Linux 4.19.133
[linux/fpc-iii.git] / drivers / md / bcache / bset.c
blob268f1b6850840ad70711bca42276da11e6d5c18a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Code for working with individual keys, and sorted sets of keys with in a
4 * btree node
6 * Copyright 2012 Google, Inc.
7 */
9 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
11 #include "util.h"
12 #include "bset.h"
14 #include <linux/console.h>
15 #include <linux/sched/clock.h>
16 #include <linux/random.h>
17 #include <linux/prefetch.h>
19 #ifdef CONFIG_BCACHE_DEBUG
21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
23 struct bkey *k, *next;
25 for (k = i->start; k < bset_bkey_last(i); k = next) {
26 next = bkey_next(k);
28 pr_err("block %u key %u/%u: ", set,
29 (unsigned int) ((u64 *) k - i->d), i->keys);
31 if (b->ops->key_dump)
32 b->ops->key_dump(b, k);
33 else
34 pr_err("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
36 if (next < bset_bkey_last(i) &&
37 bkey_cmp(k, b->ops->is_extents ?
38 &START_KEY(next) : next) > 0)
39 pr_err("Key skipped backwards\n");
43 void bch_dump_bucket(struct btree_keys *b)
45 unsigned int i;
47 console_lock();
48 for (i = 0; i <= b->nsets; i++)
49 bch_dump_bset(b, b->set[i].data,
50 bset_sector_offset(b, b->set[i].data));
51 console_unlock();
54 int __bch_count_data(struct btree_keys *b)
56 unsigned int ret = 0;
57 struct btree_iter iter;
58 struct bkey *k;
60 if (b->ops->is_extents)
61 for_each_key(b, k, &iter)
62 ret += KEY_SIZE(k);
63 return ret;
66 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
68 va_list args;
69 struct bkey *k, *p = NULL;
70 struct btree_iter iter;
71 const char *err;
73 for_each_key(b, k, &iter) {
74 if (b->ops->is_extents) {
75 err = "Keys out of order";
76 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
77 goto bug;
79 if (bch_ptr_invalid(b, k))
80 continue;
82 err = "Overlapping keys";
83 if (p && bkey_cmp(p, &START_KEY(k)) > 0)
84 goto bug;
85 } else {
86 if (bch_ptr_bad(b, k))
87 continue;
89 err = "Duplicate keys";
90 if (p && !bkey_cmp(p, k))
91 goto bug;
93 p = k;
95 #if 0
96 err = "Key larger than btree node key";
97 if (p && bkey_cmp(p, &b->key) > 0)
98 goto bug;
99 #endif
100 return;
101 bug:
102 bch_dump_bucket(b);
104 va_start(args, fmt);
105 vprintk(fmt, args);
106 va_end(args);
108 panic("bch_check_keys error: %s:\n", err);
111 static void bch_btree_iter_next_check(struct btree_iter *iter)
113 struct bkey *k = iter->data->k, *next = bkey_next(k);
115 if (next < iter->data->end &&
116 bkey_cmp(k, iter->b->ops->is_extents ?
117 &START_KEY(next) : next) > 0) {
118 bch_dump_bucket(iter->b);
119 panic("Key skipped backwards\n");
123 #else
125 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
127 #endif
129 /* Keylists */
131 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
133 size_t oldsize = bch_keylist_nkeys(l);
134 size_t newsize = oldsize + u64s;
135 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
136 uint64_t *new_keys;
138 newsize = roundup_pow_of_two(newsize);
140 if (newsize <= KEYLIST_INLINE ||
141 roundup_pow_of_two(oldsize) == newsize)
142 return 0;
144 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
146 if (!new_keys)
147 return -ENOMEM;
149 if (!old_keys)
150 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
152 l->keys_p = new_keys;
153 l->top_p = new_keys + oldsize;
155 return 0;
158 struct bkey *bch_keylist_pop(struct keylist *l)
160 struct bkey *k = l->keys;
162 if (k == l->top)
163 return NULL;
165 while (bkey_next(k) != l->top)
166 k = bkey_next(k);
168 return l->top = k;
171 void bch_keylist_pop_front(struct keylist *l)
173 l->top_p -= bkey_u64s(l->keys);
175 memmove(l->keys,
176 bkey_next(l->keys),
177 bch_keylist_bytes(l));
180 /* Key/pointer manipulation */
182 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
183 unsigned int i)
185 BUG_ON(i > KEY_PTRS(src));
187 /* Only copy the header, key, and one pointer. */
188 memcpy(dest, src, 2 * sizeof(uint64_t));
189 dest->ptr[0] = src->ptr[i];
190 SET_KEY_PTRS(dest, 1);
191 /* We didn't copy the checksum so clear that bit. */
192 SET_KEY_CSUM(dest, 0);
195 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
197 unsigned int i, len = 0;
199 if (bkey_cmp(where, &START_KEY(k)) <= 0)
200 return false;
202 if (bkey_cmp(where, k) < 0)
203 len = KEY_OFFSET(k) - KEY_OFFSET(where);
204 else
205 bkey_copy_key(k, where);
207 for (i = 0; i < KEY_PTRS(k); i++)
208 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
210 BUG_ON(len > KEY_SIZE(k));
211 SET_KEY_SIZE(k, len);
212 return true;
215 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
217 unsigned int len = 0;
219 if (bkey_cmp(where, k) >= 0)
220 return false;
222 BUG_ON(KEY_INODE(where) != KEY_INODE(k));
224 if (bkey_cmp(where, &START_KEY(k)) > 0)
225 len = KEY_OFFSET(where) - KEY_START(k);
227 bkey_copy_key(k, where);
229 BUG_ON(len > KEY_SIZE(k));
230 SET_KEY_SIZE(k, len);
231 return true;
234 /* Auxiliary search trees */
236 /* 32 bits total: */
237 #define BKEY_MID_BITS 3
238 #define BKEY_EXPONENT_BITS 7
239 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
240 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1)
242 struct bkey_float {
243 unsigned int exponent:BKEY_EXPONENT_BITS;
244 unsigned int m:BKEY_MID_BITS;
245 unsigned int mantissa:BKEY_MANTISSA_BITS;
246 } __packed;
249 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
250 * it used to be 64, but I realized the lookup code would touch slightly less
251 * memory if it was 128.
253 * It definites the number of bytes (in struct bset) per struct bkey_float in
254 * the auxiliar search tree - when we're done searching the bset_float tree we
255 * have this many bytes left that we do a linear search over.
257 * Since (after level 5) every level of the bset_tree is on a new cacheline,
258 * we're touching one fewer cacheline in the bset tree in exchange for one more
259 * cacheline in the linear search - but the linear search might stop before it
260 * gets to the second cacheline.
263 #define BSET_CACHELINE 128
265 /* Space required for the btree node keys */
266 static inline size_t btree_keys_bytes(struct btree_keys *b)
268 return PAGE_SIZE << b->page_order;
271 static inline size_t btree_keys_cachelines(struct btree_keys *b)
273 return btree_keys_bytes(b) / BSET_CACHELINE;
276 /* Space required for the auxiliary search trees */
277 static inline size_t bset_tree_bytes(struct btree_keys *b)
279 return btree_keys_cachelines(b) * sizeof(struct bkey_float);
282 /* Space required for the prev pointers */
283 static inline size_t bset_prev_bytes(struct btree_keys *b)
285 return btree_keys_cachelines(b) * sizeof(uint8_t);
288 /* Memory allocation */
290 void bch_btree_keys_free(struct btree_keys *b)
292 struct bset_tree *t = b->set;
294 if (bset_prev_bytes(b) < PAGE_SIZE)
295 kfree(t->prev);
296 else
297 free_pages((unsigned long) t->prev,
298 get_order(bset_prev_bytes(b)));
300 if (bset_tree_bytes(b) < PAGE_SIZE)
301 kfree(t->tree);
302 else
303 free_pages((unsigned long) t->tree,
304 get_order(bset_tree_bytes(b)));
306 free_pages((unsigned long) t->data, b->page_order);
308 t->prev = NULL;
309 t->tree = NULL;
310 t->data = NULL;
312 EXPORT_SYMBOL(bch_btree_keys_free);
314 int bch_btree_keys_alloc(struct btree_keys *b,
315 unsigned int page_order,
316 gfp_t gfp)
318 struct bset_tree *t = b->set;
320 BUG_ON(t->data);
322 b->page_order = page_order;
324 t->data = (void *) __get_free_pages(gfp, b->page_order);
325 if (!t->data)
326 goto err;
328 t->tree = bset_tree_bytes(b) < PAGE_SIZE
329 ? kmalloc(bset_tree_bytes(b), gfp)
330 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
331 if (!t->tree)
332 goto err;
334 t->prev = bset_prev_bytes(b) < PAGE_SIZE
335 ? kmalloc(bset_prev_bytes(b), gfp)
336 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
337 if (!t->prev)
338 goto err;
340 return 0;
341 err:
342 bch_btree_keys_free(b);
343 return -ENOMEM;
345 EXPORT_SYMBOL(bch_btree_keys_alloc);
347 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
348 bool *expensive_debug_checks)
350 unsigned int i;
352 b->ops = ops;
353 b->expensive_debug_checks = expensive_debug_checks;
354 b->nsets = 0;
355 b->last_set_unwritten = 0;
357 /* XXX: shouldn't be needed */
358 for (i = 0; i < MAX_BSETS; i++)
359 b->set[i].size = 0;
361 * Second loop starts at 1 because b->keys[0]->data is the memory we
362 * allocated
364 for (i = 1; i < MAX_BSETS; i++)
365 b->set[i].data = NULL;
367 EXPORT_SYMBOL(bch_btree_keys_init);
369 /* Binary tree stuff for auxiliary search trees */
372 * return array index next to j when does in-order traverse
373 * of a binary tree which is stored in a linear array
375 static unsigned int inorder_next(unsigned int j, unsigned int size)
377 if (j * 2 + 1 < size) {
378 j = j * 2 + 1;
380 while (j * 2 < size)
381 j *= 2;
382 } else
383 j >>= ffz(j) + 1;
385 return j;
389 * return array index previous to j when does in-order traverse
390 * of a binary tree which is stored in a linear array
392 static unsigned int inorder_prev(unsigned int j, unsigned int size)
394 if (j * 2 < size) {
395 j = j * 2;
397 while (j * 2 + 1 < size)
398 j = j * 2 + 1;
399 } else
400 j >>= ffs(j);
402 return j;
406 * I have no idea why this code works... and I'm the one who wrote it
408 * However, I do know what it does:
409 * Given a binary tree constructed in an array (i.e. how you normally implement
410 * a heap), it converts a node in the tree - referenced by array index - to the
411 * index it would have if you did an inorder traversal.
413 * Also tested for every j, size up to size somewhere around 6 million.
415 * The binary tree starts at array index 1, not 0
416 * extra is a function of size:
417 * extra = (size - rounddown_pow_of_two(size - 1)) << 1;
419 static unsigned int __to_inorder(unsigned int j,
420 unsigned int size,
421 unsigned int extra)
423 unsigned int b = fls(j);
424 unsigned int shift = fls(size - 1) - b;
426 j ^= 1U << (b - 1);
427 j <<= 1;
428 j |= 1;
429 j <<= shift;
431 if (j > extra)
432 j -= (j - extra) >> 1;
434 return j;
438 * Return the cacheline index in bset_tree->data, where j is index
439 * from a linear array which stores the auxiliar binary tree
441 static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
443 return __to_inorder(j, t->size, t->extra);
446 static unsigned int __inorder_to_tree(unsigned int j,
447 unsigned int size,
448 unsigned int extra)
450 unsigned int shift;
452 if (j > extra)
453 j += j - extra;
455 shift = ffs(j);
457 j >>= shift;
458 j |= roundup_pow_of_two(size) >> shift;
460 return j;
464 * Return an index from a linear array which stores the auxiliar binary
465 * tree, j is the cacheline index of t->data.
467 static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
469 return __inorder_to_tree(j, t->size, t->extra);
472 #if 0
473 void inorder_test(void)
475 unsigned long done = 0;
476 ktime_t start = ktime_get();
478 for (unsigned int size = 2;
479 size < 65536000;
480 size++) {
481 unsigned int extra =
482 (size - rounddown_pow_of_two(size - 1)) << 1;
483 unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
485 if (!(size % 4096))
486 pr_notice("loop %u, %llu per us\n", size,
487 done / ktime_us_delta(ktime_get(), start));
489 while (1) {
490 if (__inorder_to_tree(i, size, extra) != j)
491 panic("size %10u j %10u i %10u", size, j, i);
493 if (__to_inorder(j, size, extra) != i)
494 panic("size %10u j %10u i %10u", size, j, i);
496 if (j == rounddown_pow_of_two(size) - 1)
497 break;
499 BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
501 j = inorder_next(j, size);
502 i++;
505 done += size - 1;
508 #endif
511 * Cacheline/offset <-> bkey pointer arithmetic:
513 * t->tree is a binary search tree in an array; each node corresponds to a key
514 * in one cacheline in t->set (BSET_CACHELINE bytes).
516 * This means we don't have to store the full index of the key that a node in
517 * the binary tree points to; to_inorder() gives us the cacheline, and then
518 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
520 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
521 * make this work.
523 * To construct the bfloat for an arbitrary key we need to know what the key
524 * immediately preceding it is: we have to check if the two keys differ in the
525 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
526 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
529 static struct bkey *cacheline_to_bkey(struct bset_tree *t,
530 unsigned int cacheline,
531 unsigned int offset)
533 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
536 static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
538 return ((void *) k - (void *) t->data) / BSET_CACHELINE;
541 static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
542 unsigned int cacheline,
543 struct bkey *k)
545 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
548 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
550 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
553 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
555 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
559 * For the write set - the one we're currently inserting keys into - we don't
560 * maintain a full search tree, we just keep a simple lookup table in t->prev.
562 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
564 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
567 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
569 low >>= shift;
570 low |= (high << 1) << (63U - shift);
571 return low;
575 * Calculate mantissa value for struct bkey_float.
576 * If most significant bit of f->exponent is not set, then
577 * - f->exponent >> 6 is 0
578 * - p[0] points to bkey->low
579 * - p[-1] borrows bits from KEY_INODE() of bkey->high
580 * if most isgnificant bits of f->exponent is set, then
581 * - f->exponent >> 6 is 1
582 * - p[0] points to bits from KEY_INODE() of bkey->high
583 * - p[-1] points to other bits from KEY_INODE() of
584 * bkey->high too.
585 * See make_bfloat() to check when most significant bit of f->exponent
586 * is set or not.
588 static inline unsigned int bfloat_mantissa(const struct bkey *k,
589 struct bkey_float *f)
591 const uint64_t *p = &k->low - (f->exponent >> 6);
593 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
596 static void make_bfloat(struct bset_tree *t, unsigned int j)
598 struct bkey_float *f = &t->tree[j];
599 struct bkey *m = tree_to_bkey(t, j);
600 struct bkey *p = tree_to_prev_bkey(t, j);
602 struct bkey *l = is_power_of_2(j)
603 ? t->data->start
604 : tree_to_prev_bkey(t, j >> ffs(j));
606 struct bkey *r = is_power_of_2(j + 1)
607 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
608 : tree_to_bkey(t, j >> (ffz(j) + 1));
610 BUG_ON(m < l || m > r);
611 BUG_ON(bkey_next(p) != m);
614 * If l and r have different KEY_INODE values (different backing
615 * device), f->exponent records how many least significant bits
616 * are different in KEY_INODE values and sets most significant
617 * bits to 1 (by +64).
618 * If l and r have same KEY_INODE value, f->exponent records
619 * how many different bits in least significant bits of bkey->low.
620 * See bfloat_mantiss() how the most significant bit of
621 * f->exponent is used to calculate bfloat mantissa value.
623 if (KEY_INODE(l) != KEY_INODE(r))
624 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
625 else
626 f->exponent = fls64(r->low ^ l->low);
628 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
631 * Setting f->exponent = 127 flags this node as failed, and causes the
632 * lookup code to fall back to comparing against the original key.
635 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
636 f->mantissa = bfloat_mantissa(m, f) - 1;
637 else
638 f->exponent = 127;
641 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
643 if (t != b->set) {
644 unsigned int j = roundup(t[-1].size,
645 64 / sizeof(struct bkey_float));
647 t->tree = t[-1].tree + j;
648 t->prev = t[-1].prev + j;
651 while (t < b->set + MAX_BSETS)
652 t++->size = 0;
655 static void bch_bset_build_unwritten_tree(struct btree_keys *b)
657 struct bset_tree *t = bset_tree_last(b);
659 BUG_ON(b->last_set_unwritten);
660 b->last_set_unwritten = 1;
662 bset_alloc_tree(b, t);
664 if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
665 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
666 t->size = 1;
670 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
672 if (i != b->set->data) {
673 b->set[++b->nsets].data = i;
674 i->seq = b->set->data->seq;
675 } else
676 get_random_bytes(&i->seq, sizeof(uint64_t));
678 i->magic = magic;
679 i->version = 0;
680 i->keys = 0;
682 bch_bset_build_unwritten_tree(b);
684 EXPORT_SYMBOL(bch_bset_init_next);
687 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
688 * accelerate bkey search in a btree node (pointed by bset_tree->data in
689 * memory). After search in the auxiliar tree by calling bset_search_tree(),
690 * a struct bset_search_iter is returned which indicates range [l, r] from
691 * bset_tree->data where the searching bkey might be inside. Then a followed
692 * linear comparison does the exact search, see __bch_bset_search() for how
693 * the auxiliary tree is used.
695 void bch_bset_build_written_tree(struct btree_keys *b)
697 struct bset_tree *t = bset_tree_last(b);
698 struct bkey *prev = NULL, *k = t->data->start;
699 unsigned int j, cacheline = 1;
701 b->last_set_unwritten = 0;
703 bset_alloc_tree(b, t);
705 t->size = min_t(unsigned int,
706 bkey_to_cacheline(t, bset_bkey_last(t->data)),
707 b->set->tree + btree_keys_cachelines(b) - t->tree);
709 if (t->size < 2) {
710 t->size = 0;
711 return;
714 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
716 /* First we figure out where the first key in each cacheline is */
717 for (j = inorder_next(0, t->size);
719 j = inorder_next(j, t->size)) {
720 while (bkey_to_cacheline(t, k) < cacheline)
721 prev = k, k = bkey_next(k);
723 t->prev[j] = bkey_u64s(prev);
724 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
727 while (bkey_next(k) != bset_bkey_last(t->data))
728 k = bkey_next(k);
730 t->end = *k;
732 /* Then we build the tree */
733 for (j = inorder_next(0, t->size);
735 j = inorder_next(j, t->size))
736 make_bfloat(t, j);
738 EXPORT_SYMBOL(bch_bset_build_written_tree);
740 /* Insert */
742 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
744 struct bset_tree *t;
745 unsigned int inorder, j = 1;
747 for (t = b->set; t <= bset_tree_last(b); t++)
748 if (k < bset_bkey_last(t->data))
749 goto found_set;
751 BUG();
752 found_set:
753 if (!t->size || !bset_written(b, t))
754 return;
756 inorder = bkey_to_cacheline(t, k);
758 if (k == t->data->start)
759 goto fix_left;
761 if (bkey_next(k) == bset_bkey_last(t->data)) {
762 t->end = *k;
763 goto fix_right;
766 j = inorder_to_tree(inorder, t);
768 if (j &&
769 j < t->size &&
770 k == tree_to_bkey(t, j))
771 fix_left: do {
772 make_bfloat(t, j);
773 j = j * 2;
774 } while (j < t->size);
776 j = inorder_to_tree(inorder + 1, t);
778 if (j &&
779 j < t->size &&
780 k == tree_to_prev_bkey(t, j))
781 fix_right: do {
782 make_bfloat(t, j);
783 j = j * 2 + 1;
784 } while (j < t->size);
786 EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
788 static void bch_bset_fix_lookup_table(struct btree_keys *b,
789 struct bset_tree *t,
790 struct bkey *k)
792 unsigned int shift = bkey_u64s(k);
793 unsigned int j = bkey_to_cacheline(t, k);
795 /* We're getting called from btree_split() or btree_gc, just bail out */
796 if (!t->size)
797 return;
800 * k is the key we just inserted; we need to find the entry in the
801 * lookup table for the first key that is strictly greater than k:
802 * it's either k's cacheline or the next one
804 while (j < t->size &&
805 table_to_bkey(t, j) <= k)
806 j++;
809 * Adjust all the lookup table entries, and find a new key for any that
810 * have gotten too big
812 for (; j < t->size; j++) {
813 t->prev[j] += shift;
815 if (t->prev[j] > 7) {
816 k = table_to_bkey(t, j - 1);
818 while (k < cacheline_to_bkey(t, j, 0))
819 k = bkey_next(k);
821 t->prev[j] = bkey_to_cacheline_offset(t, j, k);
825 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
826 return;
828 /* Possibly add a new entry to the end of the lookup table */
830 for (k = table_to_bkey(t, t->size - 1);
831 k != bset_bkey_last(t->data);
832 k = bkey_next(k))
833 if (t->size == bkey_to_cacheline(t, k)) {
834 t->prev[t->size] =
835 bkey_to_cacheline_offset(t, t->size, k);
836 t->size++;
841 * Tries to merge l and r: l should be lower than r
842 * Returns true if we were able to merge. If we did merge, l will be the merged
843 * key, r will be untouched.
845 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
847 if (!b->ops->key_merge)
848 return false;
851 * Generic header checks
852 * Assumes left and right are in order
853 * Left and right must be exactly aligned
855 if (!bch_bkey_equal_header(l, r) ||
856 bkey_cmp(l, &START_KEY(r)))
857 return false;
859 return b->ops->key_merge(b, l, r);
861 EXPORT_SYMBOL(bch_bkey_try_merge);
863 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
864 struct bkey *insert)
866 struct bset_tree *t = bset_tree_last(b);
868 BUG_ON(!b->last_set_unwritten);
869 BUG_ON(bset_byte_offset(b, t->data) +
870 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
871 PAGE_SIZE << b->page_order);
873 memmove((uint64_t *) where + bkey_u64s(insert),
874 where,
875 (void *) bset_bkey_last(t->data) - (void *) where);
877 t->data->keys += bkey_u64s(insert);
878 bkey_copy(where, insert);
879 bch_bset_fix_lookup_table(b, t, where);
881 EXPORT_SYMBOL(bch_bset_insert);
883 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
884 struct bkey *replace_key)
886 unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
887 struct bset *i = bset_tree_last(b)->data;
888 struct bkey *m, *prev = NULL;
889 struct btree_iter iter;
890 struct bkey preceding_key_on_stack = ZERO_KEY;
891 struct bkey *preceding_key_p = &preceding_key_on_stack;
893 BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
896 * If k has preceding key, preceding_key_p will be set to address
897 * of k's preceding key; otherwise preceding_key_p will be set
898 * to NULL inside preceding_key().
900 if (b->ops->is_extents)
901 preceding_key(&START_KEY(k), &preceding_key_p);
902 else
903 preceding_key(k, &preceding_key_p);
905 m = bch_btree_iter_init(b, &iter, preceding_key_p);
907 if (b->ops->insert_fixup(b, k, &iter, replace_key))
908 return status;
910 status = BTREE_INSERT_STATUS_INSERT;
912 while (m != bset_bkey_last(i) &&
913 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
914 prev = m, m = bkey_next(m);
916 /* prev is in the tree, if we merge we're done */
917 status = BTREE_INSERT_STATUS_BACK_MERGE;
918 if (prev &&
919 bch_bkey_try_merge(b, prev, k))
920 goto merged;
921 #if 0
922 status = BTREE_INSERT_STATUS_OVERWROTE;
923 if (m != bset_bkey_last(i) &&
924 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
925 goto copy;
926 #endif
927 status = BTREE_INSERT_STATUS_FRONT_MERGE;
928 if (m != bset_bkey_last(i) &&
929 bch_bkey_try_merge(b, k, m))
930 goto copy;
932 bch_bset_insert(b, m, k);
933 copy: bkey_copy(m, k);
934 merged:
935 return status;
937 EXPORT_SYMBOL(bch_btree_insert_key);
939 /* Lookup */
941 struct bset_search_iter {
942 struct bkey *l, *r;
945 static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
946 const struct bkey *search)
948 unsigned int li = 0, ri = t->size;
950 while (li + 1 != ri) {
951 unsigned int m = (li + ri) >> 1;
953 if (bkey_cmp(table_to_bkey(t, m), search) > 0)
954 ri = m;
955 else
956 li = m;
959 return (struct bset_search_iter) {
960 table_to_bkey(t, li),
961 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
965 static struct bset_search_iter bset_search_tree(struct bset_tree *t,
966 const struct bkey *search)
968 struct bkey *l, *r;
969 struct bkey_float *f;
970 unsigned int inorder, j, n = 1;
972 do {
974 * A bit trick here.
975 * If p < t->size, (int)(p - t->size) is a minus value and
976 * the most significant bit is set, right shifting 31 bits
977 * gets 1. If p >= t->size, the most significant bit is
978 * not set, right shifting 31 bits gets 0.
979 * So the following 2 lines equals to
980 * if (p >= t->size)
981 * p = 0;
982 * but a branch instruction is avoided.
984 unsigned int p = n << 4;
986 p &= ((int) (p - t->size)) >> 31;
988 prefetch(&t->tree[p]);
990 j = n;
991 f = &t->tree[j];
994 * Similar bit trick, use subtract operation to avoid a branch
995 * instruction.
997 * n = (f->mantissa > bfloat_mantissa())
998 * ? j * 2
999 * : j * 2 + 1;
1001 * We need to subtract 1 from f->mantissa for the sign bit trick
1002 * to work - that's done in make_bfloat()
1004 if (likely(f->exponent != 127))
1005 n = j * 2 + (((unsigned int)
1006 (f->mantissa -
1007 bfloat_mantissa(search, f))) >> 31);
1008 else
1009 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
1010 ? j * 2
1011 : j * 2 + 1;
1012 } while (n < t->size);
1014 inorder = to_inorder(j, t);
1017 * n would have been the node we recursed to - the low bit tells us if
1018 * we recursed left or recursed right.
1020 if (n & 1) {
1021 l = cacheline_to_bkey(t, inorder, f->m);
1023 if (++inorder != t->size) {
1024 f = &t->tree[inorder_next(j, t->size)];
1025 r = cacheline_to_bkey(t, inorder, f->m);
1026 } else
1027 r = bset_bkey_last(t->data);
1028 } else {
1029 r = cacheline_to_bkey(t, inorder, f->m);
1031 if (--inorder) {
1032 f = &t->tree[inorder_prev(j, t->size)];
1033 l = cacheline_to_bkey(t, inorder, f->m);
1034 } else
1035 l = t->data->start;
1038 return (struct bset_search_iter) {l, r};
1041 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1042 const struct bkey *search)
1044 struct bset_search_iter i;
1047 * First, we search for a cacheline, then lastly we do a linear search
1048 * within that cacheline.
1050 * To search for the cacheline, there's three different possibilities:
1051 * * The set is too small to have a search tree, so we just do a linear
1052 * search over the whole set.
1053 * * The set is the one we're currently inserting into; keeping a full
1054 * auxiliary search tree up to date would be too expensive, so we
1055 * use a much simpler lookup table to do a binary search -
1056 * bset_search_write_set().
1057 * * Or we use the auxiliary search tree we constructed earlier -
1058 * bset_search_tree()
1061 if (unlikely(!t->size)) {
1062 i.l = t->data->start;
1063 i.r = bset_bkey_last(t->data);
1064 } else if (bset_written(b, t)) {
1066 * Each node in the auxiliary search tree covers a certain range
1067 * of bits, and keys above and below the set it covers might
1068 * differ outside those bits - so we have to special case the
1069 * start and end - handle that here:
1072 if (unlikely(bkey_cmp(search, &t->end) >= 0))
1073 return bset_bkey_last(t->data);
1075 if (unlikely(bkey_cmp(search, t->data->start) < 0))
1076 return t->data->start;
1078 i = bset_search_tree(t, search);
1079 } else {
1080 BUG_ON(!b->nsets &&
1081 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1083 i = bset_search_write_set(t, search);
1086 if (btree_keys_expensive_checks(b)) {
1087 BUG_ON(bset_written(b, t) &&
1088 i.l != t->data->start &&
1089 bkey_cmp(tree_to_prev_bkey(t,
1090 inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1091 search) > 0);
1093 BUG_ON(i.r != bset_bkey_last(t->data) &&
1094 bkey_cmp(i.r, search) <= 0);
1097 while (likely(i.l != i.r) &&
1098 bkey_cmp(i.l, search) <= 0)
1099 i.l = bkey_next(i.l);
1101 return i.l;
1103 EXPORT_SYMBOL(__bch_bset_search);
1105 /* Btree iterator */
1107 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1108 struct btree_iter_set);
1110 static inline bool btree_iter_cmp(struct btree_iter_set l,
1111 struct btree_iter_set r)
1113 return bkey_cmp(l.k, r.k) > 0;
1116 static inline bool btree_iter_end(struct btree_iter *iter)
1118 return !iter->used;
1121 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1122 struct bkey *end)
1124 if (k != end)
1125 BUG_ON(!heap_add(iter,
1126 ((struct btree_iter_set) { k, end }),
1127 btree_iter_cmp));
1130 static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1131 struct btree_iter *iter,
1132 struct bkey *search,
1133 struct bset_tree *start)
1135 struct bkey *ret = NULL;
1137 iter->size = ARRAY_SIZE(iter->data);
1138 iter->used = 0;
1140 #ifdef CONFIG_BCACHE_DEBUG
1141 iter->b = b;
1142 #endif
1144 for (; start <= bset_tree_last(b); start++) {
1145 ret = bch_bset_search(b, start, search);
1146 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1149 return ret;
1152 struct bkey *bch_btree_iter_init(struct btree_keys *b,
1153 struct btree_iter *iter,
1154 struct bkey *search)
1156 return __bch_btree_iter_init(b, iter, search, b->set);
1158 EXPORT_SYMBOL(bch_btree_iter_init);
1160 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1161 btree_iter_cmp_fn *cmp)
1163 struct btree_iter_set b __maybe_unused;
1164 struct bkey *ret = NULL;
1166 if (!btree_iter_end(iter)) {
1167 bch_btree_iter_next_check(iter);
1169 ret = iter->data->k;
1170 iter->data->k = bkey_next(iter->data->k);
1172 if (iter->data->k > iter->data->end) {
1173 WARN_ONCE(1, "bset was corrupt!\n");
1174 iter->data->k = iter->data->end;
1177 if (iter->data->k == iter->data->end)
1178 heap_pop(iter, b, cmp);
1179 else
1180 heap_sift(iter, 0, cmp);
1183 return ret;
1186 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1188 return __bch_btree_iter_next(iter, btree_iter_cmp);
1191 EXPORT_SYMBOL(bch_btree_iter_next);
1193 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1194 struct btree_keys *b, ptr_filter_fn fn)
1196 struct bkey *ret;
1198 do {
1199 ret = bch_btree_iter_next(iter);
1200 } while (ret && fn(b, ret));
1202 return ret;
1205 /* Mergesort */
1207 void bch_bset_sort_state_free(struct bset_sort_state *state)
1209 mempool_exit(&state->pool);
1212 int bch_bset_sort_state_init(struct bset_sort_state *state,
1213 unsigned int page_order)
1215 spin_lock_init(&state->time.lock);
1217 state->page_order = page_order;
1218 state->crit_factor = int_sqrt(1 << page_order);
1220 return mempool_init_page_pool(&state->pool, 1, page_order);
1222 EXPORT_SYMBOL(bch_bset_sort_state_init);
1224 static void btree_mergesort(struct btree_keys *b, struct bset *out,
1225 struct btree_iter *iter,
1226 bool fixup, bool remove_stale)
1228 int i;
1229 struct bkey *k, *last = NULL;
1230 BKEY_PADDED(k) tmp;
1231 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1232 ? bch_ptr_bad
1233 : bch_ptr_invalid;
1235 /* Heapify the iterator, using our comparison function */
1236 for (i = iter->used / 2 - 1; i >= 0; --i)
1237 heap_sift(iter, i, b->ops->sort_cmp);
1239 while (!btree_iter_end(iter)) {
1240 if (b->ops->sort_fixup && fixup)
1241 k = b->ops->sort_fixup(iter, &tmp.k);
1242 else
1243 k = NULL;
1245 if (!k)
1246 k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1248 if (bad(b, k))
1249 continue;
1251 if (!last) {
1252 last = out->start;
1253 bkey_copy(last, k);
1254 } else if (!bch_bkey_try_merge(b, last, k)) {
1255 last = bkey_next(last);
1256 bkey_copy(last, k);
1260 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1262 pr_debug("sorted %i keys", out->keys);
1265 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1266 unsigned int start, unsigned int order, bool fixup,
1267 struct bset_sort_state *state)
1269 uint64_t start_time;
1270 bool used_mempool = false;
1271 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1272 order);
1273 if (!out) {
1274 struct page *outp;
1276 BUG_ON(order > state->page_order);
1278 outp = mempool_alloc(&state->pool, GFP_NOIO);
1279 out = page_address(outp);
1280 used_mempool = true;
1281 order = state->page_order;
1284 start_time = local_clock();
1286 btree_mergesort(b, out, iter, fixup, false);
1287 b->nsets = start;
1289 if (!start && order == b->page_order) {
1291 * Our temporary buffer is the same size as the btree node's
1292 * buffer, we can just swap buffers instead of doing a big
1293 * memcpy()
1296 out->magic = b->set->data->magic;
1297 out->seq = b->set->data->seq;
1298 out->version = b->set->data->version;
1299 swap(out, b->set->data);
1300 } else {
1301 b->set[start].data->keys = out->keys;
1302 memcpy(b->set[start].data->start, out->start,
1303 (void *) bset_bkey_last(out) - (void *) out->start);
1306 if (used_mempool)
1307 mempool_free(virt_to_page(out), &state->pool);
1308 else
1309 free_pages((unsigned long) out, order);
1311 bch_bset_build_written_tree(b);
1313 if (!start)
1314 bch_time_stats_update(&state->time, start_time);
1317 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1318 struct bset_sort_state *state)
1320 size_t order = b->page_order, keys = 0;
1321 struct btree_iter iter;
1322 int oldsize = bch_count_data(b);
1324 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1326 if (start) {
1327 unsigned int i;
1329 for (i = start; i <= b->nsets; i++)
1330 keys += b->set[i].data->keys;
1332 order = get_order(__set_bytes(b->set->data, keys));
1335 __btree_sort(b, &iter, start, order, false, state);
1337 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1339 EXPORT_SYMBOL(bch_btree_sort_partial);
1341 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1342 struct btree_iter *iter,
1343 struct bset_sort_state *state)
1345 __btree_sort(b, iter, 0, b->page_order, true, state);
1348 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1349 struct bset_sort_state *state)
1351 uint64_t start_time = local_clock();
1352 struct btree_iter iter;
1354 bch_btree_iter_init(b, &iter, NULL);
1356 btree_mergesort(b, new->set->data, &iter, false, true);
1358 bch_time_stats_update(&state->time, start_time);
1360 new->set->size = 0; // XXX: why?
1363 #define SORT_CRIT (4096 / sizeof(uint64_t))
1365 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1367 unsigned int crit = SORT_CRIT;
1368 int i;
1370 /* Don't sort if nothing to do */
1371 if (!b->nsets)
1372 goto out;
1374 for (i = b->nsets - 1; i >= 0; --i) {
1375 crit *= state->crit_factor;
1377 if (b->set[i].data->keys < crit) {
1378 bch_btree_sort_partial(b, i, state);
1379 return;
1383 /* Sort if we'd overflow */
1384 if (b->nsets + 1 == MAX_BSETS) {
1385 bch_btree_sort(b, state);
1386 return;
1389 out:
1390 bch_bset_build_written_tree(b);
1392 EXPORT_SYMBOL(bch_btree_sort_lazy);
1394 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1396 unsigned int i;
1398 for (i = 0; i <= b->nsets; i++) {
1399 struct bset_tree *t = &b->set[i];
1400 size_t bytes = t->data->keys * sizeof(uint64_t);
1401 size_t j;
1403 if (bset_written(b, t)) {
1404 stats->sets_written++;
1405 stats->bytes_written += bytes;
1407 stats->floats += t->size - 1;
1409 for (j = 1; j < t->size; j++)
1410 if (t->tree[j].exponent == 127)
1411 stats->failed++;
1412 } else {
1413 stats->sets_unwritten++;
1414 stats->bytes_unwritten += bytes;