Linux 4.19.133
[linux/fpc-iii.git] / drivers / md / bcache / request.c
blobc1e487d1261cb7897d63098b84a6d29579fc4f84
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache *bch_search_cache;
28 static void bch_data_insert_start(struct closure *cl);
30 static unsigned int cache_mode(struct cached_dev *dc)
32 return BDEV_CACHE_MODE(&dc->sb);
35 static bool verify(struct cached_dev *dc)
37 return dc->verify;
40 static void bio_csum(struct bio *bio, struct bkey *k)
42 struct bio_vec bv;
43 struct bvec_iter iter;
44 uint64_t csum = 0;
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
49 csum = bch_crc64_update(csum, d, bv.bv_len);
50 kunmap(bv.bv_page);
53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
56 /* Insert data into cache */
58 static void bch_data_insert_keys(struct closure *cl)
60 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 atomic_t *journal_ref = NULL;
62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 int ret;
66 * If we're looping, might already be waiting on
67 * another journal write - can't wait on more than one journal write at
68 * a time
70 * XXX: this looks wrong
72 #if 0
73 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
74 closure_sync(&s->cl);
75 #endif
77 if (!op->replace)
78 journal_ref = bch_journal(op->c, &op->insert_keys,
79 op->flush_journal ? cl : NULL);
81 ret = bch_btree_insert(op->c, &op->insert_keys,
82 journal_ref, replace_key);
83 if (ret == -ESRCH) {
84 op->replace_collision = true;
85 } else if (ret) {
86 op->status = BLK_STS_RESOURCE;
87 op->insert_data_done = true;
90 if (journal_ref)
91 atomic_dec_bug(journal_ref);
93 if (!op->insert_data_done) {
94 continue_at(cl, bch_data_insert_start, op->wq);
95 return;
98 bch_keylist_free(&op->insert_keys);
99 closure_return(cl);
102 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
103 struct cache_set *c)
105 size_t oldsize = bch_keylist_nkeys(l);
106 size_t newsize = oldsize + u64s;
109 * The journalling code doesn't handle the case where the keys to insert
110 * is bigger than an empty write: If we just return -ENOMEM here,
111 * bch_data_insert_keys() will insert the keys created so far
112 * and finish the rest when the keylist is empty.
114 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
115 return -ENOMEM;
117 return __bch_keylist_realloc(l, u64s);
120 static void bch_data_invalidate(struct closure *cl)
122 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
123 struct bio *bio = op->bio;
125 pr_debug("invalidating %i sectors from %llu",
126 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
128 while (bio_sectors(bio)) {
129 unsigned int sectors = min(bio_sectors(bio),
130 1U << (KEY_SIZE_BITS - 1));
132 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
133 goto out;
135 bio->bi_iter.bi_sector += sectors;
136 bio->bi_iter.bi_size -= sectors << 9;
138 bch_keylist_add(&op->insert_keys,
139 &KEY(op->inode,
140 bio->bi_iter.bi_sector,
141 sectors));
144 op->insert_data_done = true;
145 /* get in bch_data_insert() */
146 bio_put(bio);
147 out:
148 continue_at(cl, bch_data_insert_keys, op->wq);
151 static void bch_data_insert_error(struct closure *cl)
153 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
156 * Our data write just errored, which means we've got a bunch of keys to
157 * insert that point to data that wasn't successfully written.
159 * We don't have to insert those keys but we still have to invalidate
160 * that region of the cache - so, if we just strip off all the pointers
161 * from the keys we'll accomplish just that.
164 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
166 while (src != op->insert_keys.top) {
167 struct bkey *n = bkey_next(src);
169 SET_KEY_PTRS(src, 0);
170 memmove(dst, src, bkey_bytes(src));
172 dst = bkey_next(dst);
173 src = n;
176 op->insert_keys.top = dst;
178 bch_data_insert_keys(cl);
181 static void bch_data_insert_endio(struct bio *bio)
183 struct closure *cl = bio->bi_private;
184 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
186 if (bio->bi_status) {
187 /* TODO: We could try to recover from this. */
188 if (op->writeback)
189 op->status = bio->bi_status;
190 else if (!op->replace)
191 set_closure_fn(cl, bch_data_insert_error, op->wq);
192 else
193 set_closure_fn(cl, NULL, NULL);
196 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
199 static void bch_data_insert_start(struct closure *cl)
201 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
202 struct bio *bio = op->bio, *n;
204 if (op->bypass)
205 return bch_data_invalidate(cl);
207 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
208 wake_up_gc(op->c);
211 * Journal writes are marked REQ_PREFLUSH; if the original write was a
212 * flush, it'll wait on the journal write.
214 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
216 do {
217 unsigned int i;
218 struct bkey *k;
219 struct bio_set *split = &op->c->bio_split;
221 /* 1 for the device pointer and 1 for the chksum */
222 if (bch_keylist_realloc(&op->insert_keys,
223 3 + (op->csum ? 1 : 0),
224 op->c)) {
225 continue_at(cl, bch_data_insert_keys, op->wq);
226 return;
229 k = op->insert_keys.top;
230 bkey_init(k);
231 SET_KEY_INODE(k, op->inode);
232 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
234 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
235 op->write_point, op->write_prio,
236 op->writeback))
237 goto err;
239 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
241 n->bi_end_io = bch_data_insert_endio;
242 n->bi_private = cl;
244 if (op->writeback) {
245 SET_KEY_DIRTY(k, true);
247 for (i = 0; i < KEY_PTRS(k); i++)
248 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
249 GC_MARK_DIRTY);
252 SET_KEY_CSUM(k, op->csum);
253 if (KEY_CSUM(k))
254 bio_csum(n, k);
256 trace_bcache_cache_insert(k);
257 bch_keylist_push(&op->insert_keys);
259 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
260 bch_submit_bbio(n, op->c, k, 0);
261 } while (n != bio);
263 op->insert_data_done = true;
264 continue_at(cl, bch_data_insert_keys, op->wq);
265 return;
266 err:
267 /* bch_alloc_sectors() blocks if s->writeback = true */
268 BUG_ON(op->writeback);
271 * But if it's not a writeback write we'd rather just bail out if
272 * there aren't any buckets ready to write to - it might take awhile and
273 * we might be starving btree writes for gc or something.
276 if (!op->replace) {
278 * Writethrough write: We can't complete the write until we've
279 * updated the index. But we don't want to delay the write while
280 * we wait for buckets to be freed up, so just invalidate the
281 * rest of the write.
283 op->bypass = true;
284 return bch_data_invalidate(cl);
285 } else {
287 * From a cache miss, we can just insert the keys for the data
288 * we have written or bail out if we didn't do anything.
290 op->insert_data_done = true;
291 bio_put(bio);
293 if (!bch_keylist_empty(&op->insert_keys))
294 continue_at(cl, bch_data_insert_keys, op->wq);
295 else
296 closure_return(cl);
301 * bch_data_insert - stick some data in the cache
302 * @cl: closure pointer.
304 * This is the starting point for any data to end up in a cache device; it could
305 * be from a normal write, or a writeback write, or a write to a flash only
306 * volume - it's also used by the moving garbage collector to compact data in
307 * mostly empty buckets.
309 * It first writes the data to the cache, creating a list of keys to be inserted
310 * (if the data had to be fragmented there will be multiple keys); after the
311 * data is written it calls bch_journal, and after the keys have been added to
312 * the next journal write they're inserted into the btree.
314 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
315 * and op->inode is used for the key inode.
317 * If s->bypass is true, instead of inserting the data it invalidates the
318 * region of the cache represented by s->cache_bio and op->inode.
320 void bch_data_insert(struct closure *cl)
322 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
324 trace_bcache_write(op->c, op->inode, op->bio,
325 op->writeback, op->bypass);
327 bch_keylist_init(&op->insert_keys);
328 bio_get(op->bio);
329 bch_data_insert_start(cl);
332 /* Congested? */
334 unsigned int bch_get_congested(struct cache_set *c)
336 int i;
337 long rand;
339 if (!c->congested_read_threshold_us &&
340 !c->congested_write_threshold_us)
341 return 0;
343 i = (local_clock_us() - c->congested_last_us) / 1024;
344 if (i < 0)
345 return 0;
347 i += atomic_read(&c->congested);
348 if (i >= 0)
349 return 0;
351 i += CONGESTED_MAX;
353 if (i > 0)
354 i = fract_exp_two(i, 6);
356 rand = get_random_int();
357 i -= bitmap_weight(&rand, BITS_PER_LONG);
359 return i > 0 ? i : 1;
362 static void add_sequential(struct task_struct *t)
364 ewma_add(t->sequential_io_avg,
365 t->sequential_io, 8, 0);
367 t->sequential_io = 0;
370 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
372 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
375 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
377 struct cache_set *c = dc->disk.c;
378 unsigned int mode = cache_mode(dc);
379 unsigned int sectors, congested = bch_get_congested(c);
380 struct task_struct *task = current;
381 struct io *i;
383 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
384 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
385 (bio_op(bio) == REQ_OP_DISCARD))
386 goto skip;
388 if (mode == CACHE_MODE_NONE ||
389 (mode == CACHE_MODE_WRITEAROUND &&
390 op_is_write(bio_op(bio))))
391 goto skip;
394 * If the bio is for read-ahead or background IO, bypass it or
395 * not depends on the following situations,
396 * - If the IO is for meta data, always cache it and no bypass
397 * - If the IO is not meta data, check dc->cache_reada_policy,
398 * BCH_CACHE_READA_ALL: cache it and not bypass
399 * BCH_CACHE_READA_META_ONLY: not cache it and bypass
400 * That is, read-ahead request for metadata always get cached
401 * (eg, for gfs2 or xfs).
403 if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
404 if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
405 (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
406 goto skip;
409 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
410 bio_sectors(bio) & (c->sb.block_size - 1)) {
411 pr_debug("skipping unaligned io");
412 goto skip;
415 if (bypass_torture_test(dc)) {
416 if ((get_random_int() & 3) == 3)
417 goto skip;
418 else
419 goto rescale;
422 if (!congested && !dc->sequential_cutoff)
423 goto rescale;
425 spin_lock(&dc->io_lock);
427 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
428 if (i->last == bio->bi_iter.bi_sector &&
429 time_before(jiffies, i->jiffies))
430 goto found;
432 i = list_first_entry(&dc->io_lru, struct io, lru);
434 add_sequential(task);
435 i->sequential = 0;
436 found:
437 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
438 i->sequential += bio->bi_iter.bi_size;
440 i->last = bio_end_sector(bio);
441 i->jiffies = jiffies + msecs_to_jiffies(5000);
442 task->sequential_io = i->sequential;
444 hlist_del(&i->hash);
445 hlist_add_head(&i->hash, iohash(dc, i->last));
446 list_move_tail(&i->lru, &dc->io_lru);
448 spin_unlock(&dc->io_lock);
450 sectors = max(task->sequential_io,
451 task->sequential_io_avg) >> 9;
453 if (dc->sequential_cutoff &&
454 sectors >= dc->sequential_cutoff >> 9) {
455 trace_bcache_bypass_sequential(bio);
456 goto skip;
459 if (congested && sectors >= congested) {
460 trace_bcache_bypass_congested(bio);
461 goto skip;
464 rescale:
465 bch_rescale_priorities(c, bio_sectors(bio));
466 return false;
467 skip:
468 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
469 return true;
472 /* Cache lookup */
474 struct search {
475 /* Stack frame for bio_complete */
476 struct closure cl;
478 struct bbio bio;
479 struct bio *orig_bio;
480 struct bio *cache_miss;
481 struct bcache_device *d;
483 unsigned int insert_bio_sectors;
484 unsigned int recoverable:1;
485 unsigned int write:1;
486 unsigned int read_dirty_data:1;
487 unsigned int cache_missed:1;
489 unsigned long start_time;
491 struct btree_op op;
492 struct data_insert_op iop;
495 static void bch_cache_read_endio(struct bio *bio)
497 struct bbio *b = container_of(bio, struct bbio, bio);
498 struct closure *cl = bio->bi_private;
499 struct search *s = container_of(cl, struct search, cl);
502 * If the bucket was reused while our bio was in flight, we might have
503 * read the wrong data. Set s->error but not error so it doesn't get
504 * counted against the cache device, but we'll still reread the data
505 * from the backing device.
508 if (bio->bi_status)
509 s->iop.status = bio->bi_status;
510 else if (!KEY_DIRTY(&b->key) &&
511 ptr_stale(s->iop.c, &b->key, 0)) {
512 atomic_long_inc(&s->iop.c->cache_read_races);
513 s->iop.status = BLK_STS_IOERR;
516 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
520 * Read from a single key, handling the initial cache miss if the key starts in
521 * the middle of the bio
523 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
525 struct search *s = container_of(op, struct search, op);
526 struct bio *n, *bio = &s->bio.bio;
527 struct bkey *bio_key;
528 unsigned int ptr;
530 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
531 return MAP_CONTINUE;
533 if (KEY_INODE(k) != s->iop.inode ||
534 KEY_START(k) > bio->bi_iter.bi_sector) {
535 unsigned int bio_sectors = bio_sectors(bio);
536 unsigned int sectors = KEY_INODE(k) == s->iop.inode
537 ? min_t(uint64_t, INT_MAX,
538 KEY_START(k) - bio->bi_iter.bi_sector)
539 : INT_MAX;
540 int ret = s->d->cache_miss(b, s, bio, sectors);
542 if (ret != MAP_CONTINUE)
543 return ret;
545 /* if this was a complete miss we shouldn't get here */
546 BUG_ON(bio_sectors <= sectors);
549 if (!KEY_SIZE(k))
550 return MAP_CONTINUE;
552 /* XXX: figure out best pointer - for multiple cache devices */
553 ptr = 0;
555 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
557 if (KEY_DIRTY(k))
558 s->read_dirty_data = true;
560 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
561 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
562 GFP_NOIO, &s->d->bio_split);
564 bio_key = &container_of(n, struct bbio, bio)->key;
565 bch_bkey_copy_single_ptr(bio_key, k, ptr);
567 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
568 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
570 n->bi_end_io = bch_cache_read_endio;
571 n->bi_private = &s->cl;
574 * The bucket we're reading from might be reused while our bio
575 * is in flight, and we could then end up reading the wrong
576 * data.
578 * We guard against this by checking (in cache_read_endio()) if
579 * the pointer is stale again; if so, we treat it as an error
580 * and reread from the backing device (but we don't pass that
581 * error up anywhere).
584 __bch_submit_bbio(n, b->c);
585 return n == bio ? MAP_DONE : MAP_CONTINUE;
588 static void cache_lookup(struct closure *cl)
590 struct search *s = container_of(cl, struct search, iop.cl);
591 struct bio *bio = &s->bio.bio;
592 struct cached_dev *dc;
593 int ret;
595 bch_btree_op_init(&s->op, -1);
597 ret = bch_btree_map_keys(&s->op, s->iop.c,
598 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
599 cache_lookup_fn, MAP_END_KEY);
600 if (ret == -EAGAIN) {
601 continue_at(cl, cache_lookup, bcache_wq);
602 return;
606 * We might meet err when searching the btree, If that happens, we will
607 * get negative ret, in this scenario we should not recover data from
608 * backing device (when cache device is dirty) because we don't know
609 * whether bkeys the read request covered are all clean.
611 * And after that happened, s->iop.status is still its initial value
612 * before we submit s->bio.bio
614 if (ret < 0) {
615 BUG_ON(ret == -EINTR);
616 if (s->d && s->d->c &&
617 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
618 dc = container_of(s->d, struct cached_dev, disk);
619 if (dc && atomic_read(&dc->has_dirty))
620 s->recoverable = false;
622 if (!s->iop.status)
623 s->iop.status = BLK_STS_IOERR;
626 closure_return(cl);
629 /* Common code for the make_request functions */
631 static void request_endio(struct bio *bio)
633 struct closure *cl = bio->bi_private;
635 if (bio->bi_status) {
636 struct search *s = container_of(cl, struct search, cl);
638 s->iop.status = bio->bi_status;
639 /* Only cache read errors are recoverable */
640 s->recoverable = false;
643 bio_put(bio);
644 closure_put(cl);
647 static void backing_request_endio(struct bio *bio)
649 struct closure *cl = bio->bi_private;
651 if (bio->bi_status) {
652 struct search *s = container_of(cl, struct search, cl);
653 struct cached_dev *dc = container_of(s->d,
654 struct cached_dev, disk);
656 * If a bio has REQ_PREFLUSH for writeback mode, it is
657 * speically assembled in cached_dev_write() for a non-zero
658 * write request which has REQ_PREFLUSH. we don't set
659 * s->iop.status by this failure, the status will be decided
660 * by result of bch_data_insert() operation.
662 if (unlikely(s->iop.writeback &&
663 bio->bi_opf & REQ_PREFLUSH)) {
664 pr_err("Can't flush %s: returned bi_status %i",
665 dc->backing_dev_name, bio->bi_status);
666 } else {
667 /* set to orig_bio->bi_status in bio_complete() */
668 s->iop.status = bio->bi_status;
670 s->recoverable = false;
671 /* should count I/O error for backing device here */
672 bch_count_backing_io_errors(dc, bio);
675 bio_put(bio);
676 closure_put(cl);
679 static void bio_complete(struct search *s)
681 if (s->orig_bio) {
682 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
683 &s->d->disk->part0, s->start_time);
685 trace_bcache_request_end(s->d, s->orig_bio);
686 s->orig_bio->bi_status = s->iop.status;
687 bio_endio(s->orig_bio);
688 s->orig_bio = NULL;
692 static void do_bio_hook(struct search *s,
693 struct bio *orig_bio,
694 bio_end_io_t *end_io_fn)
696 struct bio *bio = &s->bio.bio;
698 bio_init(bio, NULL, 0);
699 __bio_clone_fast(bio, orig_bio);
701 * bi_end_io can be set separately somewhere else, e.g. the
702 * variants in,
703 * - cache_bio->bi_end_io from cached_dev_cache_miss()
704 * - n->bi_end_io from cache_lookup_fn()
706 bio->bi_end_io = end_io_fn;
707 bio->bi_private = &s->cl;
709 bio_cnt_set(bio, 3);
712 static void search_free(struct closure *cl)
714 struct search *s = container_of(cl, struct search, cl);
716 atomic_dec(&s->d->c->search_inflight);
718 if (s->iop.bio)
719 bio_put(s->iop.bio);
721 bio_complete(s);
722 closure_debug_destroy(cl);
723 mempool_free(s, &s->d->c->search);
726 static inline struct search *search_alloc(struct bio *bio,
727 struct bcache_device *d)
729 struct search *s;
731 s = mempool_alloc(&d->c->search, GFP_NOIO);
733 closure_init(&s->cl, NULL);
734 do_bio_hook(s, bio, request_endio);
735 atomic_inc(&d->c->search_inflight);
737 s->orig_bio = bio;
738 s->cache_miss = NULL;
739 s->cache_missed = 0;
740 s->d = d;
741 s->recoverable = 1;
742 s->write = op_is_write(bio_op(bio));
743 s->read_dirty_data = 0;
744 s->start_time = jiffies;
746 s->iop.c = d->c;
747 s->iop.bio = NULL;
748 s->iop.inode = d->id;
749 s->iop.write_point = hash_long((unsigned long) current, 16);
750 s->iop.write_prio = 0;
751 s->iop.status = 0;
752 s->iop.flags = 0;
753 s->iop.flush_journal = op_is_flush(bio->bi_opf);
754 s->iop.wq = bcache_wq;
756 return s;
759 /* Cached devices */
761 static void cached_dev_bio_complete(struct closure *cl)
763 struct search *s = container_of(cl, struct search, cl);
764 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
766 search_free(cl);
767 cached_dev_put(dc);
770 /* Process reads */
772 static void cached_dev_cache_miss_done(struct closure *cl)
774 struct search *s = container_of(cl, struct search, cl);
776 if (s->iop.replace_collision)
777 bch_mark_cache_miss_collision(s->iop.c, s->d);
779 if (s->iop.bio)
780 bio_free_pages(s->iop.bio);
782 cached_dev_bio_complete(cl);
785 static void cached_dev_read_error(struct closure *cl)
787 struct search *s = container_of(cl, struct search, cl);
788 struct bio *bio = &s->bio.bio;
791 * If read request hit dirty data (s->read_dirty_data is true),
792 * then recovery a failed read request from cached device may
793 * get a stale data back. So read failure recovery is only
794 * permitted when read request hit clean data in cache device,
795 * or when cache read race happened.
797 if (s->recoverable && !s->read_dirty_data) {
798 /* Retry from the backing device: */
799 trace_bcache_read_retry(s->orig_bio);
801 s->iop.status = 0;
802 do_bio_hook(s, s->orig_bio, backing_request_endio);
804 /* XXX: invalidate cache */
806 /* I/O request sent to backing device */
807 closure_bio_submit(s->iop.c, bio, cl);
810 continue_at(cl, cached_dev_cache_miss_done, NULL);
813 static void cached_dev_read_done(struct closure *cl)
815 struct search *s = container_of(cl, struct search, cl);
816 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
819 * We had a cache miss; cache_bio now contains data ready to be inserted
820 * into the cache.
822 * First, we copy the data we just read from cache_bio's bounce buffers
823 * to the buffers the original bio pointed to:
826 if (s->iop.bio) {
827 bio_reset(s->iop.bio);
828 s->iop.bio->bi_iter.bi_sector =
829 s->cache_miss->bi_iter.bi_sector;
830 bio_copy_dev(s->iop.bio, s->cache_miss);
831 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
832 bch_bio_map(s->iop.bio, NULL);
834 bio_copy_data(s->cache_miss, s->iop.bio);
836 bio_put(s->cache_miss);
837 s->cache_miss = NULL;
840 if (verify(dc) && s->recoverable && !s->read_dirty_data)
841 bch_data_verify(dc, s->orig_bio);
843 bio_complete(s);
845 if (s->iop.bio &&
846 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
847 BUG_ON(!s->iop.replace);
848 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
851 continue_at(cl, cached_dev_cache_miss_done, NULL);
854 static void cached_dev_read_done_bh(struct closure *cl)
856 struct search *s = container_of(cl, struct search, cl);
857 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
859 bch_mark_cache_accounting(s->iop.c, s->d,
860 !s->cache_missed, s->iop.bypass);
861 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
863 if (s->iop.status)
864 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
865 else if (s->iop.bio || verify(dc))
866 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
867 else
868 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
871 static int cached_dev_cache_miss(struct btree *b, struct search *s,
872 struct bio *bio, unsigned int sectors)
874 int ret = MAP_CONTINUE;
875 unsigned int reada = 0;
876 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
877 struct bio *miss, *cache_bio;
879 s->cache_missed = 1;
881 if (s->cache_miss || s->iop.bypass) {
882 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
883 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
884 goto out_submit;
887 if (!(bio->bi_opf & REQ_RAHEAD) &&
888 !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
889 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
890 reada = min_t(sector_t, dc->readahead >> 9,
891 get_capacity(bio->bi_disk) - bio_end_sector(bio));
893 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
895 s->iop.replace_key = KEY(s->iop.inode,
896 bio->bi_iter.bi_sector + s->insert_bio_sectors,
897 s->insert_bio_sectors);
899 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
900 if (ret)
901 return ret;
903 s->iop.replace = true;
905 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
907 /* btree_search_recurse()'s btree iterator is no good anymore */
908 ret = miss == bio ? MAP_DONE : -EINTR;
910 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
911 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
912 &dc->disk.bio_split);
913 if (!cache_bio)
914 goto out_submit;
916 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
917 bio_copy_dev(cache_bio, miss);
918 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
920 cache_bio->bi_end_io = backing_request_endio;
921 cache_bio->bi_private = &s->cl;
923 bch_bio_map(cache_bio, NULL);
924 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
925 goto out_put;
927 if (reada)
928 bch_mark_cache_readahead(s->iop.c, s->d);
930 s->cache_miss = miss;
931 s->iop.bio = cache_bio;
932 bio_get(cache_bio);
933 /* I/O request sent to backing device */
934 closure_bio_submit(s->iop.c, cache_bio, &s->cl);
936 return ret;
937 out_put:
938 bio_put(cache_bio);
939 out_submit:
940 miss->bi_end_io = backing_request_endio;
941 miss->bi_private = &s->cl;
942 /* I/O request sent to backing device */
943 closure_bio_submit(s->iop.c, miss, &s->cl);
944 return ret;
947 static void cached_dev_read(struct cached_dev *dc, struct search *s)
949 struct closure *cl = &s->cl;
951 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
952 continue_at(cl, cached_dev_read_done_bh, NULL);
955 /* Process writes */
957 static void cached_dev_write_complete(struct closure *cl)
959 struct search *s = container_of(cl, struct search, cl);
960 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
962 up_read_non_owner(&dc->writeback_lock);
963 cached_dev_bio_complete(cl);
966 static void cached_dev_write(struct cached_dev *dc, struct search *s)
968 struct closure *cl = &s->cl;
969 struct bio *bio = &s->bio.bio;
970 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
971 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
973 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
975 down_read_non_owner(&dc->writeback_lock);
976 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
978 * We overlap with some dirty data undergoing background
979 * writeback, force this write to writeback
981 s->iop.bypass = false;
982 s->iop.writeback = true;
986 * Discards aren't _required_ to do anything, so skipping if
987 * check_overlapping returned true is ok
989 * But check_overlapping drops dirty keys for which io hasn't started,
990 * so we still want to call it.
992 if (bio_op(bio) == REQ_OP_DISCARD)
993 s->iop.bypass = true;
995 if (should_writeback(dc, s->orig_bio,
996 cache_mode(dc),
997 s->iop.bypass)) {
998 s->iop.bypass = false;
999 s->iop.writeback = true;
1002 if (s->iop.bypass) {
1003 s->iop.bio = s->orig_bio;
1004 bio_get(s->iop.bio);
1006 if (bio_op(bio) == REQ_OP_DISCARD &&
1007 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1008 goto insert_data;
1010 /* I/O request sent to backing device */
1011 bio->bi_end_io = backing_request_endio;
1012 closure_bio_submit(s->iop.c, bio, cl);
1014 } else if (s->iop.writeback) {
1015 bch_writeback_add(dc);
1016 s->iop.bio = bio;
1018 if (bio->bi_opf & REQ_PREFLUSH) {
1020 * Also need to send a flush to the backing
1021 * device.
1023 struct bio *flush;
1025 flush = bio_alloc_bioset(GFP_NOIO, 0,
1026 &dc->disk.bio_split);
1027 if (!flush) {
1028 s->iop.status = BLK_STS_RESOURCE;
1029 goto insert_data;
1031 bio_copy_dev(flush, bio);
1032 flush->bi_end_io = backing_request_endio;
1033 flush->bi_private = cl;
1034 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1035 /* I/O request sent to backing device */
1036 closure_bio_submit(s->iop.c, flush, cl);
1038 } else {
1039 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1040 /* I/O request sent to backing device */
1041 bio->bi_end_io = backing_request_endio;
1042 closure_bio_submit(s->iop.c, bio, cl);
1045 insert_data:
1046 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1047 continue_at(cl, cached_dev_write_complete, NULL);
1050 static void cached_dev_nodata(struct closure *cl)
1052 struct search *s = container_of(cl, struct search, cl);
1053 struct bio *bio = &s->bio.bio;
1055 if (s->iop.flush_journal)
1056 bch_journal_meta(s->iop.c, cl);
1058 /* If it's a flush, we send the flush to the backing device too */
1059 bio->bi_end_io = backing_request_endio;
1060 closure_bio_submit(s->iop.c, bio, cl);
1062 continue_at(cl, cached_dev_bio_complete, NULL);
1065 struct detached_dev_io_private {
1066 struct bcache_device *d;
1067 unsigned long start_time;
1068 bio_end_io_t *bi_end_io;
1069 void *bi_private;
1072 static void detached_dev_end_io(struct bio *bio)
1074 struct detached_dev_io_private *ddip;
1076 ddip = bio->bi_private;
1077 bio->bi_end_io = ddip->bi_end_io;
1078 bio->bi_private = ddip->bi_private;
1080 generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1081 &ddip->d->disk->part0, ddip->start_time);
1083 if (bio->bi_status) {
1084 struct cached_dev *dc = container_of(ddip->d,
1085 struct cached_dev, disk);
1086 /* should count I/O error for backing device here */
1087 bch_count_backing_io_errors(dc, bio);
1090 kfree(ddip);
1091 bio->bi_end_io(bio);
1094 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1096 struct detached_dev_io_private *ddip;
1097 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1100 * no need to call closure_get(&dc->disk.cl),
1101 * because upper layer had already opened bcache device,
1102 * which would call closure_get(&dc->disk.cl)
1104 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1105 ddip->d = d;
1106 ddip->start_time = jiffies;
1107 ddip->bi_end_io = bio->bi_end_io;
1108 ddip->bi_private = bio->bi_private;
1109 bio->bi_end_io = detached_dev_end_io;
1110 bio->bi_private = ddip;
1112 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1113 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1114 bio->bi_end_io(bio);
1115 else
1116 generic_make_request(bio);
1119 static void quit_max_writeback_rate(struct cache_set *c,
1120 struct cached_dev *this_dc)
1122 int i;
1123 struct bcache_device *d;
1124 struct cached_dev *dc;
1127 * mutex bch_register_lock may compete with other parallel requesters,
1128 * or attach/detach operations on other backing device. Waiting to
1129 * the mutex lock may increase I/O request latency for seconds or more.
1130 * To avoid such situation, if mutext_trylock() failed, only writeback
1131 * rate of current cached device is set to 1, and __update_write_back()
1132 * will decide writeback rate of other cached devices (remember now
1133 * c->idle_counter is 0 already).
1135 if (mutex_trylock(&bch_register_lock)) {
1136 for (i = 0; i < c->devices_max_used; i++) {
1137 if (!c->devices[i])
1138 continue;
1140 if (UUID_FLASH_ONLY(&c->uuids[i]))
1141 continue;
1143 d = c->devices[i];
1144 dc = container_of(d, struct cached_dev, disk);
1146 * set writeback rate to default minimum value,
1147 * then let update_writeback_rate() to decide the
1148 * upcoming rate.
1150 atomic_long_set(&dc->writeback_rate.rate, 1);
1152 mutex_unlock(&bch_register_lock);
1153 } else
1154 atomic_long_set(&this_dc->writeback_rate.rate, 1);
1157 /* Cached devices - read & write stuff */
1159 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1160 struct bio *bio)
1162 struct search *s;
1163 struct bcache_device *d = bio->bi_disk->private_data;
1164 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1165 int rw = bio_data_dir(bio);
1167 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1168 dc->io_disable)) {
1169 bio->bi_status = BLK_STS_IOERR;
1170 bio_endio(bio);
1171 return BLK_QC_T_NONE;
1174 if (likely(d->c)) {
1175 if (atomic_read(&d->c->idle_counter))
1176 atomic_set(&d->c->idle_counter, 0);
1178 * If at_max_writeback_rate of cache set is true and new I/O
1179 * comes, quit max writeback rate of all cached devices
1180 * attached to this cache set, and set at_max_writeback_rate
1181 * to false.
1183 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1184 atomic_set(&d->c->at_max_writeback_rate, 0);
1185 quit_max_writeback_rate(d->c, dc);
1189 generic_start_io_acct(q,
1190 bio_op(bio),
1191 bio_sectors(bio),
1192 &d->disk->part0);
1194 bio_set_dev(bio, dc->bdev);
1195 bio->bi_iter.bi_sector += dc->sb.data_offset;
1197 if (cached_dev_get(dc)) {
1198 s = search_alloc(bio, d);
1199 trace_bcache_request_start(s->d, bio);
1201 if (!bio->bi_iter.bi_size) {
1203 * can't call bch_journal_meta from under
1204 * generic_make_request
1206 continue_at_nobarrier(&s->cl,
1207 cached_dev_nodata,
1208 bcache_wq);
1209 } else {
1210 s->iop.bypass = check_should_bypass(dc, bio);
1212 if (rw)
1213 cached_dev_write(dc, s);
1214 else
1215 cached_dev_read(dc, s);
1217 } else
1218 /* I/O request sent to backing device */
1219 detached_dev_do_request(d, bio);
1221 return BLK_QC_T_NONE;
1224 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1225 unsigned int cmd, unsigned long arg)
1227 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1229 if (dc->io_disable)
1230 return -EIO;
1232 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1235 static int cached_dev_congested(void *data, int bits)
1237 struct bcache_device *d = data;
1238 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1239 struct request_queue *q = bdev_get_queue(dc->bdev);
1240 int ret = 0;
1242 if (bdi_congested(q->backing_dev_info, bits))
1243 return 1;
1245 if (cached_dev_get(dc)) {
1246 unsigned int i;
1247 struct cache *ca;
1249 for_each_cache(ca, d->c, i) {
1250 q = bdev_get_queue(ca->bdev);
1251 ret |= bdi_congested(q->backing_dev_info, bits);
1254 cached_dev_put(dc);
1257 return ret;
1260 void bch_cached_dev_request_init(struct cached_dev *dc)
1262 struct gendisk *g = dc->disk.disk;
1264 g->queue->make_request_fn = cached_dev_make_request;
1265 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1266 dc->disk.cache_miss = cached_dev_cache_miss;
1267 dc->disk.ioctl = cached_dev_ioctl;
1270 /* Flash backed devices */
1272 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1273 struct bio *bio, unsigned int sectors)
1275 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1277 swap(bio->bi_iter.bi_size, bytes);
1278 zero_fill_bio(bio);
1279 swap(bio->bi_iter.bi_size, bytes);
1281 bio_advance(bio, bytes);
1283 if (!bio->bi_iter.bi_size)
1284 return MAP_DONE;
1286 return MAP_CONTINUE;
1289 static void flash_dev_nodata(struct closure *cl)
1291 struct search *s = container_of(cl, struct search, cl);
1293 if (s->iop.flush_journal)
1294 bch_journal_meta(s->iop.c, cl);
1296 continue_at(cl, search_free, NULL);
1299 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1300 struct bio *bio)
1302 struct search *s;
1303 struct closure *cl;
1304 struct bcache_device *d = bio->bi_disk->private_data;
1306 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1307 bio->bi_status = BLK_STS_IOERR;
1308 bio_endio(bio);
1309 return BLK_QC_T_NONE;
1312 generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1314 s = search_alloc(bio, d);
1315 cl = &s->cl;
1316 bio = &s->bio.bio;
1318 trace_bcache_request_start(s->d, bio);
1320 if (!bio->bi_iter.bi_size) {
1322 * can't call bch_journal_meta from under
1323 * generic_make_request
1325 continue_at_nobarrier(&s->cl,
1326 flash_dev_nodata,
1327 bcache_wq);
1328 return BLK_QC_T_NONE;
1329 } else if (bio_data_dir(bio)) {
1330 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1331 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1332 &KEY(d->id, bio_end_sector(bio), 0));
1334 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1335 s->iop.writeback = true;
1336 s->iop.bio = bio;
1338 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1339 } else {
1340 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1343 continue_at(cl, search_free, NULL);
1344 return BLK_QC_T_NONE;
1347 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1348 unsigned int cmd, unsigned long arg)
1350 return -ENOTTY;
1353 static int flash_dev_congested(void *data, int bits)
1355 struct bcache_device *d = data;
1356 struct request_queue *q;
1357 struct cache *ca;
1358 unsigned int i;
1359 int ret = 0;
1361 for_each_cache(ca, d->c, i) {
1362 q = bdev_get_queue(ca->bdev);
1363 ret |= bdi_congested(q->backing_dev_info, bits);
1366 return ret;
1369 void bch_flash_dev_request_init(struct bcache_device *d)
1371 struct gendisk *g = d->disk;
1373 g->queue->make_request_fn = flash_dev_make_request;
1374 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1375 d->cache_miss = flash_dev_cache_miss;
1376 d->ioctl = flash_dev_ioctl;
1379 void bch_request_exit(void)
1381 kmem_cache_destroy(bch_search_cache);
1384 int __init bch_request_init(void)
1386 bch_search_cache = KMEM_CACHE(search, 0);
1387 if (!bch_search_cache)
1388 return -ENOMEM;
1390 return 0;