1 // SPDX-License-Identifier: GPL-2.0
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
14 #include "writeback.h"
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache
*bch_search_cache
;
28 static void bch_data_insert_start(struct closure
*cl
);
30 static unsigned int cache_mode(struct cached_dev
*dc
)
32 return BDEV_CACHE_MODE(&dc
->sb
);
35 static bool verify(struct cached_dev
*dc
)
40 static void bio_csum(struct bio
*bio
, struct bkey
*k
)
43 struct bvec_iter iter
;
46 bio_for_each_segment(bv
, bio
, iter
) {
47 void *d
= kmap(bv
.bv_page
) + bv
.bv_offset
;
49 csum
= bch_crc64_update(csum
, d
, bv
.bv_len
);
53 k
->ptr
[KEY_PTRS(k
)] = csum
& (~0ULL >> 1);
56 /* Insert data into cache */
58 static void bch_data_insert_keys(struct closure
*cl
)
60 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
61 atomic_t
*journal_ref
= NULL
;
62 struct bkey
*replace_key
= op
->replace
? &op
->replace_key
: NULL
;
66 * If we're looping, might already be waiting on
67 * another journal write - can't wait on more than one journal write at
70 * XXX: this looks wrong
73 while (atomic_read(&s
->cl
.remaining
) & CLOSURE_WAITING
)
78 journal_ref
= bch_journal(op
->c
, &op
->insert_keys
,
79 op
->flush_journal
? cl
: NULL
);
81 ret
= bch_btree_insert(op
->c
, &op
->insert_keys
,
82 journal_ref
, replace_key
);
84 op
->replace_collision
= true;
86 op
->status
= BLK_STS_RESOURCE
;
87 op
->insert_data_done
= true;
91 atomic_dec_bug(journal_ref
);
93 if (!op
->insert_data_done
) {
94 continue_at(cl
, bch_data_insert_start
, op
->wq
);
98 bch_keylist_free(&op
->insert_keys
);
102 static int bch_keylist_realloc(struct keylist
*l
, unsigned int u64s
,
105 size_t oldsize
= bch_keylist_nkeys(l
);
106 size_t newsize
= oldsize
+ u64s
;
109 * The journalling code doesn't handle the case where the keys to insert
110 * is bigger than an empty write: If we just return -ENOMEM here,
111 * bch_data_insert_keys() will insert the keys created so far
112 * and finish the rest when the keylist is empty.
114 if (newsize
* sizeof(uint64_t) > block_bytes(c
) - sizeof(struct jset
))
117 return __bch_keylist_realloc(l
, u64s
);
120 static void bch_data_invalidate(struct closure
*cl
)
122 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
123 struct bio
*bio
= op
->bio
;
125 pr_debug("invalidating %i sectors from %llu",
126 bio_sectors(bio
), (uint64_t) bio
->bi_iter
.bi_sector
);
128 while (bio_sectors(bio
)) {
129 unsigned int sectors
= min(bio_sectors(bio
),
130 1U << (KEY_SIZE_BITS
- 1));
132 if (bch_keylist_realloc(&op
->insert_keys
, 2, op
->c
))
135 bio
->bi_iter
.bi_sector
+= sectors
;
136 bio
->bi_iter
.bi_size
-= sectors
<< 9;
138 bch_keylist_add(&op
->insert_keys
,
140 bio
->bi_iter
.bi_sector
,
144 op
->insert_data_done
= true;
145 /* get in bch_data_insert() */
148 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
151 static void bch_data_insert_error(struct closure
*cl
)
153 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
156 * Our data write just errored, which means we've got a bunch of keys to
157 * insert that point to data that wasn't successfully written.
159 * We don't have to insert those keys but we still have to invalidate
160 * that region of the cache - so, if we just strip off all the pointers
161 * from the keys we'll accomplish just that.
164 struct bkey
*src
= op
->insert_keys
.keys
, *dst
= op
->insert_keys
.keys
;
166 while (src
!= op
->insert_keys
.top
) {
167 struct bkey
*n
= bkey_next(src
);
169 SET_KEY_PTRS(src
, 0);
170 memmove(dst
, src
, bkey_bytes(src
));
172 dst
= bkey_next(dst
);
176 op
->insert_keys
.top
= dst
;
178 bch_data_insert_keys(cl
);
181 static void bch_data_insert_endio(struct bio
*bio
)
183 struct closure
*cl
= bio
->bi_private
;
184 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
186 if (bio
->bi_status
) {
187 /* TODO: We could try to recover from this. */
189 op
->status
= bio
->bi_status
;
190 else if (!op
->replace
)
191 set_closure_fn(cl
, bch_data_insert_error
, op
->wq
);
193 set_closure_fn(cl
, NULL
, NULL
);
196 bch_bbio_endio(op
->c
, bio
, bio
->bi_status
, "writing data to cache");
199 static void bch_data_insert_start(struct closure
*cl
)
201 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
202 struct bio
*bio
= op
->bio
, *n
;
205 return bch_data_invalidate(cl
);
207 if (atomic_sub_return(bio_sectors(bio
), &op
->c
->sectors_to_gc
) < 0)
211 * Journal writes are marked REQ_PREFLUSH; if the original write was a
212 * flush, it'll wait on the journal write.
214 bio
->bi_opf
&= ~(REQ_PREFLUSH
|REQ_FUA
);
219 struct bio_set
*split
= &op
->c
->bio_split
;
221 /* 1 for the device pointer and 1 for the chksum */
222 if (bch_keylist_realloc(&op
->insert_keys
,
223 3 + (op
->csum
? 1 : 0),
225 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
229 k
= op
->insert_keys
.top
;
231 SET_KEY_INODE(k
, op
->inode
);
232 SET_KEY_OFFSET(k
, bio
->bi_iter
.bi_sector
);
234 if (!bch_alloc_sectors(op
->c
, k
, bio_sectors(bio
),
235 op
->write_point
, op
->write_prio
,
239 n
= bio_next_split(bio
, KEY_SIZE(k
), GFP_NOIO
, split
);
241 n
->bi_end_io
= bch_data_insert_endio
;
245 SET_KEY_DIRTY(k
, true);
247 for (i
= 0; i
< KEY_PTRS(k
); i
++)
248 SET_GC_MARK(PTR_BUCKET(op
->c
, k
, i
),
252 SET_KEY_CSUM(k
, op
->csum
);
256 trace_bcache_cache_insert(k
);
257 bch_keylist_push(&op
->insert_keys
);
259 bio_set_op_attrs(n
, REQ_OP_WRITE
, 0);
260 bch_submit_bbio(n
, op
->c
, k
, 0);
263 op
->insert_data_done
= true;
264 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
267 /* bch_alloc_sectors() blocks if s->writeback = true */
268 BUG_ON(op
->writeback
);
271 * But if it's not a writeback write we'd rather just bail out if
272 * there aren't any buckets ready to write to - it might take awhile and
273 * we might be starving btree writes for gc or something.
278 * Writethrough write: We can't complete the write until we've
279 * updated the index. But we don't want to delay the write while
280 * we wait for buckets to be freed up, so just invalidate the
284 return bch_data_invalidate(cl
);
287 * From a cache miss, we can just insert the keys for the data
288 * we have written or bail out if we didn't do anything.
290 op
->insert_data_done
= true;
293 if (!bch_keylist_empty(&op
->insert_keys
))
294 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
301 * bch_data_insert - stick some data in the cache
302 * @cl: closure pointer.
304 * This is the starting point for any data to end up in a cache device; it could
305 * be from a normal write, or a writeback write, or a write to a flash only
306 * volume - it's also used by the moving garbage collector to compact data in
307 * mostly empty buckets.
309 * It first writes the data to the cache, creating a list of keys to be inserted
310 * (if the data had to be fragmented there will be multiple keys); after the
311 * data is written it calls bch_journal, and after the keys have been added to
312 * the next journal write they're inserted into the btree.
314 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
315 * and op->inode is used for the key inode.
317 * If s->bypass is true, instead of inserting the data it invalidates the
318 * region of the cache represented by s->cache_bio and op->inode.
320 void bch_data_insert(struct closure
*cl
)
322 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
324 trace_bcache_write(op
->c
, op
->inode
, op
->bio
,
325 op
->writeback
, op
->bypass
);
327 bch_keylist_init(&op
->insert_keys
);
329 bch_data_insert_start(cl
);
334 unsigned int bch_get_congested(struct cache_set
*c
)
339 if (!c
->congested_read_threshold_us
&&
340 !c
->congested_write_threshold_us
)
343 i
= (local_clock_us() - c
->congested_last_us
) / 1024;
347 i
+= atomic_read(&c
->congested
);
354 i
= fract_exp_two(i
, 6);
356 rand
= get_random_int();
357 i
-= bitmap_weight(&rand
, BITS_PER_LONG
);
359 return i
> 0 ? i
: 1;
362 static void add_sequential(struct task_struct
*t
)
364 ewma_add(t
->sequential_io_avg
,
365 t
->sequential_io
, 8, 0);
367 t
->sequential_io
= 0;
370 static struct hlist_head
*iohash(struct cached_dev
*dc
, uint64_t k
)
372 return &dc
->io_hash
[hash_64(k
, RECENT_IO_BITS
)];
375 static bool check_should_bypass(struct cached_dev
*dc
, struct bio
*bio
)
377 struct cache_set
*c
= dc
->disk
.c
;
378 unsigned int mode
= cache_mode(dc
);
379 unsigned int sectors
, congested
= bch_get_congested(c
);
380 struct task_struct
*task
= current
;
383 if (test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
) ||
384 c
->gc_stats
.in_use
> CUTOFF_CACHE_ADD
||
385 (bio_op(bio
) == REQ_OP_DISCARD
))
388 if (mode
== CACHE_MODE_NONE
||
389 (mode
== CACHE_MODE_WRITEAROUND
&&
390 op_is_write(bio_op(bio
))))
394 * If the bio is for read-ahead or background IO, bypass it or
395 * not depends on the following situations,
396 * - If the IO is for meta data, always cache it and no bypass
397 * - If the IO is not meta data, check dc->cache_reada_policy,
398 * BCH_CACHE_READA_ALL: cache it and not bypass
399 * BCH_CACHE_READA_META_ONLY: not cache it and bypass
400 * That is, read-ahead request for metadata always get cached
401 * (eg, for gfs2 or xfs).
403 if ((bio
->bi_opf
& (REQ_RAHEAD
|REQ_BACKGROUND
))) {
404 if (!(bio
->bi_opf
& (REQ_META
|REQ_PRIO
)) &&
405 (dc
->cache_readahead_policy
!= BCH_CACHE_READA_ALL
))
409 if (bio
->bi_iter
.bi_sector
& (c
->sb
.block_size
- 1) ||
410 bio_sectors(bio
) & (c
->sb
.block_size
- 1)) {
411 pr_debug("skipping unaligned io");
415 if (bypass_torture_test(dc
)) {
416 if ((get_random_int() & 3) == 3)
422 if (!congested
&& !dc
->sequential_cutoff
)
425 spin_lock(&dc
->io_lock
);
427 hlist_for_each_entry(i
, iohash(dc
, bio
->bi_iter
.bi_sector
), hash
)
428 if (i
->last
== bio
->bi_iter
.bi_sector
&&
429 time_before(jiffies
, i
->jiffies
))
432 i
= list_first_entry(&dc
->io_lru
, struct io
, lru
);
434 add_sequential(task
);
437 if (i
->sequential
+ bio
->bi_iter
.bi_size
> i
->sequential
)
438 i
->sequential
+= bio
->bi_iter
.bi_size
;
440 i
->last
= bio_end_sector(bio
);
441 i
->jiffies
= jiffies
+ msecs_to_jiffies(5000);
442 task
->sequential_io
= i
->sequential
;
445 hlist_add_head(&i
->hash
, iohash(dc
, i
->last
));
446 list_move_tail(&i
->lru
, &dc
->io_lru
);
448 spin_unlock(&dc
->io_lock
);
450 sectors
= max(task
->sequential_io
,
451 task
->sequential_io_avg
) >> 9;
453 if (dc
->sequential_cutoff
&&
454 sectors
>= dc
->sequential_cutoff
>> 9) {
455 trace_bcache_bypass_sequential(bio
);
459 if (congested
&& sectors
>= congested
) {
460 trace_bcache_bypass_congested(bio
);
465 bch_rescale_priorities(c
, bio_sectors(bio
));
468 bch_mark_sectors_bypassed(c
, dc
, bio_sectors(bio
));
475 /* Stack frame for bio_complete */
479 struct bio
*orig_bio
;
480 struct bio
*cache_miss
;
481 struct bcache_device
*d
;
483 unsigned int insert_bio_sectors
;
484 unsigned int recoverable
:1;
485 unsigned int write
:1;
486 unsigned int read_dirty_data
:1;
487 unsigned int cache_missed
:1;
489 unsigned long start_time
;
492 struct data_insert_op iop
;
495 static void bch_cache_read_endio(struct bio
*bio
)
497 struct bbio
*b
= container_of(bio
, struct bbio
, bio
);
498 struct closure
*cl
= bio
->bi_private
;
499 struct search
*s
= container_of(cl
, struct search
, cl
);
502 * If the bucket was reused while our bio was in flight, we might have
503 * read the wrong data. Set s->error but not error so it doesn't get
504 * counted against the cache device, but we'll still reread the data
505 * from the backing device.
509 s
->iop
.status
= bio
->bi_status
;
510 else if (!KEY_DIRTY(&b
->key
) &&
511 ptr_stale(s
->iop
.c
, &b
->key
, 0)) {
512 atomic_long_inc(&s
->iop
.c
->cache_read_races
);
513 s
->iop
.status
= BLK_STS_IOERR
;
516 bch_bbio_endio(s
->iop
.c
, bio
, bio
->bi_status
, "reading from cache");
520 * Read from a single key, handling the initial cache miss if the key starts in
521 * the middle of the bio
523 static int cache_lookup_fn(struct btree_op
*op
, struct btree
*b
, struct bkey
*k
)
525 struct search
*s
= container_of(op
, struct search
, op
);
526 struct bio
*n
, *bio
= &s
->bio
.bio
;
527 struct bkey
*bio_key
;
530 if (bkey_cmp(k
, &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0)) <= 0)
533 if (KEY_INODE(k
) != s
->iop
.inode
||
534 KEY_START(k
) > bio
->bi_iter
.bi_sector
) {
535 unsigned int bio_sectors
= bio_sectors(bio
);
536 unsigned int sectors
= KEY_INODE(k
) == s
->iop
.inode
537 ? min_t(uint64_t, INT_MAX
,
538 KEY_START(k
) - bio
->bi_iter
.bi_sector
)
540 int ret
= s
->d
->cache_miss(b
, s
, bio
, sectors
);
542 if (ret
!= MAP_CONTINUE
)
545 /* if this was a complete miss we shouldn't get here */
546 BUG_ON(bio_sectors
<= sectors
);
552 /* XXX: figure out best pointer - for multiple cache devices */
555 PTR_BUCKET(b
->c
, k
, ptr
)->prio
= INITIAL_PRIO
;
558 s
->read_dirty_data
= true;
560 n
= bio_next_split(bio
, min_t(uint64_t, INT_MAX
,
561 KEY_OFFSET(k
) - bio
->bi_iter
.bi_sector
),
562 GFP_NOIO
, &s
->d
->bio_split
);
564 bio_key
= &container_of(n
, struct bbio
, bio
)->key
;
565 bch_bkey_copy_single_ptr(bio_key
, k
, ptr
);
567 bch_cut_front(&KEY(s
->iop
.inode
, n
->bi_iter
.bi_sector
, 0), bio_key
);
568 bch_cut_back(&KEY(s
->iop
.inode
, bio_end_sector(n
), 0), bio_key
);
570 n
->bi_end_io
= bch_cache_read_endio
;
571 n
->bi_private
= &s
->cl
;
574 * The bucket we're reading from might be reused while our bio
575 * is in flight, and we could then end up reading the wrong
578 * We guard against this by checking (in cache_read_endio()) if
579 * the pointer is stale again; if so, we treat it as an error
580 * and reread from the backing device (but we don't pass that
581 * error up anywhere).
584 __bch_submit_bbio(n
, b
->c
);
585 return n
== bio
? MAP_DONE
: MAP_CONTINUE
;
588 static void cache_lookup(struct closure
*cl
)
590 struct search
*s
= container_of(cl
, struct search
, iop
.cl
);
591 struct bio
*bio
= &s
->bio
.bio
;
592 struct cached_dev
*dc
;
595 bch_btree_op_init(&s
->op
, -1);
597 ret
= bch_btree_map_keys(&s
->op
, s
->iop
.c
,
598 &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0),
599 cache_lookup_fn
, MAP_END_KEY
);
600 if (ret
== -EAGAIN
) {
601 continue_at(cl
, cache_lookup
, bcache_wq
);
606 * We might meet err when searching the btree, If that happens, we will
607 * get negative ret, in this scenario we should not recover data from
608 * backing device (when cache device is dirty) because we don't know
609 * whether bkeys the read request covered are all clean.
611 * And after that happened, s->iop.status is still its initial value
612 * before we submit s->bio.bio
615 BUG_ON(ret
== -EINTR
);
616 if (s
->d
&& s
->d
->c
&&
617 !UUID_FLASH_ONLY(&s
->d
->c
->uuids
[s
->d
->id
])) {
618 dc
= container_of(s
->d
, struct cached_dev
, disk
);
619 if (dc
&& atomic_read(&dc
->has_dirty
))
620 s
->recoverable
= false;
623 s
->iop
.status
= BLK_STS_IOERR
;
629 /* Common code for the make_request functions */
631 static void request_endio(struct bio
*bio
)
633 struct closure
*cl
= bio
->bi_private
;
635 if (bio
->bi_status
) {
636 struct search
*s
= container_of(cl
, struct search
, cl
);
638 s
->iop
.status
= bio
->bi_status
;
639 /* Only cache read errors are recoverable */
640 s
->recoverable
= false;
647 static void backing_request_endio(struct bio
*bio
)
649 struct closure
*cl
= bio
->bi_private
;
651 if (bio
->bi_status
) {
652 struct search
*s
= container_of(cl
, struct search
, cl
);
653 struct cached_dev
*dc
= container_of(s
->d
,
654 struct cached_dev
, disk
);
656 * If a bio has REQ_PREFLUSH for writeback mode, it is
657 * speically assembled in cached_dev_write() for a non-zero
658 * write request which has REQ_PREFLUSH. we don't set
659 * s->iop.status by this failure, the status will be decided
660 * by result of bch_data_insert() operation.
662 if (unlikely(s
->iop
.writeback
&&
663 bio
->bi_opf
& REQ_PREFLUSH
)) {
664 pr_err("Can't flush %s: returned bi_status %i",
665 dc
->backing_dev_name
, bio
->bi_status
);
667 /* set to orig_bio->bi_status in bio_complete() */
668 s
->iop
.status
= bio
->bi_status
;
670 s
->recoverable
= false;
671 /* should count I/O error for backing device here */
672 bch_count_backing_io_errors(dc
, bio
);
679 static void bio_complete(struct search
*s
)
682 generic_end_io_acct(s
->d
->disk
->queue
, bio_op(s
->orig_bio
),
683 &s
->d
->disk
->part0
, s
->start_time
);
685 trace_bcache_request_end(s
->d
, s
->orig_bio
);
686 s
->orig_bio
->bi_status
= s
->iop
.status
;
687 bio_endio(s
->orig_bio
);
692 static void do_bio_hook(struct search
*s
,
693 struct bio
*orig_bio
,
694 bio_end_io_t
*end_io_fn
)
696 struct bio
*bio
= &s
->bio
.bio
;
698 bio_init(bio
, NULL
, 0);
699 __bio_clone_fast(bio
, orig_bio
);
701 * bi_end_io can be set separately somewhere else, e.g. the
703 * - cache_bio->bi_end_io from cached_dev_cache_miss()
704 * - n->bi_end_io from cache_lookup_fn()
706 bio
->bi_end_io
= end_io_fn
;
707 bio
->bi_private
= &s
->cl
;
712 static void search_free(struct closure
*cl
)
714 struct search
*s
= container_of(cl
, struct search
, cl
);
716 atomic_dec(&s
->d
->c
->search_inflight
);
722 closure_debug_destroy(cl
);
723 mempool_free(s
, &s
->d
->c
->search
);
726 static inline struct search
*search_alloc(struct bio
*bio
,
727 struct bcache_device
*d
)
731 s
= mempool_alloc(&d
->c
->search
, GFP_NOIO
);
733 closure_init(&s
->cl
, NULL
);
734 do_bio_hook(s
, bio
, request_endio
);
735 atomic_inc(&d
->c
->search_inflight
);
738 s
->cache_miss
= NULL
;
742 s
->write
= op_is_write(bio_op(bio
));
743 s
->read_dirty_data
= 0;
744 s
->start_time
= jiffies
;
748 s
->iop
.inode
= d
->id
;
749 s
->iop
.write_point
= hash_long((unsigned long) current
, 16);
750 s
->iop
.write_prio
= 0;
753 s
->iop
.flush_journal
= op_is_flush(bio
->bi_opf
);
754 s
->iop
.wq
= bcache_wq
;
761 static void cached_dev_bio_complete(struct closure
*cl
)
763 struct search
*s
= container_of(cl
, struct search
, cl
);
764 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
772 static void cached_dev_cache_miss_done(struct closure
*cl
)
774 struct search
*s
= container_of(cl
, struct search
, cl
);
776 if (s
->iop
.replace_collision
)
777 bch_mark_cache_miss_collision(s
->iop
.c
, s
->d
);
780 bio_free_pages(s
->iop
.bio
);
782 cached_dev_bio_complete(cl
);
785 static void cached_dev_read_error(struct closure
*cl
)
787 struct search
*s
= container_of(cl
, struct search
, cl
);
788 struct bio
*bio
= &s
->bio
.bio
;
791 * If read request hit dirty data (s->read_dirty_data is true),
792 * then recovery a failed read request from cached device may
793 * get a stale data back. So read failure recovery is only
794 * permitted when read request hit clean data in cache device,
795 * or when cache read race happened.
797 if (s
->recoverable
&& !s
->read_dirty_data
) {
798 /* Retry from the backing device: */
799 trace_bcache_read_retry(s
->orig_bio
);
802 do_bio_hook(s
, s
->orig_bio
, backing_request_endio
);
804 /* XXX: invalidate cache */
806 /* I/O request sent to backing device */
807 closure_bio_submit(s
->iop
.c
, bio
, cl
);
810 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
813 static void cached_dev_read_done(struct closure
*cl
)
815 struct search
*s
= container_of(cl
, struct search
, cl
);
816 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
819 * We had a cache miss; cache_bio now contains data ready to be inserted
822 * First, we copy the data we just read from cache_bio's bounce buffers
823 * to the buffers the original bio pointed to:
827 bio_reset(s
->iop
.bio
);
828 s
->iop
.bio
->bi_iter
.bi_sector
=
829 s
->cache_miss
->bi_iter
.bi_sector
;
830 bio_copy_dev(s
->iop
.bio
, s
->cache_miss
);
831 s
->iop
.bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
832 bch_bio_map(s
->iop
.bio
, NULL
);
834 bio_copy_data(s
->cache_miss
, s
->iop
.bio
);
836 bio_put(s
->cache_miss
);
837 s
->cache_miss
= NULL
;
840 if (verify(dc
) && s
->recoverable
&& !s
->read_dirty_data
)
841 bch_data_verify(dc
, s
->orig_bio
);
846 !test_bit(CACHE_SET_STOPPING
, &s
->iop
.c
->flags
)) {
847 BUG_ON(!s
->iop
.replace
);
848 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
851 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
854 static void cached_dev_read_done_bh(struct closure
*cl
)
856 struct search
*s
= container_of(cl
, struct search
, cl
);
857 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
859 bch_mark_cache_accounting(s
->iop
.c
, s
->d
,
860 !s
->cache_missed
, s
->iop
.bypass
);
861 trace_bcache_read(s
->orig_bio
, !s
->cache_missed
, s
->iop
.bypass
);
864 continue_at_nobarrier(cl
, cached_dev_read_error
, bcache_wq
);
865 else if (s
->iop
.bio
|| verify(dc
))
866 continue_at_nobarrier(cl
, cached_dev_read_done
, bcache_wq
);
868 continue_at_nobarrier(cl
, cached_dev_bio_complete
, NULL
);
871 static int cached_dev_cache_miss(struct btree
*b
, struct search
*s
,
872 struct bio
*bio
, unsigned int sectors
)
874 int ret
= MAP_CONTINUE
;
875 unsigned int reada
= 0;
876 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
877 struct bio
*miss
, *cache_bio
;
881 if (s
->cache_miss
|| s
->iop
.bypass
) {
882 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, &s
->d
->bio_split
);
883 ret
= miss
== bio
? MAP_DONE
: MAP_CONTINUE
;
887 if (!(bio
->bi_opf
& REQ_RAHEAD
) &&
888 !(bio
->bi_opf
& (REQ_META
|REQ_PRIO
)) &&
889 s
->iop
.c
->gc_stats
.in_use
< CUTOFF_CACHE_READA
)
890 reada
= min_t(sector_t
, dc
->readahead
>> 9,
891 get_capacity(bio
->bi_disk
) - bio_end_sector(bio
));
893 s
->insert_bio_sectors
= min(sectors
, bio_sectors(bio
) + reada
);
895 s
->iop
.replace_key
= KEY(s
->iop
.inode
,
896 bio
->bi_iter
.bi_sector
+ s
->insert_bio_sectors
,
897 s
->insert_bio_sectors
);
899 ret
= bch_btree_insert_check_key(b
, &s
->op
, &s
->iop
.replace_key
);
903 s
->iop
.replace
= true;
905 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, &s
->d
->bio_split
);
907 /* btree_search_recurse()'s btree iterator is no good anymore */
908 ret
= miss
== bio
? MAP_DONE
: -EINTR
;
910 cache_bio
= bio_alloc_bioset(GFP_NOWAIT
,
911 DIV_ROUND_UP(s
->insert_bio_sectors
, PAGE_SECTORS
),
912 &dc
->disk
.bio_split
);
916 cache_bio
->bi_iter
.bi_sector
= miss
->bi_iter
.bi_sector
;
917 bio_copy_dev(cache_bio
, miss
);
918 cache_bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
920 cache_bio
->bi_end_io
= backing_request_endio
;
921 cache_bio
->bi_private
= &s
->cl
;
923 bch_bio_map(cache_bio
, NULL
);
924 if (bch_bio_alloc_pages(cache_bio
, __GFP_NOWARN
|GFP_NOIO
))
928 bch_mark_cache_readahead(s
->iop
.c
, s
->d
);
930 s
->cache_miss
= miss
;
931 s
->iop
.bio
= cache_bio
;
933 /* I/O request sent to backing device */
934 closure_bio_submit(s
->iop
.c
, cache_bio
, &s
->cl
);
940 miss
->bi_end_io
= backing_request_endio
;
941 miss
->bi_private
= &s
->cl
;
942 /* I/O request sent to backing device */
943 closure_bio_submit(s
->iop
.c
, miss
, &s
->cl
);
947 static void cached_dev_read(struct cached_dev
*dc
, struct search
*s
)
949 struct closure
*cl
= &s
->cl
;
951 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
952 continue_at(cl
, cached_dev_read_done_bh
, NULL
);
957 static void cached_dev_write_complete(struct closure
*cl
)
959 struct search
*s
= container_of(cl
, struct search
, cl
);
960 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
962 up_read_non_owner(&dc
->writeback_lock
);
963 cached_dev_bio_complete(cl
);
966 static void cached_dev_write(struct cached_dev
*dc
, struct search
*s
)
968 struct closure
*cl
= &s
->cl
;
969 struct bio
*bio
= &s
->bio
.bio
;
970 struct bkey start
= KEY(dc
->disk
.id
, bio
->bi_iter
.bi_sector
, 0);
971 struct bkey end
= KEY(dc
->disk
.id
, bio_end_sector(bio
), 0);
973 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
, &start
, &end
);
975 down_read_non_owner(&dc
->writeback_lock
);
976 if (bch_keybuf_check_overlapping(&dc
->writeback_keys
, &start
, &end
)) {
978 * We overlap with some dirty data undergoing background
979 * writeback, force this write to writeback
981 s
->iop
.bypass
= false;
982 s
->iop
.writeback
= true;
986 * Discards aren't _required_ to do anything, so skipping if
987 * check_overlapping returned true is ok
989 * But check_overlapping drops dirty keys for which io hasn't started,
990 * so we still want to call it.
992 if (bio_op(bio
) == REQ_OP_DISCARD
)
993 s
->iop
.bypass
= true;
995 if (should_writeback(dc
, s
->orig_bio
,
998 s
->iop
.bypass
= false;
999 s
->iop
.writeback
= true;
1002 if (s
->iop
.bypass
) {
1003 s
->iop
.bio
= s
->orig_bio
;
1004 bio_get(s
->iop
.bio
);
1006 if (bio_op(bio
) == REQ_OP_DISCARD
&&
1007 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
1010 /* I/O request sent to backing device */
1011 bio
->bi_end_io
= backing_request_endio
;
1012 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1014 } else if (s
->iop
.writeback
) {
1015 bch_writeback_add(dc
);
1018 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1020 * Also need to send a flush to the backing
1025 flush
= bio_alloc_bioset(GFP_NOIO
, 0,
1026 &dc
->disk
.bio_split
);
1028 s
->iop
.status
= BLK_STS_RESOURCE
;
1031 bio_copy_dev(flush
, bio
);
1032 flush
->bi_end_io
= backing_request_endio
;
1033 flush
->bi_private
= cl
;
1034 flush
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1035 /* I/O request sent to backing device */
1036 closure_bio_submit(s
->iop
.c
, flush
, cl
);
1039 s
->iop
.bio
= bio_clone_fast(bio
, GFP_NOIO
, &dc
->disk
.bio_split
);
1040 /* I/O request sent to backing device */
1041 bio
->bi_end_io
= backing_request_endio
;
1042 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1046 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1047 continue_at(cl
, cached_dev_write_complete
, NULL
);
1050 static void cached_dev_nodata(struct closure
*cl
)
1052 struct search
*s
= container_of(cl
, struct search
, cl
);
1053 struct bio
*bio
= &s
->bio
.bio
;
1055 if (s
->iop
.flush_journal
)
1056 bch_journal_meta(s
->iop
.c
, cl
);
1058 /* If it's a flush, we send the flush to the backing device too */
1059 bio
->bi_end_io
= backing_request_endio
;
1060 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1062 continue_at(cl
, cached_dev_bio_complete
, NULL
);
1065 struct detached_dev_io_private
{
1066 struct bcache_device
*d
;
1067 unsigned long start_time
;
1068 bio_end_io_t
*bi_end_io
;
1072 static void detached_dev_end_io(struct bio
*bio
)
1074 struct detached_dev_io_private
*ddip
;
1076 ddip
= bio
->bi_private
;
1077 bio
->bi_end_io
= ddip
->bi_end_io
;
1078 bio
->bi_private
= ddip
->bi_private
;
1080 generic_end_io_acct(ddip
->d
->disk
->queue
, bio_op(bio
),
1081 &ddip
->d
->disk
->part0
, ddip
->start_time
);
1083 if (bio
->bi_status
) {
1084 struct cached_dev
*dc
= container_of(ddip
->d
,
1085 struct cached_dev
, disk
);
1086 /* should count I/O error for backing device here */
1087 bch_count_backing_io_errors(dc
, bio
);
1091 bio
->bi_end_io(bio
);
1094 static void detached_dev_do_request(struct bcache_device
*d
, struct bio
*bio
)
1096 struct detached_dev_io_private
*ddip
;
1097 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1100 * no need to call closure_get(&dc->disk.cl),
1101 * because upper layer had already opened bcache device,
1102 * which would call closure_get(&dc->disk.cl)
1104 ddip
= kzalloc(sizeof(struct detached_dev_io_private
), GFP_NOIO
);
1106 ddip
->start_time
= jiffies
;
1107 ddip
->bi_end_io
= bio
->bi_end_io
;
1108 ddip
->bi_private
= bio
->bi_private
;
1109 bio
->bi_end_io
= detached_dev_end_io
;
1110 bio
->bi_private
= ddip
;
1112 if ((bio_op(bio
) == REQ_OP_DISCARD
) &&
1113 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
1114 bio
->bi_end_io(bio
);
1116 generic_make_request(bio
);
1119 static void quit_max_writeback_rate(struct cache_set
*c
,
1120 struct cached_dev
*this_dc
)
1123 struct bcache_device
*d
;
1124 struct cached_dev
*dc
;
1127 * mutex bch_register_lock may compete with other parallel requesters,
1128 * or attach/detach operations on other backing device. Waiting to
1129 * the mutex lock may increase I/O request latency for seconds or more.
1130 * To avoid such situation, if mutext_trylock() failed, only writeback
1131 * rate of current cached device is set to 1, and __update_write_back()
1132 * will decide writeback rate of other cached devices (remember now
1133 * c->idle_counter is 0 already).
1135 if (mutex_trylock(&bch_register_lock
)) {
1136 for (i
= 0; i
< c
->devices_max_used
; i
++) {
1140 if (UUID_FLASH_ONLY(&c
->uuids
[i
]))
1144 dc
= container_of(d
, struct cached_dev
, disk
);
1146 * set writeback rate to default minimum value,
1147 * then let update_writeback_rate() to decide the
1150 atomic_long_set(&dc
->writeback_rate
.rate
, 1);
1152 mutex_unlock(&bch_register_lock
);
1154 atomic_long_set(&this_dc
->writeback_rate
.rate
, 1);
1157 /* Cached devices - read & write stuff */
1159 static blk_qc_t
cached_dev_make_request(struct request_queue
*q
,
1163 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
1164 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1165 int rw
= bio_data_dir(bio
);
1167 if (unlikely((d
->c
&& test_bit(CACHE_SET_IO_DISABLE
, &d
->c
->flags
)) ||
1169 bio
->bi_status
= BLK_STS_IOERR
;
1171 return BLK_QC_T_NONE
;
1175 if (atomic_read(&d
->c
->idle_counter
))
1176 atomic_set(&d
->c
->idle_counter
, 0);
1178 * If at_max_writeback_rate of cache set is true and new I/O
1179 * comes, quit max writeback rate of all cached devices
1180 * attached to this cache set, and set at_max_writeback_rate
1183 if (unlikely(atomic_read(&d
->c
->at_max_writeback_rate
) == 1)) {
1184 atomic_set(&d
->c
->at_max_writeback_rate
, 0);
1185 quit_max_writeback_rate(d
->c
, dc
);
1189 generic_start_io_acct(q
,
1194 bio_set_dev(bio
, dc
->bdev
);
1195 bio
->bi_iter
.bi_sector
+= dc
->sb
.data_offset
;
1197 if (cached_dev_get(dc
)) {
1198 s
= search_alloc(bio
, d
);
1199 trace_bcache_request_start(s
->d
, bio
);
1201 if (!bio
->bi_iter
.bi_size
) {
1203 * can't call bch_journal_meta from under
1204 * generic_make_request
1206 continue_at_nobarrier(&s
->cl
,
1210 s
->iop
.bypass
= check_should_bypass(dc
, bio
);
1213 cached_dev_write(dc
, s
);
1215 cached_dev_read(dc
, s
);
1218 /* I/O request sent to backing device */
1219 detached_dev_do_request(d
, bio
);
1221 return BLK_QC_T_NONE
;
1224 static int cached_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1225 unsigned int cmd
, unsigned long arg
)
1227 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1232 return __blkdev_driver_ioctl(dc
->bdev
, mode
, cmd
, arg
);
1235 static int cached_dev_congested(void *data
, int bits
)
1237 struct bcache_device
*d
= data
;
1238 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1239 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1242 if (bdi_congested(q
->backing_dev_info
, bits
))
1245 if (cached_dev_get(dc
)) {
1249 for_each_cache(ca
, d
->c
, i
) {
1250 q
= bdev_get_queue(ca
->bdev
);
1251 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1260 void bch_cached_dev_request_init(struct cached_dev
*dc
)
1262 struct gendisk
*g
= dc
->disk
.disk
;
1264 g
->queue
->make_request_fn
= cached_dev_make_request
;
1265 g
->queue
->backing_dev_info
->congested_fn
= cached_dev_congested
;
1266 dc
->disk
.cache_miss
= cached_dev_cache_miss
;
1267 dc
->disk
.ioctl
= cached_dev_ioctl
;
1270 /* Flash backed devices */
1272 static int flash_dev_cache_miss(struct btree
*b
, struct search
*s
,
1273 struct bio
*bio
, unsigned int sectors
)
1275 unsigned int bytes
= min(sectors
, bio_sectors(bio
)) << 9;
1277 swap(bio
->bi_iter
.bi_size
, bytes
);
1279 swap(bio
->bi_iter
.bi_size
, bytes
);
1281 bio_advance(bio
, bytes
);
1283 if (!bio
->bi_iter
.bi_size
)
1286 return MAP_CONTINUE
;
1289 static void flash_dev_nodata(struct closure
*cl
)
1291 struct search
*s
= container_of(cl
, struct search
, cl
);
1293 if (s
->iop
.flush_journal
)
1294 bch_journal_meta(s
->iop
.c
, cl
);
1296 continue_at(cl
, search_free
, NULL
);
1299 static blk_qc_t
flash_dev_make_request(struct request_queue
*q
,
1304 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
1306 if (unlikely(d
->c
&& test_bit(CACHE_SET_IO_DISABLE
, &d
->c
->flags
))) {
1307 bio
->bi_status
= BLK_STS_IOERR
;
1309 return BLK_QC_T_NONE
;
1312 generic_start_io_acct(q
, bio_op(bio
), bio_sectors(bio
), &d
->disk
->part0
);
1314 s
= search_alloc(bio
, d
);
1318 trace_bcache_request_start(s
->d
, bio
);
1320 if (!bio
->bi_iter
.bi_size
) {
1322 * can't call bch_journal_meta from under
1323 * generic_make_request
1325 continue_at_nobarrier(&s
->cl
,
1328 return BLK_QC_T_NONE
;
1329 } else if (bio_data_dir(bio
)) {
1330 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
,
1331 &KEY(d
->id
, bio
->bi_iter
.bi_sector
, 0),
1332 &KEY(d
->id
, bio_end_sector(bio
), 0));
1334 s
->iop
.bypass
= (bio_op(bio
) == REQ_OP_DISCARD
) != 0;
1335 s
->iop
.writeback
= true;
1338 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1340 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
1343 continue_at(cl
, search_free
, NULL
);
1344 return BLK_QC_T_NONE
;
1347 static int flash_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1348 unsigned int cmd
, unsigned long arg
)
1353 static int flash_dev_congested(void *data
, int bits
)
1355 struct bcache_device
*d
= data
;
1356 struct request_queue
*q
;
1361 for_each_cache(ca
, d
->c
, i
) {
1362 q
= bdev_get_queue(ca
->bdev
);
1363 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1369 void bch_flash_dev_request_init(struct bcache_device
*d
)
1371 struct gendisk
*g
= d
->disk
;
1373 g
->queue
->make_request_fn
= flash_dev_make_request
;
1374 g
->queue
->backing_dev_info
->congested_fn
= flash_dev_congested
;
1375 d
->cache_miss
= flash_dev_cache_miss
;
1376 d
->ioctl
= flash_dev_ioctl
;
1379 void bch_request_exit(void)
1381 kmem_cache_destroy(bch_search_cache
);
1384 int __init
bch_request_init(void)
1386 bch_search_cache
= KMEM_CACHE(search
, 0);
1387 if (!bch_search_cache
)