 0
416 * extra is a function of size:
417 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
419 static unsigned int __to_inorder(unsigned int j
,
423 unsigned int b
= fls(j
);
424 unsigned int shift
= fls(size
- 1) - b
;
432 j
-= (j
- extra
) >> 1;
438 * Return the cacheline index in bset_tree->data, where j is index
439 * from a linear array which stores the auxiliar binary tree
441 static unsigned int to_inorder(unsigned int j
, struct bset_tree
*t
)
443 return __to_inorder(j
, t
->size
, t
->extra
);
446 static unsigned int __inorder_to_tree(unsigned int j
,
458 j
|= roundup_pow_of_two(size
) >> shift
;
464 * Return an index from a linear array which stores the auxiliar binary
465 * tree, j is the cacheline index of t->data.
467 static unsigned int inorder_to_tree(unsigned int j
, struct bset_tree
*t
)
469 return __inorder_to_tree(j
, t
->size
, t
->extra
);
473 void inorder_test(void)
475 unsigned long done
= 0;
476 ktime_t start
= ktime_get();
478 for (unsigned int size
= 2;
482 (size
- rounddown_pow_of_two(size
- 1)) << 1;
483 unsigned int i
= 1, j
= rounddown_pow_of_two(size
- 1);
486 pr_notice("loop %u, %llu per us\n", size
,
487 done
/ ktime_us_delta(ktime_get(), start
));
490 if (__inorder_to_tree(i
, size
, extra
) != j
)
491 panic("size %10u j %10u i %10u", size
, j
, i
);
493 if (__to_inorder(j
, size
, extra
) != i
)
494 panic("size %10u j %10u i %10u", size
, j
, i
);
496 if (j
== rounddown_pow_of_two(size
) - 1)
499 BUG_ON(inorder_prev(inorder_next(j
, size
), size
) != j
);
501 j
= inorder_next(j
, size
);
511 * Cacheline/offset <-> bkey pointer arithmetic:
513 * t->tree is a binary search tree in an array; each node corresponds to a key
514 * in one cacheline in t->set (BSET_CACHELINE bytes).
516 * This means we don't have to store the full index of the key that a node in
517 * the binary tree points to; to_inorder() gives us the cacheline, and then
518 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
520 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
523 * To construct the bfloat for an arbitrary key we need to know what the key
524 * immediately preceding it is: we have to check if the two keys differ in the
525 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
526 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
529 static struct bkey
*cacheline_to_bkey(struct bset_tree
*t
,
530 unsigned int cacheline
,
533 return ((void *) t
->data
) + cacheline
* BSET_CACHELINE
+ offset
* 8;
536 static unsigned int bkey_to_cacheline(struct bset_tree
*t
, struct bkey
*k
)
538 return ((void *) k
- (void *) t
->data
) / BSET_CACHELINE
;
541 static unsigned int bkey_to_cacheline_offset(struct bset_tree
*t
,
542 unsigned int cacheline
,
545 return (u64
*) k
- (u64
*) cacheline_to_bkey(t
, cacheline
, 0);
548 static struct bkey
*tree_to_bkey(struct bset_tree
*t
, unsigned int j
)
550 return cacheline_to_bkey(t
, to_inorder(j
, t
), t
->tree
[j
].m
);
553 static struct bkey
*tree_to_prev_bkey(struct bset_tree
*t
, unsigned int j
)
555 return (void *) (((uint64_t *) tree_to_bkey(t
, j
)) - t
->prev
[j
]);
559 * For the write set - the one we're currently inserting keys into - we don't
560 * maintain a full search tree, we just keep a simple lookup table in t->prev.
562 static struct bkey
*table_to_bkey(struct bset_tree
*t
, unsigned int cacheline
)
564 return cacheline_to_bkey(t
, cacheline
, t
->prev
[cacheline
]);
567 static inline uint64_t shrd128(uint64_t high
, uint64_t low
, uint8_t shift
)
570 low
|= (high
<< 1) << (63U - shift
);
575 * Calculate mantissa value for struct bkey_float.
576 * If most significant bit of f->exponent is not set, then
577 * - f->exponent >> 6 is 0
578 * - p[0] points to bkey->low
579 * - p[-1] borrows bits from KEY_INODE() of bkey->high
580 * if most isgnificant bits of f->exponent is set, then
581 * - f->exponent >> 6 is 1
582 * - p[0] points to bits from KEY_INODE() of bkey->high
583 * - p[-1] points to other bits from KEY_INODE() of
585 * See make_bfloat() to check when most significant bit of f->exponent
588 static inline unsigned int bfloat_mantissa(const struct bkey
*k
,
589 struct bkey_float
*f
)
591 const uint64_t *p
= &k
->low
- (f
->exponent
>> 6);
593 return shrd128(p
[-1], p
[0], f
->exponent
& 63) & BKEY_MANTISSA_MASK
;
596 static void make_bfloat(struct bset_tree
*t
, unsigned int j
)
598 struct bkey_float
*f
= &t
->tree
[j
];
599 struct bkey
*m
= tree_to_bkey(t
, j
);
600 struct bkey
*p
= tree_to_prev_bkey(t
, j
);
602 struct bkey
*l
= is_power_of_2(j
)
604 : tree_to_prev_bkey(t
, j
>> ffs(j
));
606 struct bkey
*r
= is_power_of_2(j
+ 1)
607 ? bset_bkey_idx(t
->data
, t
->data
->keys
- bkey_u64s(&t
->end
))
608 : tree_to_bkey(t
, j
>> (ffz(j
) + 1));
610 BUG_ON(m
< l
|| m
> r
);
611 BUG_ON(bkey_next(p
) != m
);
614 * If l and r have different KEY_INODE values (different backing
615 * device), f->exponent records how many least significant bits
616 * are different in KEY_INODE values and sets most significant
617 * bits to 1 (by +64).
618 * If l and r have same KEY_INODE value, f->exponent records
619 * how many different bits in least significant bits of bkey->low.
620 * See bfloat_mantiss() how the most significant bit of
621 * f->exponent is used to calculate bfloat mantissa value.
623 if (KEY_INODE(l
) != KEY_INODE(r
))
624 f
->exponent
= fls64(KEY_INODE(r
) ^ KEY_INODE(l
)) + 64;
626 f
->exponent
= fls64(r
->low
^ l
->low
);
628 f
->exponent
= max_t(int, f
->exponent
- BKEY_MANTISSA_BITS
, 0);
631 * Setting f->exponent = 127 flags this node as failed, and causes the
632 * lookup code to fall back to comparing against the original key.
635 if (bfloat_mantissa(m
, f
) != bfloat_mantissa(p
, f
))
636 f
->mantissa
= bfloat_mantissa(m
, f
) - 1;
641 static void bset_alloc_tree(struct btree_keys
*b
, struct bset_tree
*t
)
644 unsigned int j
= roundup(t
[-1].size
,
645 64 / sizeof(struct bkey_float
));
647 t
->tree
= t
[-1].tree
+ j
;
648 t
->prev
= t
[-1].prev
+ j
;
651 while (t
< b
->set
+ MAX_BSETS
)
655 static void bch_bset_build_unwritten_tree(struct btree_keys
*b
)
657 struct bset_tree
*t
= bset_tree_last(b
);
659 BUG_ON(b
->last_set_unwritten
);
660 b
->last_set_unwritten
= 1;
662 bset_alloc_tree(b
, t
);
664 if (t
->tree
!= b
->set
->tree
+ btree_keys_cachelines(b
)) {
665 t
->prev
[0] = bkey_to_cacheline_offset(t
, 0, t
->data
->start
);
670 void bch_bset_init_next(struct btree_keys
*b
, struct bset
*i
, uint64_t magic
)
672 if (i
!= b
->set
->data
) {
673 b
->set
[++b
->nsets
].data
= i
;
674 i
->seq
= b
->set
->data
->seq
;
676 get_random_bytes(&i
->seq
, sizeof(uint64_t));
682 bch_bset_build_unwritten_tree(b
);
684 EXPORT_SYMBOL(bch_bset_init_next
);
687 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
688 * accelerate bkey search in a btree node (pointed by bset_tree->data in
689 * memory). After search in the auxiliar tree by calling bset_search_tree(),
690 * a struct bset_search_iter is returned which indicates range [l, r] from
691 * bset_tree->data where the searching bkey might be inside. Then a followed
692 * linear comparison does the exact search, see __bch_bset_search() for how
693 * the auxiliary tree is used.
695 void bch_bset_build_written_tree(struct btree_keys
*b
)
697 struct bset_tree
*t
= bset_tree_last(b
);
698 struct bkey
*prev
= NULL
, *k
= t
->data
->start
;
699 unsigned int j
, cacheline
= 1;
701 b
->last_set_unwritten
= 0;
703 bset_alloc_tree(b
, t
);
705 t
->size
= min_t(unsigned int,
706 bkey_to_cacheline(t
, bset_bkey_last(t
->data
)),
707 b
->set
->tree
+ btree_keys_cachelines(b
) - t
->tree
);
714 t
->extra
= (t
->size
- rounddown_pow_of_two(t
->size
- 1)) << 1;
716 /* First we figure out where the first key in each cacheline is */
717 for (j
= inorder_next(0, t
->size
);
719 j
= inorder_next(j
, t
->size
)) {
720 while (bkey_to_cacheline(t
, k
) < cacheline
)
721 prev
= k
, k
= bkey_next(k
);
723 t
->prev
[j
] = bkey_u64s(prev
);
724 t
->tree
[j
].m
= bkey_to_cacheline_offset(t
, cacheline
++, k
);
727 while (bkey_next(k
) != bset_bkey_last(t
->data
))
732 /* Then we build the tree */
733 for (j
= inorder_next(0, t
->size
);
735 j
= inorder_next(j
, t
->size
))
738 EXPORT_SYMBOL(bch_bset_build_written_tree
);
742 void bch_bset_fix_invalidated_key(struct btree_keys
*b
, struct bkey
*k
)
745 unsigned int inorder
, j
= 1;
747 for (t
= b
->set
; t
<= bset_tree_last(b
); t
++)
748 if (k
< bset_bkey_last(t
->data
))
753 if (!t
->size
|| !bset_written(b
, t
))
756 inorder
= bkey_to_cacheline(t
, k
);
758 if (k
== t
->data
->start
)
761 if (bkey_next(k
) == bset_bkey_last(t
->data
)) {
766 j
= inorder_to_tree(inorder
, t
);
770 k
== tree_to_bkey(t
, j
))
774 } while (j
< t
->size
);
776 j
= inorder_to_tree(inorder
+ 1, t
);
780 k
== tree_to_prev_bkey(t
, j
))
784 } while (j
< t
->size
);
786 EXPORT_SYMBOL(bch_bset_fix_invalidated_key
);
788 static void bch_bset_fix_lookup_table(struct btree_keys
*b
,
792 unsigned int shift
= bkey_u64s(k
);
793 unsigned int j
= bkey_to_cacheline(t
, k
);
795 /* We're getting called from btree_split() or btree_gc, just bail out */
800 * k is the key we just inserted; we need to find the entry in the
801 * lookup table for the first key that is strictly greater than k:
802 * it's either k's cacheline or the next one
804 while (j
< t
->size
&&
805 table_to_bkey(t
, j
) <= k
)
809 * Adjust all the lookup table entries, and find a new key for any that
810 * have gotten too big
812 for (; j
< t
->size
; j
++) {
815 if (t
->prev
[j
] > 7) {
816 k
= table_to_bkey(t
, j
- 1);
818 while (k
< cacheline_to_bkey(t
, j
, 0))
821 t
->prev
[j
] = bkey_to_cacheline_offset(t
, j
, k
);
825 if (t
->size
== b
->set
->tree
+ btree_keys_cachelines(b
) - t
->tree
)
828 /* Possibly add a new entry to the end of the lookup table */
830 for (k
= table_to_bkey(t
, t
->size
- 1);
831 k
!= bset_bkey_last(t
->data
);
833 if (t
->size
== bkey_to_cacheline(t
, k
)) {
835 bkey_to_cacheline_offset(t
, t
->size
, k
);
841 * Tries to merge l and r: l should be lower than r
842 * Returns true if we were able to merge. If we did merge, l will be the merged
843 * key, r will be untouched.
845 bool bch_bkey_try_merge(struct btree_keys
*b
, struct bkey
*l
, struct bkey
*r
)
847 if (!b
->ops
->key_merge
)
851 * Generic header checks
852 * Assumes left and right are in order
853 * Left and right must be exactly aligned
855 if (!bch_bkey_equal_header(l
, r
) ||
856 bkey_cmp(l
, &START_KEY(r
)))
859 return b
->ops
->key_merge(b
, l
, r
);
861 EXPORT_SYMBOL(bch_bkey_try_merge
);
863 void bch_bset_insert(struct btree_keys
*b
, struct bkey
*where
,
866 struct bset_tree
*t
= bset_tree_last(b
);
868 BUG_ON(!b
->last_set_unwritten
);
869 BUG_ON(bset_byte_offset(b
, t
->data
) +
870 __set_bytes(t
->data
, t
->data
->keys
+ bkey_u64s(insert
)) >
871 PAGE_SIZE
<< b
->page_order
);
873 memmove((uint64_t *) where
+ bkey_u64s(insert
),
875 (void *) bset_bkey_last(t
->data
) - (void *) where
);
877 t
->data
->keys
+= bkey_u64s(insert
);
878 bkey_copy(where
, insert
);
879 bch_bset_fix_lookup_table(b
, t
, where
);
881 EXPORT_SYMBOL(bch_bset_insert
);
883 unsigned int bch_btree_insert_key(struct btree_keys
*b
, struct bkey
*k
,
884 struct bkey
*replace_key
)
886 unsigned int status
= BTREE_INSERT_STATUS_NO_INSERT
;
887 struct bset
*i
= bset_tree_last(b
)->data
;
888 struct bkey
*m
, *prev
= NULL
;
889 struct btree_iter iter
;
890 struct bkey preceding_key_on_stack
= ZERO_KEY
;
891 struct bkey
*preceding_key_p
= &preceding_key_on_stack
;
893 BUG_ON(b
->ops
->is_extents
&& !KEY_SIZE(k
));
896 * If k has preceding key, preceding_key_p will be set to address
897 * of k's preceding key; otherwise preceding_key_p will be set
898 * to NULL inside preceding_key().
900 if (b
->ops
->is_extents
)
901 preceding_key(&START_KEY(k
), &preceding_key_p
);
903 preceding_key(k
, &preceding_key_p
);
905 m
= bch_btree_iter_init(b
, &iter
, preceding_key_p
);
907 if (b
->ops
->insert_fixup(b
, k
, &iter
, replace_key
))
910 status
= BTREE_INSERT_STATUS_INSERT
;
912 while (m
!= bset_bkey_last(i
) &&
913 bkey_cmp(k
, b
->ops
->is_extents
? &START_KEY(m
) : m
) > 0)
914 prev
= m
, m
= bkey_next(m
);
916 /* prev is in the tree, if we merge we're done */
917 status
= BTREE_INSERT_STATUS_BACK_MERGE
;
919 bch_bkey_try_merge(b
, prev
, k
))
922 status
= BTREE_INSERT_STATUS_OVERWROTE
;
923 if (m
!= bset_bkey_last(i
) &&
924 KEY_PTRS(m
) == KEY_PTRS(k
) && !KEY_SIZE(m
))
927 status
= BTREE_INSERT_STATUS_FRONT_MERGE
;
928 if (m
!= bset_bkey_last(i
) &&
929 bch_bkey_try_merge(b
, k
, m
))
932 bch_bset_insert(b
, m
, k
);
933 copy
: bkey_copy(m
, k
);
937 EXPORT_SYMBOL(bch_btree_insert_key
);
941 struct bset_search_iter
{
945 static struct bset_search_iter
bset_search_write_set(struct bset_tree
*t
,
946 const struct bkey
*search
)
948 unsigned int li
= 0, ri
= t
->size
;
950 while (li
+ 1 != ri
) {
951 unsigned int m
= (li
+ ri
) >> 1;
953 if (bkey_cmp(table_to_bkey(t
, m
), search
) > 0)
959 return (struct bset_search_iter
) {
960 table_to_bkey(t
, li
),
961 ri
< t
->size
? table_to_bkey(t
, ri
) : bset_bkey_last(t
->data
)
965 static struct bset_search_iter
bset_search_tree(struct bset_tree
*t
,
966 const struct bkey
*search
)
969 struct bkey_float
*f
;
970 unsigned int inorder
, j
, n
= 1;
975 * If p < t->size, (int)(p - t->size) is a minus value and
976 * the most significant bit is set, right shifting 31 bits
977 * gets 1. If p >= t->size, the most significant bit is
978 * not set, right shifting 31 bits gets 0.
979 * So the following 2 lines equals to
982 * but a branch instruction is avoided.
984 unsigned int p
= n
<< 4;
986 p
&= ((int) (p
- t
->size
)) >> 31;
988 prefetch(&t
->tree
[p
]);
994 * Similar bit trick, use subtract operation to avoid a branch
997 * n = (f->mantissa > bfloat_mantissa())
1001 * We need to subtract 1 from f->mantissa for the sign bit trick
1002 * to work - that's done in make_bfloat()
1004 if (likely(f
->exponent
!= 127))
1005 n
= j
* 2 + (((unsigned int)
1007 bfloat_mantissa(search
, f
))) >> 31);
1009 n
= (bkey_cmp(tree_to_bkey(t
, j
), search
) > 0)
1012 } while (n
< t
->size
);
1014 inorder
= to_inorder(j
, t
);
1017 * n would have been the node we recursed to - the low bit tells us if
1018 * we recursed left or recursed right.
1021 l
= cacheline_to_bkey(t
, inorder
, f
->m
);
1023 if (++inorder
!= t
->size
) {
1024 f
= &t
->tree
[inorder_next(j
, t
->size
)];
1025 r
= cacheline_to_bkey(t
, inorder
, f
->m
);
1027 r
= bset_bkey_last(t
->data
);
1029 r
= cacheline_to_bkey(t
, inorder
, f
->m
);
1032 f
= &t
->tree
[inorder_prev(j
, t
->size
)];
1033 l
= cacheline_to_bkey(t
, inorder
, f
->m
);
1038 return (struct bset_search_iter
) {l
, r
};
1041 struct bkey
*__bch_bset_search(struct btree_keys
*b
, struct bset_tree
*t
,
1042 const struct bkey
*search
)
1044 struct bset_search_iter i
;
1047 * First, we search for a cacheline, then lastly we do a linear search
1048 * within that cacheline.
1050 * To search for the cacheline, there's three different possibilities:
1051 * * The set is too small to have a search tree, so we just do a linear
1052 * search over the whole set.
1053 * * The set is the one we're currently inserting into; keeping a full
1054 * auxiliary search tree up to date would be too expensive, so we
1055 * use a much simpler lookup table to do a binary search -
1056 * bset_search_write_set().
1057 * * Or we use the auxiliary search tree we constructed earlier -
1058 * bset_search_tree()
1061 if (unlikely(!t
->size
)) {
1062 i
.l
= t
->data
->start
;
1063 i
.r
= bset_bkey_last(t
->data
);
1064 } else if (bset_written(b
, t
)) {
1066 * Each node in the auxiliary search tree covers a certain range
1067 * of bits, and keys above and below the set it covers might
1068 * differ outside those bits - so we have to special case the
1069 * start and end - handle that here:
1072 if (unlikely(bkey_cmp(search
, &t
->end
) >= 0))
1073 return bset_bkey_last(t
->data
);
1075 if (unlikely(bkey_cmp(search
, t
->data
->start
) < 0))
1076 return t
->data
->start
;
1078 i
= bset_search_tree(t
, search
);
1081 t
->size
< bkey_to_cacheline(t
, bset_bkey_last(t
->data
)));
1083 i
= bset_search_write_set(t
, search
);
1086 if (btree_keys_expensive_checks(b
)) {
1087 BUG_ON(bset_written(b
, t
) &&
1088 i
.l
!= t
->data
->start
&&
1089 bkey_cmp(tree_to_prev_bkey(t
,
1090 inorder_to_tree(bkey_to_cacheline(t
, i
.l
), t
)),
1093 BUG_ON(i
.r
!= bset_bkey_last(t
->data
) &&
1094 bkey_cmp(i
.r
, search
) <= 0);
1097 while (likely(i
.l
!= i
.r
) &&
1098 bkey_cmp(i
.l
, search
) <= 0)
1099 i
.l
= bkey_next(i
.l
);
1103 EXPORT_SYMBOL(__bch_bset_search
);
1105 /* Btree iterator */
1107 typedef bool (btree_iter_cmp_fn
)(struct btree_iter_set
,
1108 struct btree_iter_set
);
1110 static inline bool btree_iter_cmp(struct btree_iter_set l
,
1111 struct btree_iter_set r
)
1113 return bkey_cmp(l
.k
, r
.k
) > 0;
1116 static inline bool btree_iter_end(struct btree_iter
*iter
)
1121 void bch_btree_iter_push(struct btree_iter
*iter
, struct bkey
*k
,
1125 BUG_ON(!heap_add(iter
,
1126 ((struct btree_iter_set
) { k
, end
}),
1130 static struct bkey
*__bch_btree_iter_init(struct btree_keys
*b
,
1131 struct btree_iter
*iter
,
1132 struct bkey
*search
,
1133 struct bset_tree
*start
)
1135 struct bkey
*ret
= NULL
;
1137 iter
->size
= ARRAY_SIZE(iter
->data
);
1140 #ifdef CONFIG_BCACHE_DEBUG
1144 for (; start
<= bset_tree_last(b
); start
++) {
1145 ret
= bch_bset_search(b
, start
, search
);
1146 bch_btree_iter_push(iter
, ret
, bset_bkey_last(start
->data
));
1152 struct bkey
*bch_btree_iter_init(struct btree_keys
*b
,
1153 struct btree_iter
*iter
,
1154 struct bkey
*search
)
1156 return __bch_btree_iter_init(b
, iter
, search
, b
->set
);
1158 EXPORT_SYMBOL(bch_btree_iter_init
);
1160 static inline struct bkey
*__bch_btree_iter_next(struct btree_iter
*iter
,
1161 btree_iter_cmp_fn
*cmp
)
1163 struct btree_iter_set b __maybe_unused
;
1164 struct bkey
*ret
= NULL
;
1166 if (!btree_iter_end(iter
)) {
1167 bch_btree_iter_next_check(iter
);
1169 ret
= iter
->data
->k
;
1170 iter
->data
->k
= bkey_next(iter
->data
->k
);
1172 if (iter
->data
->k
> iter
->data
->end
) {
1173 WARN_ONCE(1, "bset was corrupt!\n");
1174 iter
->data
->k
= iter
->data
->end
;
1177 if (iter
->data
->k
== iter
->data
->end
)
1178 heap_pop(iter
, b
, cmp
);
1180 heap_sift(iter
, 0, cmp
);
1186 struct bkey
*bch_btree_iter_next(struct btree_iter
*iter
)
1188 return __bch_btree_iter_next(iter
, btree_iter_cmp
);
1191 EXPORT_SYMBOL(bch_btree_iter_next
);
1193 struct bkey
*bch_btree_iter_next_filter(struct btree_iter
*iter
,
1194 struct btree_keys
*b
, ptr_filter_fn fn
)
1199 ret
= bch_btree_iter_next(iter
);
1200 } while (ret
&& fn(b
, ret
));
1207 void bch_bset_sort_state_free(struct bset_sort_state
*state
)
1209 mempool_exit(&state
->pool
);
1212 int bch_bset_sort_state_init(struct bset_sort_state
*state
,
1213 unsigned int page_order
)
1215 spin_lock_init(&state
->time
.lock
);
1217 state
->page_order
= page_order
;
1218 state
->crit_factor
= int_sqrt(1 << page_order
);
1220 return mempool_init_page_pool(&state
->pool
, 1, page_order
);
1222 EXPORT_SYMBOL(bch_bset_sort_state_init
);
1224 static void btree_mergesort(struct btree_keys
*b
, struct bset
*out
,
1225 struct btree_iter
*iter
,
1226 bool fixup
, bool remove_stale
)
1229 struct bkey
*k
, *last
= NULL
;
1231 bool (*bad
)(struct btree_keys
*, const struct bkey
*) = remove_stale
1235 /* Heapify the iterator, using our comparison function */
1236 for (i
= iter
->used
/ 2 - 1; i
>= 0; --i
)
1237 heap_sift(iter
, i
, b
->ops
->sort_cmp
);
1239 while (!btree_iter_end(iter
)) {
1240 if (b
->ops
->sort_fixup
&& fixup
)
1241 k
= b
->ops
->sort_fixup(iter
, &tmp
.k
);
1246 k
= __bch_btree_iter_next(iter
, b
->ops
->sort_cmp
);
1254 } else if (!bch_bkey_try_merge(b
, last
, k
)) {
1255 last
= bkey_next(last
);
1260 out
->keys
= last
? (uint64_t *) bkey_next(last
) - out
->d
: 0;
1262 pr_debug("sorted %i keys", out
->keys
);
1265 static void __btree_sort(struct btree_keys
*b
, struct btree_iter
*iter
,
1266 unsigned int start
, unsigned int order
, bool fixup
,
1267 struct bset_sort_state
*state
)
1269 uint64_t start_time
;
1270 bool used_mempool
= false;
1271 struct bset
*out
= (void *) __get_free_pages(__GFP_NOWARN
|GFP_NOWAIT
,
1276 BUG_ON(order
> state
->page_order
);
1278 outp
= mempool_alloc(&state
->pool
, GFP_NOIO
);
1279 out
= page_address(outp
);
1280 used_mempool
= true;
1281 order
= state
->page_order
;
1284 start_time
= local_clock();
1286 btree_mergesort(b
, out
, iter
, fixup
, false);
1289 if (!start
&& order
== b
->page_order
) {
1291 * Our temporary buffer is the same size as the btree node's
1292 * buffer, we can just swap buffers instead of doing a big
1296 out
->magic
= b
->set
->data
->magic
;
1297 out
->seq
= b
->set
->data
->seq
;
1298 out
->version
= b
->set
->data
->version
;
1299 swap(out
, b
->set
->data
);
1301 b
->set
[start
].data
->keys
= out
->keys
;
1302 memcpy(b
->set
[start
].data
->start
, out
->start
,
1303 (void *) bset_bkey_last(out
) - (void *) out
->start
);
1307 mempool_free(virt_to_page(out
), &state
->pool
);
1309 free_pages((unsigned long) out
, order
);
1311 bch_bset_build_written_tree(b
);
1314 bch_time_stats_update(&state
->time
, start_time
);
1317 void bch_btree_sort_partial(struct btree_keys
*b
, unsigned int start
,
1318 struct bset_sort_state
*state
)
1320 size_t order
= b
->page_order
, keys
= 0;
1321 struct btree_iter iter
;
1322 int oldsize
= bch_count_data(b
);
1324 __bch_btree_iter_init(b
, &iter
, NULL
, &b
->set
[start
]);
1329 for (i
= start
; i
<= b
->nsets
; i
++)
1330 keys
+= b
->set
[i
].data
->keys
;
1332 order
= get_order(__set_bytes(b
->set
->data
, keys
));
1335 __btree_sort(b
, &iter
, start
, order
, false, state
);
1337 EBUG_ON(oldsize
>= 0 && bch_count_data(b
) != oldsize
);
1339 EXPORT_SYMBOL(bch_btree_sort_partial
);
1341 void bch_btree_sort_and_fix_extents(struct btree_keys
*b
,
1342 struct btree_iter
*iter
,
1343 struct bset_sort_state
*state
)
1345 __btree_sort(b
, iter
, 0, b
->page_order
, true, state
);
1348 void bch_btree_sort_into(struct btree_keys
*b
, struct btree_keys
*new,
1349 struct bset_sort_state
*state
)
1351 uint64_t start_time
= local_clock();
1352 struct btree_iter iter
;
1354 bch_btree_iter_init(b
, &iter
, NULL
);
1356 btree_mergesort(b
, new->set
->data
, &iter
, false, true);
1358 bch_time_stats_update(&state
->time
, start_time
);
1360 new->set
->size
= 0; // XXX: why?
1363 #define SORT_CRIT (4096 / sizeof(uint64_t))
1365 void bch_btree_sort_lazy(struct btree_keys
*b
, struct bset_sort_state
*state
)
1367 unsigned int crit
= SORT_CRIT
;
1370 /* Don't sort if nothing to do */
1374 for (i
= b
->nsets
- 1; i
>= 0; --i
) {
1375 crit
*= state
->crit_factor
;
1377 if (b
->set
[i
].data
->keys
< crit
) {
1378 bch_btree_sort_partial(b
, i
, state
);
1383 /* Sort if we'd overflow */
1384 if (b
->nsets
+ 1 == MAX_BSETS
) {
1385 bch_btree_sort(b
, state
);
1390 bch_bset_build_written_tree(b
);
1392 EXPORT_SYMBOL(bch_btree_sort_lazy
);
1394 void bch_btree_keys_stats(struct btree_keys
*b
, struct bset_stats
*stats
)
1398 for (i
= 0; i
<= b
->nsets
; i
++) {
1399 struct bset_tree
*t
= &b
->set
[i
];
1400 size_t bytes
= t
->data
->keys
* sizeof(uint64_t);
1403 if (bset_written(b
, t
)) {
1404 stats
->sets_written
++;
1405 stats
->bytes_written
+= bytes
;
1407 stats
->floats
+= t
->size
- 1;
1409 for (j
= 1; j
< t
->size
; j
++)
1410 if (t
->tree
[j
].exponent
== 127)
1413 stats
->sets_unwritten
++;
1414 stats
->bytes_unwritten
+= bytes
;