Linux 4.19.133
[linux/fpc-iii.git] / drivers / md / bcache / btree.c
blob38a8f8d2a908de41ca24c71896339dab1c9266cb
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
45 * Writeback: don't undirty key until after a cache flush
47 * Create an iterator for key pointers
49 * On btree write error, mark bucket such that it won't be freed from the cache
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
68 * Add a tracepoint or somesuch to watch for writeback starvation
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
74 * Plugging?
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
79 * Superblock needs to be fleshed out for multiple cache devices
81 * Add a sysfs tunable for the number of writeback IOs in flight
83 * Add a sysfs tunable for the number of open data buckets
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
88 * Test module load/unload
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
122 #define btree(fn, key, b, op, ...) \
123 ({ \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
127 _w, b); \
128 if (!IS_ERR(_child)) { \
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
131 } else \
132 _r = PTR_ERR(_child); \
133 _r; \
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
139 * @c: cache set
140 * @op: pointer to struct btree_op
142 #define btree_root(fn, c, op, ...) \
143 ({ \
144 int _r = -EINTR; \
145 do { \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
153 rw_unlock(_w, _b); \
154 bch_cannibalize_unlock(c); \
155 if (_r == -EINTR) \
156 schedule(); \
157 } while (_r == -EINTR); \
159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
160 _r; \
163 static inline struct bset *write_block(struct btree *b)
165 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
168 static void bch_btree_init_next(struct btree *b)
170 /* If not a leaf node, always sort */
171 if (b->level && b->keys.nsets)
172 bch_btree_sort(&b->keys, &b->c->sort);
173 else
174 bch_btree_sort_lazy(&b->keys, &b->c->sort);
176 if (b->written < btree_blocks(b))
177 bch_bset_init_next(&b->keys, write_block(b),
178 bset_magic(&b->c->sb));
182 /* Btree key manipulation */
184 void bkey_put(struct cache_set *c, struct bkey *k)
186 unsigned int i;
188 for (i = 0; i < KEY_PTRS(k); i++)
189 if (ptr_available(c, k, i))
190 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
193 /* Btree IO */
195 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
197 uint64_t crc = b->key.ptr[0];
198 void *data = (void *) i + 8, *end = bset_bkey_last(i);
200 crc = bch_crc64_update(crc, data, end - data);
201 return crc ^ 0xffffffffffffffffULL;
204 void bch_btree_node_read_done(struct btree *b)
206 const char *err = "bad btree header";
207 struct bset *i = btree_bset_first(b);
208 struct btree_iter *iter;
210 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
211 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
212 iter->used = 0;
214 #ifdef CONFIG_BCACHE_DEBUG
215 iter->b = &b->keys;
216 #endif
218 if (!i->seq)
219 goto err;
221 for (;
222 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
223 i = write_block(b)) {
224 err = "unsupported bset version";
225 if (i->version > BCACHE_BSET_VERSION)
226 goto err;
228 err = "bad btree header";
229 if (b->written + set_blocks(i, block_bytes(b->c)) >
230 btree_blocks(b))
231 goto err;
233 err = "bad magic";
234 if (i->magic != bset_magic(&b->c->sb))
235 goto err;
237 err = "bad checksum";
238 switch (i->version) {
239 case 0:
240 if (i->csum != csum_set(i))
241 goto err;
242 break;
243 case BCACHE_BSET_VERSION:
244 if (i->csum != btree_csum_set(b, i))
245 goto err;
246 break;
249 err = "empty set";
250 if (i != b->keys.set[0].data && !i->keys)
251 goto err;
253 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
255 b->written += set_blocks(i, block_bytes(b->c));
258 err = "corrupted btree";
259 for (i = write_block(b);
260 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
261 i = ((void *) i) + block_bytes(b->c))
262 if (i->seq == b->keys.set[0].data->seq)
263 goto err;
265 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
267 i = b->keys.set[0].data;
268 err = "short btree key";
269 if (b->keys.set[0].size &&
270 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
271 goto err;
273 if (b->written < btree_blocks(b))
274 bch_bset_init_next(&b->keys, write_block(b),
275 bset_magic(&b->c->sb));
276 out:
277 mempool_free(iter, &b->c->fill_iter);
278 return;
279 err:
280 set_btree_node_io_error(b);
281 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
282 err, PTR_BUCKET_NR(b->c, &b->key, 0),
283 bset_block_offset(b, i), i->keys);
284 goto out;
287 static void btree_node_read_endio(struct bio *bio)
289 struct closure *cl = bio->bi_private;
291 closure_put(cl);
294 static void bch_btree_node_read(struct btree *b)
296 uint64_t start_time = local_clock();
297 struct closure cl;
298 struct bio *bio;
300 trace_bcache_btree_read(b);
302 closure_init_stack(&cl);
304 bio = bch_bbio_alloc(b->c);
305 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
306 bio->bi_end_io = btree_node_read_endio;
307 bio->bi_private = &cl;
308 bio->bi_opf = REQ_OP_READ | REQ_META;
310 bch_bio_map(bio, b->keys.set[0].data);
312 bch_submit_bbio(bio, b->c, &b->key, 0);
313 closure_sync(&cl);
315 if (bio->bi_status)
316 set_btree_node_io_error(b);
318 bch_bbio_free(bio, b->c);
320 if (btree_node_io_error(b))
321 goto err;
323 bch_btree_node_read_done(b);
324 bch_time_stats_update(&b->c->btree_read_time, start_time);
326 return;
327 err:
328 bch_cache_set_error(b->c, "io error reading bucket %zu",
329 PTR_BUCKET_NR(b->c, &b->key, 0));
332 static void btree_complete_write(struct btree *b, struct btree_write *w)
334 if (w->prio_blocked &&
335 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
336 wake_up_allocators(b->c);
338 if (w->journal) {
339 atomic_dec_bug(w->journal);
340 __closure_wake_up(&b->c->journal.wait);
343 w->prio_blocked = 0;
344 w->journal = NULL;
347 static void btree_node_write_unlock(struct closure *cl)
349 struct btree *b = container_of(cl, struct btree, io);
351 up(&b->io_mutex);
354 static void __btree_node_write_done(struct closure *cl)
356 struct btree *b = container_of(cl, struct btree, io);
357 struct btree_write *w = btree_prev_write(b);
359 bch_bbio_free(b->bio, b->c);
360 b->bio = NULL;
361 btree_complete_write(b, w);
363 if (btree_node_dirty(b))
364 schedule_delayed_work(&b->work, 30 * HZ);
366 closure_return_with_destructor(cl, btree_node_write_unlock);
369 static void btree_node_write_done(struct closure *cl)
371 struct btree *b = container_of(cl, struct btree, io);
373 bio_free_pages(b->bio);
374 __btree_node_write_done(cl);
377 static void btree_node_write_endio(struct bio *bio)
379 struct closure *cl = bio->bi_private;
380 struct btree *b = container_of(cl, struct btree, io);
382 if (bio->bi_status)
383 set_btree_node_io_error(b);
385 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
386 closure_put(cl);
389 static void do_btree_node_write(struct btree *b)
391 struct closure *cl = &b->io;
392 struct bset *i = btree_bset_last(b);
393 BKEY_PADDED(key) k;
395 i->version = BCACHE_BSET_VERSION;
396 i->csum = btree_csum_set(b, i);
398 BUG_ON(b->bio);
399 b->bio = bch_bbio_alloc(b->c);
401 b->bio->bi_end_io = btree_node_write_endio;
402 b->bio->bi_private = cl;
403 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
404 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
405 bch_bio_map(b->bio, i);
408 * If we're appending to a leaf node, we don't technically need FUA -
409 * this write just needs to be persisted before the next journal write,
410 * which will be marked FLUSH|FUA.
412 * Similarly if we're writing a new btree root - the pointer is going to
413 * be in the next journal entry.
415 * But if we're writing a new btree node (that isn't a root) or
416 * appending to a non leaf btree node, we need either FUA or a flush
417 * when we write the parent with the new pointer. FUA is cheaper than a
418 * flush, and writes appending to leaf nodes aren't blocking anything so
419 * just make all btree node writes FUA to keep things sane.
422 bkey_copy(&k.key, &b->key);
423 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
424 bset_sector_offset(&b->keys, i));
426 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
427 int j;
428 struct bio_vec *bv;
429 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
431 bio_for_each_segment_all(bv, b->bio, j)
432 memcpy(page_address(bv->bv_page),
433 base + j * PAGE_SIZE, PAGE_SIZE);
435 bch_submit_bbio(b->bio, b->c, &k.key, 0);
437 continue_at(cl, btree_node_write_done, NULL);
438 } else {
440 * No problem for multipage bvec since the bio is
441 * just allocated
443 b->bio->bi_vcnt = 0;
444 bch_bio_map(b->bio, i);
446 bch_submit_bbio(b->bio, b->c, &k.key, 0);
448 closure_sync(cl);
449 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
453 void __bch_btree_node_write(struct btree *b, struct closure *parent)
455 struct bset *i = btree_bset_last(b);
457 lockdep_assert_held(&b->write_lock);
459 trace_bcache_btree_write(b);
461 BUG_ON(current->bio_list);
462 BUG_ON(b->written >= btree_blocks(b));
463 BUG_ON(b->written && !i->keys);
464 BUG_ON(btree_bset_first(b)->seq != i->seq);
465 bch_check_keys(&b->keys, "writing");
467 cancel_delayed_work(&b->work);
469 /* If caller isn't waiting for write, parent refcount is cache set */
470 down(&b->io_mutex);
471 closure_init(&b->io, parent ?: &b->c->cl);
473 clear_bit(BTREE_NODE_dirty, &b->flags);
474 change_bit(BTREE_NODE_write_idx, &b->flags);
476 do_btree_node_write(b);
478 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
479 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
481 b->written += set_blocks(i, block_bytes(b->c));
484 void bch_btree_node_write(struct btree *b, struct closure *parent)
486 unsigned int nsets = b->keys.nsets;
488 lockdep_assert_held(&b->lock);
490 __bch_btree_node_write(b, parent);
493 * do verify if there was more than one set initially (i.e. we did a
494 * sort) and we sorted down to a single set:
496 if (nsets && !b->keys.nsets)
497 bch_btree_verify(b);
499 bch_btree_init_next(b);
502 static void bch_btree_node_write_sync(struct btree *b)
504 struct closure cl;
506 closure_init_stack(&cl);
508 mutex_lock(&b->write_lock);
509 bch_btree_node_write(b, &cl);
510 mutex_unlock(&b->write_lock);
512 closure_sync(&cl);
515 static void btree_node_write_work(struct work_struct *w)
517 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
519 mutex_lock(&b->write_lock);
520 if (btree_node_dirty(b))
521 __bch_btree_node_write(b, NULL);
522 mutex_unlock(&b->write_lock);
525 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
527 struct bset *i = btree_bset_last(b);
528 struct btree_write *w = btree_current_write(b);
530 lockdep_assert_held(&b->write_lock);
532 BUG_ON(!b->written);
533 BUG_ON(!i->keys);
535 if (!btree_node_dirty(b))
536 schedule_delayed_work(&b->work, 30 * HZ);
538 set_btree_node_dirty(b);
540 if (journal_ref) {
541 if (w->journal &&
542 journal_pin_cmp(b->c, w->journal, journal_ref)) {
543 atomic_dec_bug(w->journal);
544 w->journal = NULL;
547 if (!w->journal) {
548 w->journal = journal_ref;
549 atomic_inc(w->journal);
553 /* Force write if set is too big */
554 if (set_bytes(i) > PAGE_SIZE - 48 &&
555 !current->bio_list)
556 bch_btree_node_write(b, NULL);
560 * Btree in memory cache - allocation/freeing
561 * mca -> memory cache
564 #define mca_reserve(c) (((c->root && c->root->level) \
565 ? c->root->level : 1) * 8 + 16)
566 #define mca_can_free(c) \
567 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
569 static void mca_data_free(struct btree *b)
571 BUG_ON(b->io_mutex.count != 1);
573 bch_btree_keys_free(&b->keys);
575 b->c->btree_cache_used--;
576 list_move(&b->list, &b->c->btree_cache_freed);
579 static void mca_bucket_free(struct btree *b)
581 BUG_ON(btree_node_dirty(b));
583 b->key.ptr[0] = 0;
584 hlist_del_init_rcu(&b->hash);
585 list_move(&b->list, &b->c->btree_cache_freeable);
588 static unsigned int btree_order(struct bkey *k)
590 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
593 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
595 if (!bch_btree_keys_alloc(&b->keys,
596 max_t(unsigned int,
597 ilog2(b->c->btree_pages),
598 btree_order(k)),
599 gfp)) {
600 b->c->btree_cache_used++;
601 list_move(&b->list, &b->c->btree_cache);
602 } else {
603 list_move(&b->list, &b->c->btree_cache_freed);
607 static struct btree *mca_bucket_alloc(struct cache_set *c,
608 struct bkey *k, gfp_t gfp)
610 struct btree *b = kzalloc(sizeof(struct btree), gfp);
612 if (!b)
613 return NULL;
615 init_rwsem(&b->lock);
616 lockdep_set_novalidate_class(&b->lock);
617 mutex_init(&b->write_lock);
618 lockdep_set_novalidate_class(&b->write_lock);
619 INIT_LIST_HEAD(&b->list);
620 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
621 b->c = c;
622 sema_init(&b->io_mutex, 1);
624 mca_data_alloc(b, k, gfp);
625 return b;
628 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
630 struct closure cl;
632 closure_init_stack(&cl);
633 lockdep_assert_held(&b->c->bucket_lock);
635 if (!down_write_trylock(&b->lock))
636 return -ENOMEM;
638 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
640 if (b->keys.page_order < min_order)
641 goto out_unlock;
643 if (!flush) {
644 if (btree_node_dirty(b))
645 goto out_unlock;
647 if (down_trylock(&b->io_mutex))
648 goto out_unlock;
649 up(&b->io_mutex);
652 retry:
654 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
655 * __bch_btree_node_write(). To avoid an extra flush, acquire
656 * b->write_lock before checking BTREE_NODE_dirty bit.
658 mutex_lock(&b->write_lock);
660 * If this btree node is selected in btree_flush_write() by journal
661 * code, delay and retry until the node is flushed by journal code
662 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
664 if (btree_node_journal_flush(b)) {
665 pr_debug("bnode %p is flushing by journal, retry", b);
666 mutex_unlock(&b->write_lock);
667 udelay(1);
668 goto retry;
671 if (btree_node_dirty(b))
672 __bch_btree_node_write(b, &cl);
673 mutex_unlock(&b->write_lock);
675 closure_sync(&cl);
677 /* wait for any in flight btree write */
678 down(&b->io_mutex);
679 up(&b->io_mutex);
681 return 0;
682 out_unlock:
683 rw_unlock(true, b);
684 return -ENOMEM;
687 static unsigned long bch_mca_scan(struct shrinker *shrink,
688 struct shrink_control *sc)
690 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
691 struct btree *b, *t;
692 unsigned long i, nr = sc->nr_to_scan;
693 unsigned long freed = 0;
694 unsigned int btree_cache_used;
696 if (c->shrinker_disabled)
697 return SHRINK_STOP;
699 if (c->btree_cache_alloc_lock)
700 return SHRINK_STOP;
702 /* Return -1 if we can't do anything right now */
703 if (sc->gfp_mask & __GFP_IO)
704 mutex_lock(&c->bucket_lock);
705 else if (!mutex_trylock(&c->bucket_lock))
706 return -1;
709 * It's _really_ critical that we don't free too many btree nodes - we
710 * have to always leave ourselves a reserve. The reserve is how we
711 * guarantee that allocating memory for a new btree node can always
712 * succeed, so that inserting keys into the btree can always succeed and
713 * IO can always make forward progress:
715 nr /= c->btree_pages;
716 if (nr == 0)
717 nr = 1;
718 nr = min_t(unsigned long, nr, mca_can_free(c));
720 i = 0;
721 btree_cache_used = c->btree_cache_used;
722 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
723 if (nr <= 0)
724 goto out;
726 if (++i > 3 &&
727 !mca_reap(b, 0, false)) {
728 mca_data_free(b);
729 rw_unlock(true, b);
730 freed++;
732 nr--;
735 for (; (nr--) && i < btree_cache_used; i++) {
736 if (list_empty(&c->btree_cache))
737 goto out;
739 b = list_first_entry(&c->btree_cache, struct btree, list);
740 list_rotate_left(&c->btree_cache);
742 if (!b->accessed &&
743 !mca_reap(b, 0, false)) {
744 mca_bucket_free(b);
745 mca_data_free(b);
746 rw_unlock(true, b);
747 freed++;
748 } else
749 b->accessed = 0;
751 out:
752 mutex_unlock(&c->bucket_lock);
753 return freed * c->btree_pages;
756 static unsigned long bch_mca_count(struct shrinker *shrink,
757 struct shrink_control *sc)
759 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
761 if (c->shrinker_disabled)
762 return 0;
764 if (c->btree_cache_alloc_lock)
765 return 0;
767 return mca_can_free(c) * c->btree_pages;
770 void bch_btree_cache_free(struct cache_set *c)
772 struct btree *b;
773 struct closure cl;
775 closure_init_stack(&cl);
777 if (c->shrink.list.next)
778 unregister_shrinker(&c->shrink);
780 mutex_lock(&c->bucket_lock);
782 #ifdef CONFIG_BCACHE_DEBUG
783 if (c->verify_data)
784 list_move(&c->verify_data->list, &c->btree_cache);
786 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
787 #endif
789 list_splice(&c->btree_cache_freeable,
790 &c->btree_cache);
792 while (!list_empty(&c->btree_cache)) {
793 b = list_first_entry(&c->btree_cache, struct btree, list);
796 * This function is called by cache_set_free(), no I/O
797 * request on cache now, it is unnecessary to acquire
798 * b->write_lock before clearing BTREE_NODE_dirty anymore.
800 if (btree_node_dirty(b)) {
801 btree_complete_write(b, btree_current_write(b));
802 clear_bit(BTREE_NODE_dirty, &b->flags);
804 mca_data_free(b);
807 while (!list_empty(&c->btree_cache_freed)) {
808 b = list_first_entry(&c->btree_cache_freed,
809 struct btree, list);
810 list_del(&b->list);
811 cancel_delayed_work_sync(&b->work);
812 kfree(b);
815 mutex_unlock(&c->bucket_lock);
818 int bch_btree_cache_alloc(struct cache_set *c)
820 unsigned int i;
822 for (i = 0; i < mca_reserve(c); i++)
823 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
824 return -ENOMEM;
826 list_splice_init(&c->btree_cache,
827 &c->btree_cache_freeable);
829 #ifdef CONFIG_BCACHE_DEBUG
830 mutex_init(&c->verify_lock);
832 c->verify_ondisk = (void *)
833 __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
835 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
837 if (c->verify_data &&
838 c->verify_data->keys.set->data)
839 list_del_init(&c->verify_data->list);
840 else
841 c->verify_data = NULL;
842 #endif
844 c->shrink.count_objects = bch_mca_count;
845 c->shrink.scan_objects = bch_mca_scan;
846 c->shrink.seeks = 4;
847 c->shrink.batch = c->btree_pages * 2;
849 if (register_shrinker(&c->shrink))
850 pr_warn("bcache: %s: could not register shrinker",
851 __func__);
853 return 0;
856 /* Btree in memory cache - hash table */
858 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
860 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
863 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
865 struct btree *b;
867 rcu_read_lock();
868 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
869 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
870 goto out;
871 b = NULL;
872 out:
873 rcu_read_unlock();
874 return b;
877 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
879 struct task_struct *old;
881 old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
882 if (old && old != current) {
883 if (op)
884 prepare_to_wait(&c->btree_cache_wait, &op->wait,
885 TASK_UNINTERRUPTIBLE);
886 return -EINTR;
889 return 0;
892 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
893 struct bkey *k)
895 struct btree *b;
897 trace_bcache_btree_cache_cannibalize(c);
899 if (mca_cannibalize_lock(c, op))
900 return ERR_PTR(-EINTR);
902 list_for_each_entry_reverse(b, &c->btree_cache, list)
903 if (!mca_reap(b, btree_order(k), false))
904 return b;
906 list_for_each_entry_reverse(b, &c->btree_cache, list)
907 if (!mca_reap(b, btree_order(k), true))
908 return b;
910 WARN(1, "btree cache cannibalize failed\n");
911 return ERR_PTR(-ENOMEM);
915 * We can only have one thread cannibalizing other cached btree nodes at a time,
916 * or we'll deadlock. We use an open coded mutex to ensure that, which a
917 * cannibalize_bucket() will take. This means every time we unlock the root of
918 * the btree, we need to release this lock if we have it held.
920 static void bch_cannibalize_unlock(struct cache_set *c)
922 if (c->btree_cache_alloc_lock == current) {
923 c->btree_cache_alloc_lock = NULL;
924 wake_up(&c->btree_cache_wait);
928 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
929 struct bkey *k, int level)
931 struct btree *b;
933 BUG_ON(current->bio_list);
935 lockdep_assert_held(&c->bucket_lock);
937 if (mca_find(c, k))
938 return NULL;
940 /* btree_free() doesn't free memory; it sticks the node on the end of
941 * the list. Check if there's any freed nodes there:
943 list_for_each_entry(b, &c->btree_cache_freeable, list)
944 if (!mca_reap(b, btree_order(k), false))
945 goto out;
947 /* We never free struct btree itself, just the memory that holds the on
948 * disk node. Check the freed list before allocating a new one:
950 list_for_each_entry(b, &c->btree_cache_freed, list)
951 if (!mca_reap(b, 0, false)) {
952 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
953 if (!b->keys.set[0].data)
954 goto err;
955 else
956 goto out;
959 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
960 if (!b)
961 goto err;
963 BUG_ON(!down_write_trylock(&b->lock));
964 if (!b->keys.set->data)
965 goto err;
966 out:
967 BUG_ON(b->io_mutex.count != 1);
969 bkey_copy(&b->key, k);
970 list_move(&b->list, &c->btree_cache);
971 hlist_del_init_rcu(&b->hash);
972 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
974 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
975 b->parent = (void *) ~0UL;
976 b->flags = 0;
977 b->written = 0;
978 b->level = level;
980 if (!b->level)
981 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
982 &b->c->expensive_debug_checks);
983 else
984 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
985 &b->c->expensive_debug_checks);
987 return b;
988 err:
989 if (b)
990 rw_unlock(true, b);
992 b = mca_cannibalize(c, op, k);
993 if (!IS_ERR(b))
994 goto out;
996 return b;
1000 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1001 * in from disk if necessary.
1003 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1005 * The btree node will have either a read or a write lock held, depending on
1006 * level and op->lock.
1008 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1009 struct bkey *k, int level, bool write,
1010 struct btree *parent)
1012 int i = 0;
1013 struct btree *b;
1015 BUG_ON(level < 0);
1016 retry:
1017 b = mca_find(c, k);
1019 if (!b) {
1020 if (current->bio_list)
1021 return ERR_PTR(-EAGAIN);
1023 mutex_lock(&c->bucket_lock);
1024 b = mca_alloc(c, op, k, level);
1025 mutex_unlock(&c->bucket_lock);
1027 if (!b)
1028 goto retry;
1029 if (IS_ERR(b))
1030 return b;
1032 bch_btree_node_read(b);
1034 if (!write)
1035 downgrade_write(&b->lock);
1036 } else {
1037 rw_lock(write, b, level);
1038 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1039 rw_unlock(write, b);
1040 goto retry;
1042 BUG_ON(b->level != level);
1045 if (btree_node_io_error(b)) {
1046 rw_unlock(write, b);
1047 return ERR_PTR(-EIO);
1050 BUG_ON(!b->written);
1052 b->parent = parent;
1053 b->accessed = 1;
1055 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1056 prefetch(b->keys.set[i].tree);
1057 prefetch(b->keys.set[i].data);
1060 for (; i <= b->keys.nsets; i++)
1061 prefetch(b->keys.set[i].data);
1063 return b;
1066 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1068 struct btree *b;
1070 mutex_lock(&parent->c->bucket_lock);
1071 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1072 mutex_unlock(&parent->c->bucket_lock);
1074 if (!IS_ERR_OR_NULL(b)) {
1075 b->parent = parent;
1076 bch_btree_node_read(b);
1077 rw_unlock(true, b);
1081 /* Btree alloc */
1083 static void btree_node_free(struct btree *b)
1085 trace_bcache_btree_node_free(b);
1087 BUG_ON(b == b->c->root);
1089 retry:
1090 mutex_lock(&b->write_lock);
1092 * If the btree node is selected and flushing in btree_flush_write(),
1093 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1094 * then it is safe to free the btree node here. Otherwise this btree
1095 * node will be in race condition.
1097 if (btree_node_journal_flush(b)) {
1098 mutex_unlock(&b->write_lock);
1099 pr_debug("bnode %p journal_flush set, retry", b);
1100 udelay(1);
1101 goto retry;
1104 if (btree_node_dirty(b)) {
1105 btree_complete_write(b, btree_current_write(b));
1106 clear_bit(BTREE_NODE_dirty, &b->flags);
1109 mutex_unlock(&b->write_lock);
1111 cancel_delayed_work(&b->work);
1113 mutex_lock(&b->c->bucket_lock);
1114 bch_bucket_free(b->c, &b->key);
1115 mca_bucket_free(b);
1116 mutex_unlock(&b->c->bucket_lock);
1119 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1120 int level, bool wait,
1121 struct btree *parent)
1123 BKEY_PADDED(key) k;
1124 struct btree *b = ERR_PTR(-EAGAIN);
1126 mutex_lock(&c->bucket_lock);
1127 retry:
1128 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1129 goto err;
1131 bkey_put(c, &k.key);
1132 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1134 b = mca_alloc(c, op, &k.key, level);
1135 if (IS_ERR(b))
1136 goto err_free;
1138 if (!b) {
1139 cache_bug(c,
1140 "Tried to allocate bucket that was in btree cache");
1141 goto retry;
1144 b->accessed = 1;
1145 b->parent = parent;
1146 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1148 mutex_unlock(&c->bucket_lock);
1150 trace_bcache_btree_node_alloc(b);
1151 return b;
1152 err_free:
1153 bch_bucket_free(c, &k.key);
1154 err:
1155 mutex_unlock(&c->bucket_lock);
1157 trace_bcache_btree_node_alloc_fail(c);
1158 return b;
1161 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1162 struct btree_op *op, int level,
1163 struct btree *parent)
1165 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1168 static struct btree *btree_node_alloc_replacement(struct btree *b,
1169 struct btree_op *op)
1171 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1173 if (!IS_ERR_OR_NULL(n)) {
1174 mutex_lock(&n->write_lock);
1175 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1176 bkey_copy_key(&n->key, &b->key);
1177 mutex_unlock(&n->write_lock);
1180 return n;
1183 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1185 unsigned int i;
1187 mutex_lock(&b->c->bucket_lock);
1189 atomic_inc(&b->c->prio_blocked);
1191 bkey_copy(k, &b->key);
1192 bkey_copy_key(k, &ZERO_KEY);
1194 for (i = 0; i < KEY_PTRS(k); i++)
1195 SET_PTR_GEN(k, i,
1196 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1197 PTR_BUCKET(b->c, &b->key, i)));
1199 mutex_unlock(&b->c->bucket_lock);
1202 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1204 struct cache_set *c = b->c;
1205 struct cache *ca;
1206 unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1208 mutex_lock(&c->bucket_lock);
1210 for_each_cache(ca, c, i)
1211 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1212 if (op)
1213 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1214 TASK_UNINTERRUPTIBLE);
1215 mutex_unlock(&c->bucket_lock);
1216 return -EINTR;
1219 mutex_unlock(&c->bucket_lock);
1221 return mca_cannibalize_lock(b->c, op);
1224 /* Garbage collection */
1226 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1227 struct bkey *k)
1229 uint8_t stale = 0;
1230 unsigned int i;
1231 struct bucket *g;
1234 * ptr_invalid() can't return true for the keys that mark btree nodes as
1235 * freed, but since ptr_bad() returns true we'll never actually use them
1236 * for anything and thus we don't want mark their pointers here
1238 if (!bkey_cmp(k, &ZERO_KEY))
1239 return stale;
1241 for (i = 0; i < KEY_PTRS(k); i++) {
1242 if (!ptr_available(c, k, i))
1243 continue;
1245 g = PTR_BUCKET(c, k, i);
1247 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1248 g->last_gc = PTR_GEN(k, i);
1250 if (ptr_stale(c, k, i)) {
1251 stale = max(stale, ptr_stale(c, k, i));
1252 continue;
1255 cache_bug_on(GC_MARK(g) &&
1256 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1257 c, "inconsistent ptrs: mark = %llu, level = %i",
1258 GC_MARK(g), level);
1260 if (level)
1261 SET_GC_MARK(g, GC_MARK_METADATA);
1262 else if (KEY_DIRTY(k))
1263 SET_GC_MARK(g, GC_MARK_DIRTY);
1264 else if (!GC_MARK(g))
1265 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1267 /* guard against overflow */
1268 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1269 GC_SECTORS_USED(g) + KEY_SIZE(k),
1270 MAX_GC_SECTORS_USED));
1272 BUG_ON(!GC_SECTORS_USED(g));
1275 return stale;
1278 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1280 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1282 unsigned int i;
1284 for (i = 0; i < KEY_PTRS(k); i++)
1285 if (ptr_available(c, k, i) &&
1286 !ptr_stale(c, k, i)) {
1287 struct bucket *b = PTR_BUCKET(c, k, i);
1289 b->gen = PTR_GEN(k, i);
1291 if (level && bkey_cmp(k, &ZERO_KEY))
1292 b->prio = BTREE_PRIO;
1293 else if (!level && b->prio == BTREE_PRIO)
1294 b->prio = INITIAL_PRIO;
1297 __bch_btree_mark_key(c, level, k);
1300 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1302 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1305 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1307 uint8_t stale = 0;
1308 unsigned int keys = 0, good_keys = 0;
1309 struct bkey *k;
1310 struct btree_iter iter;
1311 struct bset_tree *t;
1313 gc->nodes++;
1315 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1316 stale = max(stale, btree_mark_key(b, k));
1317 keys++;
1319 if (bch_ptr_bad(&b->keys, k))
1320 continue;
1322 gc->key_bytes += bkey_u64s(k);
1323 gc->nkeys++;
1324 good_keys++;
1326 gc->data += KEY_SIZE(k);
1329 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1330 btree_bug_on(t->size &&
1331 bset_written(&b->keys, t) &&
1332 bkey_cmp(&b->key, &t->end) < 0,
1333 b, "found short btree key in gc");
1335 if (b->c->gc_always_rewrite)
1336 return true;
1338 if (stale > 10)
1339 return true;
1341 if ((keys - good_keys) * 2 > keys)
1342 return true;
1344 return false;
1347 #define GC_MERGE_NODES 4U
1349 struct gc_merge_info {
1350 struct btree *b;
1351 unsigned int keys;
1354 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1355 struct keylist *insert_keys,
1356 atomic_t *journal_ref,
1357 struct bkey *replace_key);
1359 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1360 struct gc_stat *gc, struct gc_merge_info *r)
1362 unsigned int i, nodes = 0, keys = 0, blocks;
1363 struct btree *new_nodes[GC_MERGE_NODES];
1364 struct keylist keylist;
1365 struct closure cl;
1366 struct bkey *k;
1368 bch_keylist_init(&keylist);
1370 if (btree_check_reserve(b, NULL))
1371 return 0;
1373 memset(new_nodes, 0, sizeof(new_nodes));
1374 closure_init_stack(&cl);
1376 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1377 keys += r[nodes++].keys;
1379 blocks = btree_default_blocks(b->c) * 2 / 3;
1381 if (nodes < 2 ||
1382 __set_blocks(b->keys.set[0].data, keys,
1383 block_bytes(b->c)) > blocks * (nodes - 1))
1384 return 0;
1386 for (i = 0; i < nodes; i++) {
1387 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1388 if (IS_ERR_OR_NULL(new_nodes[i]))
1389 goto out_nocoalesce;
1393 * We have to check the reserve here, after we've allocated our new
1394 * nodes, to make sure the insert below will succeed - we also check
1395 * before as an optimization to potentially avoid a bunch of expensive
1396 * allocs/sorts
1398 if (btree_check_reserve(b, NULL))
1399 goto out_nocoalesce;
1401 for (i = 0; i < nodes; i++)
1402 mutex_lock(&new_nodes[i]->write_lock);
1404 for (i = nodes - 1; i > 0; --i) {
1405 struct bset *n1 = btree_bset_first(new_nodes[i]);
1406 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1407 struct bkey *k, *last = NULL;
1409 keys = 0;
1411 if (i > 1) {
1412 for (k = n2->start;
1413 k < bset_bkey_last(n2);
1414 k = bkey_next(k)) {
1415 if (__set_blocks(n1, n1->keys + keys +
1416 bkey_u64s(k),
1417 block_bytes(b->c)) > blocks)
1418 break;
1420 last = k;
1421 keys += bkey_u64s(k);
1423 } else {
1425 * Last node we're not getting rid of - we're getting
1426 * rid of the node at r[0]. Have to try and fit all of
1427 * the remaining keys into this node; we can't ensure
1428 * they will always fit due to rounding and variable
1429 * length keys (shouldn't be possible in practice,
1430 * though)
1432 if (__set_blocks(n1, n1->keys + n2->keys,
1433 block_bytes(b->c)) >
1434 btree_blocks(new_nodes[i]))
1435 goto out_unlock_nocoalesce;
1437 keys = n2->keys;
1438 /* Take the key of the node we're getting rid of */
1439 last = &r->b->key;
1442 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1443 btree_blocks(new_nodes[i]));
1445 if (last)
1446 bkey_copy_key(&new_nodes[i]->key, last);
1448 memcpy(bset_bkey_last(n1),
1449 n2->start,
1450 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1452 n1->keys += keys;
1453 r[i].keys = n1->keys;
1455 memmove(n2->start,
1456 bset_bkey_idx(n2, keys),
1457 (void *) bset_bkey_last(n2) -
1458 (void *) bset_bkey_idx(n2, keys));
1460 n2->keys -= keys;
1462 if (__bch_keylist_realloc(&keylist,
1463 bkey_u64s(&new_nodes[i]->key)))
1464 goto out_unlock_nocoalesce;
1466 bch_btree_node_write(new_nodes[i], &cl);
1467 bch_keylist_add(&keylist, &new_nodes[i]->key);
1470 for (i = 0; i < nodes; i++)
1471 mutex_unlock(&new_nodes[i]->write_lock);
1473 closure_sync(&cl);
1475 /* We emptied out this node */
1476 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1477 btree_node_free(new_nodes[0]);
1478 rw_unlock(true, new_nodes[0]);
1479 new_nodes[0] = NULL;
1481 for (i = 0; i < nodes; i++) {
1482 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1483 goto out_nocoalesce;
1485 make_btree_freeing_key(r[i].b, keylist.top);
1486 bch_keylist_push(&keylist);
1489 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1490 BUG_ON(!bch_keylist_empty(&keylist));
1492 for (i = 0; i < nodes; i++) {
1493 btree_node_free(r[i].b);
1494 rw_unlock(true, r[i].b);
1496 r[i].b = new_nodes[i];
1499 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1500 r[nodes - 1].b = ERR_PTR(-EINTR);
1502 trace_bcache_btree_gc_coalesce(nodes);
1503 gc->nodes--;
1505 bch_keylist_free(&keylist);
1507 /* Invalidated our iterator */
1508 return -EINTR;
1510 out_unlock_nocoalesce:
1511 for (i = 0; i < nodes; i++)
1512 mutex_unlock(&new_nodes[i]->write_lock);
1514 out_nocoalesce:
1515 closure_sync(&cl);
1516 bch_keylist_free(&keylist);
1518 while ((k = bch_keylist_pop(&keylist)))
1519 if (!bkey_cmp(k, &ZERO_KEY))
1520 atomic_dec(&b->c->prio_blocked);
1522 for (i = 0; i < nodes; i++)
1523 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1524 btree_node_free(new_nodes[i]);
1525 rw_unlock(true, new_nodes[i]);
1527 return 0;
1530 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1531 struct btree *replace)
1533 struct keylist keys;
1534 struct btree *n;
1536 if (btree_check_reserve(b, NULL))
1537 return 0;
1539 n = btree_node_alloc_replacement(replace, NULL);
1541 /* recheck reserve after allocating replacement node */
1542 if (btree_check_reserve(b, NULL)) {
1543 btree_node_free(n);
1544 rw_unlock(true, n);
1545 return 0;
1548 bch_btree_node_write_sync(n);
1550 bch_keylist_init(&keys);
1551 bch_keylist_add(&keys, &n->key);
1553 make_btree_freeing_key(replace, keys.top);
1554 bch_keylist_push(&keys);
1556 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1557 BUG_ON(!bch_keylist_empty(&keys));
1559 btree_node_free(replace);
1560 rw_unlock(true, n);
1562 /* Invalidated our iterator */
1563 return -EINTR;
1566 static unsigned int btree_gc_count_keys(struct btree *b)
1568 struct bkey *k;
1569 struct btree_iter iter;
1570 unsigned int ret = 0;
1572 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1573 ret += bkey_u64s(k);
1575 return ret;
1578 static size_t btree_gc_min_nodes(struct cache_set *c)
1580 size_t min_nodes;
1583 * Since incremental GC would stop 100ms when front
1584 * side I/O comes, so when there are many btree nodes,
1585 * if GC only processes constant (100) nodes each time,
1586 * GC would last a long time, and the front side I/Os
1587 * would run out of the buckets (since no new bucket
1588 * can be allocated during GC), and be blocked again.
1589 * So GC should not process constant nodes, but varied
1590 * nodes according to the number of btree nodes, which
1591 * realized by dividing GC into constant(100) times,
1592 * so when there are many btree nodes, GC can process
1593 * more nodes each time, otherwise, GC will process less
1594 * nodes each time (but no less than MIN_GC_NODES)
1596 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1597 if (min_nodes < MIN_GC_NODES)
1598 min_nodes = MIN_GC_NODES;
1600 return min_nodes;
1604 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1605 struct closure *writes, struct gc_stat *gc)
1607 int ret = 0;
1608 bool should_rewrite;
1609 struct bkey *k;
1610 struct btree_iter iter;
1611 struct gc_merge_info r[GC_MERGE_NODES];
1612 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1614 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1616 for (i = r; i < r + ARRAY_SIZE(r); i++)
1617 i->b = ERR_PTR(-EINTR);
1619 while (1) {
1620 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1621 if (k) {
1622 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1623 true, b);
1624 if (IS_ERR(r->b)) {
1625 ret = PTR_ERR(r->b);
1626 break;
1629 r->keys = btree_gc_count_keys(r->b);
1631 ret = btree_gc_coalesce(b, op, gc, r);
1632 if (ret)
1633 break;
1636 if (!last->b)
1637 break;
1639 if (!IS_ERR(last->b)) {
1640 should_rewrite = btree_gc_mark_node(last->b, gc);
1641 if (should_rewrite) {
1642 ret = btree_gc_rewrite_node(b, op, last->b);
1643 if (ret)
1644 break;
1647 if (last->b->level) {
1648 ret = btree_gc_recurse(last->b, op, writes, gc);
1649 if (ret)
1650 break;
1653 bkey_copy_key(&b->c->gc_done, &last->b->key);
1656 * Must flush leaf nodes before gc ends, since replace
1657 * operations aren't journalled
1659 mutex_lock(&last->b->write_lock);
1660 if (btree_node_dirty(last->b))
1661 bch_btree_node_write(last->b, writes);
1662 mutex_unlock(&last->b->write_lock);
1663 rw_unlock(true, last->b);
1666 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1667 r->b = NULL;
1669 if (atomic_read(&b->c->search_inflight) &&
1670 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1671 gc->nodes_pre = gc->nodes;
1672 ret = -EAGAIN;
1673 break;
1676 if (need_resched()) {
1677 ret = -EAGAIN;
1678 break;
1682 for (i = r; i < r + ARRAY_SIZE(r); i++)
1683 if (!IS_ERR_OR_NULL(i->b)) {
1684 mutex_lock(&i->b->write_lock);
1685 if (btree_node_dirty(i->b))
1686 bch_btree_node_write(i->b, writes);
1687 mutex_unlock(&i->b->write_lock);
1688 rw_unlock(true, i->b);
1691 return ret;
1694 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1695 struct closure *writes, struct gc_stat *gc)
1697 struct btree *n = NULL;
1698 int ret = 0;
1699 bool should_rewrite;
1701 should_rewrite = btree_gc_mark_node(b, gc);
1702 if (should_rewrite) {
1703 n = btree_node_alloc_replacement(b, NULL);
1705 if (!IS_ERR_OR_NULL(n)) {
1706 bch_btree_node_write_sync(n);
1708 bch_btree_set_root(n);
1709 btree_node_free(b);
1710 rw_unlock(true, n);
1712 return -EINTR;
1716 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1718 if (b->level) {
1719 ret = btree_gc_recurse(b, op, writes, gc);
1720 if (ret)
1721 return ret;
1724 bkey_copy_key(&b->c->gc_done, &b->key);
1726 return ret;
1729 static void btree_gc_start(struct cache_set *c)
1731 struct cache *ca;
1732 struct bucket *b;
1733 unsigned int i;
1735 if (!c->gc_mark_valid)
1736 return;
1738 mutex_lock(&c->bucket_lock);
1740 c->gc_mark_valid = 0;
1741 c->gc_done = ZERO_KEY;
1743 for_each_cache(ca, c, i)
1744 for_each_bucket(b, ca) {
1745 b->last_gc = b->gen;
1746 if (!atomic_read(&b->pin)) {
1747 SET_GC_MARK(b, 0);
1748 SET_GC_SECTORS_USED(b, 0);
1752 mutex_unlock(&c->bucket_lock);
1755 static void bch_btree_gc_finish(struct cache_set *c)
1757 struct bucket *b;
1758 struct cache *ca;
1759 unsigned int i;
1761 mutex_lock(&c->bucket_lock);
1763 set_gc_sectors(c);
1764 c->gc_mark_valid = 1;
1765 c->need_gc = 0;
1767 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1768 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1769 GC_MARK_METADATA);
1771 /* don't reclaim buckets to which writeback keys point */
1772 rcu_read_lock();
1773 for (i = 0; i < c->devices_max_used; i++) {
1774 struct bcache_device *d = c->devices[i];
1775 struct cached_dev *dc;
1776 struct keybuf_key *w, *n;
1777 unsigned int j;
1779 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1780 continue;
1781 dc = container_of(d, struct cached_dev, disk);
1783 spin_lock(&dc->writeback_keys.lock);
1784 rbtree_postorder_for_each_entry_safe(w, n,
1785 &dc->writeback_keys.keys, node)
1786 for (j = 0; j < KEY_PTRS(&w->key); j++)
1787 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1788 GC_MARK_DIRTY);
1789 spin_unlock(&dc->writeback_keys.lock);
1791 rcu_read_unlock();
1793 c->avail_nbuckets = 0;
1794 for_each_cache(ca, c, i) {
1795 uint64_t *i;
1797 ca->invalidate_needs_gc = 0;
1799 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1800 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1802 for (i = ca->prio_buckets;
1803 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1804 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1806 for_each_bucket(b, ca) {
1807 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1809 if (atomic_read(&b->pin))
1810 continue;
1812 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1814 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1815 c->avail_nbuckets++;
1819 mutex_unlock(&c->bucket_lock);
1822 static void bch_btree_gc(struct cache_set *c)
1824 int ret;
1825 struct gc_stat stats;
1826 struct closure writes;
1827 struct btree_op op;
1828 uint64_t start_time = local_clock();
1830 trace_bcache_gc_start(c);
1832 memset(&stats, 0, sizeof(struct gc_stat));
1833 closure_init_stack(&writes);
1834 bch_btree_op_init(&op, SHRT_MAX);
1836 btree_gc_start(c);
1838 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1839 do {
1840 ret = btree_root(gc_root, c, &op, &writes, &stats);
1841 closure_sync(&writes);
1842 cond_resched();
1844 if (ret == -EAGAIN)
1845 schedule_timeout_interruptible(msecs_to_jiffies
1846 (GC_SLEEP_MS));
1847 else if (ret)
1848 pr_warn("gc failed!");
1849 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1851 bch_btree_gc_finish(c);
1852 wake_up_allocators(c);
1854 bch_time_stats_update(&c->btree_gc_time, start_time);
1856 stats.key_bytes *= sizeof(uint64_t);
1857 stats.data <<= 9;
1858 bch_update_bucket_in_use(c, &stats);
1859 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1861 trace_bcache_gc_end(c);
1863 bch_moving_gc(c);
1866 static bool gc_should_run(struct cache_set *c)
1868 struct cache *ca;
1869 unsigned int i;
1871 for_each_cache(ca, c, i)
1872 if (ca->invalidate_needs_gc)
1873 return true;
1875 if (atomic_read(&c->sectors_to_gc) < 0)
1876 return true;
1878 return false;
1881 static int bch_gc_thread(void *arg)
1883 struct cache_set *c = arg;
1885 while (1) {
1886 wait_event_interruptible(c->gc_wait,
1887 kthread_should_stop() ||
1888 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1889 gc_should_run(c));
1891 if (kthread_should_stop() ||
1892 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1893 break;
1895 set_gc_sectors(c);
1896 bch_btree_gc(c);
1899 wait_for_kthread_stop();
1900 return 0;
1903 int bch_gc_thread_start(struct cache_set *c)
1905 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1906 return PTR_ERR_OR_ZERO(c->gc_thread);
1909 /* Initial partial gc */
1911 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1913 int ret = 0;
1914 struct bkey *k, *p = NULL;
1915 struct btree_iter iter;
1917 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1918 bch_initial_mark_key(b->c, b->level, k);
1920 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1922 if (b->level) {
1923 bch_btree_iter_init(&b->keys, &iter, NULL);
1925 do {
1926 k = bch_btree_iter_next_filter(&iter, &b->keys,
1927 bch_ptr_bad);
1928 if (k) {
1929 btree_node_prefetch(b, k);
1931 * initiallize c->gc_stats.nodes
1932 * for incremental GC
1934 b->c->gc_stats.nodes++;
1937 if (p)
1938 ret = btree(check_recurse, p, b, op);
1940 p = k;
1941 } while (p && !ret);
1944 return ret;
1947 int bch_btree_check(struct cache_set *c)
1949 struct btree_op op;
1951 bch_btree_op_init(&op, SHRT_MAX);
1953 return btree_root(check_recurse, c, &op);
1956 void bch_initial_gc_finish(struct cache_set *c)
1958 struct cache *ca;
1959 struct bucket *b;
1960 unsigned int i;
1962 bch_btree_gc_finish(c);
1964 mutex_lock(&c->bucket_lock);
1967 * We need to put some unused buckets directly on the prio freelist in
1968 * order to get the allocator thread started - it needs freed buckets in
1969 * order to rewrite the prios and gens, and it needs to rewrite prios
1970 * and gens in order to free buckets.
1972 * This is only safe for buckets that have no live data in them, which
1973 * there should always be some of.
1975 for_each_cache(ca, c, i) {
1976 for_each_bucket(b, ca) {
1977 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1978 fifo_full(&ca->free[RESERVE_BTREE]))
1979 break;
1981 if (bch_can_invalidate_bucket(ca, b) &&
1982 !GC_MARK(b)) {
1983 __bch_invalidate_one_bucket(ca, b);
1984 if (!fifo_push(&ca->free[RESERVE_PRIO],
1985 b - ca->buckets))
1986 fifo_push(&ca->free[RESERVE_BTREE],
1987 b - ca->buckets);
1992 mutex_unlock(&c->bucket_lock);
1995 /* Btree insertion */
1997 static bool btree_insert_key(struct btree *b, struct bkey *k,
1998 struct bkey *replace_key)
2000 unsigned int status;
2002 BUG_ON(bkey_cmp(k, &b->key) > 0);
2004 status = bch_btree_insert_key(&b->keys, k, replace_key);
2005 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2006 bch_check_keys(&b->keys, "%u for %s", status,
2007 replace_key ? "replace" : "insert");
2009 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2010 status);
2011 return true;
2012 } else
2013 return false;
2016 static size_t insert_u64s_remaining(struct btree *b)
2018 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2021 * Might land in the middle of an existing extent and have to split it
2023 if (b->keys.ops->is_extents)
2024 ret -= KEY_MAX_U64S;
2026 return max(ret, 0L);
2029 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2030 struct keylist *insert_keys,
2031 struct bkey *replace_key)
2033 bool ret = false;
2034 int oldsize = bch_count_data(&b->keys);
2036 while (!bch_keylist_empty(insert_keys)) {
2037 struct bkey *k = insert_keys->keys;
2039 if (bkey_u64s(k) > insert_u64s_remaining(b))
2040 break;
2042 if (bkey_cmp(k, &b->key) <= 0) {
2043 if (!b->level)
2044 bkey_put(b->c, k);
2046 ret |= btree_insert_key(b, k, replace_key);
2047 bch_keylist_pop_front(insert_keys);
2048 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2049 BKEY_PADDED(key) temp;
2050 bkey_copy(&temp.key, insert_keys->keys);
2052 bch_cut_back(&b->key, &temp.key);
2053 bch_cut_front(&b->key, insert_keys->keys);
2055 ret |= btree_insert_key(b, &temp.key, replace_key);
2056 break;
2057 } else {
2058 break;
2062 if (!ret)
2063 op->insert_collision = true;
2065 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2067 BUG_ON(bch_count_data(&b->keys) < oldsize);
2068 return ret;
2071 static int btree_split(struct btree *b, struct btree_op *op,
2072 struct keylist *insert_keys,
2073 struct bkey *replace_key)
2075 bool split;
2076 struct btree *n1, *n2 = NULL, *n3 = NULL;
2077 uint64_t start_time = local_clock();
2078 struct closure cl;
2079 struct keylist parent_keys;
2081 closure_init_stack(&cl);
2082 bch_keylist_init(&parent_keys);
2084 if (btree_check_reserve(b, op)) {
2085 if (!b->level)
2086 return -EINTR;
2087 else
2088 WARN(1, "insufficient reserve for split\n");
2091 n1 = btree_node_alloc_replacement(b, op);
2092 if (IS_ERR(n1))
2093 goto err;
2095 split = set_blocks(btree_bset_first(n1),
2096 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2098 if (split) {
2099 unsigned int keys = 0;
2101 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2103 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2104 if (IS_ERR(n2))
2105 goto err_free1;
2107 if (!b->parent) {
2108 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2109 if (IS_ERR(n3))
2110 goto err_free2;
2113 mutex_lock(&n1->write_lock);
2114 mutex_lock(&n2->write_lock);
2116 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2119 * Has to be a linear search because we don't have an auxiliary
2120 * search tree yet
2123 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2124 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2125 keys));
2127 bkey_copy_key(&n1->key,
2128 bset_bkey_idx(btree_bset_first(n1), keys));
2129 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2131 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2132 btree_bset_first(n1)->keys = keys;
2134 memcpy(btree_bset_first(n2)->start,
2135 bset_bkey_last(btree_bset_first(n1)),
2136 btree_bset_first(n2)->keys * sizeof(uint64_t));
2138 bkey_copy_key(&n2->key, &b->key);
2140 bch_keylist_add(&parent_keys, &n2->key);
2141 bch_btree_node_write(n2, &cl);
2142 mutex_unlock(&n2->write_lock);
2143 rw_unlock(true, n2);
2144 } else {
2145 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2147 mutex_lock(&n1->write_lock);
2148 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2151 bch_keylist_add(&parent_keys, &n1->key);
2152 bch_btree_node_write(n1, &cl);
2153 mutex_unlock(&n1->write_lock);
2155 if (n3) {
2156 /* Depth increases, make a new root */
2157 mutex_lock(&n3->write_lock);
2158 bkey_copy_key(&n3->key, &MAX_KEY);
2159 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2160 bch_btree_node_write(n3, &cl);
2161 mutex_unlock(&n3->write_lock);
2163 closure_sync(&cl);
2164 bch_btree_set_root(n3);
2165 rw_unlock(true, n3);
2166 } else if (!b->parent) {
2167 /* Root filled up but didn't need to be split */
2168 closure_sync(&cl);
2169 bch_btree_set_root(n1);
2170 } else {
2171 /* Split a non root node */
2172 closure_sync(&cl);
2173 make_btree_freeing_key(b, parent_keys.top);
2174 bch_keylist_push(&parent_keys);
2176 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2177 BUG_ON(!bch_keylist_empty(&parent_keys));
2180 btree_node_free(b);
2181 rw_unlock(true, n1);
2183 bch_time_stats_update(&b->c->btree_split_time, start_time);
2185 return 0;
2186 err_free2:
2187 bkey_put(b->c, &n2->key);
2188 btree_node_free(n2);
2189 rw_unlock(true, n2);
2190 err_free1:
2191 bkey_put(b->c, &n1->key);
2192 btree_node_free(n1);
2193 rw_unlock(true, n1);
2194 err:
2195 WARN(1, "bcache: btree split failed (level %u)", b->level);
2197 if (n3 == ERR_PTR(-EAGAIN) ||
2198 n2 == ERR_PTR(-EAGAIN) ||
2199 n1 == ERR_PTR(-EAGAIN))
2200 return -EAGAIN;
2202 return -ENOMEM;
2205 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2206 struct keylist *insert_keys,
2207 atomic_t *journal_ref,
2208 struct bkey *replace_key)
2210 struct closure cl;
2212 BUG_ON(b->level && replace_key);
2214 closure_init_stack(&cl);
2216 mutex_lock(&b->write_lock);
2218 if (write_block(b) != btree_bset_last(b) &&
2219 b->keys.last_set_unwritten)
2220 bch_btree_init_next(b); /* just wrote a set */
2222 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2223 mutex_unlock(&b->write_lock);
2224 goto split;
2227 BUG_ON(write_block(b) != btree_bset_last(b));
2229 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2230 if (!b->level)
2231 bch_btree_leaf_dirty(b, journal_ref);
2232 else
2233 bch_btree_node_write(b, &cl);
2236 mutex_unlock(&b->write_lock);
2238 /* wait for btree node write if necessary, after unlock */
2239 closure_sync(&cl);
2241 return 0;
2242 split:
2243 if (current->bio_list) {
2244 op->lock = b->c->root->level + 1;
2245 return -EAGAIN;
2246 } else if (op->lock <= b->c->root->level) {
2247 op->lock = b->c->root->level + 1;
2248 return -EINTR;
2249 } else {
2250 /* Invalidated all iterators */
2251 int ret = btree_split(b, op, insert_keys, replace_key);
2253 if (bch_keylist_empty(insert_keys))
2254 return 0;
2255 else if (!ret)
2256 return -EINTR;
2257 return ret;
2261 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2262 struct bkey *check_key)
2264 int ret = -EINTR;
2265 uint64_t btree_ptr = b->key.ptr[0];
2266 unsigned long seq = b->seq;
2267 struct keylist insert;
2268 bool upgrade = op->lock == -1;
2270 bch_keylist_init(&insert);
2272 if (upgrade) {
2273 rw_unlock(false, b);
2274 rw_lock(true, b, b->level);
2276 if (b->key.ptr[0] != btree_ptr ||
2277 b->seq != seq + 1) {
2278 op->lock = b->level;
2279 goto out;
2283 SET_KEY_PTRS(check_key, 1);
2284 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2286 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2288 bch_keylist_add(&insert, check_key);
2290 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2292 BUG_ON(!ret && !bch_keylist_empty(&insert));
2293 out:
2294 if (upgrade)
2295 downgrade_write(&b->lock);
2296 return ret;
2299 struct btree_insert_op {
2300 struct btree_op op;
2301 struct keylist *keys;
2302 atomic_t *journal_ref;
2303 struct bkey *replace_key;
2306 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2308 struct btree_insert_op *op = container_of(b_op,
2309 struct btree_insert_op, op);
2311 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2312 op->journal_ref, op->replace_key);
2313 if (ret && !bch_keylist_empty(op->keys))
2314 return ret;
2315 else
2316 return MAP_DONE;
2319 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2320 atomic_t *journal_ref, struct bkey *replace_key)
2322 struct btree_insert_op op;
2323 int ret = 0;
2325 BUG_ON(current->bio_list);
2326 BUG_ON(bch_keylist_empty(keys));
2328 bch_btree_op_init(&op.op, 0);
2329 op.keys = keys;
2330 op.journal_ref = journal_ref;
2331 op.replace_key = replace_key;
2333 while (!ret && !bch_keylist_empty(keys)) {
2334 op.op.lock = 0;
2335 ret = bch_btree_map_leaf_nodes(&op.op, c,
2336 &START_KEY(keys->keys),
2337 btree_insert_fn);
2340 if (ret) {
2341 struct bkey *k;
2343 pr_err("error %i", ret);
2345 while ((k = bch_keylist_pop(keys)))
2346 bkey_put(c, k);
2347 } else if (op.op.insert_collision)
2348 ret = -ESRCH;
2350 return ret;
2353 void bch_btree_set_root(struct btree *b)
2355 unsigned int i;
2356 struct closure cl;
2358 closure_init_stack(&cl);
2360 trace_bcache_btree_set_root(b);
2362 BUG_ON(!b->written);
2364 for (i = 0; i < KEY_PTRS(&b->key); i++)
2365 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2367 mutex_lock(&b->c->bucket_lock);
2368 list_del_init(&b->list);
2369 mutex_unlock(&b->c->bucket_lock);
2371 b->c->root = b;
2373 bch_journal_meta(b->c, &cl);
2374 closure_sync(&cl);
2377 /* Map across nodes or keys */
2379 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2380 struct bkey *from,
2381 btree_map_nodes_fn *fn, int flags)
2383 int ret = MAP_CONTINUE;
2385 if (b->level) {
2386 struct bkey *k;
2387 struct btree_iter iter;
2389 bch_btree_iter_init(&b->keys, &iter, from);
2391 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2392 bch_ptr_bad))) {
2393 ret = btree(map_nodes_recurse, k, b,
2394 op, from, fn, flags);
2395 from = NULL;
2397 if (ret != MAP_CONTINUE)
2398 return ret;
2402 if (!b->level || flags == MAP_ALL_NODES)
2403 ret = fn(op, b);
2405 return ret;
2408 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2409 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2411 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2414 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2415 struct bkey *from, btree_map_keys_fn *fn,
2416 int flags)
2418 int ret = MAP_CONTINUE;
2419 struct bkey *k;
2420 struct btree_iter iter;
2422 bch_btree_iter_init(&b->keys, &iter, from);
2424 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2425 ret = !b->level
2426 ? fn(op, b, k)
2427 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2428 from = NULL;
2430 if (ret != MAP_CONTINUE)
2431 return ret;
2434 if (!b->level && (flags & MAP_END_KEY))
2435 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2436 KEY_OFFSET(&b->key), 0));
2438 return ret;
2441 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2442 struct bkey *from, btree_map_keys_fn *fn, int flags)
2444 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2447 /* Keybuf code */
2449 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2451 /* Overlapping keys compare equal */
2452 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2453 return -1;
2454 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2455 return 1;
2456 return 0;
2459 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2460 struct keybuf_key *r)
2462 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2465 struct refill {
2466 struct btree_op op;
2467 unsigned int nr_found;
2468 struct keybuf *buf;
2469 struct bkey *end;
2470 keybuf_pred_fn *pred;
2473 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2474 struct bkey *k)
2476 struct refill *refill = container_of(op, struct refill, op);
2477 struct keybuf *buf = refill->buf;
2478 int ret = MAP_CONTINUE;
2480 if (bkey_cmp(k, refill->end) > 0) {
2481 ret = MAP_DONE;
2482 goto out;
2485 if (!KEY_SIZE(k)) /* end key */
2486 goto out;
2488 if (refill->pred(buf, k)) {
2489 struct keybuf_key *w;
2491 spin_lock(&buf->lock);
2493 w = array_alloc(&buf->freelist);
2494 if (!w) {
2495 spin_unlock(&buf->lock);
2496 return MAP_DONE;
2499 w->private = NULL;
2500 bkey_copy(&w->key, k);
2502 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2503 array_free(&buf->freelist, w);
2504 else
2505 refill->nr_found++;
2507 if (array_freelist_empty(&buf->freelist))
2508 ret = MAP_DONE;
2510 spin_unlock(&buf->lock);
2512 out:
2513 buf->last_scanned = *k;
2514 return ret;
2517 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2518 struct bkey *end, keybuf_pred_fn *pred)
2520 struct bkey start = buf->last_scanned;
2521 struct refill refill;
2523 cond_resched();
2525 bch_btree_op_init(&refill.op, -1);
2526 refill.nr_found = 0;
2527 refill.buf = buf;
2528 refill.end = end;
2529 refill.pred = pred;
2531 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2532 refill_keybuf_fn, MAP_END_KEY);
2534 trace_bcache_keyscan(refill.nr_found,
2535 KEY_INODE(&start), KEY_OFFSET(&start),
2536 KEY_INODE(&buf->last_scanned),
2537 KEY_OFFSET(&buf->last_scanned));
2539 spin_lock(&buf->lock);
2541 if (!RB_EMPTY_ROOT(&buf->keys)) {
2542 struct keybuf_key *w;
2544 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2545 buf->start = START_KEY(&w->key);
2547 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2548 buf->end = w->key;
2549 } else {
2550 buf->start = MAX_KEY;
2551 buf->end = MAX_KEY;
2554 spin_unlock(&buf->lock);
2557 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2559 rb_erase(&w->node, &buf->keys);
2560 array_free(&buf->freelist, w);
2563 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2565 spin_lock(&buf->lock);
2566 __bch_keybuf_del(buf, w);
2567 spin_unlock(&buf->lock);
2570 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2571 struct bkey *end)
2573 bool ret = false;
2574 struct keybuf_key *p, *w, s;
2576 s.key = *start;
2578 if (bkey_cmp(end, &buf->start) <= 0 ||
2579 bkey_cmp(start, &buf->end) >= 0)
2580 return false;
2582 spin_lock(&buf->lock);
2583 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2585 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2586 p = w;
2587 w = RB_NEXT(w, node);
2589 if (p->private)
2590 ret = true;
2591 else
2592 __bch_keybuf_del(buf, p);
2595 spin_unlock(&buf->lock);
2596 return ret;
2599 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2601 struct keybuf_key *w;
2603 spin_lock(&buf->lock);
2605 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2607 while (w && w->private)
2608 w = RB_NEXT(w, node);
2610 if (w)
2611 w->private = ERR_PTR(-EINTR);
2613 spin_unlock(&buf->lock);
2614 return w;
2617 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2618 struct keybuf *buf,
2619 struct bkey *end,
2620 keybuf_pred_fn *pred)
2622 struct keybuf_key *ret;
2624 while (1) {
2625 ret = bch_keybuf_next(buf);
2626 if (ret)
2627 break;
2629 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2630 pr_debug("scan finished");
2631 break;
2634 bch_refill_keybuf(c, buf, end, pred);
2637 return ret;
2640 void bch_keybuf_init(struct keybuf *buf)
2642 buf->last_scanned = MAX_KEY;
2643 buf->keys = RB_ROOT;
2645 spin_lock_init(&buf->lock);
2646 array_allocator_init(&buf->freelist);