1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
43 * register_bcache: Return errors out to userspace correctly
45 * Writeback: don't undirty key until after a cache flush
47 * Create an iterator for key pointers
49 * On btree write error, mark bucket such that it won't be freed from the cache
52 * Check for bad keys in replay
54 * Refcount journal entries in journal_replay
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
68 * Add a tracepoint or somesuch to watch for writeback starvation
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
79 * Superblock needs to be fleshed out for multiple cache devices
81 * Add a sysfs tunable for the number of writeback IOs in flight
83 * Add a sysfs tunable for the number of open data buckets
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
88 * Test module load/unload
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
102 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105 * These macros are for recursing down the btree - they handle the details of
106 * locking and looking up nodes in the cache for you. They're best treated as
107 * mere syntax when reading code that uses them.
109 * op->lock determines whether we take a read or a write lock at a given depth.
110 * If you've got a read lock and find that you need a write lock (i.e. you're
111 * going to have to split), set op->lock and return -EINTR; btree_root() will
112 * call you again and you'll have the correct lock.
116 * btree - recurse down the btree on a specified key
117 * @fn: function to call, which will be passed the child node
118 * @key: key to recurse on
119 * @b: parent btree node
120 * @op: pointer to struct btree_op
122 #define btree(fn, key, b, op, ...) \
124 int _r, l = (b)->level - 1; \
125 bool _w = l <= (op)->lock; \
126 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
128 if (!IS_ERR(_child)) { \
129 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
130 rw_unlock(_w, _child); \
132 _r = PTR_ERR(_child); \
137 * btree_root - call a function on the root of the btree
138 * @fn: function to call, which will be passed the child node
140 * @op: pointer to struct btree_op
142 #define btree_root(fn, c, op, ...) \
146 struct btree *_b = (c)->root; \
147 bool _w = insert_lock(op, _b); \
148 rw_lock(_w, _b, _b->level); \
149 if (_b == (c)->root && \
150 _w == insert_lock(op, _b)) { \
151 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
154 bch_cannibalize_unlock(c); \
157 } while (_r == -EINTR); \
159 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
163 static inline struct bset
*write_block(struct btree
*b
)
165 return ((void *) btree_bset_first(b
)) + b
->written
* block_bytes(b
->c
);
168 static void bch_btree_init_next(struct btree
*b
)
170 /* If not a leaf node, always sort */
171 if (b
->level
&& b
->keys
.nsets
)
172 bch_btree_sort(&b
->keys
, &b
->c
->sort
);
174 bch_btree_sort_lazy(&b
->keys
, &b
->c
->sort
);
176 if (b
->written
< btree_blocks(b
))
177 bch_bset_init_next(&b
->keys
, write_block(b
),
178 bset_magic(&b
->c
->sb
));
182 /* Btree key manipulation */
184 void bkey_put(struct cache_set
*c
, struct bkey
*k
)
188 for (i
= 0; i
< KEY_PTRS(k
); i
++)
189 if (ptr_available(c
, k
, i
))
190 atomic_dec_bug(&PTR_BUCKET(c
, k
, i
)->pin
);
195 static uint64_t btree_csum_set(struct btree
*b
, struct bset
*i
)
197 uint64_t crc
= b
->key
.ptr
[0];
198 void *data
= (void *) i
+ 8, *end
= bset_bkey_last(i
);
200 crc
= bch_crc64_update(crc
, data
, end
- data
);
201 return crc
^ 0xffffffffffffffffULL
;
204 void bch_btree_node_read_done(struct btree
*b
)
206 const char *err
= "bad btree header";
207 struct bset
*i
= btree_bset_first(b
);
208 struct btree_iter
*iter
;
210 iter
= mempool_alloc(&b
->c
->fill_iter
, GFP_NOIO
);
211 iter
->size
= b
->c
->sb
.bucket_size
/ b
->c
->sb
.block_size
;
214 #ifdef CONFIG_BCACHE_DEBUG
222 b
->written
< btree_blocks(b
) && i
->seq
== b
->keys
.set
[0].data
->seq
;
223 i
= write_block(b
)) {
224 err
= "unsupported bset version";
225 if (i
->version
> BCACHE_BSET_VERSION
)
228 err
= "bad btree header";
229 if (b
->written
+ set_blocks(i
, block_bytes(b
->c
)) >
234 if (i
->magic
!= bset_magic(&b
->c
->sb
))
237 err
= "bad checksum";
238 switch (i
->version
) {
240 if (i
->csum
!= csum_set(i
))
243 case BCACHE_BSET_VERSION
:
244 if (i
->csum
!= btree_csum_set(b
, i
))
250 if (i
!= b
->keys
.set
[0].data
&& !i
->keys
)
253 bch_btree_iter_push(iter
, i
->start
, bset_bkey_last(i
));
255 b
->written
+= set_blocks(i
, block_bytes(b
->c
));
258 err
= "corrupted btree";
259 for (i
= write_block(b
);
260 bset_sector_offset(&b
->keys
, i
) < KEY_SIZE(&b
->key
);
261 i
= ((void *) i
) + block_bytes(b
->c
))
262 if (i
->seq
== b
->keys
.set
[0].data
->seq
)
265 bch_btree_sort_and_fix_extents(&b
->keys
, iter
, &b
->c
->sort
);
267 i
= b
->keys
.set
[0].data
;
268 err
= "short btree key";
269 if (b
->keys
.set
[0].size
&&
270 bkey_cmp(&b
->key
, &b
->keys
.set
[0].end
) < 0)
273 if (b
->written
< btree_blocks(b
))
274 bch_bset_init_next(&b
->keys
, write_block(b
),
275 bset_magic(&b
->c
->sb
));
277 mempool_free(iter
, &b
->c
->fill_iter
);
280 set_btree_node_io_error(b
);
281 bch_cache_set_error(b
->c
, "%s at bucket %zu, block %u, %u keys",
282 err
, PTR_BUCKET_NR(b
->c
, &b
->key
, 0),
283 bset_block_offset(b
, i
), i
->keys
);
287 static void btree_node_read_endio(struct bio
*bio
)
289 struct closure
*cl
= bio
->bi_private
;
294 static void bch_btree_node_read(struct btree
*b
)
296 uint64_t start_time
= local_clock();
300 trace_bcache_btree_read(b
);
302 closure_init_stack(&cl
);
304 bio
= bch_bbio_alloc(b
->c
);
305 bio
->bi_iter
.bi_size
= KEY_SIZE(&b
->key
) << 9;
306 bio
->bi_end_io
= btree_node_read_endio
;
307 bio
->bi_private
= &cl
;
308 bio
->bi_opf
= REQ_OP_READ
| REQ_META
;
310 bch_bio_map(bio
, b
->keys
.set
[0].data
);
312 bch_submit_bbio(bio
, b
->c
, &b
->key
, 0);
316 set_btree_node_io_error(b
);
318 bch_bbio_free(bio
, b
->c
);
320 if (btree_node_io_error(b
))
323 bch_btree_node_read_done(b
);
324 bch_time_stats_update(&b
->c
->btree_read_time
, start_time
);
328 bch_cache_set_error(b
->c
, "io error reading bucket %zu",
329 PTR_BUCKET_NR(b
->c
, &b
->key
, 0));
332 static void btree_complete_write(struct btree
*b
, struct btree_write
*w
)
334 if (w
->prio_blocked
&&
335 !atomic_sub_return(w
->prio_blocked
, &b
->c
->prio_blocked
))
336 wake_up_allocators(b
->c
);
339 atomic_dec_bug(w
->journal
);
340 __closure_wake_up(&b
->c
->journal
.wait
);
347 static void btree_node_write_unlock(struct closure
*cl
)
349 struct btree
*b
= container_of(cl
, struct btree
, io
);
354 static void __btree_node_write_done(struct closure
*cl
)
356 struct btree
*b
= container_of(cl
, struct btree
, io
);
357 struct btree_write
*w
= btree_prev_write(b
);
359 bch_bbio_free(b
->bio
, b
->c
);
361 btree_complete_write(b
, w
);
363 if (btree_node_dirty(b
))
364 schedule_delayed_work(&b
->work
, 30 * HZ
);
366 closure_return_with_destructor(cl
, btree_node_write_unlock
);
369 static void btree_node_write_done(struct closure
*cl
)
371 struct btree
*b
= container_of(cl
, struct btree
, io
);
373 bio_free_pages(b
->bio
);
374 __btree_node_write_done(cl
);
377 static void btree_node_write_endio(struct bio
*bio
)
379 struct closure
*cl
= bio
->bi_private
;
380 struct btree
*b
= container_of(cl
, struct btree
, io
);
383 set_btree_node_io_error(b
);
385 bch_bbio_count_io_errors(b
->c
, bio
, bio
->bi_status
, "writing btree");
389 static void do_btree_node_write(struct btree
*b
)
391 struct closure
*cl
= &b
->io
;
392 struct bset
*i
= btree_bset_last(b
);
395 i
->version
= BCACHE_BSET_VERSION
;
396 i
->csum
= btree_csum_set(b
, i
);
399 b
->bio
= bch_bbio_alloc(b
->c
);
401 b
->bio
->bi_end_io
= btree_node_write_endio
;
402 b
->bio
->bi_private
= cl
;
403 b
->bio
->bi_iter
.bi_size
= roundup(set_bytes(i
), block_bytes(b
->c
));
404 b
->bio
->bi_opf
= REQ_OP_WRITE
| REQ_META
| REQ_FUA
;
405 bch_bio_map(b
->bio
, i
);
408 * If we're appending to a leaf node, we don't technically need FUA -
409 * this write just needs to be persisted before the next journal write,
410 * which will be marked FLUSH|FUA.
412 * Similarly if we're writing a new btree root - the pointer is going to
413 * be in the next journal entry.
415 * But if we're writing a new btree node (that isn't a root) or
416 * appending to a non leaf btree node, we need either FUA or a flush
417 * when we write the parent with the new pointer. FUA is cheaper than a
418 * flush, and writes appending to leaf nodes aren't blocking anything so
419 * just make all btree node writes FUA to keep things sane.
422 bkey_copy(&k
.key
, &b
->key
);
423 SET_PTR_OFFSET(&k
.key
, 0, PTR_OFFSET(&k
.key
, 0) +
424 bset_sector_offset(&b
->keys
, i
));
426 if (!bch_bio_alloc_pages(b
->bio
, __GFP_NOWARN
|GFP_NOWAIT
)) {
429 void *base
= (void *) ((unsigned long) i
& ~(PAGE_SIZE
- 1));
431 bio_for_each_segment_all(bv
, b
->bio
, j
)
432 memcpy(page_address(bv
->bv_page
),
433 base
+ j
* PAGE_SIZE
, PAGE_SIZE
);
435 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
437 continue_at(cl
, btree_node_write_done
, NULL
);
440 * No problem for multipage bvec since the bio is
444 bch_bio_map(b
->bio
, i
);
446 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
449 continue_at_nobarrier(cl
, __btree_node_write_done
, NULL
);
453 void __bch_btree_node_write(struct btree
*b
, struct closure
*parent
)
455 struct bset
*i
= btree_bset_last(b
);
457 lockdep_assert_held(&b
->write_lock
);
459 trace_bcache_btree_write(b
);
461 BUG_ON(current
->bio_list
);
462 BUG_ON(b
->written
>= btree_blocks(b
));
463 BUG_ON(b
->written
&& !i
->keys
);
464 BUG_ON(btree_bset_first(b
)->seq
!= i
->seq
);
465 bch_check_keys(&b
->keys
, "writing");
467 cancel_delayed_work(&b
->work
);
469 /* If caller isn't waiting for write, parent refcount is cache set */
471 closure_init(&b
->io
, parent
?: &b
->c
->cl
);
473 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
474 change_bit(BTREE_NODE_write_idx
, &b
->flags
);
476 do_btree_node_write(b
);
478 atomic_long_add(set_blocks(i
, block_bytes(b
->c
)) * b
->c
->sb
.block_size
,
479 &PTR_CACHE(b
->c
, &b
->key
, 0)->btree_sectors_written
);
481 b
->written
+= set_blocks(i
, block_bytes(b
->c
));
484 void bch_btree_node_write(struct btree
*b
, struct closure
*parent
)
486 unsigned int nsets
= b
->keys
.nsets
;
488 lockdep_assert_held(&b
->lock
);
490 __bch_btree_node_write(b
, parent
);
493 * do verify if there was more than one set initially (i.e. we did a
494 * sort) and we sorted down to a single set:
496 if (nsets
&& !b
->keys
.nsets
)
499 bch_btree_init_next(b
);
502 static void bch_btree_node_write_sync(struct btree
*b
)
506 closure_init_stack(&cl
);
508 mutex_lock(&b
->write_lock
);
509 bch_btree_node_write(b
, &cl
);
510 mutex_unlock(&b
->write_lock
);
515 static void btree_node_write_work(struct work_struct
*w
)
517 struct btree
*b
= container_of(to_delayed_work(w
), struct btree
, work
);
519 mutex_lock(&b
->write_lock
);
520 if (btree_node_dirty(b
))
521 __bch_btree_node_write(b
, NULL
);
522 mutex_unlock(&b
->write_lock
);
525 static void bch_btree_leaf_dirty(struct btree
*b
, atomic_t
*journal_ref
)
527 struct bset
*i
= btree_bset_last(b
);
528 struct btree_write
*w
= btree_current_write(b
);
530 lockdep_assert_held(&b
->write_lock
);
535 if (!btree_node_dirty(b
))
536 schedule_delayed_work(&b
->work
, 30 * HZ
);
538 set_btree_node_dirty(b
);
542 journal_pin_cmp(b
->c
, w
->journal
, journal_ref
)) {
543 atomic_dec_bug(w
->journal
);
548 w
->journal
= journal_ref
;
549 atomic_inc(w
->journal
);
553 /* Force write if set is too big */
554 if (set_bytes(i
) > PAGE_SIZE
- 48 &&
556 bch_btree_node_write(b
, NULL
);
560 * Btree in memory cache - allocation/freeing
561 * mca -> memory cache
564 #define mca_reserve(c) (((c->root && c->root->level) \
565 ? c->root->level : 1) * 8 + 16)
566 #define mca_can_free(c) \
567 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
569 static void mca_data_free(struct btree
*b
)
571 BUG_ON(b
->io_mutex
.count
!= 1);
573 bch_btree_keys_free(&b
->keys
);
575 b
->c
->btree_cache_used
--;
576 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
579 static void mca_bucket_free(struct btree
*b
)
581 BUG_ON(btree_node_dirty(b
));
584 hlist_del_init_rcu(&b
->hash
);
585 list_move(&b
->list
, &b
->c
->btree_cache_freeable
);
588 static unsigned int btree_order(struct bkey
*k
)
590 return ilog2(KEY_SIZE(k
) / PAGE_SECTORS
?: 1);
593 static void mca_data_alloc(struct btree
*b
, struct bkey
*k
, gfp_t gfp
)
595 if (!bch_btree_keys_alloc(&b
->keys
,
597 ilog2(b
->c
->btree_pages
),
600 b
->c
->btree_cache_used
++;
601 list_move(&b
->list
, &b
->c
->btree_cache
);
603 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
607 static struct btree
*mca_bucket_alloc(struct cache_set
*c
,
608 struct bkey
*k
, gfp_t gfp
)
610 struct btree
*b
= kzalloc(sizeof(struct btree
), gfp
);
615 init_rwsem(&b
->lock
);
616 lockdep_set_novalidate_class(&b
->lock
);
617 mutex_init(&b
->write_lock
);
618 lockdep_set_novalidate_class(&b
->write_lock
);
619 INIT_LIST_HEAD(&b
->list
);
620 INIT_DELAYED_WORK(&b
->work
, btree_node_write_work
);
622 sema_init(&b
->io_mutex
, 1);
624 mca_data_alloc(b
, k
, gfp
);
628 static int mca_reap(struct btree
*b
, unsigned int min_order
, bool flush
)
632 closure_init_stack(&cl
);
633 lockdep_assert_held(&b
->c
->bucket_lock
);
635 if (!down_write_trylock(&b
->lock
))
638 BUG_ON(btree_node_dirty(b
) && !b
->keys
.set
[0].data
);
640 if (b
->keys
.page_order
< min_order
)
644 if (btree_node_dirty(b
))
647 if (down_trylock(&b
->io_mutex
))
654 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
655 * __bch_btree_node_write(). To avoid an extra flush, acquire
656 * b->write_lock before checking BTREE_NODE_dirty bit.
658 mutex_lock(&b
->write_lock
);
660 * If this btree node is selected in btree_flush_write() by journal
661 * code, delay and retry until the node is flushed by journal code
662 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
664 if (btree_node_journal_flush(b
)) {
665 pr_debug("bnode %p is flushing by journal, retry", b
);
666 mutex_unlock(&b
->write_lock
);
671 if (btree_node_dirty(b
))
672 __bch_btree_node_write(b
, &cl
);
673 mutex_unlock(&b
->write_lock
);
677 /* wait for any in flight btree write */
687 static unsigned long bch_mca_scan(struct shrinker
*shrink
,
688 struct shrink_control
*sc
)
690 struct cache_set
*c
= container_of(shrink
, struct cache_set
, shrink
);
692 unsigned long i
, nr
= sc
->nr_to_scan
;
693 unsigned long freed
= 0;
694 unsigned int btree_cache_used
;
696 if (c
->shrinker_disabled
)
699 if (c
->btree_cache_alloc_lock
)
702 /* Return -1 if we can't do anything right now */
703 if (sc
->gfp_mask
& __GFP_IO
)
704 mutex_lock(&c
->bucket_lock
);
705 else if (!mutex_trylock(&c
->bucket_lock
))
709 * It's _really_ critical that we don't free too many btree nodes - we
710 * have to always leave ourselves a reserve. The reserve is how we
711 * guarantee that allocating memory for a new btree node can always
712 * succeed, so that inserting keys into the btree can always succeed and
713 * IO can always make forward progress:
715 nr
/= c
->btree_pages
;
718 nr
= min_t(unsigned long, nr
, mca_can_free(c
));
721 btree_cache_used
= c
->btree_cache_used
;
722 list_for_each_entry_safe(b
, t
, &c
->btree_cache_freeable
, list
) {
727 !mca_reap(b
, 0, false)) {
735 for (; (nr
--) && i
< btree_cache_used
; i
++) {
736 if (list_empty(&c
->btree_cache
))
739 b
= list_first_entry(&c
->btree_cache
, struct btree
, list
);
740 list_rotate_left(&c
->btree_cache
);
743 !mca_reap(b
, 0, false)) {
752 mutex_unlock(&c
->bucket_lock
);
753 return freed
* c
->btree_pages
;
756 static unsigned long bch_mca_count(struct shrinker
*shrink
,
757 struct shrink_control
*sc
)
759 struct cache_set
*c
= container_of(shrink
, struct cache_set
, shrink
);
761 if (c
->shrinker_disabled
)
764 if (c
->btree_cache_alloc_lock
)
767 return mca_can_free(c
) * c
->btree_pages
;
770 void bch_btree_cache_free(struct cache_set
*c
)
775 closure_init_stack(&cl
);
777 if (c
->shrink
.list
.next
)
778 unregister_shrinker(&c
->shrink
);
780 mutex_lock(&c
->bucket_lock
);
782 #ifdef CONFIG_BCACHE_DEBUG
784 list_move(&c
->verify_data
->list
, &c
->btree_cache
);
786 free_pages((unsigned long) c
->verify_ondisk
, ilog2(bucket_pages(c
)));
789 list_splice(&c
->btree_cache_freeable
,
792 while (!list_empty(&c
->btree_cache
)) {
793 b
= list_first_entry(&c
->btree_cache
, struct btree
, list
);
796 * This function is called by cache_set_free(), no I/O
797 * request on cache now, it is unnecessary to acquire
798 * b->write_lock before clearing BTREE_NODE_dirty anymore.
800 if (btree_node_dirty(b
)) {
801 btree_complete_write(b
, btree_current_write(b
));
802 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
807 while (!list_empty(&c
->btree_cache_freed
)) {
808 b
= list_first_entry(&c
->btree_cache_freed
,
811 cancel_delayed_work_sync(&b
->work
);
815 mutex_unlock(&c
->bucket_lock
);
818 int bch_btree_cache_alloc(struct cache_set
*c
)
822 for (i
= 0; i
< mca_reserve(c
); i
++)
823 if (!mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
))
826 list_splice_init(&c
->btree_cache
,
827 &c
->btree_cache_freeable
);
829 #ifdef CONFIG_BCACHE_DEBUG
830 mutex_init(&c
->verify_lock
);
832 c
->verify_ondisk
= (void *)
833 __get_free_pages(GFP_KERNEL
, ilog2(bucket_pages(c
)));
835 c
->verify_data
= mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
);
837 if (c
->verify_data
&&
838 c
->verify_data
->keys
.set
->data
)
839 list_del_init(&c
->verify_data
->list
);
841 c
->verify_data
= NULL
;
844 c
->shrink
.count_objects
= bch_mca_count
;
845 c
->shrink
.scan_objects
= bch_mca_scan
;
847 c
->shrink
.batch
= c
->btree_pages
* 2;
849 if (register_shrinker(&c
->shrink
))
850 pr_warn("bcache: %s: could not register shrinker",
856 /* Btree in memory cache - hash table */
858 static struct hlist_head
*mca_hash(struct cache_set
*c
, struct bkey
*k
)
860 return &c
->bucket_hash
[hash_32(PTR_HASH(c
, k
), BUCKET_HASH_BITS
)];
863 static struct btree
*mca_find(struct cache_set
*c
, struct bkey
*k
)
868 hlist_for_each_entry_rcu(b
, mca_hash(c
, k
), hash
)
869 if (PTR_HASH(c
, &b
->key
) == PTR_HASH(c
, k
))
877 static int mca_cannibalize_lock(struct cache_set
*c
, struct btree_op
*op
)
879 struct task_struct
*old
;
881 old
= cmpxchg(&c
->btree_cache_alloc_lock
, NULL
, current
);
882 if (old
&& old
!= current
) {
884 prepare_to_wait(&c
->btree_cache_wait
, &op
->wait
,
885 TASK_UNINTERRUPTIBLE
);
892 static struct btree
*mca_cannibalize(struct cache_set
*c
, struct btree_op
*op
,
897 trace_bcache_btree_cache_cannibalize(c
);
899 if (mca_cannibalize_lock(c
, op
))
900 return ERR_PTR(-EINTR
);
902 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
903 if (!mca_reap(b
, btree_order(k
), false))
906 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
907 if (!mca_reap(b
, btree_order(k
), true))
910 WARN(1, "btree cache cannibalize failed\n");
911 return ERR_PTR(-ENOMEM
);
915 * We can only have one thread cannibalizing other cached btree nodes at a time,
916 * or we'll deadlock. We use an open coded mutex to ensure that, which a
917 * cannibalize_bucket() will take. This means every time we unlock the root of
918 * the btree, we need to release this lock if we have it held.
920 static void bch_cannibalize_unlock(struct cache_set
*c
)
922 if (c
->btree_cache_alloc_lock
== current
) {
923 c
->btree_cache_alloc_lock
= NULL
;
924 wake_up(&c
->btree_cache_wait
);
928 static struct btree
*mca_alloc(struct cache_set
*c
, struct btree_op
*op
,
929 struct bkey
*k
, int level
)
933 BUG_ON(current
->bio_list
);
935 lockdep_assert_held(&c
->bucket_lock
);
940 /* btree_free() doesn't free memory; it sticks the node on the end of
941 * the list. Check if there's any freed nodes there:
943 list_for_each_entry(b
, &c
->btree_cache_freeable
, list
)
944 if (!mca_reap(b
, btree_order(k
), false))
947 /* We never free struct btree itself, just the memory that holds the on
948 * disk node. Check the freed list before allocating a new one:
950 list_for_each_entry(b
, &c
->btree_cache_freed
, list
)
951 if (!mca_reap(b
, 0, false)) {
952 mca_data_alloc(b
, k
, __GFP_NOWARN
|GFP_NOIO
);
953 if (!b
->keys
.set
[0].data
)
959 b
= mca_bucket_alloc(c
, k
, __GFP_NOWARN
|GFP_NOIO
);
963 BUG_ON(!down_write_trylock(&b
->lock
));
964 if (!b
->keys
.set
->data
)
967 BUG_ON(b
->io_mutex
.count
!= 1);
969 bkey_copy(&b
->key
, k
);
970 list_move(&b
->list
, &c
->btree_cache
);
971 hlist_del_init_rcu(&b
->hash
);
972 hlist_add_head_rcu(&b
->hash
, mca_hash(c
, k
));
974 lock_set_subclass(&b
->lock
.dep_map
, level
+ 1, _THIS_IP_
);
975 b
->parent
= (void *) ~0UL;
981 bch_btree_keys_init(&b
->keys
, &bch_extent_keys_ops
,
982 &b
->c
->expensive_debug_checks
);
984 bch_btree_keys_init(&b
->keys
, &bch_btree_keys_ops
,
985 &b
->c
->expensive_debug_checks
);
992 b
= mca_cannibalize(c
, op
, k
);
1000 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1001 * in from disk if necessary.
1003 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1005 * The btree node will have either a read or a write lock held, depending on
1006 * level and op->lock.
1008 struct btree
*bch_btree_node_get(struct cache_set
*c
, struct btree_op
*op
,
1009 struct bkey
*k
, int level
, bool write
,
1010 struct btree
*parent
)
1020 if (current
->bio_list
)
1021 return ERR_PTR(-EAGAIN
);
1023 mutex_lock(&c
->bucket_lock
);
1024 b
= mca_alloc(c
, op
, k
, level
);
1025 mutex_unlock(&c
->bucket_lock
);
1032 bch_btree_node_read(b
);
1035 downgrade_write(&b
->lock
);
1037 rw_lock(write
, b
, level
);
1038 if (PTR_HASH(c
, &b
->key
) != PTR_HASH(c
, k
)) {
1039 rw_unlock(write
, b
);
1042 BUG_ON(b
->level
!= level
);
1045 if (btree_node_io_error(b
)) {
1046 rw_unlock(write
, b
);
1047 return ERR_PTR(-EIO
);
1050 BUG_ON(!b
->written
);
1055 for (; i
<= b
->keys
.nsets
&& b
->keys
.set
[i
].size
; i
++) {
1056 prefetch(b
->keys
.set
[i
].tree
);
1057 prefetch(b
->keys
.set
[i
].data
);
1060 for (; i
<= b
->keys
.nsets
; i
++)
1061 prefetch(b
->keys
.set
[i
].data
);
1066 static void btree_node_prefetch(struct btree
*parent
, struct bkey
*k
)
1070 mutex_lock(&parent
->c
->bucket_lock
);
1071 b
= mca_alloc(parent
->c
, NULL
, k
, parent
->level
- 1);
1072 mutex_unlock(&parent
->c
->bucket_lock
);
1074 if (!IS_ERR_OR_NULL(b
)) {
1076 bch_btree_node_read(b
);
1083 static void btree_node_free(struct btree
*b
)
1085 trace_bcache_btree_node_free(b
);
1087 BUG_ON(b
== b
->c
->root
);
1090 mutex_lock(&b
->write_lock
);
1092 * If the btree node is selected and flushing in btree_flush_write(),
1093 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1094 * then it is safe to free the btree node here. Otherwise this btree
1095 * node will be in race condition.
1097 if (btree_node_journal_flush(b
)) {
1098 mutex_unlock(&b
->write_lock
);
1099 pr_debug("bnode %p journal_flush set, retry", b
);
1104 if (btree_node_dirty(b
)) {
1105 btree_complete_write(b
, btree_current_write(b
));
1106 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
1109 mutex_unlock(&b
->write_lock
);
1111 cancel_delayed_work(&b
->work
);
1113 mutex_lock(&b
->c
->bucket_lock
);
1114 bch_bucket_free(b
->c
, &b
->key
);
1116 mutex_unlock(&b
->c
->bucket_lock
);
1119 struct btree
*__bch_btree_node_alloc(struct cache_set
*c
, struct btree_op
*op
,
1120 int level
, bool wait
,
1121 struct btree
*parent
)
1124 struct btree
*b
= ERR_PTR(-EAGAIN
);
1126 mutex_lock(&c
->bucket_lock
);
1128 if (__bch_bucket_alloc_set(c
, RESERVE_BTREE
, &k
.key
, 1, wait
))
1131 bkey_put(c
, &k
.key
);
1132 SET_KEY_SIZE(&k
.key
, c
->btree_pages
* PAGE_SECTORS
);
1134 b
= mca_alloc(c
, op
, &k
.key
, level
);
1140 "Tried to allocate bucket that was in btree cache");
1146 bch_bset_init_next(&b
->keys
, b
->keys
.set
->data
, bset_magic(&b
->c
->sb
));
1148 mutex_unlock(&c
->bucket_lock
);
1150 trace_bcache_btree_node_alloc(b
);
1153 bch_bucket_free(c
, &k
.key
);
1155 mutex_unlock(&c
->bucket_lock
);
1157 trace_bcache_btree_node_alloc_fail(c
);
1161 static struct btree
*bch_btree_node_alloc(struct cache_set
*c
,
1162 struct btree_op
*op
, int level
,
1163 struct btree
*parent
)
1165 return __bch_btree_node_alloc(c
, op
, level
, op
!= NULL
, parent
);
1168 static struct btree
*btree_node_alloc_replacement(struct btree
*b
,
1169 struct btree_op
*op
)
1171 struct btree
*n
= bch_btree_node_alloc(b
->c
, op
, b
->level
, b
->parent
);
1173 if (!IS_ERR_OR_NULL(n
)) {
1174 mutex_lock(&n
->write_lock
);
1175 bch_btree_sort_into(&b
->keys
, &n
->keys
, &b
->c
->sort
);
1176 bkey_copy_key(&n
->key
, &b
->key
);
1177 mutex_unlock(&n
->write_lock
);
1183 static void make_btree_freeing_key(struct btree
*b
, struct bkey
*k
)
1187 mutex_lock(&b
->c
->bucket_lock
);
1189 atomic_inc(&b
->c
->prio_blocked
);
1191 bkey_copy(k
, &b
->key
);
1192 bkey_copy_key(k
, &ZERO_KEY
);
1194 for (i
= 0; i
< KEY_PTRS(k
); i
++)
1196 bch_inc_gen(PTR_CACHE(b
->c
, &b
->key
, i
),
1197 PTR_BUCKET(b
->c
, &b
->key
, i
)));
1199 mutex_unlock(&b
->c
->bucket_lock
);
1202 static int btree_check_reserve(struct btree
*b
, struct btree_op
*op
)
1204 struct cache_set
*c
= b
->c
;
1206 unsigned int i
, reserve
= (c
->root
->level
- b
->level
) * 2 + 1;
1208 mutex_lock(&c
->bucket_lock
);
1210 for_each_cache(ca
, c
, i
)
1211 if (fifo_used(&ca
->free
[RESERVE_BTREE
]) < reserve
) {
1213 prepare_to_wait(&c
->btree_cache_wait
, &op
->wait
,
1214 TASK_UNINTERRUPTIBLE
);
1215 mutex_unlock(&c
->bucket_lock
);
1219 mutex_unlock(&c
->bucket_lock
);
1221 return mca_cannibalize_lock(b
->c
, op
);
1224 /* Garbage collection */
1226 static uint8_t __bch_btree_mark_key(struct cache_set
*c
, int level
,
1234 * ptr_invalid() can't return true for the keys that mark btree nodes as
1235 * freed, but since ptr_bad() returns true we'll never actually use them
1236 * for anything and thus we don't want mark their pointers here
1238 if (!bkey_cmp(k
, &ZERO_KEY
))
1241 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
1242 if (!ptr_available(c
, k
, i
))
1245 g
= PTR_BUCKET(c
, k
, i
);
1247 if (gen_after(g
->last_gc
, PTR_GEN(k
, i
)))
1248 g
->last_gc
= PTR_GEN(k
, i
);
1250 if (ptr_stale(c
, k
, i
)) {
1251 stale
= max(stale
, ptr_stale(c
, k
, i
));
1255 cache_bug_on(GC_MARK(g
) &&
1256 (GC_MARK(g
) == GC_MARK_METADATA
) != (level
!= 0),
1257 c
, "inconsistent ptrs: mark = %llu, level = %i",
1261 SET_GC_MARK(g
, GC_MARK_METADATA
);
1262 else if (KEY_DIRTY(k
))
1263 SET_GC_MARK(g
, GC_MARK_DIRTY
);
1264 else if (!GC_MARK(g
))
1265 SET_GC_MARK(g
, GC_MARK_RECLAIMABLE
);
1267 /* guard against overflow */
1268 SET_GC_SECTORS_USED(g
, min_t(unsigned int,
1269 GC_SECTORS_USED(g
) + KEY_SIZE(k
),
1270 MAX_GC_SECTORS_USED
));
1272 BUG_ON(!GC_SECTORS_USED(g
));
1278 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1280 void bch_initial_mark_key(struct cache_set
*c
, int level
, struct bkey
*k
)
1284 for (i
= 0; i
< KEY_PTRS(k
); i
++)
1285 if (ptr_available(c
, k
, i
) &&
1286 !ptr_stale(c
, k
, i
)) {
1287 struct bucket
*b
= PTR_BUCKET(c
, k
, i
);
1289 b
->gen
= PTR_GEN(k
, i
);
1291 if (level
&& bkey_cmp(k
, &ZERO_KEY
))
1292 b
->prio
= BTREE_PRIO
;
1293 else if (!level
&& b
->prio
== BTREE_PRIO
)
1294 b
->prio
= INITIAL_PRIO
;
1297 __bch_btree_mark_key(c
, level
, k
);
1300 void bch_update_bucket_in_use(struct cache_set
*c
, struct gc_stat
*stats
)
1302 stats
->in_use
= (c
->nbuckets
- c
->avail_nbuckets
) * 100 / c
->nbuckets
;
1305 static bool btree_gc_mark_node(struct btree
*b
, struct gc_stat
*gc
)
1308 unsigned int keys
= 0, good_keys
= 0;
1310 struct btree_iter iter
;
1311 struct bset_tree
*t
;
1315 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
) {
1316 stale
= max(stale
, btree_mark_key(b
, k
));
1319 if (bch_ptr_bad(&b
->keys
, k
))
1322 gc
->key_bytes
+= bkey_u64s(k
);
1326 gc
->data
+= KEY_SIZE(k
);
1329 for (t
= b
->keys
.set
; t
<= &b
->keys
.set
[b
->keys
.nsets
]; t
++)
1330 btree_bug_on(t
->size
&&
1331 bset_written(&b
->keys
, t
) &&
1332 bkey_cmp(&b
->key
, &t
->end
) < 0,
1333 b
, "found short btree key in gc");
1335 if (b
->c
->gc_always_rewrite
)
1341 if ((keys
- good_keys
) * 2 > keys
)
1347 #define GC_MERGE_NODES 4U
1349 struct gc_merge_info
{
1354 static int bch_btree_insert_node(struct btree
*b
, struct btree_op
*op
,
1355 struct keylist
*insert_keys
,
1356 atomic_t
*journal_ref
,
1357 struct bkey
*replace_key
);
1359 static int btree_gc_coalesce(struct btree
*b
, struct btree_op
*op
,
1360 struct gc_stat
*gc
, struct gc_merge_info
*r
)
1362 unsigned int i
, nodes
= 0, keys
= 0, blocks
;
1363 struct btree
*new_nodes
[GC_MERGE_NODES
];
1364 struct keylist keylist
;
1368 bch_keylist_init(&keylist
);
1370 if (btree_check_reserve(b
, NULL
))
1373 memset(new_nodes
, 0, sizeof(new_nodes
));
1374 closure_init_stack(&cl
);
1376 while (nodes
< GC_MERGE_NODES
&& !IS_ERR_OR_NULL(r
[nodes
].b
))
1377 keys
+= r
[nodes
++].keys
;
1379 blocks
= btree_default_blocks(b
->c
) * 2 / 3;
1382 __set_blocks(b
->keys
.set
[0].data
, keys
,
1383 block_bytes(b
->c
)) > blocks
* (nodes
- 1))
1386 for (i
= 0; i
< nodes
; i
++) {
1387 new_nodes
[i
] = btree_node_alloc_replacement(r
[i
].b
, NULL
);
1388 if (IS_ERR_OR_NULL(new_nodes
[i
]))
1389 goto out_nocoalesce
;
1393 * We have to check the reserve here, after we've allocated our new
1394 * nodes, to make sure the insert below will succeed - we also check
1395 * before as an optimization to potentially avoid a bunch of expensive
1398 if (btree_check_reserve(b
, NULL
))
1399 goto out_nocoalesce
;
1401 for (i
= 0; i
< nodes
; i
++)
1402 mutex_lock(&new_nodes
[i
]->write_lock
);
1404 for (i
= nodes
- 1; i
> 0; --i
) {
1405 struct bset
*n1
= btree_bset_first(new_nodes
[i
]);
1406 struct bset
*n2
= btree_bset_first(new_nodes
[i
- 1]);
1407 struct bkey
*k
, *last
= NULL
;
1413 k
< bset_bkey_last(n2
);
1415 if (__set_blocks(n1
, n1
->keys
+ keys
+
1417 block_bytes(b
->c
)) > blocks
)
1421 keys
+= bkey_u64s(k
);
1425 * Last node we're not getting rid of - we're getting
1426 * rid of the node at r[0]. Have to try and fit all of
1427 * the remaining keys into this node; we can't ensure
1428 * they will always fit due to rounding and variable
1429 * length keys (shouldn't be possible in practice,
1432 if (__set_blocks(n1
, n1
->keys
+ n2
->keys
,
1433 block_bytes(b
->c
)) >
1434 btree_blocks(new_nodes
[i
]))
1435 goto out_unlock_nocoalesce
;
1438 /* Take the key of the node we're getting rid of */
1442 BUG_ON(__set_blocks(n1
, n1
->keys
+ keys
, block_bytes(b
->c
)) >
1443 btree_blocks(new_nodes
[i
]));
1446 bkey_copy_key(&new_nodes
[i
]->key
, last
);
1448 memcpy(bset_bkey_last(n1
),
1450 (void *) bset_bkey_idx(n2
, keys
) - (void *) n2
->start
);
1453 r
[i
].keys
= n1
->keys
;
1456 bset_bkey_idx(n2
, keys
),
1457 (void *) bset_bkey_last(n2
) -
1458 (void *) bset_bkey_idx(n2
, keys
));
1462 if (__bch_keylist_realloc(&keylist
,
1463 bkey_u64s(&new_nodes
[i
]->key
)))
1464 goto out_unlock_nocoalesce
;
1466 bch_btree_node_write(new_nodes
[i
], &cl
);
1467 bch_keylist_add(&keylist
, &new_nodes
[i
]->key
);
1470 for (i
= 0; i
< nodes
; i
++)
1471 mutex_unlock(&new_nodes
[i
]->write_lock
);
1475 /* We emptied out this node */
1476 BUG_ON(btree_bset_first(new_nodes
[0])->keys
);
1477 btree_node_free(new_nodes
[0]);
1478 rw_unlock(true, new_nodes
[0]);
1479 new_nodes
[0] = NULL
;
1481 for (i
= 0; i
< nodes
; i
++) {
1482 if (__bch_keylist_realloc(&keylist
, bkey_u64s(&r
[i
].b
->key
)))
1483 goto out_nocoalesce
;
1485 make_btree_freeing_key(r
[i
].b
, keylist
.top
);
1486 bch_keylist_push(&keylist
);
1489 bch_btree_insert_node(b
, op
, &keylist
, NULL
, NULL
);
1490 BUG_ON(!bch_keylist_empty(&keylist
));
1492 for (i
= 0; i
< nodes
; i
++) {
1493 btree_node_free(r
[i
].b
);
1494 rw_unlock(true, r
[i
].b
);
1496 r
[i
].b
= new_nodes
[i
];
1499 memmove(r
, r
+ 1, sizeof(r
[0]) * (nodes
- 1));
1500 r
[nodes
- 1].b
= ERR_PTR(-EINTR
);
1502 trace_bcache_btree_gc_coalesce(nodes
);
1505 bch_keylist_free(&keylist
);
1507 /* Invalidated our iterator */
1510 out_unlock_nocoalesce
:
1511 for (i
= 0; i
< nodes
; i
++)
1512 mutex_unlock(&new_nodes
[i
]->write_lock
);
1516 bch_keylist_free(&keylist
);
1518 while ((k
= bch_keylist_pop(&keylist
)))
1519 if (!bkey_cmp(k
, &ZERO_KEY
))
1520 atomic_dec(&b
->c
->prio_blocked
);
1522 for (i
= 0; i
< nodes
; i
++)
1523 if (!IS_ERR_OR_NULL(new_nodes
[i
])) {
1524 btree_node_free(new_nodes
[i
]);
1525 rw_unlock(true, new_nodes
[i
]);
1530 static int btree_gc_rewrite_node(struct btree
*b
, struct btree_op
*op
,
1531 struct btree
*replace
)
1533 struct keylist keys
;
1536 if (btree_check_reserve(b
, NULL
))
1539 n
= btree_node_alloc_replacement(replace
, NULL
);
1541 /* recheck reserve after allocating replacement node */
1542 if (btree_check_reserve(b
, NULL
)) {
1548 bch_btree_node_write_sync(n
);
1550 bch_keylist_init(&keys
);
1551 bch_keylist_add(&keys
, &n
->key
);
1553 make_btree_freeing_key(replace
, keys
.top
);
1554 bch_keylist_push(&keys
);
1556 bch_btree_insert_node(b
, op
, &keys
, NULL
, NULL
);
1557 BUG_ON(!bch_keylist_empty(&keys
));
1559 btree_node_free(replace
);
1562 /* Invalidated our iterator */
1566 static unsigned int btree_gc_count_keys(struct btree
*b
)
1569 struct btree_iter iter
;
1570 unsigned int ret
= 0;
1572 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_bad
)
1573 ret
+= bkey_u64s(k
);
1578 static size_t btree_gc_min_nodes(struct cache_set
*c
)
1583 * Since incremental GC would stop 100ms when front
1584 * side I/O comes, so when there are many btree nodes,
1585 * if GC only processes constant (100) nodes each time,
1586 * GC would last a long time, and the front side I/Os
1587 * would run out of the buckets (since no new bucket
1588 * can be allocated during GC), and be blocked again.
1589 * So GC should not process constant nodes, but varied
1590 * nodes according to the number of btree nodes, which
1591 * realized by dividing GC into constant(100) times,
1592 * so when there are many btree nodes, GC can process
1593 * more nodes each time, otherwise, GC will process less
1594 * nodes each time (but no less than MIN_GC_NODES)
1596 min_nodes
= c
->gc_stats
.nodes
/ MAX_GC_TIMES
;
1597 if (min_nodes
< MIN_GC_NODES
)
1598 min_nodes
= MIN_GC_NODES
;
1604 static int btree_gc_recurse(struct btree
*b
, struct btree_op
*op
,
1605 struct closure
*writes
, struct gc_stat
*gc
)
1608 bool should_rewrite
;
1610 struct btree_iter iter
;
1611 struct gc_merge_info r
[GC_MERGE_NODES
];
1612 struct gc_merge_info
*i
, *last
= r
+ ARRAY_SIZE(r
) - 1;
1614 bch_btree_iter_init(&b
->keys
, &iter
, &b
->c
->gc_done
);
1616 for (i
= r
; i
< r
+ ARRAY_SIZE(r
); i
++)
1617 i
->b
= ERR_PTR(-EINTR
);
1620 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
);
1622 r
->b
= bch_btree_node_get(b
->c
, op
, k
, b
->level
- 1,
1625 ret
= PTR_ERR(r
->b
);
1629 r
->keys
= btree_gc_count_keys(r
->b
);
1631 ret
= btree_gc_coalesce(b
, op
, gc
, r
);
1639 if (!IS_ERR(last
->b
)) {
1640 should_rewrite
= btree_gc_mark_node(last
->b
, gc
);
1641 if (should_rewrite
) {
1642 ret
= btree_gc_rewrite_node(b
, op
, last
->b
);
1647 if (last
->b
->level
) {
1648 ret
= btree_gc_recurse(last
->b
, op
, writes
, gc
);
1653 bkey_copy_key(&b
->c
->gc_done
, &last
->b
->key
);
1656 * Must flush leaf nodes before gc ends, since replace
1657 * operations aren't journalled
1659 mutex_lock(&last
->b
->write_lock
);
1660 if (btree_node_dirty(last
->b
))
1661 bch_btree_node_write(last
->b
, writes
);
1662 mutex_unlock(&last
->b
->write_lock
);
1663 rw_unlock(true, last
->b
);
1666 memmove(r
+ 1, r
, sizeof(r
[0]) * (GC_MERGE_NODES
- 1));
1669 if (atomic_read(&b
->c
->search_inflight
) &&
1670 gc
->nodes
>= gc
->nodes_pre
+ btree_gc_min_nodes(b
->c
)) {
1671 gc
->nodes_pre
= gc
->nodes
;
1676 if (need_resched()) {
1682 for (i
= r
; i
< r
+ ARRAY_SIZE(r
); i
++)
1683 if (!IS_ERR_OR_NULL(i
->b
)) {
1684 mutex_lock(&i
->b
->write_lock
);
1685 if (btree_node_dirty(i
->b
))
1686 bch_btree_node_write(i
->b
, writes
);
1687 mutex_unlock(&i
->b
->write_lock
);
1688 rw_unlock(true, i
->b
);
1694 static int bch_btree_gc_root(struct btree
*b
, struct btree_op
*op
,
1695 struct closure
*writes
, struct gc_stat
*gc
)
1697 struct btree
*n
= NULL
;
1699 bool should_rewrite
;
1701 should_rewrite
= btree_gc_mark_node(b
, gc
);
1702 if (should_rewrite
) {
1703 n
= btree_node_alloc_replacement(b
, NULL
);
1705 if (!IS_ERR_OR_NULL(n
)) {
1706 bch_btree_node_write_sync(n
);
1708 bch_btree_set_root(n
);
1716 __bch_btree_mark_key(b
->c
, b
->level
+ 1, &b
->key
);
1719 ret
= btree_gc_recurse(b
, op
, writes
, gc
);
1724 bkey_copy_key(&b
->c
->gc_done
, &b
->key
);
1729 static void btree_gc_start(struct cache_set
*c
)
1735 if (!c
->gc_mark_valid
)
1738 mutex_lock(&c
->bucket_lock
);
1740 c
->gc_mark_valid
= 0;
1741 c
->gc_done
= ZERO_KEY
;
1743 for_each_cache(ca
, c
, i
)
1744 for_each_bucket(b
, ca
) {
1745 b
->last_gc
= b
->gen
;
1746 if (!atomic_read(&b
->pin
)) {
1748 SET_GC_SECTORS_USED(b
, 0);
1752 mutex_unlock(&c
->bucket_lock
);
1755 static void bch_btree_gc_finish(struct cache_set
*c
)
1761 mutex_lock(&c
->bucket_lock
);
1764 c
->gc_mark_valid
= 1;
1767 for (i
= 0; i
< KEY_PTRS(&c
->uuid_bucket
); i
++)
1768 SET_GC_MARK(PTR_BUCKET(c
, &c
->uuid_bucket
, i
),
1771 /* don't reclaim buckets to which writeback keys point */
1773 for (i
= 0; i
< c
->devices_max_used
; i
++) {
1774 struct bcache_device
*d
= c
->devices
[i
];
1775 struct cached_dev
*dc
;
1776 struct keybuf_key
*w
, *n
;
1779 if (!d
|| UUID_FLASH_ONLY(&c
->uuids
[i
]))
1781 dc
= container_of(d
, struct cached_dev
, disk
);
1783 spin_lock(&dc
->writeback_keys
.lock
);
1784 rbtree_postorder_for_each_entry_safe(w
, n
,
1785 &dc
->writeback_keys
.keys
, node
)
1786 for (j
= 0; j
< KEY_PTRS(&w
->key
); j
++)
1787 SET_GC_MARK(PTR_BUCKET(c
, &w
->key
, j
),
1789 spin_unlock(&dc
->writeback_keys
.lock
);
1793 c
->avail_nbuckets
= 0;
1794 for_each_cache(ca
, c
, i
) {
1797 ca
->invalidate_needs_gc
= 0;
1799 for (i
= ca
->sb
.d
; i
< ca
->sb
.d
+ ca
->sb
.keys
; i
++)
1800 SET_GC_MARK(ca
->buckets
+ *i
, GC_MARK_METADATA
);
1802 for (i
= ca
->prio_buckets
;
1803 i
< ca
->prio_buckets
+ prio_buckets(ca
) * 2; i
++)
1804 SET_GC_MARK(ca
->buckets
+ *i
, GC_MARK_METADATA
);
1806 for_each_bucket(b
, ca
) {
1807 c
->need_gc
= max(c
->need_gc
, bucket_gc_gen(b
));
1809 if (atomic_read(&b
->pin
))
1812 BUG_ON(!GC_MARK(b
) && GC_SECTORS_USED(b
));
1814 if (!GC_MARK(b
) || GC_MARK(b
) == GC_MARK_RECLAIMABLE
)
1815 c
->avail_nbuckets
++;
1819 mutex_unlock(&c
->bucket_lock
);
1822 static void bch_btree_gc(struct cache_set
*c
)
1825 struct gc_stat stats
;
1826 struct closure writes
;
1828 uint64_t start_time
= local_clock();
1830 trace_bcache_gc_start(c
);
1832 memset(&stats
, 0, sizeof(struct gc_stat
));
1833 closure_init_stack(&writes
);
1834 bch_btree_op_init(&op
, SHRT_MAX
);
1838 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1840 ret
= btree_root(gc_root
, c
, &op
, &writes
, &stats
);
1841 closure_sync(&writes
);
1845 schedule_timeout_interruptible(msecs_to_jiffies
1848 pr_warn("gc failed!");
1849 } while (ret
&& !test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
));
1851 bch_btree_gc_finish(c
);
1852 wake_up_allocators(c
);
1854 bch_time_stats_update(&c
->btree_gc_time
, start_time
);
1856 stats
.key_bytes
*= sizeof(uint64_t);
1858 bch_update_bucket_in_use(c
, &stats
);
1859 memcpy(&c
->gc_stats
, &stats
, sizeof(struct gc_stat
));
1861 trace_bcache_gc_end(c
);
1866 static bool gc_should_run(struct cache_set
*c
)
1871 for_each_cache(ca
, c
, i
)
1872 if (ca
->invalidate_needs_gc
)
1875 if (atomic_read(&c
->sectors_to_gc
) < 0)
1881 static int bch_gc_thread(void *arg
)
1883 struct cache_set
*c
= arg
;
1886 wait_event_interruptible(c
->gc_wait
,
1887 kthread_should_stop() ||
1888 test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
) ||
1891 if (kthread_should_stop() ||
1892 test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1899 wait_for_kthread_stop();
1903 int bch_gc_thread_start(struct cache_set
*c
)
1905 c
->gc_thread
= kthread_run(bch_gc_thread
, c
, "bcache_gc");
1906 return PTR_ERR_OR_ZERO(c
->gc_thread
);
1909 /* Initial partial gc */
1911 static int bch_btree_check_recurse(struct btree
*b
, struct btree_op
*op
)
1914 struct bkey
*k
, *p
= NULL
;
1915 struct btree_iter iter
;
1917 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
)
1918 bch_initial_mark_key(b
->c
, b
->level
, k
);
1920 bch_initial_mark_key(b
->c
, b
->level
+ 1, &b
->key
);
1923 bch_btree_iter_init(&b
->keys
, &iter
, NULL
);
1926 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
1929 btree_node_prefetch(b
, k
);
1931 * initiallize c->gc_stats.nodes
1932 * for incremental GC
1934 b
->c
->gc_stats
.nodes
++;
1938 ret
= btree(check_recurse
, p
, b
, op
);
1941 } while (p
&& !ret
);
1947 int bch_btree_check(struct cache_set
*c
)
1951 bch_btree_op_init(&op
, SHRT_MAX
);
1953 return btree_root(check_recurse
, c
, &op
);
1956 void bch_initial_gc_finish(struct cache_set
*c
)
1962 bch_btree_gc_finish(c
);
1964 mutex_lock(&c
->bucket_lock
);
1967 * We need to put some unused buckets directly on the prio freelist in
1968 * order to get the allocator thread started - it needs freed buckets in
1969 * order to rewrite the prios and gens, and it needs to rewrite prios
1970 * and gens in order to free buckets.
1972 * This is only safe for buckets that have no live data in them, which
1973 * there should always be some of.
1975 for_each_cache(ca
, c
, i
) {
1976 for_each_bucket(b
, ca
) {
1977 if (fifo_full(&ca
->free
[RESERVE_PRIO
]) &&
1978 fifo_full(&ca
->free
[RESERVE_BTREE
]))
1981 if (bch_can_invalidate_bucket(ca
, b
) &&
1983 __bch_invalidate_one_bucket(ca
, b
);
1984 if (!fifo_push(&ca
->free
[RESERVE_PRIO
],
1986 fifo_push(&ca
->free
[RESERVE_BTREE
],
1992 mutex_unlock(&c
->bucket_lock
);
1995 /* Btree insertion */
1997 static bool btree_insert_key(struct btree
*b
, struct bkey
*k
,
1998 struct bkey
*replace_key
)
2000 unsigned int status
;
2002 BUG_ON(bkey_cmp(k
, &b
->key
) > 0);
2004 status
= bch_btree_insert_key(&b
->keys
, k
, replace_key
);
2005 if (status
!= BTREE_INSERT_STATUS_NO_INSERT
) {
2006 bch_check_keys(&b
->keys
, "%u for %s", status
,
2007 replace_key
? "replace" : "insert");
2009 trace_bcache_btree_insert_key(b
, k
, replace_key
!= NULL
,
2016 static size_t insert_u64s_remaining(struct btree
*b
)
2018 long ret
= bch_btree_keys_u64s_remaining(&b
->keys
);
2021 * Might land in the middle of an existing extent and have to split it
2023 if (b
->keys
.ops
->is_extents
)
2024 ret
-= KEY_MAX_U64S
;
2026 return max(ret
, 0L);
2029 static bool bch_btree_insert_keys(struct btree
*b
, struct btree_op
*op
,
2030 struct keylist
*insert_keys
,
2031 struct bkey
*replace_key
)
2034 int oldsize
= bch_count_data(&b
->keys
);
2036 while (!bch_keylist_empty(insert_keys
)) {
2037 struct bkey
*k
= insert_keys
->keys
;
2039 if (bkey_u64s(k
) > insert_u64s_remaining(b
))
2042 if (bkey_cmp(k
, &b
->key
) <= 0) {
2046 ret
|= btree_insert_key(b
, k
, replace_key
);
2047 bch_keylist_pop_front(insert_keys
);
2048 } else if (bkey_cmp(&START_KEY(k
), &b
->key
) < 0) {
2049 BKEY_PADDED(key
) temp
;
2050 bkey_copy(&temp
.key
, insert_keys
->keys
);
2052 bch_cut_back(&b
->key
, &temp
.key
);
2053 bch_cut_front(&b
->key
, insert_keys
->keys
);
2055 ret
|= btree_insert_key(b
, &temp
.key
, replace_key
);
2063 op
->insert_collision
= true;
2065 BUG_ON(!bch_keylist_empty(insert_keys
) && b
->level
);
2067 BUG_ON(bch_count_data(&b
->keys
) < oldsize
);
2071 static int btree_split(struct btree
*b
, struct btree_op
*op
,
2072 struct keylist
*insert_keys
,
2073 struct bkey
*replace_key
)
2076 struct btree
*n1
, *n2
= NULL
, *n3
= NULL
;
2077 uint64_t start_time
= local_clock();
2079 struct keylist parent_keys
;
2081 closure_init_stack(&cl
);
2082 bch_keylist_init(&parent_keys
);
2084 if (btree_check_reserve(b
, op
)) {
2088 WARN(1, "insufficient reserve for split\n");
2091 n1
= btree_node_alloc_replacement(b
, op
);
2095 split
= set_blocks(btree_bset_first(n1
),
2096 block_bytes(n1
->c
)) > (btree_blocks(b
) * 4) / 5;
2099 unsigned int keys
= 0;
2101 trace_bcache_btree_node_split(b
, btree_bset_first(n1
)->keys
);
2103 n2
= bch_btree_node_alloc(b
->c
, op
, b
->level
, b
->parent
);
2108 n3
= bch_btree_node_alloc(b
->c
, op
, b
->level
+ 1, NULL
);
2113 mutex_lock(&n1
->write_lock
);
2114 mutex_lock(&n2
->write_lock
);
2116 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
2119 * Has to be a linear search because we don't have an auxiliary
2123 while (keys
< (btree_bset_first(n1
)->keys
* 3) / 5)
2124 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
),
2127 bkey_copy_key(&n1
->key
,
2128 bset_bkey_idx(btree_bset_first(n1
), keys
));
2129 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
), keys
));
2131 btree_bset_first(n2
)->keys
= btree_bset_first(n1
)->keys
- keys
;
2132 btree_bset_first(n1
)->keys
= keys
;
2134 memcpy(btree_bset_first(n2
)->start
,
2135 bset_bkey_last(btree_bset_first(n1
)),
2136 btree_bset_first(n2
)->keys
* sizeof(uint64_t));
2138 bkey_copy_key(&n2
->key
, &b
->key
);
2140 bch_keylist_add(&parent_keys
, &n2
->key
);
2141 bch_btree_node_write(n2
, &cl
);
2142 mutex_unlock(&n2
->write_lock
);
2143 rw_unlock(true, n2
);
2145 trace_bcache_btree_node_compact(b
, btree_bset_first(n1
)->keys
);
2147 mutex_lock(&n1
->write_lock
);
2148 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
2151 bch_keylist_add(&parent_keys
, &n1
->key
);
2152 bch_btree_node_write(n1
, &cl
);
2153 mutex_unlock(&n1
->write_lock
);
2156 /* Depth increases, make a new root */
2157 mutex_lock(&n3
->write_lock
);
2158 bkey_copy_key(&n3
->key
, &MAX_KEY
);
2159 bch_btree_insert_keys(n3
, op
, &parent_keys
, NULL
);
2160 bch_btree_node_write(n3
, &cl
);
2161 mutex_unlock(&n3
->write_lock
);
2164 bch_btree_set_root(n3
);
2165 rw_unlock(true, n3
);
2166 } else if (!b
->parent
) {
2167 /* Root filled up but didn't need to be split */
2169 bch_btree_set_root(n1
);
2171 /* Split a non root node */
2173 make_btree_freeing_key(b
, parent_keys
.top
);
2174 bch_keylist_push(&parent_keys
);
2176 bch_btree_insert_node(b
->parent
, op
, &parent_keys
, NULL
, NULL
);
2177 BUG_ON(!bch_keylist_empty(&parent_keys
));
2181 rw_unlock(true, n1
);
2183 bch_time_stats_update(&b
->c
->btree_split_time
, start_time
);
2187 bkey_put(b
->c
, &n2
->key
);
2188 btree_node_free(n2
);
2189 rw_unlock(true, n2
);
2191 bkey_put(b
->c
, &n1
->key
);
2192 btree_node_free(n1
);
2193 rw_unlock(true, n1
);
2195 WARN(1, "bcache: btree split failed (level %u)", b
->level
);
2197 if (n3
== ERR_PTR(-EAGAIN
) ||
2198 n2
== ERR_PTR(-EAGAIN
) ||
2199 n1
== ERR_PTR(-EAGAIN
))
2205 static int bch_btree_insert_node(struct btree
*b
, struct btree_op
*op
,
2206 struct keylist
*insert_keys
,
2207 atomic_t
*journal_ref
,
2208 struct bkey
*replace_key
)
2212 BUG_ON(b
->level
&& replace_key
);
2214 closure_init_stack(&cl
);
2216 mutex_lock(&b
->write_lock
);
2218 if (write_block(b
) != btree_bset_last(b
) &&
2219 b
->keys
.last_set_unwritten
)
2220 bch_btree_init_next(b
); /* just wrote a set */
2222 if (bch_keylist_nkeys(insert_keys
) > insert_u64s_remaining(b
)) {
2223 mutex_unlock(&b
->write_lock
);
2227 BUG_ON(write_block(b
) != btree_bset_last(b
));
2229 if (bch_btree_insert_keys(b
, op
, insert_keys
, replace_key
)) {
2231 bch_btree_leaf_dirty(b
, journal_ref
);
2233 bch_btree_node_write(b
, &cl
);
2236 mutex_unlock(&b
->write_lock
);
2238 /* wait for btree node write if necessary, after unlock */
2243 if (current
->bio_list
) {
2244 op
->lock
= b
->c
->root
->level
+ 1;
2246 } else if (op
->lock
<= b
->c
->root
->level
) {
2247 op
->lock
= b
->c
->root
->level
+ 1;
2250 /* Invalidated all iterators */
2251 int ret
= btree_split(b
, op
, insert_keys
, replace_key
);
2253 if (bch_keylist_empty(insert_keys
))
2261 int bch_btree_insert_check_key(struct btree
*b
, struct btree_op
*op
,
2262 struct bkey
*check_key
)
2265 uint64_t btree_ptr
= b
->key
.ptr
[0];
2266 unsigned long seq
= b
->seq
;
2267 struct keylist insert
;
2268 bool upgrade
= op
->lock
== -1;
2270 bch_keylist_init(&insert
);
2273 rw_unlock(false, b
);
2274 rw_lock(true, b
, b
->level
);
2276 if (b
->key
.ptr
[0] != btree_ptr
||
2277 b
->seq
!= seq
+ 1) {
2278 op
->lock
= b
->level
;
2283 SET_KEY_PTRS(check_key
, 1);
2284 get_random_bytes(&check_key
->ptr
[0], sizeof(uint64_t));
2286 SET_PTR_DEV(check_key
, 0, PTR_CHECK_DEV
);
2288 bch_keylist_add(&insert
, check_key
);
2290 ret
= bch_btree_insert_node(b
, op
, &insert
, NULL
, NULL
);
2292 BUG_ON(!ret
&& !bch_keylist_empty(&insert
));
2295 downgrade_write(&b
->lock
);
2299 struct btree_insert_op
{
2301 struct keylist
*keys
;
2302 atomic_t
*journal_ref
;
2303 struct bkey
*replace_key
;
2306 static int btree_insert_fn(struct btree_op
*b_op
, struct btree
*b
)
2308 struct btree_insert_op
*op
= container_of(b_op
,
2309 struct btree_insert_op
, op
);
2311 int ret
= bch_btree_insert_node(b
, &op
->op
, op
->keys
,
2312 op
->journal_ref
, op
->replace_key
);
2313 if (ret
&& !bch_keylist_empty(op
->keys
))
2319 int bch_btree_insert(struct cache_set
*c
, struct keylist
*keys
,
2320 atomic_t
*journal_ref
, struct bkey
*replace_key
)
2322 struct btree_insert_op op
;
2325 BUG_ON(current
->bio_list
);
2326 BUG_ON(bch_keylist_empty(keys
));
2328 bch_btree_op_init(&op
.op
, 0);
2330 op
.journal_ref
= journal_ref
;
2331 op
.replace_key
= replace_key
;
2333 while (!ret
&& !bch_keylist_empty(keys
)) {
2335 ret
= bch_btree_map_leaf_nodes(&op
.op
, c
,
2336 &START_KEY(keys
->keys
),
2343 pr_err("error %i", ret
);
2345 while ((k
= bch_keylist_pop(keys
)))
2347 } else if (op
.op
.insert_collision
)
2353 void bch_btree_set_root(struct btree
*b
)
2358 closure_init_stack(&cl
);
2360 trace_bcache_btree_set_root(b
);
2362 BUG_ON(!b
->written
);
2364 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
2365 BUG_ON(PTR_BUCKET(b
->c
, &b
->key
, i
)->prio
!= BTREE_PRIO
);
2367 mutex_lock(&b
->c
->bucket_lock
);
2368 list_del_init(&b
->list
);
2369 mutex_unlock(&b
->c
->bucket_lock
);
2373 bch_journal_meta(b
->c
, &cl
);
2377 /* Map across nodes or keys */
2379 static int bch_btree_map_nodes_recurse(struct btree
*b
, struct btree_op
*op
,
2381 btree_map_nodes_fn
*fn
, int flags
)
2383 int ret
= MAP_CONTINUE
;
2387 struct btree_iter iter
;
2389 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2391 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
2393 ret
= btree(map_nodes_recurse
, k
, b
,
2394 op
, from
, fn
, flags
);
2397 if (ret
!= MAP_CONTINUE
)
2402 if (!b
->level
|| flags
== MAP_ALL_NODES
)
2408 int __bch_btree_map_nodes(struct btree_op
*op
, struct cache_set
*c
,
2409 struct bkey
*from
, btree_map_nodes_fn
*fn
, int flags
)
2411 return btree_root(map_nodes_recurse
, c
, op
, from
, fn
, flags
);
2414 static int bch_btree_map_keys_recurse(struct btree
*b
, struct btree_op
*op
,
2415 struct bkey
*from
, btree_map_keys_fn
*fn
,
2418 int ret
= MAP_CONTINUE
;
2420 struct btree_iter iter
;
2422 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2424 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
))) {
2427 : btree(map_keys_recurse
, k
, b
, op
, from
, fn
, flags
);
2430 if (ret
!= MAP_CONTINUE
)
2434 if (!b
->level
&& (flags
& MAP_END_KEY
))
2435 ret
= fn(op
, b
, &KEY(KEY_INODE(&b
->key
),
2436 KEY_OFFSET(&b
->key
), 0));
2441 int bch_btree_map_keys(struct btree_op
*op
, struct cache_set
*c
,
2442 struct bkey
*from
, btree_map_keys_fn
*fn
, int flags
)
2444 return btree_root(map_keys_recurse
, c
, op
, from
, fn
, flags
);
2449 static inline int keybuf_cmp(struct keybuf_key
*l
, struct keybuf_key
*r
)
2451 /* Overlapping keys compare equal */
2452 if (bkey_cmp(&l
->key
, &START_KEY(&r
->key
)) <= 0)
2454 if (bkey_cmp(&START_KEY(&l
->key
), &r
->key
) >= 0)
2459 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key
*l
,
2460 struct keybuf_key
*r
)
2462 return clamp_t(int64_t, bkey_cmp(&l
->key
, &r
->key
), -1, 1);
2467 unsigned int nr_found
;
2470 keybuf_pred_fn
*pred
;
2473 static int refill_keybuf_fn(struct btree_op
*op
, struct btree
*b
,
2476 struct refill
*refill
= container_of(op
, struct refill
, op
);
2477 struct keybuf
*buf
= refill
->buf
;
2478 int ret
= MAP_CONTINUE
;
2480 if (bkey_cmp(k
, refill
->end
) > 0) {
2485 if (!KEY_SIZE(k
)) /* end key */
2488 if (refill
->pred(buf
, k
)) {
2489 struct keybuf_key
*w
;
2491 spin_lock(&buf
->lock
);
2493 w
= array_alloc(&buf
->freelist
);
2495 spin_unlock(&buf
->lock
);
2500 bkey_copy(&w
->key
, k
);
2502 if (RB_INSERT(&buf
->keys
, w
, node
, keybuf_cmp
))
2503 array_free(&buf
->freelist
, w
);
2507 if (array_freelist_empty(&buf
->freelist
))
2510 spin_unlock(&buf
->lock
);
2513 buf
->last_scanned
= *k
;
2517 void bch_refill_keybuf(struct cache_set
*c
, struct keybuf
*buf
,
2518 struct bkey
*end
, keybuf_pred_fn
*pred
)
2520 struct bkey start
= buf
->last_scanned
;
2521 struct refill refill
;
2525 bch_btree_op_init(&refill
.op
, -1);
2526 refill
.nr_found
= 0;
2531 bch_btree_map_keys(&refill
.op
, c
, &buf
->last_scanned
,
2532 refill_keybuf_fn
, MAP_END_KEY
);
2534 trace_bcache_keyscan(refill
.nr_found
,
2535 KEY_INODE(&start
), KEY_OFFSET(&start
),
2536 KEY_INODE(&buf
->last_scanned
),
2537 KEY_OFFSET(&buf
->last_scanned
));
2539 spin_lock(&buf
->lock
);
2541 if (!RB_EMPTY_ROOT(&buf
->keys
)) {
2542 struct keybuf_key
*w
;
2544 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2545 buf
->start
= START_KEY(&w
->key
);
2547 w
= RB_LAST(&buf
->keys
, struct keybuf_key
, node
);
2550 buf
->start
= MAX_KEY
;
2554 spin_unlock(&buf
->lock
);
2557 static void __bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2559 rb_erase(&w
->node
, &buf
->keys
);
2560 array_free(&buf
->freelist
, w
);
2563 void bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2565 spin_lock(&buf
->lock
);
2566 __bch_keybuf_del(buf
, w
);
2567 spin_unlock(&buf
->lock
);
2570 bool bch_keybuf_check_overlapping(struct keybuf
*buf
, struct bkey
*start
,
2574 struct keybuf_key
*p
, *w
, s
;
2578 if (bkey_cmp(end
, &buf
->start
) <= 0 ||
2579 bkey_cmp(start
, &buf
->end
) >= 0)
2582 spin_lock(&buf
->lock
);
2583 w
= RB_GREATER(&buf
->keys
, s
, node
, keybuf_nonoverlapping_cmp
);
2585 while (w
&& bkey_cmp(&START_KEY(&w
->key
), end
) < 0) {
2587 w
= RB_NEXT(w
, node
);
2592 __bch_keybuf_del(buf
, p
);
2595 spin_unlock(&buf
->lock
);
2599 struct keybuf_key
*bch_keybuf_next(struct keybuf
*buf
)
2601 struct keybuf_key
*w
;
2603 spin_lock(&buf
->lock
);
2605 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2607 while (w
&& w
->private)
2608 w
= RB_NEXT(w
, node
);
2611 w
->private = ERR_PTR(-EINTR
);
2613 spin_unlock(&buf
->lock
);
2617 struct keybuf_key
*bch_keybuf_next_rescan(struct cache_set
*c
,
2620 keybuf_pred_fn
*pred
)
2622 struct keybuf_key
*ret
;
2625 ret
= bch_keybuf_next(buf
);
2629 if (bkey_cmp(&buf
->last_scanned
, end
) >= 0) {
2630 pr_debug("scan finished");
2634 bch_refill_keybuf(c
, buf
, end
, pred
);
2640 void bch_keybuf_init(struct keybuf
*buf
)
2642 buf
->last_scanned
= MAX_KEY
;
2643 buf
->keys
= RB_ROOT
;
2645 spin_lock_init(&buf
->lock
);
2646 array_allocator_init(&buf
->freelist
);